1
|
Nguyen AL, Facey COB, Boman BM. The Complexity and Significance of Fibroblast Growth Factor (FGF) Signaling for FGF-Targeted Cancer Therapies. Cancers (Basel) 2024; 17:82. [PMID: 39796710 PMCID: PMC11720651 DOI: 10.3390/cancers17010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/03/2024] [Revised: 12/21/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Fibroblast growth factors (FGFs) have diverse functions in the regulation of cell proliferation and differentiation in development, tissue maintenance, wound repair, and angiogenesis. The goal of this review paper is to (i) deliberate on the role of FGFs and FGF receptors (FGFRs) in different cancers, (ii) present advances in FGF-targeted cancer therapies, and (iii) explore cell signaling mechanisms that explain how FGF expression becomes dysregulated during cancer development. FGF is often mutated and overexpressed in cancer and the different FGF and FGFR isoforms have unique expression patterns and distinct roles in different cancers. Among the FGF members, the FGF 15/19 subfamily is particularly interesting because of its unique protein structure and role in endocrine function. The abnormal expression of FGFs in different cancer types (breast, colorectal, hepatobiliary, bronchogenic, and others) is examined and correlated with patient prognosis. The classification of FGF ligands based on their mode of action, whether autocrine, paracrine, endocrine, or intracrine, is illustrated, and an analysis of the binding specificity of FGFs to FGFRs is also provided. Moreover, the latest advances in cancer therapeutic strategies involving small molecules, ligand traps, and monoclonal antibody-based FGF inhibitors are presented. Lastly, we discuss how the dysregulation of FGF and FGFR expression affects FGF signaling and its role in cancer development.
Collapse
Affiliation(s)
- Anh L. Nguyen
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, 4701 Ogletown-Stanton Road, Newark, DE 19713, USA
| | - Caroline O. B. Facey
- Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, 4701 Ogletown-Stanton Road, Newark, DE 19713, USA
| | - Bruce M. Boman
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, 4701 Ogletown-Stanton Road, Newark, DE 19713, USA
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
2
|
Montero-Calle A, Garranzo-Asensio M, Poves C, Sanz R, Dziakova J, Peláez-García A, de Los Ríos V, Martinez-Useros J, Fernández-Aceñero MJ, Barderas R. In-Depth Proteomic Analysis of Paraffin-Embedded Tissue Samples from Colorectal Cancer Patients Revealed TXNDC17 and SLC8A1 as Key Proteins Associated with the Disease. J Proteome Res 2024; 23:4802-4820. [PMID: 39441737 DOI: 10.1021/acs.jproteome.3c00749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/25/2024]
Abstract
A deeper understanding of colorectal cancer (CRC) biology would help to identify specific early diagnostic markers. Here, we conducted quantitative proteomics on FFPE healthy, adenoma, and adenocarcinoma tissue samples from six stage I sporadic CRC patients to identify dysregulated proteins during early CRC development. Two independent quantitative 10-plex TMT experiments were separately performed. After protein extraction, trypsin digestion, and labeling, proteins were identified and quantified by using a Q Exactive mass spectrometer. A total of 2681 proteins were identified and quantified after data analysis and bioinformatics with MaxQuant and the R program. Among them, 284 and 280 proteins showed significant upregulation and downregulation (expression ratio ≥1.5 or ≤0.67, p-value ≤0.05), respectively, in adenoma and/or adenocarcinoma compared to healthy tissue. Ten dysregulated proteins were selected to study their role in CRC by WB, IHC, TMA, and ELISA using tissue and plasma samples from CRC patients, individuals with premalignant colorectal lesions (adenomas), and healthy individuals. In vitro loss-of-function cell-based assays and in vivo experiments using three CRC cell lines with different metastatic properties assessed the important roles of SLC8A1 and TXNDC17 in CRC and liver metastasis. Additionally, SLC8A1 and TXNDC17 protein levels in plasma possessed the diagnostic ability of early CRC stages.
Collapse
Affiliation(s)
- Ana Montero-Calle
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, E-28220 Madrid, Spain
- Proteomics Core UCCTs, Instituto de Salud Carlos III, Majadahonda, E-28220 Madrid, Spain
| | - María Garranzo-Asensio
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, E-28220 Madrid, Spain
| | - Carmen Poves
- Gastroenterology Unit, Hospital Universitario Clínico San Carlos, E-28040 Madrid, Spain
| | - Rodrigo Sanz
- Surgical Digestive Department, Hospital Universitario Clínico San Carlos, E-28040 Madrid, Spain
| | - Jana Dziakova
- Surgical Digestive Department, Hospital Universitario Clínico San Carlos, E-28040 Madrid, Spain
| | - Alberto Peláez-García
- Molecular Pathology and Therapeutic Targets Group, Hospital La Paz Institute for Health Research (IdiPAZ), E-28046 Madrid, Spain
| | | | - Javier Martinez-Useros
- Translational Oncology Division, OncoHealth Institute, Health Research Institute-Fundación Jiménez Díaz, Fundación Jiménez Díaz University Hospital/Universidad Autónoma de Madrid (IIS-FJD/UAM), E-28040 Madrid, Spain
- Area of Physiology, Department of Basic Health Sciences, Faculty of Health Sciences, Rey Juan Carlos University, Alcorcón, E-28922 Madrid, Spain
| | | | - Rodrigo Barderas
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, E-28220 Madrid, Spain
- Proteomics Core UCCTs, Instituto de Salud Carlos III, Majadahonda, E-28220 Madrid, Spain
- CIBER of Frailty and Healthy Aging (CIBERFES), E-28029 Madrid, Spain
| |
Collapse
|
3
|
Montero-Calle A, Garranzo-Asensio M, Moreno-Casbas MT, Campuzano S, Barderas R. Autoantibodies in cancer: a systematic review of their clinical role in the most prevalent cancers. Front Immunol 2024; 15:1455602. [PMID: 39234247 PMCID: PMC11371560 DOI: 10.3389/fimmu.2024.1455602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/27/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
Although blood autoantibodies were initially associated with autoimmune diseases, multiple evidence have been accumulated showing their presence in many types of cancer. This has opened their use in clinics, since cancer autoantibodies might be useful for early detection, prognosis, and monitoring of cancer patients. In this review, we discuss the different techniques available for their discovery and validation. Additionally, we discuss here in detail those autoantibody panels verified in at least two different reports that should be more likely to be specific of each of the four most incident cancers. We also report the recent developed kits for breast and lung cancer detection mostly based on autoantibodies and the identification of novel therapeutic targets because of the screening of the cancer humoral immune response. Finally, we discuss unsolved issues that still need to be addressed for the implementation of cancer autoantibodies in clinical routine for cancer diagnosis, prognosis, and/or monitoring.
Collapse
Affiliation(s)
- Ana Montero-Calle
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Maria Teresa Moreno-Casbas
- Investén-isciii, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network for Frailty and Healthy Ageing (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Rodrigo Barderas
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network for Frailty and Healthy Ageing (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Lin H, Fu H, Sun S, Yin H, Yuan J, Liao J. Patient tissue-derived FGFR4-variant and wild-type colorectal cancer organoid development and anticancer drug sensitivity testing. Heliyon 2024; 10:e30985. [PMID: 38826758 PMCID: PMC11141279 DOI: 10.1016/j.heliyon.2024.e30985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/11/2023] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 06/04/2024] Open
Abstract
Objectives FGFR4-variant and wild-type colorectal cancer (CRC) organoids were developed to investigate the effects of FGFR4-targeted drugs, including FGFR4-IN and erdafitinib, on CRC and their possible molecular mechanism. Methods Clinical CRC tissues were collected, seven CRC organoids were developed, and whole exome sequencing (WES) was performed. CRC organoids were cultured and organoid drug sensitivity studies were conducted. Finally, an FGFR4-variant (no wild-type) CRC patient-derived orthotopic xenograft mouse model was developed. Western blot measured ERK/AKT/STAT3 pathway-related protein levels. Results WES results revealed the presence of FGFR4-variants in 5 of the 7 CRC organoids. The structural organization and integrity of organoids were significantly altered under the influence of targeted drugs (FGFR4-IN-1 and erdafitinib). The effects of FGFR4 targeted drugs were not selective for FGFR4 genotypes. FGFR4-IN-1 and erdafitinib significantly reduced the growth, diameter, and Adenosine Triphosphate (ATP) activity of organoids. Furthermore, chemotherapeutic drugs, including 5-fluorouracil and cisplatin, inhibited FGFR4-variant and wild-type CRC organoid activity. Moreover, the tumor volume of mice was significantly reduced at week 6, and p-ERK1/2, p-AKT, and p-STAT3 levels were down-regulated following FGFR4-IN-1 and erdafitinib treatment. Conclusions FGFR4-targeted and chemotherapeutic drugs inhibited the activity of FGFR4-variant and wild-type CRC organoids, and targeted drugs were more effective than chemotherapeutic drugs at the same concentration. Additionally, FGFR4 inhibitors hindered tumorigenesis in FGFR4-variant CRC organoids through ERK1/2, AKT, and STAT3 pathways. However, no wild-type control was tested in this experiment, which need further confirmation in the next study.
Collapse
Affiliation(s)
- Hailing Lin
- Department of Pharmacy, The Second Affiliated Hospital, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Hongbo Fu
- Department of Pharmacy, The Second Affiliated Hospital, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Shishen Sun
- Department of General Surgery, Foshan Clinical Medical School, Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong, China
| | - Hao Yin
- Department of General Surgery, Foshan Clinical Medical School, Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong, China
| | - Jie Yuan
- Department of General Surgery, Foshan Clinical Medical School, Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong, China
| | - Jilin Liao
- Department of Pharmacy, The Second Affiliated Hospital, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, 515041, China
| |
Collapse
|
5
|
Safhi FA, Al-Hazani TMI, Jalal AS, Alduwish MA, Alshaya DS, Almufareh NA, Domiaty DM, Alshehri E, Al-Shamrani SM, Abboosh TS, Alotaibi MA, Alwaili MA, Al-Qahtani WS. FGFR3 and FGFR4 overexpression in juvenile nasopharyngeal angiofibroma: impact of smoking history and implications for personalized management. J Appl Genet 2023; 64:749-758. [PMID: 37656292 DOI: 10.1007/s13353-023-00780-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/06/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 09/02/2023]
Abstract
Lifestyle factors, including smoking, have been linked to neoplastic diseases, and reports suggest an association between smoking and overexpression of FGFR (fibroblast growth factor receptor) in certain neoplasms. This study aims to assess the expression of FGFR3 and FGFR4 genes in patients with and without a history of smoking.A total of 118 participants were recruited, including 83 Juvenile Nasopharyngeal Angiofibroma (JNA) patients and 35 healthy participants, the JNA patients were further stratified as smokers and nonsmokers. Total RNA was extracted from the blood & saliva sample by using TRIzol reagent, and quantified using a Nanodrop, and then subjected to gene expression analysis of FGFR3/4 using RT-PCR. Immunohistochemistry analysis was employed using fresh biopsies of JNA to validate the findings. All experiments were performed in triplicates and analysed using the Chi-Square test (P < 0.05). Smokers exhibited significantly lower total RNA concentrations across all sample types (P < 0.001). The study revealed significant upregulation of both FGFR3/4 genes in JNA patients (P < 0.05). Moreover, FGFR3 expression was significantly higher among smokers 66% (95% CI: 53-79%) compared to non-smokers 22% (95% CI: 18-26%). Immunohistochemistry analysis demonstrated moderate to strong staining intensity for FGFR3 among smokers. The study highlights the overexpression of FGFR3/4 genes in JNA patients, with a stronger association observed among smokers. Furthermore, medical reports indicated higher rates of recurrence and bleeding intensity among smokers. These findings emphasize the potential role of FGFR3 as a key molecular factor in JNA, particularly in the context of smoking.
Collapse
Affiliation(s)
- Fatmah Ahmed Safhi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Tahani Mohamed Ibrahim Al-Hazani
- Department of Biology, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, P.O. Box 83, 11940, Al-Kharj, Saudi Arabia
| | - Areej Saud Jalal
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Manal Abdullah Alduwish
- Department of Biology, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, P.O. Box 83, 11940, Al-Kharj, Saudi Arabia
| | - Dalal S Alshaya
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Nawaf Abdulrahman Almufareh
- Department of Pediatric Dentistry and Preventive Dental Sciences, Riyadh Elm University, Riyadh, Saudi Arabia
| | - Dalia Mostafa Domiaty
- College of Science, Department of Biology, University of Jeddah, P.O. Box 13151, 21493, Jeddah, Saudi Arabia
| | - Eman Alshehri
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Salha M Al-Shamrani
- College of Science, Department of Biology, University of Jeddah, P.O. Box 13151, 21493, Jeddah, Saudi Arabia
| | - Tahani Saeed Abboosh
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Public Security, Forensic Evidence Laboratories, Criminal Examinations, Ministry of Interior, Riyadh, Saudi Arabia
| | | | - Maha Abdulla Alwaili
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Wedad Saeed Al-Qahtani
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University for Security Sciences, P.O. Box 6830, 11452, Riyadh, Saudi Arabia.
| |
Collapse
|
6
|
Fang B, Lai Y, Yan H, Ma Y, Ni Z, Zhu Q, Zhang J, Ye Y, Wang M, Wang P, Wang Y, Zhang S, Hui M, Wang D, Zhao Y, Li X, Wang K, Liu Z. Design, synthesis, and biological evaluation of 1,6-naphthyridine-2-one derivatives as novel FGFR4 inhibitors for the treatment of colorectal cancer. Eur J Med Chem 2023; 259:115703. [PMID: 37556948 DOI: 10.1016/j.ejmech.2023.115703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/24/2023] [Revised: 07/30/2023] [Accepted: 07/30/2023] [Indexed: 08/11/2023]
Abstract
Aberrant FGFR4 signaling has been implicated in the development of several cancers, making FGFR4 a promising target for cancer therapy. Several FGFR4-selective inhibitors have been developed, yet none of them have been approved. Herein, we report a novel series of 1,6-naphthyridine-2-one derivatives as potent and selective inhibitors targeting FGFR4 kinase. Preliminary structure-activity relationship analysis was conducted. The screening cascades revealed that 19g was the preferred compound among the prepared series. 19g demonstrated excellent kinase selectivity and substantial cytotoxic effect against all tested colorectal cancer cell lines. 19g induced significant tumor inhibition in a HCT116 xenograft mouse model without any apparent toxicity. Notably, 19g exhibited excellent potency in disrupting the phosphorylation of FGFR4 and downstream signaling proteins mediated by FGF18 and FGF19. Compound 19g might be a potential antitumor drug candidate for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Bo Fang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China
| | - Yinshuang Lai
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China
| | - Hao Yan
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China
| | - Yue Ma
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China
| | - Zefeng Ni
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China
| | - Qianqian Zhu
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China
| | - Jianxia Zhang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China
| | - Yanfei Ye
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China
| | - Mengying Wang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China
| | - Peipei Wang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China
| | - Yan Wang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China
| | - Shuyuan Zhang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China
| | - Min Hui
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China
| | - Dalong Wang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China
| | - Yunjie Zhao
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China
| | - Xiaokun Li
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China.
| | - Kun Wang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China.
| | - Zhiguo Liu
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China; Oujiang Laboratory, Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
7
|
Liu Q, Huang J, Yan W, Liu Z, Liu S, Fang W. FGFR families: biological functions and therapeutic interventions in tumors. MedComm (Beijing) 2023; 4:e367. [PMID: 37750089 PMCID: PMC10518040 DOI: 10.1002/mco2.367] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/15/2023] [Revised: 07/28/2023] [Accepted: 08/11/2023] [Indexed: 09/27/2023] Open
Abstract
There are five fibroblast growth factor receptors (FGFRs), namely, FGFR1-FGFR5. When FGFR binds to its ligand, namely, fibroblast growth factor (FGF), it dimerizes and autophosphorylates, thereby activating several key downstream pathways that play an important role in normal physiology, such as the Ras/Raf/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase, phosphoinositide 3-kinase (PI3K)/AKT, phospholipase C gamma/diacylglycerol/protein kinase c, and signal transducer and activator of transcription pathways. Furthermore, as an oncogene, FGFR genetic alterations were found in 7.1% of tumors, and these alterations include gene amplification, gene mutations, gene fusions or rearrangements. Therefore, FGFR amplification, mutations, rearrangements, or fusions are considered as potential biomarkers of FGFR therapeutic response for tyrosine kinase inhibitors (TKIs). However, it is worth noting that with increased use, resistance to TKIs inevitably develops, such as the well-known gatekeeper mutations. Thus, overcoming the development of drug resistance becomes a serious problem. This review mainly outlines the FGFR family functions, related pathways, and therapeutic agents in tumors with the aim of obtaining better outcomes for cancer patients with FGFR changes. The information provided in this review may provide additional therapeutic ideas for tumor patients with FGFR abnormalities.
Collapse
Affiliation(s)
- Qing Liu
- Cancer CenterIntegrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Jiyu Huang
- Cancer CenterIntegrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Weiwei Yan
- Cancer CenterIntegrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Zhen Liu
- Cancer CenterIntegrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongChina
- Key Laboratory of Protein Modification and DegradationBasic School of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Shu Liu
- Department of Breast SurgeryThe Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Weiyi Fang
- Cancer CenterIntegrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
8
|
Montero-Calle A, López-Janeiro Á, Mendes ML, Perez-Hernandez D, Echevarría I, Ruz-Caracuel I, Heredia-Soto V, Mendiola M, Hardisson D, Argüeso P, Peláez-García A, Guzman-Aranguez A, Barderas R. In-depth quantitative proteomics analysis revealed C1GALT1 depletion in ECC-1 cells mimics an aggressive endometrial cancer phenotype observed in cancer patients with low C1GALT1 expression. Cell Oncol (Dordr) 2023; 46:697-715. [PMID: 36745330 PMCID: PMC10205863 DOI: 10.1007/s13402-023-00778-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 01/19/2023] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Endometrial cancer (EC) is the most common cancer of the female reproductive organs. Despite the good overall prognosis of most low-grade ECs, FIGO I and FIGO II patients might experience tumor recurrence and worse prognosis. The study of alterations related to EC pathogenesis might help to get insights into underlying mechanisms involved in EC development and progression. METHODS Core tumoral samples were used to investigate the role of C1GALT1 in EC by immunohistochemistry (IHC). ECC-1 cells were used as endometrioid EC model to investigate the effect of C1GALT1 depletion using C1GALT1 specific shRNAs. SILAC quantitative proteomics analyses and cell-based assays, PCR, qPCR, WB, dot-blot and IHC analyses were used to identify, quantify and validate dysregulation of proteins. RESULTS Low C1GALT1 protein expression levels associate to a more aggressive phenotype of EC. Out of 5208 proteins identified and quantified by LC-MS/MS, 100 proteins showed dysregulation (log2fold-change ≥ 0.58 or ≤-0.58) in the cell protein extracts and 144 in the secretome of C1GALT1 depleted ECC-1 cells. Nine dysregulated proteins were validated. Bioinformatics analyses pointed out to an increase in pathways associated with an aggressive phenotype. This finding was corroborated by loss-of-function cell-based assays demonstrating higher proliferation, invasion, migration, colony formation and angiogenesis capacity in C1GALT1 depleted cells. These effects were associated to the overexpression of ANXA1, as demonstrated by ANXA1 transient silencing cell-based assays, and thus, correlating C1GALT and ANXA1 protein expression and biological effects. Finally, the negative protein expression correlation found by proteomics between C1GALT1 and LGALS3 was confirmed by IHC. CONCLUSION C1GALT1 stably depleted ECC-1 cells mimic an EC aggressive phenotype observed in patients and might be useful for the identification and validation of EC markers of progression.
Collapse
Affiliation(s)
- Ana Montero-Calle
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | | | - Marta L Mendes
- Department of Infection and Immunity, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
| | - Daniel Perez-Hernandez
- Department of Infection and Immunity, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
| | - Irene Echevarría
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
- Biochemistry and Molecular Biology Department, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037, Madrid, Spain
| | | | - Victoria Heredia-Soto
- Translational Oncology, La Paz University Hospital (IdiPAZ), 28046, Madrid, Spain
- Center for Biomedical Research in the Cancer Network (Centro de Investigación Biomédica en Red de Cáncer, CIBERONC), Instituto de Salud Carlos III, 28046, Madrid, Spain
| | - Marta Mendiola
- Center for Biomedical Research in the Cancer Network (Centro de Investigación Biomédica en Red de Cáncer, CIBERONC), Instituto de Salud Carlos III, 28046, Madrid, Spain
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046, Madrid, Spain
| | - David Hardisson
- Department of Pathology, Hospital Universitario La Paz, 28046, Madrid, Spain
- Center for Biomedical Research in the Cancer Network (Centro de Investigación Biomédica en Red de Cáncer, CIBERONC), Instituto de Salud Carlos III, 28046, Madrid, Spain
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046, Madrid, Spain
- Faculty of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - Pablo Argüeso
- Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Alberto Peláez-García
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046, Madrid, Spain.
| | - Ana Guzman-Aranguez
- Biochemistry and Molecular Biology Department, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037, Madrid, Spain.
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
- Functional Proteomics Unit, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| |
Collapse
|
9
|
Solís-Fernández G, Montero-Calle A, Sánchez-Martínez M, Peláez-García A, Fernández-Aceñero MJ, Pallarés P, Alonso-Navarro M, Mendiola M, Hendrix J, Hardisson D, Bartolomé RA, Hofkens J, Rocha S, Barderas R. Aryl-hydrocarbon receptor-interacting protein regulates tumorigenic and metastatic properties of colorectal cancer cells driving liver metastasis. Br J Cancer 2022. [DOI: 10.1038/s41416-022-01762-1
expr 880987936 + 827650491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/16/2023] Open
|
10
|
Solís-Fernández G, Montero-Calle A, Sánchez-Martínez M, Peláez-García A, Fernández-Aceñero MJ, Pallarés P, Alonso-Navarro M, Mendiola M, Hendrix J, Hardisson D, Bartolomé RA, Hofkens J, Rocha S, Barderas R. Aryl-hydrocarbon receptor-interacting protein regulates tumorigenic and metastatic properties of colorectal cancer cells driving liver metastasis. Br J Cancer 2022; 126:1604-1615. [PMID: 35347323 PMCID: PMC9130499 DOI: 10.1038/s41416-022-01762-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/25/2021] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Liver metastasis is the primary cause of colorectal cancer (CRC)-associated death. Aryl-hydrocarbon receptor-interacting protein (AIP), a putative positive intermediary in aryl-hydrocarbon receptor-mediated signalling, is overexpressed in highly metastatic human KM12SM CRC cells and other highly metastatic CRC cells. METHODS Meta-analysis and immunohistochemistry were used to assess the relevance of AIP. Cellular functions and signalling mechanisms mediated by AIP were assessed by gain-of-function experiments and in vitro and in vivo experiments. RESULTS A significant association of high AIP expression with poor CRC patients' survival was observed. Gain-of-function and quantitative proteomics experiments demonstrated that AIP increased tumorigenic and metastatic properties of isogenic KM12C (poorly metastatic) and KM12SM (highly metastatic to the liver) CRC cells. AIP overexpression dysregulated epithelial-to-mesenchymal (EMT) markers and induced several transcription factors and Cadherin-17 activation. The former induced the signalling activation of AKT, SRC and JNK kinases to increase adhesion, migration and invasion of CRC cells. In vivo, AIP expressing KM12 cells induced tumour growth and liver metastasis. Furthermore, KM12C (poorly metastatic) cells ectopically expressing AIP became metastatic to the liver. CONCLUSIONS Our data reveal new roles for AIP in regulating proteins associated with cancer and metastasis to induce tumorigenic and metastatic properties in colon cancer cells driving liver metastasis.
Collapse
Affiliation(s)
- Guillermo Solís-Fernández
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, E-28220, Madrid, Spain
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Leuven, Belgium
| | - Ana Montero-Calle
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, E-28220, Madrid, Spain
| | - Maricruz Sánchez-Martínez
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, E-28220, Madrid, Spain
| | - Alberto Peláez-García
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), E-28046, Madrid, Spain
| | | | - Pilar Pallarés
- Unidades Centrales, Instituto de Salud Carlos III, Majadahonda, E-28220, Madrid, Spain
| | - Miren Alonso-Navarro
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, E-28220, Madrid, Spain
| | - Marta Mendiola
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), E-28046, Madrid, Spain
| | - Jelle Hendrix
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute, Hasselt University, Agoralaan C (BIOMED), 3590 Diepenbeek, Hasselt, Belgium
| | - David Hardisson
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), E-28046, Madrid, Spain
| | | | - Johan Hofkens
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Leuven, Belgium
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Susana Rocha
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Leuven, Belgium.
| | - Rodrigo Barderas
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, E-28220, Madrid, Spain.
| |
Collapse
|
11
|
Garranzo-Asensio M, Rodríguez-Cobos J, Millán CS, Poves C, Fernández-Aceñero MJ, Pastor-Morate D, Viñal D, Montero-Calle A, Solís-Fernández G, Ceron MÁ, Gámez-Chiachio M, Rodríguez N, Guzmán-Aránguez A, Barderas R, Domínguez G. In-depth proteomics characterization of ∆Np73 effectors identifies key proteins with diagnostic potential implicated in lymphangiogenesis, vasculogenesis and metastasis in colorectal cancer. Mol Oncol 2022; 16:2672-2692. [PMID: 35586989 PMCID: PMC9298678 DOI: 10.1002/1878-0261.13228] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/06/2021] [Revised: 03/17/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer‐related death worldwide. Alterations in proteins of the p53‐family are a common event in CRC. ΔNp73, a p53‐family member, shows oncogenic properties and its effectors are largely unknown. We performed an in‐depth proteomics characterization of transcriptional control by ∆Np73 of the secretome of human colon cancer cells and validated its clinical potential. The secretome was analyzed using high‐density antibody microarrays and stable isotopic metabolic labeling. Validation was performed by semiquantitative PCR, ELISA, dot‐blot and western blot analysis. Evaluation of selected effectors was carried out using 60 plasma samples from CRC patients, individuals carrying premalignant colorectal lesions and colonoscopy‐negative controls. In total, 51 dysregulated proteins were observed showing at least 1.5‐foldchange in expression. We found an important association between the overexpression of ∆Np73 and effectors related to lymphangiogenesis, vasculogenesis and metastasis, such as brain‐derived neurotrophic factor (BDNF) and the putative aminoacyl tRNA synthase complex‐interacting multifunctional protein 1 (EMAP‐II)–vascular endothelial growth factor C–vascular endothelial growth factor receptor 3 axis. We further demonstrated the usefulness of BDNF as a potential CRC biomarker able to discriminate between CRC patients and premalignant individuals from controls with high sensitivity and specificity.
Collapse
Affiliation(s)
- María Garranzo-Asensio
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, E-28222, Madrid, Spain
| | - Javier Rodríguez-Cobos
- Departamento de Bioquímica, Facultad de Medicina, Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, IdiPAZ, E-28029, Madrid, Spain
| | - Coral San Millán
- Departamento de Bioquímica, Facultad de Medicina, Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, IdiPAZ, E-28029, Madrid, Spain
| | - Carmen Poves
- Gastroenterology Unit, Hospital Universitario Clínico San Carlos, E-28040, Madrid, Spain
| | | | - Daniel Pastor-Morate
- Departamento de Bioquímica, Facultad de Medicina, Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, IdiPAZ, E-28029, Madrid, Spain
| | - David Viñal
- Medical Oncology Department, Hospital Universitario La Paz, E-28046, Madrid, Spain
| | - Ana Montero-Calle
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, E-28222, Madrid, Spain
| | - Guillermo Solís-Fernández
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, E-28222, Madrid, Spain
| | - María-Ángeles Ceron
- Surgical Pathology Department, Hospital Universitario Clínico San Carlos, E-28040, Madrid, Spain
| | - Manuel Gámez-Chiachio
- Departamento de Bioquímica, Facultad de Medicina, Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, IdiPAZ, E-28029, Madrid, Spain
| | - Nuria Rodríguez
- Medical Oncology Department, Hospital Universitario La Paz, E-28046, Madrid, Spain
| | - Ana Guzmán-Aránguez
- Departamento de Bioquímica y Biología Molecular, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, E-28040, Madrid, Spain
| | - Rodrigo Barderas
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, E-28222, Madrid, Spain
| | - Gemma Domínguez
- Departamento de Bioquímica, Facultad de Medicina, Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, IdiPAZ, E-28029, Madrid, Spain
| |
Collapse
|
12
|
Garranzo-Asensio M, Solís-Fernández G, Montero-Calle A, García-Martínez JM, Fiuza MC, Pallares P, Palacios-Garcia N, García-Jiménez C, Guzman-Aranguez A, Barderas R. Seroreactivity Against Tyrosine Phosphatase PTPRN Links Type 2 Diabetes and Colorectal Cancer and Identifies a Potential Diagnostic and Therapeutic Target. Diabetes 2022; 71:497-510. [PMID: 35040477 DOI: 10.2337/db20-1206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/28/2020] [Accepted: 12/13/2021] [Indexed: 11/13/2022]
Abstract
Colorectal cancer (CRC) and diabetes are two of the most prevalent chronic diseases worldwide with dysregulated receptor tyrosine kinase signaling and strong co-occurrence correlation. Plasma autoantibodies represent a promising early diagnostic marker for both diseases before symptoms appear. In this study, we explore the value of autoantibodies against receptor-type tyrosine-protein phosphatase-like N (PTPRN; full-length or selected domains) as diagnostic markers using a cohort of individuals with type 2 diabetes (T2D), CRC, or both diseases or healthy individuals. We show that PTPRN autoantibody levels in plasma discriminated between patients with T2D with and without CRC. Consistently, high PTPRN expression correlated with decreased survival of patients with CRC. Mechanistically, PTPRN depletion significantly reduced invasiveness of CRC cells in vitro and liver homing and metastasis in vivo by means of a dysregulation of the epithelial-mesenchymal transition and a decrease of the insulin receptor signaling pathway. Therefore, PTPRN autoantibodies may represent a particularly helpful marker for the stratification of patients with T2D at high risk of developing CRC. Consistent with the critical role played by tyrosine kinases in diabetes and tumor biology, we provide evidence that tyrosine phosphatases such as PTPRN may hold potential as therapeutic targets in patients with CRC.
Collapse
Affiliation(s)
- María Garranzo-Asensio
- Departamento de Bioquímica y Biología Molecular, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Guillermo Solís-Fernández
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Leuven, Belgium
| | - Ana Montero-Calle
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
| | - José Manuel García-Martínez
- Area of Physiology, Department of Basic Health Sciences, Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain
| | - Maria Carmen Fiuza
- Surgery Department, University Hospital Fundación Alcorcon, Madrid, Spain
| | - Pilar Pallares
- Central Units, Instituto de Salud Carlos III, Madrid, Spain
| | - Nuria Palacios-Garcia
- Endocrinology Department, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Custodia García-Jiménez
- Area of Physiology, Department of Basic Health Sciences, Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain
| | - Ana Guzman-Aranguez
- Departamento de Bioquímica y Biología Molecular, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | - Rodrigo Barderas
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
13
|
Solís-Fernández G, Montero-Calle A, Martínez-Useros J, López-Janeiro Á, de los Ríos V, Sanz R, Dziakova J, Milagrosa E, Fernández-Aceñero MJ, Peláez-García A, Casal JI, Hofkens J, Rocha S, Barderas R. Spatial Proteomic Analysis of Isogenic Metastatic Colorectal Cancer Cells Reveals Key Dysregulated Proteins Associated with Lymph Node, Liver, and Lung Metastasis. Cells 2022; 11:cells11030447. [PMID: 35159257 PMCID: PMC8834500 DOI: 10.3390/cells11030447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/31/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 12/18/2022] Open
Abstract
Metastasis is the primary cause of colorectal cancer (CRC) death. The liver and lung, besides adjacent lymph nodes, are the most common sites of metastasis. Here, we aimed to study the lymph nodes, liver, and lung CRC metastasis by quantitative spatial proteomics analysis using CRC cell-based models that recapitulate these metastases. The isogenic KM12 cell system composed of the non-metastatic KM12C cells, liver metastatic KM12SM cells, and liver and lung metastatic KM12L4a cells, and the isogenic non-metastatic SW480 and lymph nodes metastatic SW620 cells, were used. Cells were fractionated to study by proteomics five subcellular fractions corresponding to cytoplasm, membrane, nucleus, chromatin-bound proteins, and cytoskeletal proteins, and the secretome. Trypsin digested extracts were labeled with TMT 11-plex and fractionated prior to proteomics analysis on a Q Exactive. We provide data on protein abundance and localization of 4710 proteins in their different subcellular fractions, depicting dysregulation of proteins in abundance and/or localization in the most common sites of CRC metastasis. After bioinformatics, alterations in abundance and localization for selected proteins from diverse subcellular localizations were validated via WB, IF, IHC, and ELISA using CRC cells, patient tissues, and plasma samples. Results supported the relevance of the proteomics results in an actual CRC scenario. It was particularly relevant that the measurement of GLG1 in plasma showed diagnostic ability of advanced stages of the disease, and that the mislocalization of MUC5AC and BAIAP2 in the nucleus and membrane, respectively, was significantly associated with poor prognosis of CRC patients. Our results demonstrate that the analysis of cell extracts dilutes protein alterations in abundance in specific localizations that might only be observed studying specific subcellular fractions, as here observed for BAIAP2, GLG1, PHYHIPL, TNFRSF10A, or CDKN2AIP, which are interesting proteins that should be further analyzed in CRC metastasis.
Collapse
Affiliation(s)
- Guillermo Solís-Fernández
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium; (G.S.-F.); (J.H.); (S.R.)
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220 Madrid, Spain;
| | - Ana Montero-Calle
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220 Madrid, Spain;
| | - Javier Martínez-Useros
- Translational Oncology Division, OncoHealth Institute, Health Research Institute—Fundacion Jimenez Diaz University Hospital, 28040 Madrid, Spain;
| | - Álvaro López-Janeiro
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046 Madrid, Spain; (Á.L.-J.); (A.P.-G.)
| | - Vivian de los Ríos
- Proteomics Facility, Centro de Investigaciones Biológicas (CIB-CSIC), 28039 Madrid, Spain;
| | - Rodrigo Sanz
- Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (R.S.); (J.D.); (E.M.); (M.J.F.-A.)
| | - Jana Dziakova
- Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (R.S.); (J.D.); (E.M.); (M.J.F.-A.)
| | - Elena Milagrosa
- Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (R.S.); (J.D.); (E.M.); (M.J.F.-A.)
| | | | - Alberto Peláez-García
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046 Madrid, Spain; (Á.L.-J.); (A.P.-G.)
| | - José Ignacio Casal
- Centro de Investigaciones Biológicas (CIB-CSIC), Department of Molecular Biomedicine, 28039 Madrid, Spain;
| | - Johan Hofkens
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium; (G.S.-F.); (J.H.); (S.R.)
| | - Susana Rocha
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium; (G.S.-F.); (J.H.); (S.R.)
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220 Madrid, Spain;
- Correspondence: ; Tel.: +34-918223231
| |
Collapse
|
14
|
Oshima K, Kato K, Ito Y, Daiko H, Nozaki I, Nakagawa S, Shibuya Y, Kojima T, Toh Y, Okada M, Hironaka S, Akiyama Y, Komatsu Y, Maejima K, Nakagawa H, Onuki R, Nagai M, Kato M, Kanato K, Kuchiba A, Nakamura K, Kitagawa Y. A prognostic biomarker study in patients with clinical stage I esophageal squamous cell carcinoma: JCOG0502-A1. Cancer Sci 2021; 113:1018-1027. [PMID: 34962019 PMCID: PMC8898710 DOI: 10.1111/cas.15251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/15/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 11/03/2022] Open
Abstract
We conducted genomic analyses of Japanese patients with stage I esophageal squamous cell carcinoma (ESCC) to investigate the frequency of genomic alterations and the association with survival outcomes. Biomarker analysis was conducted for patients with clinical stage T1bN0M0 ESCC enrolled in JCOG0502 (UMIN000000551). Whole-exome sequencing (WES) was performed using DNA extracted from formalin-fixed, paraffin-embedded tissue of ESCC and normal tissue or blood sample. Single nucleotide variants (SNVs), insertions/deletions (indels), and copy number alterations (CNAs) were identified. We then evaluated the associations between each gene alteration with a frequency ≥10% and progression-free survival (PFS) using a Cox regression model. We controlled for family-wise errors at 0.05 using the Bonferroni method. Among the 379 patients who were enrolled in JCOG0502, 127 patients were successfully analyzed using WES. The median patient age was 63 years (IQR, 57-67 years), and 78.0% of the patients ultimately underwent surgery. The 3-year PFS probability was 76.3%. We detected 20 genes with SNVs, indels, or amplifications with a frequency of ≥10%. Genomic alterations in FGF19 showed the strongest association with PFS with a borderline level of statistical significance of p = 0.00252 (Bonferroni-adjusted significance level is 0.0025). Genomic alterations in FGF4, MYEOV, CTTN, and ORAOV1 showed a marginal association with PFS (p < 0.05). These genomic alterations were all CNAs at chromosome 11q13.3. We have identified new genomic alterations associated with the poor efficacy of ESCC (T1bN0M0). These findings open avenues for the development of new potential treatments for patients with ESCC.
Collapse
Affiliation(s)
- Kotoe Oshima
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo
| | - Ken Kato
- Department of Head and Neck, Esophageal Medical Oncology, National Cancer Center Hospital, Tokyo
| | - Yoshinori Ito
- Department of Radiation Oncology, Showa University School of Medicine, Tokyo
| | - Hiroyuki Daiko
- Esophageal Surgery Division, National Cancer Center Hospital, Tokyo
| | - Isao Nozaki
- Department of Gastroenterological Surgery, National Hospital Organization Shikoku Cancer Center, Matsuyama
| | - Satoru Nakagawa
- Department of Gastroenterological Surgery, Niigata Cancer Center Hospital, Niigata
| | - Yuichi Shibuya
- Department of Gastroenterology Surgery, Kochi Health Sciences Center, Kochi
| | - Takashi Kojima
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa
| | - Yasushi Toh
- Department of Gastroenterological Surgery, National Hospital Organization Kyushu Cancer Center, Fukuoka
| | | | - Shuichi Hironaka
- Clinical Trial Promotion Department, Chiba Cancer Center, Chiba.,Department of Medical Oncology and Hematology, Oita University Faculty of Medicine, Yufu
| | - Yuji Akiyama
- Department of Surgery, Iwate Medical University, Iwate
| | - Yoshito Komatsu
- Cancer Chemotherapy, Hokkaido University Hospital Cancer Center, Sapporo
| | - Kazuhiro Maejima
- Laboratory for Cancer Genomics, RIKEN Center for integrative Medical Sciences, Yokohama
| | - Hidewaki Nakagawa
- Laboratory for Cancer Genomics, RIKEN Center for integrative Medical Sciences, Yokohama
| | - Ritsuko Onuki
- Division of Bioinformatics, Research Institute, National Cancer Center, Tokyo
| | - Momoko Nagai
- Division of Bioinformatics, Research Institute, National Cancer Center, Tokyo
| | - Mamoru Kato
- Division of Bioinformatics, Research Institute, National Cancer Center, Tokyo
| | - Keisuke Kanato
- Research Management Division, Clinical Research Support Office, National Cancer Center Hospital, Tokyo
| | - Aya Kuchiba
- Biostatistics Division, Center for Research Administration and Support, National Cancer Center, Tokyo.,Graduate School of Health Innovation, Kanagawa University of Human Services, Kanagawa
| | - Kenichi Nakamura
- Research Management Division, Clinical Research Support Office, National Cancer Center Hospital, Tokyo
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo
| |
Collapse
|
15
|
Ramezani S, Parkhideh A, Bhattacharya PK, Farach-Carson MC, Harrington DA. Beyond Colonoscopy: Exploring New Cell Surface Biomarkers for Detection of Early, Heterogenous Colorectal Lesions. Front Oncol 2021; 11:657701. [PMID: 34290978 PMCID: PMC8287259 DOI: 10.3389/fonc.2021.657701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/23/2021] [Accepted: 04/09/2021] [Indexed: 01/10/2023] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related deaths among both men and women in the United States. Early detection and surgical removal of high-risk lesions in the colon can prevent disease from developing and spreading. Despite implementation of programs aimed at early detection, screening colonoscopies fail to detect a fraction of potentially aggressive colorectal lesions because of their location or nonobvious morphology. Optical colonoscopies, while highly effective, rely on direct visualization to detect changes on the surface mucosa that are consistent with dysplasia. Recent advances in endoscopy techniques and molecular imaging permit microscale visualization of the colonic mucosa. These technologies can be combined with various molecular probes that recognize and target heterogenous lesion surfaces to achieve early, real-time, and potentially non-invasive, detection of pre-cancerous lesions. The primary goal of this review is to contextualize existing and emergent CRC surface biomarkers and assess each’s potential as a candidate marker for early marker-based detection of CRC lesions. CRC markers that we include were stratified by the level of support gleaned from peer-reviewed publications, abstracts, and databases of both CRC and other cancers. The selected biomarkers, accessible on the cell surface and preferably on the luminal surface of the colon tissue, are organized into three categories: (1) established biomarkers (those with considerable data and high confidence), (2) emerging biomarkers (those with increasing research interest but with less supporting data), and (3) novel candidates (those with very recent data, and/or supportive evidence from other tissue systems). We also present an overview of recent advances in imaging techniques useful for visual detection of surface biomarkers, and discuss the ease with which these methods can be combined with microscopic visualization.
Collapse
Affiliation(s)
- Saleh Ramezani
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, United States.,Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Arianna Parkhideh
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States.,Department of Anthropology, Washington University in St. Louis, St. Louis, MO, United States
| | - Pratip K Bhattacharya
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Mary C Farach-Carson
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States.,Departments of BioSciences and Bioengineering, Rice University, Houston, TX, United States
| | - Daniel A Harrington
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States.,Departments of BioSciences and Bioengineering, Rice University, Houston, TX, United States
| |
Collapse
|
16
|
Liu Y, Li Q, Chen T, Shen T, Zhang X, Song P, Liu L, Liu J, Jiang T, Liang X. Clinical verification of vimentin/EpCAM immunolipid magnetic sorting system in monitoring CTCs in arterial and venous blood of advanced tumor. J Nanobiotechnology 2021; 19:185. [PMID: 34134721 PMCID: PMC8207779 DOI: 10.1186/s12951-021-00929-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/04/2021] [Accepted: 06/05/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Circulating tumor cells (CTCs) are the dominant factor leading to tumor metastasis. This study aims to investigate the effect of disparate sources of CTCs on the treatment and prognosis of patients with advanced tumors by analyzing the number and gene mutations change of CTCs in arterial and venous blood in patients with advanced tumors. RESULTS A CTCs sorting system was constructed based on Vimentin-immunolipid magnetic balls (Vi-IMB) and EpCAM immunolipid magnetic balls (Ep-IMB). Results showed that the prepared Ep-IMB and Vi-IMB had lower cytotoxicity, better specificity and sensitivity. The number of arterial CTCs was higher than that of venous CTCs, with a statistically significant difference (P < 0.05). Moreover, the prognosis of the low positive group of total CTCs in arterial blood and venous blood was higher than that of the high positive group, with a statistical significance (P < 0.05). The genetic testing results showed that the targeted drug gene mutations in tissues, arterial CTCs and venous CTCs showed a complementary trend, indicating that there was heterogeneity among different tumor samples. CONCLUSIONS CTCs in blood can be efficiently captured by the CTCs sorting system based on Vi-LMB/Ep-LMB, and CTCs detection in arterial blood can be utilized to more accurately evaluate the prognosis and predict postoperative progress. It is further confirmed that tumor samples from disparate sources are heterogeneous, providing a reference basis for gene mutation detection before clinical targeted drug treatment, and the detection of CTCs in arterial blood has more potential clinical application value. TRIAL REGISTRATION The Ethics Committee of Putuo Hospital, PTEC-A-2019-18-1. Registered 24 September 2019.
Collapse
Affiliation(s)
- Yan Liu
- Department of Interventional Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, Lanxi Road, Shanghai, 200333, China
| | - Qiuying Li
- Department of Interventional Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, Lanxi Road, Shanghai, 200333, China
| | - Tingsong Chen
- Second department of oncology, The Seventh People's Hospital Affiliated to Shanghai University of Chinese Medicine, Shanghai, China
| | - Tianhao Shen
- Department of Interventional Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, Lanxi Road, Shanghai, 200333, China
| | - Xufeng Zhang
- Department of Thoracic Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Song
- Huzhou Lieyuan Medical Laboratory Co., Ltd, No. 800, Rujiadian Road, Huzhou, 313009, China
| | - Lantao Liu
- Department of Interventional Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, Lanxi Road, Shanghai, 200333, China
| | - Jianming Liu
- Department of Interventional Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, Lanxi Road, Shanghai, 200333, China
| | - Tinghui Jiang
- Department of Interventional Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, Lanxi Road, Shanghai, 200333, China.
| | - Xiaofei Liang
- Huzhou Lieyuan Medical Laboratory Co., Ltd, No. 800, Rujiadian Road, Huzhou, 313009, China.
| |
Collapse
|
17
|
Role of FGF15 in Hepatic Surgery in the Presence of Tumorigenesis: Dr. Jekyll or Mr. Hyde? Cells 2021; 10:cells10061421. [PMID: 34200439 PMCID: PMC8228386 DOI: 10.3390/cells10061421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/26/2021] [Revised: 05/26/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
The pro-tumorigenic activity of fibroblast growth factor (FGF) 19 (FGF15 in its rodent orthologue) in hepatocellular carcinoma (HCC), as well as the unsolved problem that ischemia-reperfusion (IR) injury supposes in liver surgeries, are well known. However, it has been shown that FGF15 administration protects against liver damage and regenerative failure in liver transplantation (LT) from brain-dead donors without tumor signals, providing a benefit in avoiding IR injury. The protection provided by FGF15/19 is due to its anti-apoptotic and pro-regenerative properties, which make this molecule a potentially beneficial or harmful factor, depending on the disease. In the present review, we describe the preclinical models currently available to understand the signaling pathways responsible for the apparent controversial effects of FGF15/19 in the liver (to repair a damaged liver or to promote tumorigenesis). As well, we study the potential pharmacological use that has the activation or inhibition of FGF15/19 pathways depending on the disease to be treated. We also discuss whether FGF15/19 non-pro-tumorigenic variants, which have been developed for the treatment of liver diseases, might be promising approaches in the surgery of hepatic resections and LT using healthy livers and livers from extended-criteria donors.
Collapse
|
18
|
Sasaki N, Gomi F, Yoshimura H, Yamamoto M, Matsuda Y, Michishita M, Hatakeyama H, Kawano Y, Toyoda M, Korc M, Ishiwata T. FGFR4 Inhibitor BLU9931 Attenuates Pancreatic Cancer Cell Proliferation and Invasion While Inducing Senescence: Evidence for Senolytic Therapy Potential in Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12102976. [PMID: 33066597 PMCID: PMC7602396 DOI: 10.3390/cancers12102976] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/28/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma (PDAC) is a deadly malignancy that is projected to become the leading cause of cancer death by 2050. Fibroblast growth factor receptor 4 (FGFR4) is a transmembrane receptor that is overexpressed in half of PDACs. We determined that its expression in PDAC positively correlated with larger tumor size and more advanced tumor stage, and that BLU9931, a selective FGFR4 inhibitor, reduced PDAC cell proliferation and invasion while promoting their senescence. Quercetin, a senolytic drug, induced cell death in BLU9931-treated cells. We propose that targeting FGFR4 in combination with senolysis could provide a novel therapeutic strategy in patients whose PDAC expresses high FGFR4 levels. Abstract Fibroblast growth factor receptor 4 (FGFR4), one of four tyrosine kinase receptors for FGFs, is involved in diverse cellular processes. Activation of FGF19/FGFR4 signaling is closely associated with cancer development and progression. In this study, we examined the expression and roles of FGF19/FGFR4 signaling in human pancreatic ductal adenocarcinoma (PDAC). In human PDAC cases, FGFR4 expression positively correlated with larger primary tumors and more advanced stages. Among eight PDAC cell lines, FGFR4 was expressed at the highest levels in PK-1 cells, in which single-nucleotide polymorphism G388R in FGFR4 was detected. For inhibition of autocrine/paracrine FGF19/FGFR4 signaling, we used BLU9931, a highly selective FGFR4 inhibitor. Inhibition of signal transduction through ERK, AKT, and STAT3 pathways by BLU9931 reduced proliferation in FGF19/FGFR4 signaling-activated PDAC cells. By contrast, BLU9931 did not alter stemness features, including stemness marker expression, anticancer drug resistance, and sphere-forming ability. However, BLU9931 inhibited cell invasion, in part, by downregulating membrane-type matrix metalloproteinase-1 in FGF19/FGFR4 signaling-activated PDAC cells. Furthermore, downregulation of SIRT1 and SIRT6 by BLU9931 contributed to senescence induction, priming these cells for quercetin-induced death, a process termed senolysis. Thus, we propose that BLU9931 is a promising therapeutic agent in FGFR4-positive PDAC, especially when combined with senolysis (195/200).
Collapse
Affiliation(s)
- Norihiko Sasaki
- Research team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Sakae-cho 35-2, Itabashi-ku, Tokyo 173-0015, Japan; (N.S.); (M.T.)
| | - Fujiya Gomi
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan;
| | - Hisashi Yoshimura
- Division of Physiological Pathology, Department of Applied Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan; (H.Y.); (M.Y.)
| | - Masami Yamamoto
- Division of Physiological Pathology, Department of Applied Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan; (H.Y.); (M.Y.)
| | - Yoko Matsuda
- Oncology Pathology, Department of Pathology and Host-Defense, Kagawa University, Kagawa 761-0793, Japan;
| | - Masaki Michishita
- Department of Veterinary Pathology, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan;
| | - Hitoshi Hatakeyama
- Department of Comprehensive Education in Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan;
| | - Yoichi Kawano
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo 113-8603, Japan;
| | - Masashi Toyoda
- Research team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Sakae-cho 35-2, Itabashi-ku, Tokyo 173-0015, Japan; (N.S.); (M.T.)
| | - Murray Korc
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, CA 92697, USA;
| | - Toshiyuki Ishiwata
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan;
- Correspondence: ; Tel.: +81-3-3964-1141 (ext. 4414)
| |
Collapse
|
19
|
Jin W. Regulation of Src Family Kinases during Colorectal Cancer Development and Its Clinical Implications. Cancers (Basel) 2020; 12:cancers12051339. [PMID: 32456226 PMCID: PMC7281431 DOI: 10.3390/cancers12051339] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/28/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/11/2022] Open
Abstract
Src family kinases (SFKs) are non-receptor kinases that play a critical role in the pathogenesis of colorectal cancer (CRC). The expression and activity of SFKs are upregulated in patients with CRC. Activation of SFKs promotes CRC cell proliferation, metastases to other organs and chemoresistance, as well as the formation of cancer stem cells (CSCs). The enhanced expression level of Src is associated with decreased survival in patients with CRC. Src-mediated regulation of CRC progression involves various membrane receptors, modulators, and suppressors, which regulate Src activation and its downstream targets through various mechanisms. This review provides an overview of the current understanding of the correlations between Src and CRC progression, with a special focus on cancer cell proliferation, invasion, metastasis and chemoresistance, and formation of CSCs. Additionally, this review discusses preclinical and clinical strategies to improve the therapeutic efficacy of drugs targeting Src for treating patients with CRC.
Collapse
Affiliation(s)
- Wook Jin
- Laboratory of Molecular Disease and Cell Regulation, Department of Biochemistry, School of Medicine, Gachon University, Incheon 406-840, Korea
| |
Collapse
|
20
|
Ye Y, Jiang D, Li J, Han C, Wang X, Wang F, Li J. Role of fibroblast growth factor 4 in the growth and metastasis of colorectal cancer. Int J Oncol 2020; 56:1565-1573. [PMID: 32236572 DOI: 10.3892/ijo.2020.5029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/27/2019] [Accepted: 02/20/2020] [Indexed: 11/05/2022] Open
Abstract
The role of fibroblast growth factor receptor 4 (FGFR4) in colorectal cancer (CRC) is poorly characterized. Therefore, the objective of the current study was to investigate the expression levels of FGFR4 in colorectal cancer and its prognostic value, and clarify the role of FGFR4 in the proliferation and metastasis of colorectal cancer cells. Immunohistochemistry was used to detect the association between FGFR4 expression and clinicopathological features in colorectal cancer tissues. The effect of FGFR4 silencing on tumor cell proliferation, cell cycle, apoptosis, migration and invasion was evaluated via lentiviral transfection of the colorectal cancer cell line SW620. Western blot analysis was used to detect the changes of epithelial‑mesenchymal transition (EMT) markers, following FGFR4 silencing. FGFR4 is upregulated in CRC tissues compared with normal tissues. Patients with high FGFR4 expression exhibited a lower 5‑year survival rate compared with patients with low FGFR4 expression (64 vs. 74%). FGFR4 silencing reduced proliferation, inhibited cell invasion, arrested cells in S phase and promoted apoptosis in colorectal cancer cells. FGFR4 silencing partially reversed EMT progression and FGFR4 this effect was enhanced in the presence of XAV939 (a β‑catenin inhibitor). The current data suggest that FGFR4 may be associated with prognosis in patients with colorectal cancer. In vitro functional tests revealed that FGFR4 may represent an effective therapeutic target for colorectal cancer. FGFR4 may also regulate EMT via the Wnt/β‑catenin pathway.
Collapse
Affiliation(s)
- Yanwei Ye
- Department of Gastrointestinal Surgery and Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Dongbao Jiang
- Department of Gastrointestinal Surgery and Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Jie Li
- Department of Gastrointestinal Surgery and Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Chao Han
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Xinru Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Feng Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Jingjing Li
- Department of Gastroenterology, Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
21
|
Lang L, Shull AY, Teng Y. Interrupting the FGF19-FGFR4 Axis to Therapeutically Disrupt Cancer Progression. Curr Cancer Drug Targets 2020; 19:17-25. [PMID: 29557750 DOI: 10.2174/1568009618666180319091731] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/20/2017] [Revised: 09/01/2017] [Accepted: 10/10/2017] [Indexed: 02/07/2023]
Abstract
Coordination between the amplification of the fibroblast growth factor FGF19, overexpression of its corresponding receptor FGFR4, and hyperactivation of the downstream transmembrane enzyme β-klotho has been found to play pivotal roles in mediating tumor development and progression. Aberrant FGF19-FGFR4 signaling has been implicated in driving specific tumorigenic events including cancer cell proliferation, apoptosis resistance, and metastasis by activating a myriad of downstream signaling cascades. As an attractive target, several strategies implemented to disrupt the FGF19-FGFR4 axis have been developed in recent years, and FGF19-FGFR4 binding inhibitors are being intensely evaluated for their clinical use in treating FGF19-FGFR4 implicated cancers. Based on the established work, this review aims to detail how the FGF19-FGFR4 signaling pathway plays a vital role in cancer progression and why disrupting communication between FGF19 and FGFR4 serves as a promising therapeutic strategy for disrupting cancer progression.
Collapse
Affiliation(s)
- Liwei Lang
- Department of Oral Biology, Augusta University, Augusta, GA 30912, United States
| | - Austin Y Shull
- Department of Biology, Presbyterian College, Clinton, SC 29325, United States
| | - Yong Teng
- Department of Oral Biology, Augusta University, Augusta, GA 30912, United States.,Georgia Cancer Center, Augusta University, Augusta, GA 30912, United States.,Department of Biochemistry & Molecular Biology, Augusta University, Augusta, GA 30912, United States
| |
Collapse
|
22
|
Li F, Li Z, Han Q, Cheng Y, Ji W, Yang Y, Lu S, Xia W. Enhanced autocrine FGF19/FGFR4 signaling drives the progression of lung squamous cell carcinoma, which responds to mTOR inhibitor AZD2104. Oncogene 2020; 39:3507-3521. [PMID: 32111983 PMCID: PMC7176586 DOI: 10.1038/s41388-020-1227-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/11/2019] [Revised: 02/05/2020] [Accepted: 02/17/2020] [Indexed: 01/28/2023]
Abstract
Lung cancer occurrence and associated mortality ranks top in all countries. Despite the rapid development of targeted and immune therapies, many patients experience relapse within a few years. It is urgent to uncover the mechanisms that drive lung cancer progression and identify novel molecular targets. Our group has previously identified FGF19 as a prognostic marker and potential driver gene of lung squamous cell carcinomas (LSQ) in Chinese smoking patients. However, the underlying mechanism of how FGF19 promotes the progression of LSQ remains unclear. In this study, we characterized and confirmed that FGF19 serves as an oncogenic driver in LSQ development and progression, and reported that the amplification and high expression of FGF19 in LSQ was significantly associated with poor overall and progression-free survival. A higher serum level of FGF19 was found in lung cancer patients, which could also serve as a novel diagnostic index to screen lung cancer. Overproduction of FGF19 in LSQ cells markedly promoted cell growth, progression and metastasis, while downregulating FGF19 effectively inhibited LSQ progression in vitro and in vivo. Moreover, downregulating the receptor FGFR4 was also effective to suppress the growth and migration of LSQ cells. Since FGF19 could be induced by smoking or endoplasmic reticulum stress, to tackle the more malignant FGF19-overproducing LSQ, we reported for the first time that inhibiting mTOR pathway by using AZD2014 was effective and feasible. These findings have offered a new strategy by using anti-FGF19/FGFR4 therapy or mTOR-based therapy in FGF19-driven LSQ.
Collapse
Affiliation(s)
- Fan Li
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ziming Li
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Han
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yirui Cheng
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wenxiang Ji
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Yang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Weiliang Xia
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
23
|
Liu Y, Cao M, Cai Y, Li X, Zhao C, Cui R. Dissecting the Role of the FGF19-FGFR4 Signaling Pathway in Cancer Development and Progression. Front Cell Dev Biol 2020; 8:95. [PMID: 32154250 PMCID: PMC7044267 DOI: 10.3389/fcell.2020.00095] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/25/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Fibroblast growth factor (FGF) receptor 4 (FGFR4) belongs to a family of tyrosine kinase receptor. FGFR4 is highly activated in certain types of cancer and its activation is closely associated with its specific ligand, FGF19. Indeed, FGF19-FGFR4 signaling is implicated in many cellular processes including cell proliferation, migration, metabolism, and differentiation. Since active FGF19-FGFR4 signaling acts as an oncogenic pathway in certain types of cancer, the development and therapeutic evaluation of FGFR4-specific inhibitors in cancer patients is a topic of significant interest. In this review, we aim to provide an updated overview of currently-available FGFR4 inhibitors and their ongoing clinical trials, as well as upcoming potential therapeutics. Further, we examined the possibility of enhancing the therapeutic efficiency of FGFR4 inhibitors in cancer patients. We also discussed the underlying molecular mechanisms of oncogenic activation of FGFR4 by FGF19.
Collapse
Affiliation(s)
- Yanan Liu
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Meng Cao
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuepiao Cai
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaokun Li
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chengguang Zhao
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou, China
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Ri Cui
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou, China
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| |
Collapse
|
24
|
Expression of fibroblast growth factor receptor 4 and clinical response to lenvatinib in patients with anaplastic thyroid carcinoma: a pilot study. Eur J Clin Pharmacol 2020; 76:703-709. [PMID: 32034430 DOI: 10.1007/s00228-020-02842-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/22/2019] [Accepted: 02/01/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE Fibroblast growth factor receptor 4 (FGFR4) expression has association with tumor malignancy. In thyroid cancers, FGFR4 has been reported to be characteristically expressed in aggressive thyroid tumors, such as anaplastic thyroid carcinoma (ATC). METHODS We investigated FGFR4 expression in patients with ATC and analyzed their clinical responses to lenvatinib. Primary tumor samples were obtained from 12 patients with ATC who underwent surgery or core needle biopsy. FGFR4 protein expression in all ATC samples was analyzed via immunohistochemistry, and the treatment efficacy of lenvatinib was evaluated. RESULTS The proportion of FGFR4-positive cells in the samples ranged from 0 to 50%. Four patients had partial responses, and three patients had stable diseases as a best clinical response to lenvatinib. The median PFS durations of patients with none, weak, and moderate intensity were 0.5, 3.2 (95% CI 1.1-not estimable [NE]), and 4.6 (95% CI 1.1-NE) months, respectively (p = 0.003). CONCLUSIONS Because FGFR4 was expressed in ATC tissues, the FGFR4 expression might be associated with the treatment efficacy of lenvatinib in a part of ATC patients. To clarify whether FGFR4 can serve as a prognostic or predictive factor for lenvatinib therapy, more cases must be accumulated.
Collapse
|
25
|
Quintanal-Villalonga A, Ferrer I, Molina-Pinelo S, Paz-Ares L. A patent review of FGFR4 selective inhibition in cancer (2007-2018). Expert Opin Ther Pat 2019; 29:429-438. [DOI: 10.1080/13543776.2019.1624720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/22/2023]
Affiliation(s)
| | - Irene Ferrer
- CNIO-H12O Lung Clinical Cancer Research Unit, Fundación de Investigación Biomédica i+12 & Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Sonia Molina-Pinelo
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biomedicina de Sevilla (IBIS) (HUVR, CSIC, Universidad de Sevilla), Sevilla, Spain
| | - Luis Paz-Ares
- CNIO-H12O Lung Clinical Cancer Research Unit, Fundación de Investigación Biomédica i+12 & Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
- Medical Oncology Department, Hospital Universitario Doce de Octubre & Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
- Medical School, Universidad Complutense, Madrid, Spain
| |
Collapse
|
26
|
Fibroblast Growth Factor Receptor 4 Targeting in Cancer: New Insights into Mechanisms and Therapeutic Strategies. Cells 2019; 8:cells8010031. [PMID: 30634399 PMCID: PMC6356571 DOI: 10.3390/cells8010031] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2018] [Revised: 01/03/2019] [Accepted: 01/08/2019] [Indexed: 12/21/2022] Open
Abstract
Fibroblast growth factor receptor 4 (FGFR4), a tyrosine kinase receptor for FGFs, is involved in diverse cellular processes, including the regulation of cell proliferation, differentiation, migration, metabolism, and bile acid biosynthesis. High activation of FGFR4 is strongly associated with the amplification of its specific ligand FGF19 in many types of solid tumors and hematologic malignancies, where it acts as an oncogene driving the cancer development and progression. Currently, the development and therapeutic evaluation of FGFR4-specific inhibitors, such as BLU9931 and H3B-6527, in animal models and cancer patients, are paving the way to suppress hyperactive FGFR4 signaling in cancer. This comprehensive review not only covers the recent discoveries in understanding FGFR4 regulation and function in cancer, but also reveals the therapeutic implications and applications regarding emerging anti-FGFR4 agents. Our aim is to pinpoint the potential of FGFR4 as a therapeutic target and identify new avenues for advancing future research in the field.
Collapse
|
27
|
Abstract
FGF19 is a noncanonical FGF ligand that can control a broad spectrum of physiological responses, which include bile acid homeostasis, liver metabolism and glucose uptake. Many of these responses are mediated by FGF19 binding to its FGFR4/β-klotho receptor complex and controlling activation of an array of intracellular signaling events. Overactivation of the FGF19/FGFR4 axis has been implicated in tumorigenic formation, progression and metastasis, and inhibitors of this axis have recently been developed for single agent use or in combination with other anticancer drugs. Considering the critical role of this receptor complex in cancer, this review focuses on recent developments and applications of FGF19/FGFR4-targeted therapeutics.
Collapse
|
28
|
Tang S, Hao Y, Yuan Y, Liu R, Chen Q. Role of fibroblast growth factor receptor 4 in cancer. Cancer Sci 2018; 109:3024-3031. [PMID: 30070748 PMCID: PMC6172014 DOI: 10.1111/cas.13759] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/13/2018] [Revised: 07/29/2018] [Accepted: 07/30/2018] [Indexed: 02/05/2023] Open
Abstract
Fibroblast growth factor receptors (FGFR) play a significant role in both embryonic development and in adults. Upon binding with ligands, FGFR signaling is activated and triggers various downstream signal cascades that are implicated in diverse biological processes. Aberrant regulations of FGFR signaling are detected in numerous cancers. Although FGFR4 was discovered later than other FGFR, information on the involvement of FGFR4 in cancers has significantly increased in recent years. In this review, the recent findings in FGFR4 structure, signaling transduction, physiological function, aberrant regulations, and effects in cancers as well as its potential applications as an anticancer therapeutic target are summarized.
Collapse
Affiliation(s)
- Shuya Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yilong Hao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yao Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
29
|
Xin Z, Song X, Jiang B, Gongsun X, Song L, Qin Q, Wang Q, Shi M, Liu X. Blocking FGFR4 exerts distinct anti-tumorigenic effects in esophageal squamous cell carcinoma. Thorac Cancer 2018; 9:1687-1698. [PMID: 30267473 PMCID: PMC6275831 DOI: 10.1111/1759-7714.12883] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/29/2018] [Revised: 08/26/2018] [Accepted: 08/29/2018] [Indexed: 02/06/2023] Open
Abstract
Background The FGFR family can be activated by FGFs and plays important roles in regulating cell growth, differentiation, migration, and angiogenesis. Recent studies have suggested that FGFR4 could regulate several processes, including tumor progression. Esophageal squamous cell carcinoma (ESCC) is a malignancy with high global occurrence. However, the molecule mechanism and the potential roles of FGFR4 in ESCC remain unknown. Methods Immunohistochemistry and Western blotting were used to detect FGFR4 expression in ESCC samples and cell lines. Cell counting kit‐8, and clonogenic, transwell, flow cytometric, and tumor xenograft in nude mice assays were utilized to determine the effect of blocking FGFR4 in proliferation, invasion, migration, and apoptosis of ESCC cells. Results FGFR4 is frequently overexpressed in ESCC tissue and cell lines. in vitro assays have shown that blocking FGFR4 by a specific blocker, H3B‐6527, significantly decreases proliferation, invasion, and migration, and alters epithelial‐mesenchymal transition markers in ESCC cells. In addition, FGFR4 blockade is associated with the induction of apoptosis and affects PI3K/Akt and MAPK/ERK pathways. Moreover, FGFR4 blockade could significantly inhibit the growth of xenograft tumors in vivo. Conclusion Our findings suggest that blocking FGFR4 significantly suppresses the malignant behaviors of ESCC and indicate that FGFR4 is a potential target for the treatment of ESCC.
Collapse
Affiliation(s)
- Zhongwei Xin
- Department of Thoracic Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Xuemin Song
- Department of Thoracic Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Bin Jiang
- Department of Thoracic Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Xin Gongsun
- Department of Thoracic Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Liang Song
- Department of Thoracic Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Qiming Qin
- Department of Thoracic Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Qiang Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Mo Shi
- Department of Thoracic Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Xiangyan Liu
- Department of Thoracic Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
30
|
Zhao H, Lv F, Liang G, Huang X, Wu G, Zhang W, Yu L, Shi L, Teng Y. FGF19 promotes epithelial-mesenchymal transition in hepatocellular carcinoma cells by modulating the GSK3β/β- catenin signaling cascade via FGFR4 activation. Oncotarget 2017; 7:13575-86. [PMID: 26498355 PMCID: PMC4924662 DOI: 10.18632/oncotarget.6185] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/25/2015] [Accepted: 10/04/2015] [Indexed: 12/12/2022] Open
Abstract
Compelling evidence suggests that the epithelial-mesenchymal transition (EMT) correlates with aggressiveness of tumors and poor survival. FGF19 has been shown to be involved in EMT in cholangiocarcinoma and colorectal cancer, however, molecular mechanisms underlying FGF19-induced EMT process in hepatocellular carcinoma (HCC) remain largely unknown. Here, we show the expression of FGF19 is significantly elevated and negatively associated with the expression of E-cadherin in HCC tissues and cell lines. Ectopic FGF19 expression promotes EMT and invasion in epithelial-like HCC cells through repression of E-cadherin expression, whereas FGF19 knockdown enhances E-cadherin expression and hence diminishes EMT traits in mesenchymal-like HCC cells, suggesting FGF19 exerts its tumor progressing functions as an EMT inducer. Interestingly, depletion of FGF19 cannot abrogate EMT traits in the presence of GSK3β inhibitors. Furthermore, FGF19-induced EMT can be markedly attenuated when FGFR4 is knocked out. These observations clearly indicate that FGFR4/GSK3β/β-catenin axis may play a pivotal role in FGF19-induced EMT in HCC cells. As FGF19 and its specific receptor FGFR4 are frequently amplified in HCC cells, selective targeting this signaling node may lend insights into a potential effective therapeutic approach for blocking metastasis of HCC.
Collapse
Affiliation(s)
- Huakan Zhao
- School of Life Sciences and School of Bioengineering, Chongqing University, Chongqing, PR China
| | - Fenglin Lv
- School of Life Sciences and School of Bioengineering, Chongqing University, Chongqing, PR China
| | - Guizhao Liang
- School of Life Sciences and School of Bioengineering, Chongqing University, Chongqing, PR China
| | - Xiaobin Huang
- School of Life Sciences and School of Bioengineering, Chongqing University, Chongqing, PR China
| | - Gang Wu
- Third Affiliated Hospital, Third Military Medical University, Chongqing, PR China
| | - Wenfa Zhang
- School of Life Sciences and School of Bioengineering, Chongqing University, Chongqing, PR China
| | - Le Yu
- School of Life Sciences and School of Bioengineering, Chongqing University, Chongqing, PR China
| | - Lei Shi
- School of Life Sciences and School of Bioengineering, Chongqing University, Chongqing, PR China
| | - Yong Teng
- School of Life Sciences and School of Bioengineering, Chongqing University, Chongqing, PR China
| |
Collapse
|
31
|
Electrochemical sensor for rapid determination of fibroblast growth factor receptor 4 in raw cancer cell lysates. PLoS One 2017; 12:e0175056. [PMID: 28376106 PMCID: PMC5380347 DOI: 10.1371/journal.pone.0175056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/12/2016] [Accepted: 03/20/2017] [Indexed: 12/02/2022] Open
Abstract
The first electrochemical immunosensor for the determination of fibroblast growth factor receptor 4 (FGFR4) biomarker is reported in this work. The biosensor involves a sandwich configuration with covalent immobilization of a specific capture antibody onto activated carboxylic-modified magnetic microcarriers (HOOC-MBs) and amperometric detection at disposable carbon screen-printed electrodes (SPCEs). The biosensor exhibits a great analytical performance regarding selectivity for the target protein and a low LOD of 48.2 pg mL-1. The electrochemical platform was successfully applied for the determination of FGFR4 in different cancer cell lysates without any apparent matrix effect after a simple sample dilution and using only 2.5 μg of the raw lysate. Comparison of the results with those provided by a commercial ELISA kit shows competitive advantages by using the developed immunosensor in terms of simplicity, analysis time, and portability and cost-affordability of the required instrumentation for the accurate determination of FGFR4 in cell lysates.
Collapse
|
32
|
Jing Q, Wang Y, Liu H, Deng X, Jiang L, Liu R, Song H, Li J. FGFs: crucial factors that regulate tumour initiation and progression. Cell Prolif 2016; 49:438-47. [PMID: 27383016 DOI: 10.1111/cpr.12275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/27/2016] [Accepted: 06/13/2016] [Indexed: 02/05/2023] Open
Abstract
Fibroblast growth factors (FGFs) are crucial signalling molecules involved in normal cell growth, differentiation and proliferation. Over the past few decades, a large body of research has illustrated effects of individual FGFs on tumour initiation and progression. Tumour development is commonly accompanied with generation of new blood and lymph vessels, which support enhanced cell proliferation. Moreover, acquisition of tumour cells of the epithelial-mesenchymal transition (EMT) phenotype, enhances tumour cell migration and invasion potentials, crucial steps in tumour metastasis. This review summarizes recent findings concerning roles of FGFs in angiogenesis, lymphangiogenesis and EMT.
Collapse
Affiliation(s)
- Qian Jing
- School of Biomedical Sciences, Chengdu Medical College, Chengdu, China
| | - Yuanyuan Wang
- School of Biomedical Sciences, Chengdu Medical College, Chengdu, China
| | - Hao Liu
- School of Biomedical Sciences, Chengdu Medical College, Chengdu, China
| | - Xiaowei Deng
- School of Biomedical Sciences, Chengdu Medical College, Chengdu, China
| | - Lin Jiang
- School of Biomedical Sciences, Chengdu Medical College, Chengdu, China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haixing Song
- School of Biomedical Sciences, Chengdu Medical College, Chengdu, China
| | - Jingyi Li
- School of Biomedical Sciences, Chengdu Medical College, Chengdu, China
| |
Collapse
|
33
|
He Q, Jing H, Liaw L, Gower L, Vary C, Hua S, Yang X. Suppression of Spry1 inhibits triple-negative breast cancer malignancy by decreasing EGF/EGFR mediated mesenchymal phenotype. Sci Rep 2016; 6:23216. [PMID: 26976794 PMCID: PMC4791662 DOI: 10.1038/srep23216] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/07/2015] [Accepted: 03/02/2016] [Indexed: 01/22/2023] Open
Abstract
Sprouty (Spry) proteins have been implicated in cancer progression, but their role in triple-negative breast cancer (TNBC), a subtype of lethal and aggressive breast cancer, is unknown. Here, we reported that Spry1 is significantly expressed in TNBC specimen and MDA-MB-231 cells. To understand Spry1 regulation of signaling events controlling breast cancer phenotype, we used lentiviral delivery of human Spry1 shRNAs to suppress Spry1 expression in MDA-MB-231, an established TNBC cell line. Spry1 knockdown MDA-MB-231 cells displayed an epithelial phenotype with increased membrane E-cadherin expression. Knockdown of Spry1 impaired MDA-MB-231 cell migration, Matrigel invasion, and anchorage-dependent and -independent growth. Tumor xenografts originating from Spry1 knockdown MDA-MB-231 cells grew slower, had increased E-cadherin expression, and yielded fewer lung metastases compared to control. Furthermore, suppressing Spry1 in MDA-MB-231 cells impaired the induction of Snail and Slug expression by EGF, and this effect was associated with increased EGFR degradation and decreased EGFR/Grb2/Shp2/Gab1 signaling complex formation. The same phenotype was also observed in the TNBC cell line MDA-MB-157. Together, our results show that unlike in some tumors, where Spry may mediate tumor suppression, Spry1 plays a selective role in at least a subset of TNBC to promote the malignant phenotype via enhancing EGF-mediated mesenchymal phenotype.
Collapse
Affiliation(s)
- Qing He
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, USA
| | - Hongyu Jing
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, USA.,Department of Respiratory Medicine, The First Hospital of Jinlin University, Changchun, China
| | - Lucy Liaw
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, USA
| | - Lindsey Gower
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, USA
| | - Calvin Vary
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, USA
| | - Shucheng Hua
- Department of Respiratory Medicine, The First Hospital of Jinlin University, Changchun, China
| | - Xuehui Yang
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, USA
| |
Collapse
|
34
|
Cros J, Moati E, Raffenne J, Hentic O, Svrcek M, de Mestier L, Sbidian E, Guedj N, Bedossa P, Paradis V, Sauvanet A, Panis Y, Ruszniewski P, Couvelard A, Hammel P. Gly388Arg FGFR4 Polymorphism Is Not Predictive of Everolimus Efficacy in Well-Differentiated Digestive Neuroendocrine Tumors. Neuroendocrinology 2016; 103:495-9. [PMID: 26335532 DOI: 10.1159/000440724] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/06/2015] [Accepted: 08/28/2015] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Preclinical data suggest that the single nucleotide polymorphism substituting a glycine for an arginine in codon 388 of the FGFR4 transmembrane domain may increase the proliferation of xenografted neuroendocrine cell lines and decrease their sensitivity to everolimus by modulating STAT3 signaling and the mTOR pathway. AIM To evaluate the prognostic and predictive values of this polymorphism on everolimus efficacy in patients treated for digestive neuroendocrine tumor (NET). PATIENTS AND METHODS This monocentric retrospective cohort included patients with small bowel NET (SBNET) and pancreatic NET (PNET) treated with everolimus (2006-2013). The patients were genotyped by classical sequencing, and mTOR pathway activity was assessed by immunochemistry on formalin-fixed paraffin-embedded samples (PTEN/pPTEN/pAKT/pmTOR/pS6/p4EBP1). RESULTS Forty-one patients (21 males, median age 57 years) with PNET (n = 28), SBNET (n = 12) or NET of unknown origin (n = 1), grade 1 (n = 8), 2 (n = 27), 3 (n = 3) or unknown grade (n = 3), were studied. At least one 388Arg allele was found in 14/23 PNET and 10/11 SBNET. Progression-free survival in the whole population and the PNET subgroup was not influenced by the presence of one or two 388Arg alleles [HR = 1.31 (0.58-2.99), p = 0.52 and HR = 1.11 (0.45-2.73), p = 0.82, respectively]. Similarly, overall survival was not influenced. Finally, mTOR pathway molecule expression was not modified by the presence of at least one 388Arg allele. CONCLUSION The Gly388Arg FGFR4 polymorphism does not seem to have a prognostic value in digestive NET. In addition, it neither predicts the response to everolimus nor modifies the activation of the mTOR pathway.
Collapse
|
35
|
Shi S, Li X, You B, Shan Y, Cao X, You Y. High Expression of FGFR4 Enhances Tumor Growth and Metastasis in Nasopharyngeal Carcinoma. J Cancer 2015; 6:1245-54. [PMID: 26535066 PMCID: PMC4622855 DOI: 10.7150/jca.12825] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/30/2015] [Accepted: 08/28/2015] [Indexed: 01/02/2023] Open
Abstract
Background: FGF receptor (FGFR) family can be activated by FGFs and play important roles in regulating cell growth, differentiation, migration and angiogenesis. Recent studies suggested that FGFR4 could regulate several processes including tumor progression. Nasopharyngeal carcinoma (NPC) is a malignancy with a high occurrence in Southeast Asia and Southern China. However, the molecule mechanism and the potential roles of FGFR4 in NPC remain unknown Methods: Immunohistochemistry and western blot were used to investigate the expression of FGFR4 in NPC samples. Then we used statistical analysis to evaluate the diagnostic value and the associations of FGFR4 expression with clinical parameters. In vitro studies, the effects of FGFR4 on proliferation and migration of NPC cell line CNE2 were measured by the starvation-refeeding experiment, CCK8 assay, wounding healing assay and transwell migration assay. The changes of the epithelial-mesenchymal transition (EMT) markers in CNE2 cells after knocking down the expression of FGFR4 were measured by Western blot and immunofluorescence analysis. Results: FGFR4 was overexpressed in NPC as compared with the inflammatory tissues. High expression of FGFR4 was correlated with Ki67 expression, clinical stages and prognosis in NPC patients (P<0.05).While in vitro, the upregulation of FGFR4 was accompanied with CNE2 cells released from serum starvation. Moreover, it could increase cell proliferation and migration by regulating EMT markers in CNE2 cells. Conclusion: Our data suggested that FGFR4 might induce NPC progression and act as a potential therapeutic target in NPC.
Collapse
Affiliation(s)
- Si Shi
- 1. Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Xingyu Li
- 2. Department of Pathology, Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Bo You
- 1. Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Ying Shan
- 1. Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Xiaolei Cao
- 2. Department of Pathology, Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Yiwen You
- 1. Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
36
|
Ye Y, Jiang D, Li J, Wang M, Han C, Zhang X, Zhao C, Wen J, Kan Q. Silencing of FGFR4 could influence the biological features of gastric cancer cells and its therapeutic value in gastric cancer. Tumour Biol 2015; 37:3185-95. [PMID: 26432329 DOI: 10.1007/s13277-015-4100-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/08/2015] [Accepted: 09/14/2015] [Indexed: 12/29/2022] Open
Abstract
To clarify the role of fibroblast growth factor receptor 4 (FGFR4) in gastric cancer (GC) and explore the therapeutic value of BGJ398 targeted to FGFR4. We constructed lentivirus vectors to stably knockdown FGFR4 expression in GC cells. Function assays in vitro and in vivo, treated with 5-fluorouracil (5-Fu) and BGJ398, were performed to study the change of biological behaviors of GC cells and related mechanism. The proliferation and invasive ability of HGC27 and MKN45 significantly decreased while the apoptosis rate of GC cells obviously increased in shRNA group (P < 0.05). The expressions of Bcl-xl, FLIP, PCNA, vimentin, p-erk, and p-STAT3 significantly reduced while the expressions of caspase-3 and E-cadherin markly enhanced in shRNA group. The proliferation abilities of GC cells were more significantly inhibited by the combination of BGJ398 and 5-Fu in shRNA group (P < 0.05). Compared to negative control (NC), the single and combination of 5-Fu and BGJ398 all significantly increased the apoptosis rate of GC cells, especially in the combination group (P < 0.01). The single and combination of 5-Fu and BGJ398 decreased the expressions of PCNA, Bcl-xl, and FLIP while increased the expression of caspase-3 in GC cells, especially in shRNA groups. Furthermore, knockdown of FGFR4 expression might prevent the growth of GC in vivo. Silencing of FGFR4 expression could weaken the invasive ability, increase the apoptosis rate, and decrease the proliferation ability of GC cells in vitro and in vivo. Furthermore, the combination of 5-Fu and BGJ398 had synergy in inhibiting the proliferation ability and increasing apoptosis rate of GC cells, directing a new target drug in GC.
Collapse
Affiliation(s)
- Yanwei Ye
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China. .,Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Dongbao Jiang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingjing Li
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Min Wang
- Department of Function, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chao Han
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiefu Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunlin Zhao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianguo Wen
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Quancheng Kan
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
37
|
Ferrer-Mayorga G, Alvarez-Díaz S, Valle N, De Las Rivas J, Mendes M, Barderas R, Canals F, Tapia O, Casal JI, Lafarga M, Muñoz A. Cystatin D locates in the nucleus at sites of active transcription and modulates gene and protein expression. J Biol Chem 2015; 290:26533-48. [PMID: 26364852 DOI: 10.1074/jbc.m115.660175] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/21/2015] [Indexed: 01/07/2023] Open
Abstract
Cystatin D is an inhibitor of lysosomal and secreted cysteine proteases. Strikingly, cystatin D has been found to inhibit proliferation, migration, and invasion of colon carcinoma cells indicating tumor suppressor activity that is unrelated to protease inhibition. Here, we demonstrate that a proportion of cystatin D locates within the cell nucleus at specific transcriptionally active chromatin sites. Consistently, transcriptomic analysis show that cystatin D alters gene expression, including that of genes encoding transcription factors such as RUNX1, RUNX2, and MEF2C in HCT116 cells. In concordance with transcriptomic data, quantitative proteomic analysis identified 292 proteins differentially expressed in cystatin D-expressing cells involved in cell adhesion, cytoskeleton, and RNA synthesis and processing. Furthermore, using cytokine arrays we found that cystatin D reduces the secretion of several protumor cytokines such as fibroblast growth factor-4, CX3CL1/fractalkine, neurotrophin 4 oncostatin-M, pulmonary and activation-regulated chemokine/CCL18, and transforming growth factor B3. These results support an unanticipated role of cystatin D in the cell nucleus, controlling the transcription of specific genes involved in crucial cellular functions, which may mediate its protective action in colon cancer.
Collapse
Affiliation(s)
- Gemma Ferrer-Mayorga
- From the Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, E-28029 Madrid
| | - Silvia Alvarez-Díaz
- From the Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, E-28029 Madrid
| | - Noelia Valle
- From the Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, E-28029 Madrid
| | - Javier De Las Rivas
- the Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, E-37007 Salamanca
| | - Marta Mendes
- the Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, E-28040 Madrid
| | - Rodrigo Barderas
- the Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, E-28040 Madrid
| | - Francesc Canals
- the Proteomics Laboratory, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, E-08035, and
| | - Olga Tapia
- the Departamento de Anatomía y Biología Celular, Facultad de Medicina, Universidad de Cantabria-Instituto de Investigación Valdecilla, E-39011 Santander, Spain
| | - J Ignacio Casal
- the Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, E-28040 Madrid
| | - Miguel Lafarga
- the Departamento de Anatomía y Biología Celular, Facultad de Medicina, Universidad de Cantabria-Instituto de Investigación Valdecilla, E-39011 Santander, Spain
| | - Alberto Muñoz
- From the Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, E-28029 Madrid,
| |
Collapse
|
38
|
Peláez-García A, Barderas R, Mendes M, Lopez-Lucendo M, Sanchez JC, García de Herreros A, Casal JI. Data from proteomic characterization of the role of Snail1 in murine mesenchymal stem cells and 3T3-L1 fibroblasts differentiation. Data Brief 2015; 4:606-13. [PMID: 26322327 PMCID: PMC4543208 DOI: 10.1016/j.dib.2015.07.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/17/2015] [Revised: 07/13/2015] [Accepted: 07/20/2015] [Indexed: 02/02/2023] Open
Abstract
The transcription factor (TF) Snail1 is a major inducer of the epithelial–mesenchymal transition (EMT) during embryonic development and cancer progression. Ectopic expression of Snail in murine mesenchymal stem cells (mMSC) abrogated their differentiation to osteoblasts or adipocytes. We used either stable isotopic metabolic labeling (SILAC) for 3T3-L1 cells or isobaric labeling with tandem mass tags (TMT) for mMSC stably transfected cells with Snail1 or control. We carried out a proteomic analysis on the nuclear fraction since Snail is a nuclear TF that mediates its effects mainly through the regulation of other TFs. Proteomics data have been deposited in ProteomeXchange via the PRIDE partner repository with the dataset identifiers PXD001529 and PXD002157 (Vizcaino et al., 2014) [1]. Data are associated with a research article published in Molecular and Cellular Proteomics (Pelaez-Garcia et al., 2015) [2].
Collapse
Affiliation(s)
- A Peláez-García
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - R Barderas
- Biochemistry and Molecular Biology I Department, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - M Mendes
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - M Lopez-Lucendo
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - J C Sanchez
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - J I Casal
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| |
Collapse
|
39
|
Ronca R, Giacomini A, Rusnati M, Presta M. The potential of fibroblast growth factor/fibroblast growth factor receptor signaling as a therapeutic target in tumor angiogenesis. Expert Opin Ther Targets 2015; 19:1361-77. [PMID: 26125971 DOI: 10.1517/14728222.2015.1062475] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Fibroblast growth factors (FGFs) are endowed with a potent pro-angiogenic activity. Activation of the FGF/FGF receptor (FGFR) system occurs in a variety of human tumors. This may lead to neovascularization, supporting tumor progression and metastatic dissemination. Thus, a compelling biologic rationale exists for the development of anti-FGF/FGFR agents for the inhibition of tumor angiogenesis in cancer therapy. AREAS COVERED A comprehensive search on PubMed was performed to identify studies on the role of the FGF/FGFR system in angiogenesis. Endothelial FGFR signaling, the pro-angiogenic function of canonical FGFs, and their role in human tumors are described. In addition, experimental approaches aimed at the identification and characterization of nonselective and selective FGF/FGFR inhibitors and their evaluation in clinical trials are summarized. EXPERT OPINION Different approaches can be envisaged to inhibit the FGF/FGFR system, a target for the development of 'two-compartment' anti-angiogenic/anti-tumor agents, including FGFR selective and nonselective small-molecule tyrosine kinase inhibitors, anti-FGFR antibodies, and FGF ligand traps. Further studies are required to define the correlation between tumor vascularization and activation of the FGF/FGFR system and for the identification of cancer patients more likely to benefit from anti-FGF/FGFR treatments. In addition, advantages and disadvantages about the use of selective versus non-selective FGF inhibitors remain to be elucidated.
Collapse
Affiliation(s)
- Roberto Ronca
- a University of Brescia, Department of Molecular and Translational Medicine , Brescia, Italy +39 030 371 7311 ;
| | - Arianna Giacomini
- a University of Brescia, Department of Molecular and Translational Medicine , Brescia, Italy +39 030 371 7311 ;
| | - Marco Rusnati
- a University of Brescia, Department of Molecular and Translational Medicine , Brescia, Italy +39 030 371 7311 ;
| | - Marco Presta
- a University of Brescia, Department of Molecular and Translational Medicine , Brescia, Italy +39 030 371 7311 ;
| |
Collapse
|
40
|
Shim HJ, Shin MH, Kim HN, Kim JH, Hwang JE, Bae WK, Chung IJ, Cho SH. The Prognostic Significance of FGFR4 Gly388 Polymorphism in Esophageal Squamous Cell Carcinoma after Concurrent Chemoradiotherapy. Cancer Res Treat 2015; 48:71-9. [PMID: 25989802 PMCID: PMC4720088 DOI: 10.4143/crt.2015.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/12/2015] [Accepted: 04/06/2015] [Indexed: 02/06/2023] Open
Abstract
Purpose The purpose of this study is to investigate the role of fibroblast growth factor receptor 4 (FGFR4) polymorphism in esophageal cancer after chemoradiotherapy (CRT). Materials and Methods Peripheral blood samples from 244 patients treated with CRT for esophageal squamous cell carcinoma were assessed for the role of FGFR4 genotype on treatment response and survival. Results A total of 94 patients were homozygous for the Gly388 allele, and 110 were heterozygous and 40 homozygous for the Arg388 allele. No significant association was found between the FGFR4 genotype and clinicopathological parameters. However, patients carrying the Gly388 allele showed a better overall response rate than Arg388 carriers (p=0.038). In addition, Gly388 allele patients at an earlier stage showed better overall survival (OS) and progression-free survival than Arg388 carriers. Among these, the Gly388 allele showed significantly improved OS compared to Arg388 carriers in the lymph node (LN) metastasis group (p=0.042) compared to the no LN metastasis group (p=0.125). However, similar survival outcomes were observed for advanced-stage disease regardless of genotype. Conclusion This result suggests that the role of FGFR4 Gly388 in treatment outcomes differs according to esophageal cancer stage. It showed a predictive role in the response of esophageal cancer patients to CRT with a better trend for OS in Gly388 than Arg388 carriers in the early stages. In particular, LN-positive early-stage patients carrying the Gly388 allele showed improved OS compared to those carrying Arg388.
Collapse
Affiliation(s)
- Hyun-Jeong Shim
- Department of Hemato-Oncology, Chonnam National University Medical School, Hwasun, Korea
| | - Min-Ho Shin
- Department of Preventive Medicine, Chonnam National University Medical School, Hwasun, Korea ; Department of Jeonnam Regional Cancer Center, Chonnam National University Medical School, Hwasun, Korea
| | - Hee-Nam Kim
- Department of Jeonnam Regional Cancer Center, Chonnam National University Medical School, Hwasun, Korea
| | - Jo-Heon Kim
- Department of Pathology, Chonnam National University Medical School, Hwasun, Korea
| | - Jun-Eul Hwang
- Department of Hemato-Oncology, Chonnam National University Medical School, Hwasun, Korea
| | - Woo-Kyun Bae
- Department of Hemato-Oncology, Chonnam National University Medical School, Hwasun, Korea
| | - Ik-Joo Chung
- Department of Hemato-Oncology, Chonnam National University Medical School, Hwasun, Korea
| | - Sang-Hee Cho
- Department of Hemato-Oncology, Chonnam National University Medical School, Hwasun, Korea
| |
Collapse
|
41
|
Heerboth S, Housman G, Leary M, Longacre M, Byler S, Lapinska K, Willbanks A, Sarkar S. EMT and tumor metastasis. Clin Transl Med 2015; 4:6. [PMID: 25852822 PMCID: PMC4385028 DOI: 10.1186/s40169-015-0048-3] [Citation(s) in RCA: 543] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/02/2014] [Accepted: 01/26/2015] [Indexed: 02/07/2023] Open
Abstract
EMT and MET comprise the processes by which cells transit between epithelial and mesenchymal states, and they play integral roles in both normal development and cancer metastasis. This article reviews these processes and the molecular pathways that contribute to them. First, we compare embryogenesis and development with cancer metastasis. We then discuss the signaling pathways and the differential expression and down-regulation of receptors in both tumor cells and stromal cells, which play a role in EMT and metastasis. We further delve into the clinical implications of EMT and MET in several types of tumors, and lastly, we discuss the role of epigenetic events that regulate EMT/MET processes. We hypothesize that reversible epigenetic events regulate both EMT and MET, and thus, also regulate the development of different types of metastatic cancers.
Collapse
Affiliation(s)
- Sarah Heerboth
- />Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA USA
| | - Genevieve Housman
- />School of Human Evolution and Social Change, Arizona State University, Tempe, AZ USA
| | - Meghan Leary
- />Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA USA
| | | | - Shannon Byler
- />Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA USA
| | - Karolina Lapinska
- />Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA USA
| | - Amber Willbanks
- />Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA USA
| | - Sibaji Sarkar
- />Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA USA
| |
Collapse
|
42
|
Esteban-Fernández de Ávila B, Araque E, Campuzano S, Pedrero M, Dalkiran B, Barderas R, Villalonga R, Kiliç E, Pingarrón JM. Dual Functional Graphene Derivative-Based Electrochemical Platforms for Detection of the TP53 Gene with Single Nucleotide Polymorphism Selectivity in Biological Samples. Anal Chem 2015; 87:2290-8. [DOI: 10.1021/ac504032d] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Elena Araque
- Departamento
de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Susana Campuzano
- Departamento
de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - María Pedrero
- Departamento
de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Berna Dalkiran
- Faculty
of Science, Department of Chemistry, Ankara University, 06100-Tandoğan, Ankara, Turkey
| | - Rodrigo Barderas
- Departamento
de Bioquímica y Biología Molecular, Facultad de CC.
Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Reynaldo Villalonga
- Departamento
de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
- IMDEA
Nanoscience, City University of Cantoblanco, 28049 Madrid, Spain
| | - Esma Kiliç
- Faculty
of Science, Department of Chemistry, Ankara University, 06100-Tandoğan, Ankara, Turkey
| | - José M. Pingarrón
- Departamento
de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
- IMDEA
Nanoscience, City University of Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
43
|
|
44
|
Pulkoski-Gross A, Zheng XE, Kim D, Cathcart J, Cao J. Epithelial to Mesenchymal Transition (EMT) and Intestinal Tumorigenesis. INTESTINAL TUMORIGENESIS 2015:309-364. [DOI: 10.1007/978-3-319-19986-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/06/2025]
|
45
|
Peláez-García A, Barderas R, Batlle R, Viñas-Castells R, Bartolomé RA, Torres S, Mendes M, Lopez-Lucendo M, Mazzolini R, Bonilla F, García de Herreros A, Casal JI. A proteomic analysis reveals that Snail regulates the expression of the nuclear orphan receptor Nuclear Receptor Subfamily 2 Group F Member 6 (Nr2f6) and interleukin 17 (IL-17) to inhibit adipocyte differentiation. Mol Cell Proteomics 2014; 14:303-15. [PMID: 25505127 DOI: 10.1074/mcp.m114.045328] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/02/2023] Open
Abstract
Adipogenesis requires a differentiation program driven by multiple transcription factors, where PPARγ and C/EBPα play a central role. Recent findings indicate that Snail inhibits adipocyte differentiation in 3T3-L1 and murine mesenchymal stem cells (mMSC). An in-depth quantitative SILAC analysis of the nuclear fraction of Snail-induced alterations of 3T3-L1 cells was carried out. In total, 2251 overlapping proteins were simultaneously quantified in forward and reverse experiments. We observed 574 proteins deregulated by Snail1 using a fold-change ≥1.5, with 111 up- and 463 down-regulated proteins, respectively. Among other proteins, multiple transcription factors such as Trip4, OsmR, Nr2f6, Cbx6, and Prrx1 were down-regulated. Results were validated in 3T3-L1 cells and mMSC cells by Western blot and quantitative PCR. Knock-down experiments in 3T3-L1 cells demonstrated that only Nr2f6 (and Trip4 at minor extent) was required for adipocyte differentiation. Ectopic expression of Nr2f6 reversed the effects of Snail1 and promoted adipogenesis. Because Nr2f6 inhibits the expression of IL-17, we tested the effect of Snail on IL-17 expression. IL-17 and TNFα were among the most up-regulated pro-inflammatory cytokines in Snail-transfected 3T3-L1 and mMSC cells. Furthermore, the blocking of IL-17 activity in Snail-transfected cells promoted adipocyte differentiation, reverting Snail inhibition. In summary, Snail inhibits adipogenesis through a down-regulation of Nr2f6, which in turn facilitates the expression of IL-17, an anti-adipogenic cytokine. These results would support a novel and important role for Snail and Nr2f6 in obesity control.
Collapse
Affiliation(s)
- Alberto Peláez-García
- From the ‡Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - Rodrigo Barderas
- §Departamento de Biochemistry and Molecular Biology Department I, Universidad Complutense de Madrid, Spain
| | | | | | - Rubén A Bartolomé
- From the ‡Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - Sofía Torres
- From the ‡Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - Marta Mendes
- From the ‡Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - María Lopez-Lucendo
- From the ‡Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | | | - Félix Bonilla
- ‖Hospital Puerta de Hierro, Majadahonda, Madrid, Spain
| | | | - J Ignacio Casal
- From the ‡Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain;
| |
Collapse
|
46
|
Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors. Proc Natl Acad Sci U S A 2014; 111:E4869-77. [PMID: 25349422 DOI: 10.1073/pnas.1403438111] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022] Open
Abstract
The human FGF receptors (FGFRs) play critical roles in various human cancers, and several FGFR inhibitors are currently under clinical investigation. Resistance usually results from selection for mutant kinases that are impervious to the action of the drug or from up-regulation of compensatory signaling pathways. Preclinical studies have demonstrated that resistance to FGFR inhibitors can be acquired through mutations in the FGFR gatekeeper residue, as clinically observed for FGFR4 in embryonal rhabdomyosarcoma and neuroendocrine breast carcinomas. Here we report on the use of a structure-based drug design to develop two selective, next-generation covalent FGFR inhibitors, the FGFR irreversible inhibitors 2 (FIIN-2) and 3 (FIIN-3). To our knowledge, FIIN-2 and FIIN-3 are the first inhibitors that can potently inhibit the proliferation of cells dependent upon the gatekeeper mutants of FGFR1 or FGFR2, which confer resistance to first-generation clinical FGFR inhibitors such as NVP-BGJ398 and AZD4547. Because of the conformational flexibility of the reactive acrylamide substituent, FIIN-3 has the unprecedented ability to inhibit both the EGF receptor (EGFR) and FGFR covalently by targeting two distinct cysteine residues. We report the cocrystal structure of FGFR4 with FIIN-2, which unexpectedly exhibits a "DFG-out" covalent binding mode. The structural basis for dual FGFR and EGFR targeting by FIIN3 also is illustrated by crystal structures of FIIN-3 bound with FGFR4 V550L and EGFR L858R. These results have important implications for the design of covalent FGFR inhibitors that can overcome clinical resistance and provide the first example, to our knowledge, of a kinase inhibitor that covalently targets cysteines located in different positions within the ATP-binding pocket.
Collapse
|
47
|
Steinestel K, Eder S, Schrader AJ, Steinestel J. Clinical significance of epithelial-mesenchymal transition. Clin Transl Med 2014; 3:17. [PMID: 25050175 PMCID: PMC4094902 DOI: 10.1186/2001-1326-3-17] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/07/2014] [Accepted: 06/27/2014] [Indexed: 12/21/2022] Open
Abstract
The concept of epithelial-mesenchymal transition (EMT), a process where cells change their epithelial towards a mesenchymal phenotype, has gained overwhelming attention especially in the cancer research community. Thousands of scientific reports investigated changes in gene, mRNA and protein expression compatible with EMT and their possible correlation with tumor invasion, metastatic spread or patient prognosis; however, up to now, a proof of clinical significance of the concept is still missing. This review, with a main focus on the role of EMT in tumors, will summarize the basic molecular events underlying EMT including the signaling pathways capable of its induction as well as changes in EMT-associated protein expression and will very briefly touch the role of microRNAs in EMT. We then outline protein markers that are used most frequently for the assessment of EMT in research and diagnostic evaluation of tumor specimens and depict the link between EMT, a cancer stem cell (CSC) phenotype and resistance to conventional antineoplastic therapies. Furthermore, we evaluate a possible correlation between EMT marker expression and patient prognosis as well as current therapeutic concepts targeting the EMT process to slow down or prevent metastatic spread of malignant tumors.
Collapse
Affiliation(s)
- Konrad Steinestel
- Bundeswehr Institute of Radiobiology, Neuherbergstrasse 11, Munich 80937, Germany
- Institute of Pathology and Molecular Pathology, Bundeswehrkrankenhaus Ulm, Oberer Eselsberg 40, Ulm 89081, Germany
| | - Stefan Eder
- Bundeswehr Institute of Radiobiology, Neuherbergstrasse 11, Munich 80937, Germany
| | - Andres Jan Schrader
- Department of Urology, Ulm University Medical Center, Prittwitzstrasse 43, Ulm 89075, Germany
| | - Julie Steinestel
- Department of Urology, Ulm University Medical Center, Prittwitzstrasse 43, Ulm 89075, Germany
| |
Collapse
|
48
|
Suppressor of cytokine signaling 1 modulates invasion and metastatic potential of colorectal cancer cells. Mol Oncol 2014; 8:942-55. [PMID: 24726456 DOI: 10.1016/j.molonc.2014.03.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/25/2013] [Revised: 02/27/2014] [Accepted: 03/14/2014] [Indexed: 11/24/2022] Open
Abstract
Suppressor of cytokine signaling (SOCS) 1 is an inducible negative regulator of cytokine signaling but its role in human cancer is not completely established. Here we report that, while SOCS1 is expressed in normal colonic epithelium and colon adenocarcinomas, its level decreases during progression of colon adenocarcinomas, the lowest level being found in the most aggressive stage and least differentiated carcinomas. Forced expression of SOCS1 in metastatic colorectal SW620 cells reverses many characteristics of Epithelial-Mesenchymal Transition (EMT), as highlighted by the disappearance of the transcription factor ZEB1 and the mesenchymal form of p120ctn and the re-expression of E-cadherin. Furthermore, miRNA profiling indicated that SOCS1 also up-regulates the expression of the mir-200 family of miRNAs, which can promote the mesenchymal-epithelial transition and reduce tumor cell migration. Accordingly, overexpression of SOCS1 induced cell morphology changes and dramatically reduced tumor cell invasion in vitro. When injected in nude mice, SOCS1-expressing SW620 cells induced metastases in a smaller number of animals than parental SW620 cells, and did not generate any adrenal gland or bone metastasis. Overall, our results suggest that SOCS1 controls metastatic progression of colorectal tumors by preventing the mesenchymal-epithelial transition (MET), including E-cadherin expression. This pathway may be associated with survival to colorectal cancer by reducing the capacity of generating metastases.
Collapse
|
49
|
Li CS, Zhang SX, Liu HJ, Shi YL, Li LP, Guo XB, Zhang ZH. Fibroblast growth factor receptor 4 as a potential prognostic and therapeutic marker in colorectal cancer. Biomarkers 2014; 19:81-5. [PMID: 24410190 DOI: 10.3109/1354750x.2013.876555] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/12/2023]
Abstract
The purpose of the study was to explore the significance of FGFR4 protein expression in colorectal cancer. Immunohistochemistry showed 46.8% (148/316) tumors positive for FGFR4 and 7.3% (23/316) for adjacent normal specimens. FGFR4 positivity was correlated with shortened disease free survival (DFS) and overall survival (OS). Multivariate analysis revealed that FGFR4 was an independent prognostic factor. FGFR4 silencing markedly reduced the migration and invasion capacity of colorectal cancer cell lines. These results suggest FGFR4 is a potential prognostic and therapeutic marker for colorectal cancer.
Collapse
Affiliation(s)
- Chen-Sheng Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, Shandong Province , China
| | | | | | | | | | | | | |
Collapse
|
50
|
Gu GL, Zhu XQ, Wei XM, Ren L, Li DC, Wang SL. Epithelial-mesenchymal transition in colorectal cancer tissue of patients with Lynch syndrome. World J Gastroenterol 2014; 20:250-257. [PMID: 24415879 PMCID: PMC3886016 DOI: 10.3748/wjg.v20.i1.250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/15/2013] [Revised: 10/29/2013] [Accepted: 11/19/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the epithelial-mesenchymal transition (EMT) in tissue from patients with Lynch syndrome, and to interpret biological behaviour of Lynch syndrome.
METHODS: Sixty-eight formalin-fixed and paraffin embedded tissue blocks were analyzed in this study, including tissues from Lynch syndrome (n = 30), sporadic colorectal carcinoma (CRC) (n = 30), and tumor-adjacent tissues (n = 8). Tissue sections were stained for human mutS homolog 2 (hMSH2), human mutL homolog 1 (hMLH1), transforming growth factor-β type II receptor (TGFβRII), E-cadherin, β-catenin, matrix metalloproteinase-7 (MMP-7) and tissue inhibitor of metalloproteinase-2 (TIMP-2) by immunohistochemical staining. Furthermore, clinical data such as age, gender and tumor-node-metastasis stage were also collected retrospectively.
RESULTS: The positive expression rates of hMSH2, hMLH1, TGFβRII, E-cadherin, β-catenin, MMP-7 and TIMP-2 were significantly related to the depth of invasion and lymph node metastasis, but not to sex or tumour size or location. The differences in the positive expression rates of hMSH2, hMLH1, TGFβRII, E-cadherin, cytomembrane β-catenin, cytoplasmic β-catenin, MMP-7 and TIMP-2 were significant between sporadic CRC and Lynch syndrome. The expression of hMSH2 had a positive correlation with that of hMLH1 in Lynch syndrome and sporadic CRC. The expression of TGFβRII had a positive correlation with that of hMSH2, hMLH1 and MMP-7, and a negative correlation with that of TIMP-2. The expression of MMP-7 had a negative correlation with that of TIMP-2 in Lynch syndrome and sporadic CRC. The expression of E-cadherin was positively correlated with that of cytomembrane β-catenin. However, the expression of cytomembrane β-catenin was negatively correlated with that of cytoplasmic β-catenin, and the expression of cytoplasmic β-catenin was positively correlated with that of MMP-7.
CONCLUSION: EMT may play an important role in the development and progression of Lynch syndrome. Lynch syndrome was caused by the mutations of mismatch repair genes, mainly hMSH2 and hMLH1, which also beget the mutational inactivation of TGFβRII. Therefore, the colorectal cancer of Lynch syndrome can escape the inhibitory effect of TGFβ1. However, TGFβ1 can up-regulate the expression of MMP-7 and down-regulate the expression of TIMP-2 in tumors by disassembling the E-cadherin/β-catenin complex in the cytomembrane.
Collapse
|