1
|
Zhang RH, Cao SS, Shi Y, Wang X, Shi LL, Zhang YH, Han CJ, Wang B, Feng L, Liu JP. Astragaloside IV-mediated inhibition of oxidative stress by upregulation of ghrelin in type 2 diabetes-induced cognitive impairment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2637-2650. [PMID: 37097336 DOI: 10.1007/s00210-023-02486-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/04/2023] [Indexed: 04/26/2023]
Abstract
This study is to observe the upregulation effect of astragaloside IV on ghrelin in diabetic cognitive impairment (DCI) rats and to investigate the pathway in prevention and treatment by reducing oxidative stress. The DCI model was induced with streptozotocin (STZ) in conjunction with a high-fat and high-sugar diet and divided into three groups: model, low-dose (40 mg/kg), and high-dose (80 mg/kg) astragaloside IV. After 30 days of gavage, the learning and memory abilities of rats, as well as their body weight and blood glucose levels, were tested using the Morris water maze and then detection of insulin resistance, SOD activity, and serum MDA levels. The whole brain of rats was sampled for hematoxylin-eosin and Nissl staining to observe pathological changes in the hippocampal CA1 region. Immunohistochemistry was used to detect ghrelin expression in the hippocampal CA1 region. A Western blot was used to determine changes in GHS-R1α/AMPK/PGC-1α/UCP2. RT-qPCR was used to determine the levels of ghrelin mRNA. Astragaloside IV reduced nerve damage, increased superoxide dismutase (SOD) activity, decreased MDA levels, and improved insulin resistance. Ghrelin levels and expression increased in serum and hippocampal tissues, and ghrelin mRNA levels increased in rat stomach tissues. According to Western blot, it increased the expression of the ghrelin receptor GHS-R1α and upregulated the mitochondrial function associated-protein AMPK-PGC-1α-UCP2. Astragaloside IV increases ghrelin expression in the brain to reduce oxidative stress and delay diabetes-induced cognitive impairment. It may be related to the promotion of ghrelin mRNA levels.
Collapse
Affiliation(s)
- Rui-Hua Zhang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Century Avenue, Xianyang, 712046, People's Republic of China
| | - Shan-Shan Cao
- Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Century Avenue, Xianyang, 712046, People's Republic of China
| | - Yong Shi
- Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Century Avenue, Xianyang, 712046, People's Republic of China
| | - Xin Wang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Century Avenue, Xianyang, 712046, People's Republic of China
| | - Lei-Lei Shi
- Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Century Avenue, Xianyang, 712046, People's Republic of China
| | - Yu-Han Zhang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Century Avenue, Xianyang, 712046, People's Republic of China
| | - Chao-Jun Han
- Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Century Avenue, Xianyang, 712046, People's Republic of China
| | - Bin Wang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Century Avenue, Xianyang, 712046, People's Republic of China
| | - Liang Feng
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, China Pharmaceutical University, 639# Longmian Road, Jiangsu, Nanjing, 210009, People's Republic of China.
| | - Ji-Ping Liu
- Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Century Avenue, Xianyang, 712046, People's Republic of China.
- Key Laboratory of Pharmacodynamic Mechanism and Material Basis of Traditional Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang, 712046, People's Republic of China.
| |
Collapse
|
2
|
Perea Vega ML, Sanchez MS, Fernández G, Paglini MG, Martin M, de Barioglio SR. Ghrelin treatment leads to dendritic spine remodeling in hippocampal neurons and increases the expression of specific BDNF-mRNA species. Neurobiol Learn Mem 2021; 179:107409. [PMID: 33609738 DOI: 10.1016/j.nlm.2021.107409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 02/02/2021] [Accepted: 02/11/2021] [Indexed: 11/15/2022]
Abstract
Ghrelin (Gr) is an orexigenic peptide that acts via its specific receptor, GHSR-1a distributed throughout the brain, being mainly enriched in pituitary, cortex and hippocampus (Hp) modulating a variety of brain functions. Behavioral, electrophysiological and biochemical evidence indicated that Gr modulates the excitability and the synaptic plasticity in Hp. The present experiments were designed in order to extend the knowledge about the Gr effect upon structural synaptic plasticity since morphological and quantitative changes in spine density after Gr administration were analyzed "in vitro" and "in vivo". The results show that Gr administered to hippocampal cultures or stereotactically injected in vivo to Thy-1 mice increases the density of dendritic spines (DS) being the mushroom type highly increased in secondary and tertiary extensions. Spines classified as thin type were increased particularly in primary extensions. Furthermore, we show that Gr enhances selectively the expression of BDNF-mRNA species.
Collapse
Affiliation(s)
- M L Perea Vega
- Departamento de Farmacología, Instituto de Farmacología Experimental-IFEC-CONICET-Universidad Nacional de Córdoba, Argentina
| | - M S Sanchez
- Laboratorio de Neurobiología, Instituto de Investigación Médica Mercedes y Martín Ferreyra-INIMEC-CONICET-Universidad Nacional de Córdoba. Córdoba, Argentina; Instituto Universitario Ciencias Biomédicas Córdoba, Córdoba, Argentina
| | - G Fernández
- Laboratorio de Neurofisiología, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M G Paglini
- Laboratorio de Neurofisiología, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M Martin
- Laboratorio de Neurobiología, Instituto de Investigación Médica Mercedes y Martín Ferreyra-INIMEC-CONICET-Universidad Nacional de Córdoba. Córdoba, Argentina
| | - S R de Barioglio
- Departamento de Farmacología, Instituto de Farmacología Experimental-IFEC-CONICET-Universidad Nacional de Córdoba, Argentina.
| |
Collapse
|
3
|
van Loenen MR, Geenen B, Arnoldussen IAC, Kiliaan AJ. Ghrelin as a prominent endocrine factor in stress-induced obesity. Nutr Neurosci 2020; 25:1413-1424. [PMID: 33373270 DOI: 10.1080/1028415x.2020.1863740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Objectives: Ghrelin acts on a variety of central- and peripheral organs causing an orexigenic effect, conclusively followed by increased caloric intake. Recent studies have indicated that ghrelin's function as an orexigenic agent does not entirely reflect the full functional properties of the peptide. Specifically, ghrelin regulates stress-hormone synthesis and secretion therewith affecting the stress-axis. The role of stress in the development of obesity has been extensively studied. However, the orexigenic and underlying stress-regulatory effect of ghrelin has not yet been further considered in the development of stress-induced obesity.Methods: Therefore, this review aims to accentuate the potential of ghrelin as a factor in the pathological development of stress-induced obesity.Results: In this review we discuss (1) the ghrelin-mediated intracellular cascades and elucidate the overall bioactivation of the peptide, and (2) the mechanisms of ghrelin signalling and regulation within the central nervous system and the gastro-intestinal system.Discussion: These biological processes will be ultimately discussed in relation to the pathogenesis of stress-induced obesity.
Collapse
Affiliation(s)
- Mark R van Loenen
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Preclinical Imaging Center PRIME, Nijmegen, Netherlands
| | - Bram Geenen
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Preclinical Imaging Center PRIME, Nijmegen, Netherlands
| | - Ilse A C Arnoldussen
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Preclinical Imaging Center PRIME, Nijmegen, Netherlands
| | - Amanda J Kiliaan
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Preclinical Imaging Center PRIME, Nijmegen, Netherlands
| |
Collapse
|
4
|
Xiao X, Bi M, Jiao Q, Chen X, Du X, Jiang H. A new understanding of GHSR1a--independent of ghrelin activation. Ageing Res Rev 2020; 64:101187. [PMID: 33007437 DOI: 10.1016/j.arr.2020.101187] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/13/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Abstract
Growth hormone secretagogue receptor 1a (GHSR1a), a member of the G protein-coupled receptor (GPCR) family, is a functional receptor of ghrelin. The expression levels and activities of GHSR1a are affected by various factors. In past years, it has been found that the ghrelin-GHSR1a system can perform biological functions such as anti-inflammation, anti-apoptosis, and anti-oxidative stress. In addition to mediating the effect of ghrelin, GHSR1a also has abnormally high constitutive activity; that is, it can still transmit intracellular signals without activation of the ghrelin ligand. This constitutive activity affects brain functions, growth and development of the body; therefore, it has profound impacts on neurodegenerative diseases and some other age-related diseases. In addition, GHSR1a can also form homodimers or heterodimers with other GPCRs, affecting the release of neurotransmitters, appetite regulation, cell proliferation and insulin release. Therefore, further understanding of the constitutive activities and dimerization of GHSR1a will enable us to better clarify the characteristics of GHSR1a and provide more therapeutic targets for drug development. Here, we focus on the roles of GHSR1a in various biological functions and provide a comprehensive summary of the current research on GHSR1a to provide broader therapeutic prospects for age-related disease treatment.
Collapse
Affiliation(s)
- Xue Xiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Mingxia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China.
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
5
|
Beheshti S, Sami M, Mirzabeh A, Yazdi A. D-Lys-3-GHRP-6 impairs memory consolidation and downregulates the hippocampal serotonin HT1A, HT7 receptors and glutamate GluA1 subunit of AMPA receptors. Physiol Behav 2020; 223:112969. [DOI: 10.1016/j.physbeh.2020.112969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 04/27/2020] [Accepted: 05/12/2020] [Indexed: 01/08/2023]
|
6
|
Jeon SG, Hong SB, Nam Y, Tae J, Yoo A, Song EJ, Kim KI, Lee D, Park J, Lee SM, Kim JI, Moon M. Ghrelin in Alzheimer's disease: Pathologic roles and therapeutic implications. Ageing Res Rev 2019; 55:100945. [PMID: 31434007 DOI: 10.1016/j.arr.2019.100945] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/25/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022]
Abstract
Ghrelin, which has many important physiological roles, such as stimulating food intake, regulating energy homeostasis, and releasing insulin, has recently been studied for its roles in a diverse range of neurological disorders. Despite the several functions of ghrelin in the central nervous system, whether it works as a therapeutic agent for neurological dysfunction has been unclear. Altered levels and various roles of ghrelin have been reported in Alzheimer's disease (AD), which is characterized by the accumulation of misfolded proteins resulting in synaptic loss and cognitive decline. Interestingly, treatment with ghrelin or with the agonist of ghrelin receptor showed attenuation in several cases of AD-related pathology. These findings suggest the potential therapeutic implications of ghrelin in the pathogenesis of AD. In the present review, we summarized the roles of ghrelin in AD pathogenesis, amyloid beta (Aβ) homeostasis, tau hyperphosphorylation, neuroinflammation, mitochondrial deficit, synaptic dysfunction and cognitive impairment. The findings from this review suggest that ghrelin has a novel therapeutic potential for AD treatment. Thus, rigorously designed studies are needed to establish an effective AD-modifying strategy.
Collapse
|
7
|
Chen XY, Du YF, Chen L. Neuropeptides Exert Neuroprotective Effects in Alzheimer's Disease. Front Mol Neurosci 2019; 11:493. [PMID: 30687008 PMCID: PMC6336706 DOI: 10.3389/fnmol.2018.00493] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 12/21/2018] [Indexed: 01/03/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by cognitive deficits and neuronal loss. Deposition of beta-amyloid peptide (Aβ) causes neurotoxicity through the formation of plaques in brains of Alzheimer's disease. Numerous studies have indicated that the neuropeptides including ghrelin, neurotensin, pituitary adenylate cyclase-activating polypeptide (PACAP), neuropeptide Y, substance P and orexin are closely related to the pathophysiology of Alzheimer's disease. The levels of neuropeptides and their receptors change in Alzheimer's disease. These neuropeptides exert neuroprotective roles mainly through preventing Aβ accumulation, increasing neuronal glucose transport, increasing the production of neurotrophins, inhibiting endoplasmic reticulum stress and autophagy, modulating potassium channel activity and hippocampal long-term potentiation. Therefore, the neuropeptides may function as potential drug targets in the prevention and cure of Alzheimer's disease.
Collapse
Affiliation(s)
- Xin-Yi Chen
- Department of Physiology and Pathophysiology, Qingdao University, Qingdao, China.,Department of Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yi-Feng Du
- Department of Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Lei Chen
- Department of Physiology and Pathophysiology, Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Martínez Damonte V, Rodríguez SS, Raingo J. Growth hormone secretagogue receptor constitutive activity impairs voltage-gated calcium channel-dependent inhibitory neurotransmission in hippocampal neurons. J Physiol 2018; 596:5415-5428. [PMID: 30199095 DOI: 10.1113/jp276256] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Presynaptic CaV 2 voltage-gated calcium channels link action potentials arriving at the presynaptic terminal to neurotransmitter release. Hence, their regulation is essential to fine tune brain circuitry. CaV 2 channels are highly sensitive to G protein-coupled receptor (GPCR) modulation. Our previous data indicated that growth hormone secretagogue receptor (GHSR) constitutive activity impairs CaV 2 channels by decreasing their surface density. We present compelling support for the impact of CaV 2.2 channel inhibition by agonist-independent GHSR activity exclusively on GABA release in hippocampal cultures. We found that this selectivity arises from a high reliance of GABA release on CaV 2.2 rather than on CaV 2.1 channels. Our data provide new information on the effects of the ghrelin-GHSR system on synaptic transmission, suggesting a putative physiological role of the constitutive signalling of a GPCR that is expressed at high levels in brain areas with restricted access to its natural agonist. ABSTRACT Growth hormone secretagogue receptor (GHSR) displays high constitutive activity, independent of its endogenous ligand, ghrelin. Unlike ghrelin-induced GHSR activity, the physiological role of GHSR constitutive activity and the mechanisms that underlie GHSR neuronal modulation remain elusive. We previously demonstrated that GHSR constitutive activity modulates presynaptic CaV 2 voltage-gated calcium channels. Here we postulate that GHSR constitutive activity-mediated modulation of CaV 2 channels could be relevant in the hippocampus since this brain area has high GHSR expression but restricted access to ghrelin. We performed whole-cell patch-clamp in hippocampal primary cultures from E16- to E18-day-old C57BL6 wild-type and GHSR-deficient mice after manipulating GHSR expression with lentiviral transduction. We found that GHSR constitutive activity impairs CaV 2.1 and CaV 2.2 native calcium currents and that CaV 2.2 basal impairment leads to a decrease in GABA but not glutamate release. We postulated that this selective effect is related to a higher CaV 2.2 over CaV 2.1 contribution to GABA release (∼40% for CaV 2.2 in wild-type vs. ∼20% in wild-type GHSR-overexpressing cultures). This effect of GHSR constitutive activity is conserved in hippocampal brain slices, where GHSR constitutive activity reduces local GABAergic transmission of the granule cell layer (intra-granule cell inhibitory postsynaptic current (IPSC) size ∼-67 pA in wild-type vs. ∼-100 pA in GHSR-deficient mice), whereas the glutamatergic output from the dentate gyrus to CA3 remains unchanged. In summary, we found that GHSR constitutive activity impairs IPSCs both in hippocampal primary cultures and in brain slices through a CaV 2-dependent mechanism without affecting glutamatergic transmission.
Collapse
Affiliation(s)
- Valentina Martínez Damonte
- Multidisciplinary Institute of Cell Biology (IMBICE), National Council of Science and Technology (CONICET), Buenos Aires Comision of Science (CIC) and La Plata University (UNLP), La Plata, Argentina
| | - Silvia Susana Rodríguez
- Multidisciplinary Institute of Cell Biology (IMBICE), National Council of Science and Technology (CONICET), Buenos Aires Comision of Science (CIC) and La Plata University (UNLP), La Plata, Argentina
| | - Jesica Raingo
- Multidisciplinary Institute of Cell Biology (IMBICE), National Council of Science and Technology (CONICET), Buenos Aires Comision of Science (CIC) and La Plata University (UNLP), La Plata, Argentina
| |
Collapse
|
9
|
Monoclonal Antibody: 5C9H2 Against Human Ghrelin Receptor. Monoclon Antib Immunodiagn Immunother 2017; 36:80-81. [PMID: 28430078 DOI: 10.1089/mab.2017.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
10
|
Crotta K, Casnici C, Tonna N, Lattuada D, Bianco F, Marelli O. Characterization of a Monoclonal Antibody Specific for the Growth Hormone Secretagogue Receptor. Monoclon Antib Immunodiagn Immunother 2017; 36:37-43. [PMID: 28409695 DOI: 10.1089/mab.2016.0053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Ghrelin is an orexigenic peptide hormone that primarily regulates growth hormone secretion, food intake, and energy homeostasis. It has been shown to also play a role in numerous higher brain functions, such as the regulation of inflammation and cell proliferation. Ghrelin is the endogenous ligand of the growth hormone secretagogue receptor (GHSR), a G-protein-coupled receptor highly expressed in brain and detectable in some peripheral tissues. The wide distribution of ghrelin receptor and the number of tissues and cell types known to respond to ghrelin suggest that a number of systems may be affected by treatment with this hormone or its analogues. In this study, we characterized a new GHSR specific monoclonal antibody recognizing specifically the ghrelin receptor. This could be a useful tool for immunoassays aimed at obtaining insights into the physiological and pathological significance of the GHSR/ghrelin system.
Collapse
Affiliation(s)
- Katia Crotta
- 1 Department of Medical Biotechnologies and Translational Medicine, School of Medicine, University of Milan , Milan, Italy
| | - Claudia Casnici
- 1 Department of Medical Biotechnologies and Translational Medicine, School of Medicine, University of Milan , Milan, Italy .,2 Ferdinando Santarelli Foundation , Milan, Italy
| | | | - Donatella Lattuada
- 1 Department of Medical Biotechnologies and Translational Medicine, School of Medicine, University of Milan , Milan, Italy
| | - Fabio Bianco
- 2 Ferdinando Santarelli Foundation , Milan, Italy .,4 Sanipedia srl , OpenZone, Bresso, Italy
| | - Ornella Marelli
- 1 Department of Medical Biotechnologies and Translational Medicine, School of Medicine, University of Milan , Milan, Italy
| |
Collapse
|
11
|
Sun S, Xu L, Sun X, Guo F, Gong Y, Gao S. Orexin-A affects gastric distention sensitive neurons in the hippocampus and gastric motility and regulation by the perifornical area in rats. Neurosci Res 2016; 110:59-67. [PMID: 27080329 DOI: 10.1016/j.neures.2016.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/25/2016] [Accepted: 04/01/2016] [Indexed: 12/20/2022]
Abstract
Orexin-A is mainly produced in the lateral hypothalamus (LHA) and the perifornical area (PeF). Here, we aim to elucidate the effects of orexin-A in the hippocampus (Hi) on gastric distention (GD)-sensitive neurons and gastric motility, and potential regulation mechanisms by the PeF. Retrograde tracing and fluorescent-immunohistochemical staining were used to determine orexin-A neuronal projections. Single unit discharges in the Hi were recorded extracellularly and gastric motility in conscious rats was monitored during administration of orexin-A to the Hi or electrical stimulation of the PeF. Orexin-A administration to the Hi excited most of the GD-excitatory (GD-E) neurons and GD-inhibitory (GD-I) neurons, and increased gastric motility in a dose-dependent manner. All of effects induced by orexin-A could be partly blocked by pretreatment with orexin-A antagonist, SB-334867. Electrical stimulation of the PeF excited the majority of the orexin-A-responsive GD neurons in the Hi and promoted gastric motility. Additionally, pretreatment with SB-334867 in the Hi increased the firing rate of GDI and GDE neurons following electrical stimulation of the PeF. These findings suggest that orexin-A could regulate activities of GD-sensitive neurons and gastric motility. Furthermore, the PeF may be involved in this regulatory pathway.
Collapse
Affiliation(s)
- Shu Sun
- Department of Pathophysiology, Medical College of Qingdao University, Qingdao 266021, China
| | - Luo Xu
- Department of Pathophysiology, Medical College of Qingdao University, Qingdao 266021, China.
| | - Xiangrong Sun
- Department of Pathophysiology, Medical College of Qingdao University, Qingdao 266021, China
| | - Feifei Guo
- Department of Pathophysiology, Medical College of Qingdao University, Qingdao 266021, China
| | - Yanling Gong
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Shengli Gao
- Department of Pathophysiology, Medical College of Qingdao University, Qingdao 266021, China
| |
Collapse
|
12
|
Ghrelin increases memory consolidation through hippocampal mechanisms dependent on glutamate release and NR2B-subunits of the NMDA receptor. Psychopharmacology (Berl) 2015; 232:1843-57. [PMID: 25466701 DOI: 10.1007/s00213-014-3817-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/10/2014] [Indexed: 12/29/2022]
Abstract
RATIONALE Ghrelin (Ghr) is a peptide that participates in the modulation of several biological processes. Ghr administration into the hippocampus improves learning and memory in different memory tests. However, the possible mechanisms underlying this effect on memory have not yet been clarified. OBJECTIVE The purpose of the present work is to add new insights about the mechanisms by which Ghr modulates long-term memory consolidation in the hippocampus. We examined Ghr effects upon processes related to increased synaptic efficacy as presynaptic glutamate release and changes in the expression of the NR2B-subunits containing n-methyl-d-aspartate receptors (NMDAR), which are critical for LTP induction. We also attempted to determine the temporal window in which Ghr administration induces memory facilitation and if the described effects depend on GHS-R1a stimulation. RESULTS The present research demonstrated that Ghr increased glutamate release from hippocampal synaptosomes; intra-hippocampal Ghr administration increased NR2B-subunits expression in CA1 and DG subareas and also reversed the deleterious effects of the NR2B-subunit-specific antagonist, Ro 25-6981, upon memory consolidation and LTP generation in the hippocampus. These effects are likely to be the consequence of GHS-R1a activation. CONCLUSION According to the results above mentioned and previous findings, we can hypothesize some of the mechanisms by which Ghr modulates memory consolidation. At presynaptic level, Ghr stimulates glutamate release, probably by enhancing [Ca(2+)]i. At postsynaptic level, the glutamate released activates NMDAR while Ghr also mediates effects directly activating its specific receptors and increases NR2B-subunit expression.
Collapse
|
13
|
Stoyanova II, le Feber J. Ghrelin accelerates synapse formation and activity development in cultured cortical networks. BMC Neurosci 2014; 15:49. [PMID: 24742241 PMCID: PMC3998954 DOI: 10.1186/1471-2202-15-49] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 04/14/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While ghrelin was initially related to appetite stimulation and growth hormone secretion, it also has a neuroprotective effect in neurodegenerative diseases and regulates cognitive function. The cellular basis of those processes is related to synaptic efficacy and plasticity. Previous studies have shown that ghrelin not only stimulates synapse formation in cultured cortical neurons and hippocampal slices, but also alters some of the electrophysiological properties of neurons in the hypothalamus, amygdala and other subcortical areas. However, direct evidence for ghrelin's ability to modulate the activity in cortical neurons is not available yet. In this study, we investigated the effect of acylated ghrelin on the development of the activity level and activity patterns in cortical neurons, in relation to its effect on synaptogenesis. Additionally, we quantitatively evaluated the expression of the receptor for acylated ghrelin--growth hormone secretagogue receptor-1a (GHSR-1a) during development. RESULTS We performed electrophysiology and immunohistochemistry on dissociated cortical cultures from neonates, treated chronically with acylated ghrelin. On average 76±4.6% of the cortical neurons expressed GHSR-1a. Synapse density was found to be much higher in ghrelin treated cultures than in controls across all age groups (1, 2 or 3 weeks). In all cultures (control and ghrelin treated), network activity gradually increased until it reached a maximum after approximately 3 weeks, followed by a slight decrease towards a plateau. During early developmental stages (1-2 weeks), the activity was much higher in ghrelin treated cultures and consequently, they reached the plateau value almost a week earlier than controls. CONCLUSIONS Acylated ghrelin leads to earlier network formation and activation in cultured cortical neuronal networks, the latter being a possibly consequence of accelerated synaptogenesis.
Collapse
Affiliation(s)
- Irina I Stoyanova
- Biomedical Signals and Systems, Faculty of Electrical Engineering, Mathematics and Computer Sciences, Institute for Biomedical Engineering and Technical Medicine MIRA, BSS, ZH 226, University of Twente, P,O, Box 217, Enschede 7500 AE, The Netherlands.
| | | |
Collapse
|
14
|
Sim YB, Park SH, Kim SS, Kim CH, Kim SJ, Lim SM, Jung JS, Suh HW. Ghrelin administered spinally increases the blood glucose level in mice. Peptides 2014; 54:162-5. [PMID: 24472858 DOI: 10.1016/j.peptides.2014.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/17/2014] [Accepted: 01/17/2014] [Indexed: 02/07/2023]
Abstract
Ghrelin is known as a regulator of the blood glucose homeostasis and food intake. In the present study, the possible roles of ghrelin located in the spinal cord in the regulation of the blood glucose level were investigated in ICR mice. We found that intrathecal (i.t.) injection with ghrelin (from 1 to 10 μg) caused an elevation of the blood glucose level. In addition, i.t. pretreatment with YIL781 (ghrelin receptor antagonist; from 0.1 to 5 μg) markedly attenuated ghrelin-induced hyperglycemic effect. The plasma insulin level was increased by ghrelin. The enhanced plasma insulin level by ghrelin was reduced by i.t. pretreatment with YIL781. However, i.t. pretreatment with glucagon-like peptide-1 (GLP-1; 5 μg) did not affect the ghrelin-induced hyperglycemia. Furthermore, i.t. administration with ghrelin also elevated the blood glucose level, but in an additive manner, in d-glucose-fed model. Our results suggest that the activation of ghrelin receptors located in the spinal cord plays important roles for the elevation of the blood glucose level.
Collapse
Affiliation(s)
- Yun-Beom Sim
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, 39 Hallymdaehak-gil, Chuncheon, Gangwon-do 200-702, Republic of Korea
| | - Soo-Hyun Park
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, 39 Hallymdaehak-gil, Chuncheon, Gangwon-do 200-702, Republic of Korea
| | - Sung-Su Kim
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, 39 Hallymdaehak-gil, Chuncheon, Gangwon-do 200-702, Republic of Korea
| | - Chea-Ha Kim
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, 39 Hallymdaehak-gil, Chuncheon, Gangwon-do 200-702, Republic of Korea
| | - Su-Jin Kim
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, 39 Hallymdaehak-gil, Chuncheon, Gangwon-do 200-702, Republic of Korea
| | - Su-Min Lim
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, 39 Hallymdaehak-gil, Chuncheon, Gangwon-do 200-702, Republic of Korea
| | - Jun-Sub Jung
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, 39 Hallymdaehak-gil, Chuncheon, Gangwon-do 200-702, Republic of Korea
| | - Hong-Won Suh
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, 39 Hallymdaehak-gil, Chuncheon, Gangwon-do 200-702, Republic of Korea.
| |
Collapse
|
15
|
Douglas GAF, McGirr R, Charlton CL, Kagan DB, Hoffman LM, Luyt LG, Dhanvantari S. Characterization of a far-red analog of ghrelin for imaging GHS-R in P19-derived cardiomyocytes. Peptides 2014; 54:81-8. [PMID: 24468548 DOI: 10.1016/j.peptides.2014.01.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/16/2014] [Accepted: 01/16/2014] [Indexed: 11/29/2022]
Abstract
Ghrelin and its receptor, the growth hormone secretagogue receptor (GHS-R), are expressed in the heart, and may function to promote cardiomyocyte survival, differentiation and contractility. Previously, we had generated a truncated analog of ghrelin conjugated to fluorescein isothiocyanate for the purposes of determining GHS-R expression in situ. We now report the generation and characterization of a far-red ghrelin analog, [Dpr(3)(octanoyl), Lys(19)(Cy5)]ghrelin (1-19), and show that it can be used to image changes in GHS-R in developing cardiomyocytes. We also generated the des-acyl analog, des-acyl [Lys(19)(Cy5)]ghrelin (1-19) and characterized its binding to mouse heart sections. Receptor binding affinity of Cy5-ghrelin as measured in HEK293 cells overexpressing GHS-R1a was within an order of magnitude of that of fluorescein-ghrelin and native human ghrelin, while the des-acyl Cy5-ghrelin did not bind GHS-R1a. Live cell imaging in HEK293/GHS-R1a cells showed cell surface labeling that was displaced by excess ghrelin. Interestingly, Cy5-ghrelin, but not the des-acyl analog, showed concentration-dependent binding in mouse heart tissue sections. We then used Cy5-ghrelin to track GHS-R expression in P19-derived cardiomyocytes. Live cell imaging at different time points after DMSO-induced differentiation showed that GHS-R expression preceded that of the differentiation marker aMHC and tracked with the contractility marker SERCA 2a. Our far-red analog of ghrelin adds to the tools we are developing to map GHS-R in developing and diseased cardiac tissues.
Collapse
Affiliation(s)
- Gregory A F Douglas
- Departments of Pathology, Chemistry, Medical Imaging, Medical Biophysics, and Oncology, Western University, Richmond Street, London, Ontario, Canada; Imaging Program, Lawson Health Research Institute, 268 Grosvenor Street, London, Ontario N6A 4V2, Canada
| | - Rebecca McGirr
- Departments of Pathology, Chemistry, Medical Imaging, Medical Biophysics, and Oncology, Western University, Richmond Street, London, Ontario, Canada; Imaging Program, Lawson Health Research Institute, 268 Grosvenor Street, London, Ontario N6A 4V2, Canada
| | - Carlie L Charlton
- Departments of Pathology, Chemistry, Medical Imaging, Medical Biophysics, and Oncology, Western University, Richmond Street, London, Ontario, Canada; Imaging Program, Lawson Health Research Institute, 268 Grosvenor Street, London, Ontario N6A 4V2, Canada
| | - Dov B Kagan
- Departments of Pathology, Chemistry, Medical Imaging, Medical Biophysics, and Oncology, Western University, Richmond Street, London, Ontario, Canada; Imaging Program, Lawson Health Research Institute, 268 Grosvenor Street, London, Ontario N6A 4V2, Canada
| | - Lisa M Hoffman
- Departments of Pathology, Chemistry, Medical Imaging, Medical Biophysics, and Oncology, Western University, Richmond Street, London, Ontario, Canada; Imaging Program, Lawson Health Research Institute, 268 Grosvenor Street, London, Ontario N6A 4V2, Canada
| | - Leonard G Luyt
- Departments of Pathology, Chemistry, Medical Imaging, Medical Biophysics, and Oncology, Western University, Richmond Street, London, Ontario, Canada; Imaging Program, Lawson Health Research Institute, 268 Grosvenor Street, London, Ontario N6A 4V2, Canada
| | - Savita Dhanvantari
- Departments of Pathology, Chemistry, Medical Imaging, Medical Biophysics, and Oncology, Western University, Richmond Street, London, Ontario, Canada; Imaging Program, Lawson Health Research Institute, 268 Grosvenor Street, London, Ontario N6A 4V2, Canada.
| |
Collapse
|
16
|
Stoyanova II, le Feber J, Rutten WL. Ghrelin stimulates synaptic formation in cultured cortical networks in a dose-dependent manner. ACTA ACUST UNITED AC 2013; 186:43-8. [DOI: 10.1016/j.regpep.2013.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 07/03/2013] [Accepted: 07/13/2013] [Indexed: 11/17/2022]
|