1
|
Abstract
Plants associate with nitrogen-fixing bacteria to secure nitrogen, which is generally the most limiting nutrient for plant growth. Endosymbiotic nitrogen-fixing associations are widespread among diverse plant lineages, ranging from microalgae to angiosperms, and are primarily one of three types: cyanobacterial, actinorhizal or rhizobial. The large overlap in the signaling pathways and infection components of arbuscular mycorrhizal, actinorhizal and rhizobial symbioses reflects their evolutionary relatedness. These beneficial associations are influenced by environmental factors and other microorganisms in the rhizosphere. In this review, we summarize the diversity of nitrogen-fixing symbioses, key signal transduction pathways and colonization mechanisms relevant to such interactions, and compare and contrast these interactions with arbuscular mycorrhizal associations from an evolutionary standpoint. Additionally, we highlight recent studies on environmental factors regulating nitrogen-fixing symbioses to provide insights into the adaptation of symbiotic plants to complex environments.
Collapse
Affiliation(s)
- Peng Xu
- National key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ertao Wang
- National key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; New Cornerstone Science Laboratory, Shenzhen 518054, China.
| |
Collapse
|
2
|
Tsurugi-Sakurada A, Kaneko T, Takemoto K, Yoneda Y, Yamanaka T, Kawai S. Cyclic diarylheptanoids as potential signal compounds during actinorhizal symbiosis between Alnus sieboldiana and Frankia. Fitoterapia 2022; 162:105284. [PMID: 36007806 DOI: 10.1016/j.fitote.2022.105284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/26/2022]
Abstract
The nitrogen-fixing actinomycete Frankia coexists with actinorhizal plants via nodules and supplies nitrogen compounds to the plants. Although communication has been suggested to exist through chemical substances in this nodule symbiosis, the details underlying this mechanism remain elusive. The biphenyl-type diarylheptanoids (BP-CDHs), alnusonol, and alnusdione, previously isolated from the actinorhizal plant A. sieboldiana branch wood, are secondary metabolites that accumulate in a limited number of plant species. However, since relatively widely distributed in actinorhizal plants, we investigated whether adding A. sieboldiana root extracts and these BP-CDHs could affect plant seedlings inoculated with Frankia. The results showed that the addition of root extract or alnusonol significantly increased the number of nodules and lobes more than two times compared with that upon Frankia supplementation only. We also proved that the extracted components of this plant affected nodule symbiosis. Finally, we confirmed through LC-MS that the root extract component contained BP-CDH, alnusonol. The above-described results indicate that BP-CDHs, at leaset alnusonol, might function as signal compounds from the plant side of the actinorhizal symbiosis between A. sieboldiana and Frankia.
Collapse
Affiliation(s)
| | - Takahiro Kaneko
- Faculty of Agriculture, Shizuoka University, Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Konosuke Takemoto
- Faculty of Agriculture, Shizuoka University, Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Yuko Yoneda
- Faculty of Agriculture, Shizuoka University, Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Takashi Yamanaka
- Tohoku Research Center, Forestry and Forest Products Research Institute, Morioka, Iwate 020-0123, Japan
| | - Shingo Kawai
- Faculty of Agriculture, Shizuoka University, Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| |
Collapse
|
3
|
Wu Z, Chen H, Pan Y, Feng H, Fang D, Yang J, Wang Y, Yang J, Sahu SK, Liu J, Xing Y, Wang X, Liu M, Luo X, Gao P, Li L, Liu Z, Yang H, Liu X, Xu X, Liu H, Wang E. Genome of Hippophae rhamnoides provides insights into a conserved molecular mechanism in actinorhizal and rhizobial symbioses. THE NEW PHYTOLOGIST 2022; 235:276-291. [PMID: 35118662 DOI: 10.1111/nph.18017] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Sea buckthorn (Hippophae rhamnoides), a horticulturally multipurpose species in the family Elaeagnaceae, can build associations with Frankia actinomycetes to enable symbiotic nitrogen-fixing. Currently, no high-quality reference genome is available for an actinorhizal plant, which greatly hinders the study of actinorhizal symbiotic nodulation. Here, by combining short-read, long-read and Hi-C sequencing technologies, we generated a chromosome-level reference genome of H. rhamnoides (scaffold N50: 65 Mb, and genome size: 730 Mb) and predicted 30 812 protein-coding genes mainly on 12 pseudochromosomes. Hippophae rhamnoides was found to share a high proportion of symbiotic nodulation genes with Medicago truncatula, implying a shared molecular mechanism between actinorhizal and rhizobial symbioses. Phylogenetic analysis clustered the three paralogous NODULE INCEPTION (NIN) genes of H. rhamnoides with those of other nodulating species, forming the NIN group that most likely evolved from the ancestral NLP group. The genome of H. rhamnoides will help us to decipher the underlying genetic programming of actinorhizal symbiosis, and our high-quality genome and transcriptomic resources will make H. rhamnoides a new excellent model plant for actinorhizal symbiosis research.
Collapse
Affiliation(s)
- Zefeng Wu
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Hongyun Chen
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, China
| | - Ya Pan
- Jinzhong Institute of Forestry, Jinzhong, Shanxi, 030600, China
| | - Huan Feng
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Dongming Fang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yayu Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, China
| | - Jun Yang
- Shanghai Chenshan Plant Science Research Center (CAS), Shanghai, 210602, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, China
| | - Jianling Liu
- Jinzhong Institute of Forestry, Jinzhong, Shanxi, 030600, China
| | - Yu'e Xing
- Jinzhong Institute of Forestry, Jinzhong, Shanxi, 030600, China
| | - Xiaolin Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Min Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, China
| | - Xinyue Luo
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, China
| | - Peng Gao
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, China
| | - Lifeng Li
- Jinzhong Municipal Planning and Natural Resources Bureau, Jinzhong, Shanxi, 030600, China
| | - Zhongjian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Huanming Yang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, China
| | - Xin Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, China
| | - Xun Xu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, Guangdong, 518083, China
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
4
|
Chetri SPK, Rahman Z, Thomas L, Lal R, Gour T, Agarwal LK, Vashishtha A, Kumar S, Kumar G, Kumar R, Sharma K. Paradigms of actinorhizal symbiosis under the regime of global climatic changes: New insights and perspectives. J Basic Microbiol 2022; 62:764-778. [PMID: 35638879 DOI: 10.1002/jobm.202200043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/17/2022] [Accepted: 05/14/2022] [Indexed: 11/05/2022]
Abstract
Nitrogen occurs as inert and inaccessible dinitrogen gaseous form (N2 ) in the atmosphere. Biological nitrogen fixation is a chief process that makes this dinitrogen (N2 ) accessible and bioavailable in the form of ammonium (NH4 + ) ions. The key organisms to fix nitrogen are certain prokaryotes, called diazotrophs either in the free-living form or establishing significant mutual relationships with a variety of plants. On such examples is ~95-100 MY old incomparable symbiosis between dicotyledonous trees and a unique actinobacterial diazotroph in diverse ecosystems. In this association, the root of the certain dicotyledonous tree (~25 genera and 225 species) belonging to three different taxonomic orders, Fagales, Cucurbitales, and Rosales (FaCuRo) known as actinorhizal trees can host a diazotroph, Frankia of order Frankiales. Frankia is gram-positive, branched, filamentous, sporulating, and free-living soil actinobacterium. It resides in the specialized, multilobed, and coralloid organs (lateral roots but without caps), the root nodules of actinorhizal tress. This review aims to provide systematic information on the distribution and the phylogenetic diversity of hosts from FaCuRo and their micro-endosymbionts (Frankia spp.), colonization mechanisms, and signaling pathways. We also aim to provide details on developmental and physiological imperatives for gene regulation and functional genomics of symbiosis, phenomenal restoration ecology, influences of contemporary global climatic changes, and anthropogenic impacts on plant-Frankia interactions for the functioning of ecosystems and the biosphere.
Collapse
Affiliation(s)
| | - Zeeshanur Rahman
- Department of Botany, Zakir Husain Delhi College, University of Delhi, New Delhi, Delhi, India
| | - Lebin Thomas
- Department of Botany, Hansraj College, University of Delhi, New Delhi, Delhi, India
| | - Ratan Lal
- Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Tripti Gour
- Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Lokesh Kumar Agarwal
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Akanksha Vashishtha
- Department of Plant Protection, CCS University, Meerut, Uttar Pradesh, India
| | - Sachin Kumar
- Department of Botany, Shri Venkateshwara College, University of Delhi, New Delhi, Delhi, India
| | - Gaurav Kumar
- Department of Environmental Studies, PGDAV College, University of Delhi, New Delhi, Delhi, India
| | - Rajesh Kumar
- Department of Botany, Hindu College, University of Delhi, New Delhi, Delhi, India
| | - Kuldeep Sharma
- Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| |
Collapse
|
5
|
Khokhani D, Carrera Carriel C, Vayla S, Irving TB, Stonoha-Arther C, Keller NP, Ané JM. Deciphering the Chitin Code in Plant Symbiosis, Defense, and Microbial Networks. Annu Rev Microbiol 2021; 75:583-607. [PMID: 34623896 DOI: 10.1146/annurev-micro-051921-114809] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chitin is a structural polymer in many eukaryotes. Many organisms can degrade chitin to defend against chitinous pathogens or use chitin oligomers as food. Beneficial microorganisms like nitrogen-fixing symbiotic rhizobia and mycorrhizal fungi produce chitin-based signal molecules called lipo-chitooligosaccharides (LCOs) and short chitin oligomers to initiate a symbiotic relationship with their compatible hosts and exchange nutrients. A recent study revealed that a broad range of fungi produce LCOs and chitooligosaccharides (COs), suggesting that these signaling molecules are not limited to beneficial microbes. The fungal LCOs also affect fungal growth and development, indicating that the roles of LCOs beyond symbiosis and LCO production may predate mycorrhizal symbiosis. This review describes the diverse structures of chitin; their perception by eukaryotes and prokaryotes; and their roles in symbiotic interactions, defense, and microbe-microbe interactions. We also discuss potential strategies of fungi to synthesize LCOs and their roles in fungi with different lifestyles.
Collapse
Affiliation(s)
- Devanshi Khokhani
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , , .,Current affiliation: Department of Plant Pathology, University of Minnesota, Saint Paul, Minnesota 55108, USA;
| | - Cristobal Carrera Carriel
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | - Shivangi Vayla
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | - Thomas B Irving
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | - Christina Stonoha-Arther
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | - Nancy P Keller
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , , .,Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , , .,Department of Agronomy, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
6
|
Soyano T, Liu M, Kawaguchi M, Hayashi M. Leguminous nodule symbiosis involves recruitment of factors contributing to lateral root development. CURRENT OPINION IN PLANT BIOLOGY 2021; 59:102000. [PMID: 33454544 DOI: 10.1016/j.pbi.2020.102000] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 05/27/2023]
Abstract
Legumes and several plant species in the monophyletic nitrogen-fixing clade produce root nodules that function as symbiotic organs and establish mutualistic relationships with nitrogen-fixing bacteria. The modes of nodule organogenesis are distinct from those of lateral root development and also differ among different types of nodules formed in legumes and actinorhizal plants. It is considered that the evolution of new organs occurs through rearrangement of molecular networks interposed by certain neo-functionalized factors. Accumulating evidence has suggested that root nodule organogenesis involves root or lateral root developmental pathways. This review describes the current knowledge about the factors/pathways acquired by the common ancestor of the nitrogen-fixing clade in order to control nodule organogenesis.
Collapse
Affiliation(s)
- Takashi Soyano
- National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, 444-8585 Aichi, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (the Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, 444-8585 Aichi, Japan.
| | - Meng Liu
- National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, 444-8585 Aichi, Japan
| | - Masayoshi Kawaguchi
- National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, 444-8585 Aichi, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (the Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, 444-8585 Aichi, Japan
| | - Makoto Hayashi
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, 230-0045 Kanagawa, Japan
| |
Collapse
|
7
|
Skiada V, Avramidou M, Bonfante P, Genre A, Papadopoulou KK. An endophytic Fusarium-legume association is partially dependent on the common symbiotic signalling pathway. THE NEW PHYTOLOGIST 2020; 226:1429-1444. [PMID: 31997356 DOI: 10.1111/nph.16457] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Legumes interact with a wide range of microbes in their root systems, ranging from beneficial symbionts to pathogens. Symbiotic rhizobia and arbuscular mycorrhizal glomeromycetes trigger a so-called common symbiotic signalling pathway (CSSP), including the induction of nuclear calcium spiking in the root epidermis. By combining gene expression analysis, mutant phenotypic screening and analysis of nuclear calcium elevations, we demonstrate that recognition of an endophytic Fusarium solani strain K (FsK) in model legumes is initiated via perception of chitooligosaccharidic molecules and is, at least partially, CSSP-dependent. FsK induced the expression of Lysin-motif receptors for chitin-based molecules, CSSP members and CSSP-dependent genes in Lotus japonicus. In LysM and CSSP mutant/RNAi lines, root penetration and fungal intraradical progression was either stimulated or limited, whereas FsK exudates triggered CSSP-dependent nuclear calcium spiking, in epidermal cells of Medicago truncatula root organ cultures. Our results corroborate CSSP being involved in the perception of signals from other microbes beyond the restricted group of symbiotic interactions sensu stricto.
Collapse
Affiliation(s)
- Vasiliki Skiada
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Larissa, 41500, Greece
| | - Marianna Avramidou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Larissa, 41500, Greece
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Torino, Torino, 10125, Italy
| | - Andrea Genre
- Department of Life Sciences and Systems Biology, University of Torino, Torino, 10125, Italy
| | - Kalliope K Papadopoulou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Larissa, 41500, Greece
| |
Collapse
|
8
|
Radhakrishnan GV, Keller J, Rich MK, Vernié T, Mbadinga Mbadinga DL, Vigneron N, Cottret L, Clemente HS, Libourel C, Cheema J, Linde AM, Eklund DM, Cheng S, Wong GKS, Lagercrantz U, Li FW, Oldroyd GED, Delaux PM. An ancestral signalling pathway is conserved in intracellular symbioses-forming plant lineages. NATURE PLANTS 2020; 6:280-289. [PMID: 32123350 DOI: 10.1038/s41477-020-0613-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/31/2020] [Indexed: 05/07/2023]
Abstract
Plants are the foundation of terrestrial ecosystems, and their colonization of land was probably facilitated by mutualistic associations with arbuscular mycorrhizal fungi. Following this founding event, plant diversification has led to the emergence of a tremendous diversity of mutualistic symbioses with microorganisms, ranging from extracellular associations to the most intimate intracellular associations, where fungal or bacterial symbionts are hosted inside plant cells. Here, through analysis of 271 transcriptomes and 116 plant genomes spanning the entire land-plant diversity, we demonstrate that a common symbiosis signalling pathway co-evolved with intracellular endosymbioses, from the ancestral arbuscular mycorrhiza to the more recent ericoid and orchid mycorrhizae in angiosperms and ericoid-like associations of bryophytes. By contrast, species forming exclusively extracellular symbioses, such as ectomycorrhizae, and those forming associations with cyanobacteria, have lost this signalling pathway. This work unifies intracellular symbioses, revealing conservation in their evolution across 450 million yr of plant diversification.
Collapse
Affiliation(s)
| | - Jean Keller
- LRSV, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Melanie K Rich
- LRSV, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Tatiana Vernié
- LRSV, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | | | - Nicolas Vigneron
- LRSV, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Ludovic Cottret
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | | | - Cyril Libourel
- LRSV, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | | | - Anna-Malin Linde
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - D Magnus Eklund
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Shifeng Cheng
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Gane K S Wong
- BGI-Shenzhen, Shenzhen, China
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Ulf Lagercrantz
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, New York, NY, USA
- Plant Biology Section, Cornell University, New York, NY, USA
| | - Giles E D Oldroyd
- John Innes Centre, Norwich, UK.
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|
9
|
Huisman R, Geurts R. A Roadmap toward Engineered Nitrogen-Fixing Nodule Symbiosis. PLANT COMMUNICATIONS 2020; 1:100019. [PMID: 33404552 PMCID: PMC7748023 DOI: 10.1016/j.xplc.2019.100019] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/06/2019] [Accepted: 12/27/2019] [Indexed: 05/26/2023]
Abstract
In the late 19th century, it was discovered that legumes can establish a root nodule endosymbiosis with nitrogen-fixing rhizobia. Soon after, the question was raised whether it is possible to transfer this trait to non-leguminous crops. In the past century, an ever-increasing amount of knowledge provided unique insights into the cellular, molecular, and genetic processes controlling this endosymbiosis. In addition, recent phylogenomic studies uncovered several genes that evolved to function specifically to control nodule formation and bacterial infection. However, despite this massive body of knowledge, the long-standing objective to engineer the nitrogen-fixing nodulation trait on non-leguminous crop plants has not been achieved yet. In this review, the unsolved questions and engineering strategies toward nitrogen-fixing nodulation in non-legume plants are discussed and highlighted.
Collapse
Affiliation(s)
- Rik Huisman
- Wageningen University, Department of Plant Sciences, Laboratory of Molecular Biology, Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands
| | - Rene Geurts
- Wageningen University, Department of Plant Sciences, Laboratory of Molecular Biology, Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands
| |
Collapse
|
10
|
Mergaert P, Kereszt A, Kondorosi E. Gene Expression in Nitrogen-Fixing Symbiotic Nodule Cells in Medicago truncatula and Other Nodulating Plants. THE PLANT CELL 2020; 32:42-68. [PMID: 31712407 PMCID: PMC6961632 DOI: 10.1105/tpc.19.00494] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/08/2019] [Indexed: 05/06/2023]
Abstract
Root nodules formed by plants of the nitrogen-fixing clade (NFC) are symbiotic organs that function in the maintenance and metabolic integration of large populations of nitrogen-fixing bacteria. These organs feature unique characteristics and processes, including their tissue organization, the presence of specific infection structures called infection threads, endocytotic uptake of bacteria, symbiotic cells carrying thousands of intracellular bacteria without signs of immune responses, and the integration of symbiont and host metabolism. The early stages of nodulation are governed by a few well-defined functions, which together constitute the common symbiosis-signaling pathway (CSSP). The CSSP activates a set of transcription factors (TFs) that orchestrate nodule organogenesis and infection. The later stages of nodule development require the activation of hundreds to thousands of genes, mostly expressed in symbiotic cells. Many of these genes are only active in symbiotic cells, reflecting the unique nature of nodules as plant structures. Although how the nodule-specific transcriptome is activated and connected to early CSSP-signaling is poorly understood, candidate TFs have been identified using transcriptomic approaches, and the importance of epigenetic and chromatin-based regulation has been demonstrated. We discuss how gene regulation analyses have advanced our understanding of nodule organogenesis, the functioning of symbiotic cells, and the evolution of symbiosis in the NFC.
Collapse
Affiliation(s)
- Peter Mergaert
- Institute for Integrative Biology of the Cell, UMR 9198, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Attila Kereszt
- Institute of Plant Biology, Biological Research Centre, 6726 Szeged, Hungary
| | - Eva Kondorosi
- Institute of Plant Biology, Biological Research Centre, 6726 Szeged, Hungary
| |
Collapse
|
11
|
Shen D, Bisseling T. The Evolutionary Aspects of Legume Nitrogen-Fixing Nodule Symbiosis. Results Probl Cell Differ 2020; 69:387-408. [PMID: 33263880 DOI: 10.1007/978-3-030-51849-3_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nitrogen-fixing root nodule symbiosis can sustain the development of the host plants under nitrogen-limiting conditions. Such symbiosis occurs only in a clade of angiosperms known as the nitrogen-fixing clade (NFC). It has long been proposed that root nodule symbiosis evolved several times (in parallel) in the NFC. Two recent phylogenomic studies compared the genomes of nodulating and related non-nodulating species across the four orders of the NFC and found that genes essential for nodule formation are lost or pseudogenized in the non-nodulating species. As these symbiosis genes are specifically involved in the symbiotic interaction, it means that the presence of pseudogenes and the loss of symbiosis genes strongly suggest that their ancestor, which still had functional genes, most likely had a symbiosis with nitrogen-fixing bacteria. These findings agree with the hypothesis that nodulation evolved once at the common ancestor of the NFC, and challenge the hypothesis of parallel evolution. In this chapter, we will cover the current understandings on actinorhizal-type and legume nodule development, and discuss the evolution of the legume nodule type.
Collapse
Affiliation(s)
- Defeng Shen
- Laboratory of Molecular Biology, Graduate School Experimental Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Ton Bisseling
- Laboratory of Molecular Biology, Graduate School Experimental Plant Sciences, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
12
|
Chabaud M, Fournier J, Brichet L, Abdou-Pavy I, Imanishi L, Brottier L, Pirolles E, Hocher V, Franche C, Bogusz D, Wall LG, Svistoonoff S, Gherbi H, Barker DG. Chitotetraose activates the fungal-dependent endosymbiotic signaling pathway in actinorhizal plant species. PLoS One 2019; 14:e0223149. [PMID: 31600251 PMCID: PMC6786586 DOI: 10.1371/journal.pone.0223149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/13/2019] [Indexed: 01/17/2023] Open
Abstract
Mutualistic plant-microbe associations are widespread in natural ecosystems and have made major contributions throughout the evolutionary history of terrestrial plants. Amongst the most remarkable of these are the so-called root endosymbioses, resulting from the intracellular colonization of host tissues by either arbuscular mycorrhizal (AM) fungi or nitrogen-fixing bacteria that both provide key nutrients to the host in exchange for energy-rich photosynthates. Actinorhizal host plants, members of the Eurosid 1 clade, are able to associate with both AM fungi and nitrogen-fixing actinomycetes known as Frankia. Currently, little is known about the molecular signaling that allows these plants to recognize their fungal and bacterial partners. In this article, we describe the use of an in vivo Ca2+ reporter to identify symbiotic signaling responses to AM fungi in roots of both Casuarina glauca and Discaria trinervis, actinorhizal species with contrasting modes of Frankia colonization. This approach has revealed that, for both actinorhizal hosts, the short-chain chitin oligomer chitotetraose is able to mimic AM fungal exudates in activating the conserved symbiosis signaling pathway (CSSP) in epidermal root cells targeted by AM fungi. These results mirror findings in other AM host plants including legumes and the monocot rice. In addition, we show that chitotetraose is a more efficient elicitor of CSSP activation compared to AM fungal lipo-chitooligosaccharides. These findings reinforce the likely role of short-chain chitin oligomers during the initial stages of the AM association, and are discussed in relation to both our current knowledge about molecular signaling during Frankia recognition as well as the different microsymbiont root colonization mechanisms employed by actinorhizal hosts.
Collapse
Affiliation(s)
- Mireille Chabaud
- Laboratory of Plant-Microbe Interactions (INRA/CNRS/University of Toulouse), Castanet-Tolosan, France
| | - Joëlle Fournier
- Laboratory of Plant-Microbe Interactions (INRA/CNRS/University of Toulouse), Castanet-Tolosan, France
| | - Lukas Brichet
- Laboratory of Plant-Microbe Interactions (INRA/CNRS/University of Toulouse), Castanet-Tolosan, France
| | - Iltaf Abdou-Pavy
- Laboratory of Plant-Microbe Interactions (INRA/CNRS/University of Toulouse), Castanet-Tolosan, France
| | - Leandro Imanishi
- Laboratory of Biochemistry, Microbiology and Soil Biological Interactions, Department of Science and Technology, National University of Quilmes, CONICET, Bernal, Argentina
| | - Laurent Brottier
- Laboratory of Tropical and Mediterranean Symbioses (IRD/INRA/CIRAD/University of Montpellier/Supagro), Montpellier, France
| | - Elodie Pirolles
- Laboratory of Tropical and Mediterranean Symbioses (IRD/INRA/CIRAD/University of Montpellier/Supagro), Montpellier, France
| | - Valérie Hocher
- Laboratory of Tropical and Mediterranean Symbioses (IRD/INRA/CIRAD/University of Montpellier/Supagro), Montpellier, France
| | - Claudine Franche
- Plant Diversity, Adaptation and Development (IRD/University of Montpellier), Montpellier, France
| | - Didier Bogusz
- Plant Diversity, Adaptation and Development (IRD/University of Montpellier), Montpellier, France
| | - Luis G. Wall
- Laboratory of Biochemistry, Microbiology and Soil Biological Interactions, Department of Science and Technology, National University of Quilmes, CONICET, Bernal, Argentina
| | - Sergio Svistoonoff
- Laboratory of Tropical and Mediterranean Symbioses (IRD/INRA/CIRAD/University of Montpellier/Supagro), Montpellier, France
| | - Hassen Gherbi
- Laboratory of Tropical and Mediterranean Symbioses (IRD/INRA/CIRAD/University of Montpellier/Supagro), Montpellier, France
| | - David G. Barker
- Laboratory of Plant-Microbe Interactions (INRA/CNRS/University of Toulouse), Castanet-Tolosan, France
| |
Collapse
|
13
|
Wang X, Huo H, Luo Y, Liu D, Zhao L, Zong L, Chou M, Chen J, Wei G. Type III secretion systems impact Mesorhizobium amorphae CCNWGS0123 compatibility with Robinia pseudoacacia. TREE PHYSIOLOGY 2019; 39:1533-1550. [PMID: 31274160 DOI: 10.1093/treephys/tpz077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/26/2018] [Accepted: 06/18/2019] [Indexed: 06/09/2023]
Abstract
Rhizobia and legume plants are famous mutualistic symbiosis partners who provide nitrogen nutrition to the natural environment. Rhizobial type III secretion systems (T3SSs) deliver effectors that manipulate the metabolism of eukaryotic host cells. Mesorhizobium amorphae CCNWGS0123 (GS0123) contains two T3SS gene clusters, T3SS-I and T3SS-II. T3SS-I contains all the basal components for an integrated T3SS, and the expression of T3SS-I genes is up-regulated in the presence of flavonoids. In contrast, T3SS-II lacks the primary extracellular elements of T3SSs, and the expression of T3SS-II genes is down-regulated in the presence of flavonoids. Inoculation tests on Robinia pseudoacacia displayed considerable differences in gene expression patterns and levels among roots inoculated with GS0123 and T3SS-deficient mutant (GS0123ΔrhcN1 (GS0123ΔT1), GS0123ΔrhcN2 (GS0123ΔT2) and GS0123ΔrhcN1ΔrhcN2 (GS0123ΔS)). Compared with the GS0123-inoculated plants, GS0123ΔT1-inoculated roots formed very few infection threads and effective nodules, while GS0123ΔT2-inoculated roots formed a little fewer infection threads and effective nodules with increased numbers of bacteroids enclosed in one symbiosome. Moreover, almost no infection threads or effective nodules were observed in GS0123ΔS-inoculated roots. In addition to evaluations of plant immunity signals, we observed that the coexistence of T3SS-I and T3SS-II promoted infection by suppressing host defense response in the reactive oxygen species defense response pathway. Future studies should focus on identifying rhizobial T3SS effectors and their host target proteins.
Collapse
Affiliation(s)
- Xinye Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Haibo Huo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yantao Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Dongying Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Liang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Le Zong
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Minxia Chou
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Juan Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
14
|
A set of Arabidopsis genes involved in the accommodation of the downy mildew pathogen Hyaloperonospora arabidopsidis. PLoS Pathog 2019; 15:e1007747. [PMID: 31299058 PMCID: PMC6625732 DOI: 10.1371/journal.ppat.1007747] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 04/03/2019] [Indexed: 12/14/2022] Open
Abstract
The intracellular accommodation structures formed by plant cells to host arbuscular mycorrhiza fungi and biotrophic hyphal pathogens are cytologically similar. Therefore we investigated whether these interactions build on an overlapping genetic framework. In legumes, the malectin-like domain leucine-rich repeat receptor kinase SYMRK, the cation channel POLLUX and members of the nuclear pore NUP107-160 subcomplex are essential for symbiotic signal transduction and arbuscular mycorrhiza development. We identified members of these three groups in Arabidopsis thaliana and explored their impact on the interaction with the oomycete downy mildew pathogen Hyaloperonospora arabidopsidis (Hpa). We report that mutations in the corresponding genes reduced the reproductive success of Hpa as determined by sporangiophore and spore counts. We discovered that a developmental transition of haustorial shape occurred significantly earlier and at higher frequency in the mutants. Analysis of the multiplication of extracellular bacterial pathogens, Hpa-induced cell death or callose accumulation, as well as Hpa- or flg22-induced defence marker gene expression, did not reveal any traces of constitutive or exacerbated defence responses. These findings point towards an overlap between the plant genetic toolboxes involved in the interaction with biotrophic intracellular hyphal symbionts and pathogens in terms of the gene families involved. Our work reveals genetic commonalities between biotrophic intracellular interactions with symbiotic and pathogenic hyphal microbes. The majority of land plants engages in arbuscular mycorrhiza (AM) symbiosis with phosphate-acquiring arbuscular mycorrhizal fungi to avoid phosphate starvation. Nutrient exchange in this interaction occurs via arbuscules, tree-shaped fungal structures, hosted within plant root cells. A series of plant genes including the Symbiosis Receptor-like kinase (SYMRK), members of the NUP107-160 subcomplex and nuclear envelope localised cation channels are required for a signalling process leading to the development of AM. The model plant Arabidopsis thaliana lost the ability to form AM. Although the ortholog of SYMRK was deleted during evolution, members of the malectin-like domain leucine-rich repeat receptor kinase (MLD-LRR-RK) gene family, components of the NUP107-160 subcomplex, and an ortholog of the nuclear envelope-localized cation channel POLLUX, are still present in the Arabidopsis genome, and Arabidopsis leaf cells retained the ability to accommodate haustoria, presumed feeding structures of the obligate biotrophic downy mildew pathogen Hyaloperonospora arabidopsidis. We discovered that both of these plant-microbe interactions utilize a corresponding set of genes including the ortholog of POLLUX, members of the NUP107-160 subcomplex and members of the MLD-LRR-RK gene family, thus revealing similarities in the plant program for the intracellular accommodation of biotrophic organisms in symbiosis and disease.
Collapse
|
15
|
Hocher V, Ngom M, Carré-Mlouka A, Tisseyre P, Gherbi H, Svistoonoff S. Signalling in actinorhizal root nodule symbioses. Antonie van Leeuwenhoek 2018; 112:23-29. [PMID: 30306463 DOI: 10.1007/s10482-018-1182-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/06/2018] [Indexed: 11/29/2022]
Abstract
Plants able to establish a nitrogen-fixing root nodule symbiosis with the actinobacterium Frankia are called actinorhizal. These interactions lead to the formation of new root organs, called actinorhizal nodules, where the bacteria are hosted intracellularly and fix atmospheric nitrogen thus providing the plant with an almost unlimited source of nitrogen for its nutrition. Like other symbiotic interactions, actinorhizal nodulation involves elaborate signalling between both partners of the symbiosis, leading to specific recognition between the plant and its compatible microbial partner, its accommodation inside plant cells and the development of functional root nodules. Actinorhizal nodulation shares many features with rhizobial nodulation but our knowledge on the molecular mechanisms involved in actinorhizal nodulation remains very scarce. However recent technical achievements for several actinorhizal species are allowing major discoveries in this field. In this review, we provide an outline on signalling molecules involved at different stages of actinorhizal nodule formation and the corresponding signalling pathways and gene networks.
Collapse
Affiliation(s)
- Valérie Hocher
- LSTM, UMR 040 IRD/INRA/CIRAD, Université Montpellier/Supagro, TA A-82/J, Campus International de Baillarguet, 34398, Montpellier CDX 5, France
| | - Mariama Ngom
- LCM, IRD/ISRA, UCAD, Centre de Recherche de Bel Air, BP 1386, Dakar, Senegal.,LMI LAPSE, Centre de Recherche de Bel Air, BP 1386, Dakar, Senegal
| | - Alyssa Carré-Mlouka
- LSTM, UMR 040 IRD/INRA/CIRAD, Université Montpellier/Supagro, TA A-82/J, Campus International de Baillarguet, 34398, Montpellier CDX 5, France.,MCAM, UMR 7245 CNRS/MNHN, Sorbonne Universités, CP 54, 57 rue Cuvier, 75005, Paris, France
| | - Pierre Tisseyre
- LSTM, UMR 040 IRD/INRA/CIRAD, Université Montpellier/Supagro, TA A-82/J, Campus International de Baillarguet, 34398, Montpellier CDX 5, France
| | - Hassen Gherbi
- LSTM, UMR 040 IRD/INRA/CIRAD, Université Montpellier/Supagro, TA A-82/J, Campus International de Baillarguet, 34398, Montpellier CDX 5, France
| | - Sergio Svistoonoff
- LSTM, UMR 040 IRD/INRA/CIRAD, Université Montpellier/Supagro, TA A-82/J, Campus International de Baillarguet, 34398, Montpellier CDX 5, France. .,LCM, IRD/ISRA, UCAD, Centre de Recherche de Bel Air, BP 1386, Dakar, Senegal. .,LMI LAPSE, Centre de Recherche de Bel Air, BP 1386, Dakar, Senegal.
| |
Collapse
|
16
|
Battenberg K, Potter D, Tabuloc CA, Chiu JC, Berry AM. Comparative Transcriptomic Analysis of Two Actinorhizal Plants and the Legume Medicago truncatula Supports the Homology of Root Nodule Symbioses and Is Congruent With a Two-Step Process of Evolution in the Nitrogen-Fixing Clade of Angiosperms. FRONTIERS IN PLANT SCIENCE 2018; 9:1256. [PMID: 30349546 PMCID: PMC6187967 DOI: 10.3389/fpls.2018.01256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 08/08/2018] [Indexed: 05/18/2023]
Abstract
Root nodule symbiosis (RNS) is a symbiotic interaction established between angiosperm hosts and nitrogen-fixing soil bacteria in specialized organs called root nodules. The host plants provide photosynthate and the microsymbionts supply fixed nitrogen. The origin of RNS represents a major evolutionary event in the angiosperms, and understanding the genetic underpinnings of this event is of major economic and agricultural importance. Plants that engage in RNS are restricted to a single angiosperm clade known as the nitrogen-fixing clade (NFC), yet occur in multiple lineages scattered within the NFC. It has been postulated that RNS evolved in two steps: a gain-of-predisposition event occurring at the base of the NFC, followed by a gain-of-function event in each host plant lineage. Here, we first explore the premise that RNS has evolved from a single common background, and then we explore whether a two-step process better explains the evolutionary origin of RNS than either a single-step process, or multiple origins. We assembled the transcriptomes of root and nodule of two actinorhizal plants, Ceanothus thyrsiflorus and Datisca glomerata. Together with the corresponding published transcriptomes of the model legume Medicago truncatula, the gene expression patterns in roots and nodules were compared across the three lineages. We found that orthologs of many genes essential for RNS in the model legumes are expressed in all three lineages, and that the overall nodule gene expression patterns were more similar to each other than expected by random chance, a finding that supports a common evolutionary background for RNS shared by the three lineages. Moreover, phylogenetic analyses suggested that a substantial portion of the genes experiencing selection pressure changes at the base of the NFC also experienced additional changes at the base of each host plant lineage. Our results (1) support the occurrence of an event that led to RNS at the base of the NFC, and (2) suggest a subsequent change in each lineage, most consistent with a two-step origin of RNS. Among several conserved functions identified, strigolactone-related genes were down-regulated in nodules of all three species, suggesting a shared function similar to that shown for arbuscular mycorrhizal symbioses.
Collapse
Affiliation(s)
- Kai Battenberg
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Daniel Potter
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Christine A. Tabuloc
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, United States
| | - Joanna C. Chiu
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, United States
| | - Alison M. Berry
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
17
|
Miura C, Yamaguchi K, Miyahara R, Yamamoto T, Fuji M, Yagame T, Imaizumi-Anraku H, Yamato M, Shigenobu S, Kaminaka H. The Mycoheterotrophic Symbiosis Between Orchids and Mycorrhizal Fungi Possesses Major Components Shared with Mutualistic Plant-Mycorrhizal Symbioses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:1032-1047. [PMID: 29649962 DOI: 10.1094/mpmi-01-18-0029-r] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Achlorophylous and early developmental stages of chorolophylous orchids are highly dependent on carbon and other nutrients provided by mycorrhizal fungi, in a nutritional mode termed mycoheterotrophy. Previous findings have implied that some common properties at least partially underlie the mycorrhizal symbioses of mycoheterotrophic orchids and that of autotrophic arbuscular mycorrhizal (AM) plants; however, information about the molecular mechanisms of the relationship between orchids and their mycorrhizal fungi is limited. In this study, we characterized the molecular basis of an orchid-mycorrhizal (OM) symbiosis by analyzing the transcriptome of Bletilla striata at an early developmental stage associated with the mycorrhizal fungus Tulasnella sp. The essential components required for the establishment of mutual symbioses with AM fungi or rhizobia in most terrestrial plants were identified from the B. striata gene set. A cross-species gene complementation analysis showed one of the component genes, calcium and calmodulin-dependent protein kinase gene CCaMK in B. striata, retains functional characteristics of that in AM plants. The expression analysis revealed the activation of homologs of AM-related genes during the OM symbiosis. Our results suggest that orchids possess, at least partly, the molecular mechanisms common to AM plants.
Collapse
Affiliation(s)
- Chihiro Miura
- 1 Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Katsushi Yamaguchi
- 2 Functional Genomics Facility, NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki, Japan
| | - Ryohei Miyahara
- 1 Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Tatsuki Yamamoto
- 3 Graduate School of Agriculture, Tottori University, Tottori, Japan
| | - Masako Fuji
- 1 Faculty of Agriculture, Tottori University, Tottori, Japan
| | | | - Haruko Imaizumi-Anraku
- 5 Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan; and
| | | | - Shuji Shigenobu
- 2 Functional Genomics Facility, NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki, Japan
| | | |
Collapse
|
18
|
Frare R, Ayub N, Alleva K, Soto G. The Ammonium Channel NOD26 is the Evolutionary Innovation that Drives the Emergence, Consolidation, and Dissemination of Nitrogen-Fixing Symbiosis in Angiosperms. J Mol Evol 2018; 86:554-565. [DOI: 10.1007/s00239-018-9867-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/12/2018] [Indexed: 12/01/2022]
|
19
|
Parniske M. Uptake of bacteria into living plant cells, the unifying and distinct feature of the nitrogen-fixing root nodule symbiosis. CURRENT OPINION IN PLANT BIOLOGY 2018; 44:164-174. [PMID: 30071473 DOI: 10.1016/j.pbi.2018.05.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/24/2018] [Accepted: 05/28/2018] [Indexed: 05/09/2023]
Abstract
Despite the presence of complex microbiota on the surfaces of all plants, the uptake of bacteria into plant cells and the subsequent accommodation in a membrane-enclosed compartment is restricted to the nitrogen-fixing root nodule and the Gunnera-Nostoc symbiosis. The plant cell wall and the outward-directed turgor pressure are major constraints for bacterial uptake because localised lysis of the cell wall endangers the integrity of the protoplast. Host cell integrity is consistently maintained by turgescent neighbours, connected via apoplastic polymers that seal a bacteria-containing extracellular compartment prior to localized cell wall lysis. Its unifying and almost exclusive phylogenetic distribution pinpoints the ability to take up bacteria into living plant cells as a key step during the evolution of the nitrogen-fixing root nodule symbiosis.
Collapse
Affiliation(s)
- Martin Parniske
- Institute of Genetics, Faculty of Biology, Biocenter Martinsried, LMU Munich, Germany.
| |
Collapse
|
20
|
Fournier J, Imanishi L, Chabaud M, Abdou-Pavy I, Genre A, Brichet L, Lascano HR, Muñoz N, Vayssières A, Pirolles E, Brottier L, Gherbi H, Hocher V, Svistoonoff S, Barker DG, Wall LG. Cell remodeling and subtilase gene expression in the actinorhizal plant Discaria trinervis highlight host orchestration of intercellular Frankia colonization. THE NEW PHYTOLOGIST 2018; 219:1018-1030. [PMID: 29790172 DOI: 10.1111/nph.15216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/12/2018] [Indexed: 05/16/2023]
Abstract
Nitrogen-fixing filamentous Frankia colonize the root tissues of its actinorhizal host Discaria trinervis via an exclusively intercellular pathway. Here we present studies aimed at uncovering mechanisms associated with this little-researched mode of root entry, and in particular the extent to which the host plant is an active partner during this process. Detailed characterization of the expression patterns of infection-associated actinorhizal host genes has provided valuable tools to identify intercellular infection sites, thus allowing in vivo confocal microscopic studies of the early stages of Frankia colonization. The subtilisin-like serine protease gene Dt12, as well as its Casuarina glauca homolog Cg12, are specifically expressed at sites of Frankia intercellular colonization of D. trinervis outer root tissues. This is accompanied by nucleo-cytoplasmic reorganization in the adjacent host cells and major remodeling of the intercellular apoplastic compartment. These findings lead us to propose that the actinorhizal host plays a major role in modifying both the size and composition of the intercellular apoplast in order to accommodate the filamentous microsymbiont. The implications of these findings are discussed in the light of the analogies that can be made with the orchestrating role of host legumes during intracellular root hair colonization by nitrogen-fixing rhizobia.
Collapse
Affiliation(s)
- Joëlle Fournier
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, 31326, France
| | - Leandro Imanishi
- LBMIBS, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Bernal, B1876BXD, Argentina
| | - Mireille Chabaud
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, 31326, France
| | - Iltaf Abdou-Pavy
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, 31326, France
| | - Andrea Genre
- Department of Life Sciences and Systems Biology, University of Torino, 10125, Torino, Italy
| | - Lukas Brichet
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, 31326, France
| | - Hernán Ramiro Lascano
- Instituto de Fitopatología y Fisiología Vegetal IFFIVE-INTA, Córdoba, X5020ICA, Argentina
| | - Nacira Muñoz
- Instituto de Fitopatología y Fisiología Vegetal IFFIVE-INTA, Córdoba, X5020ICA, Argentina
| | - Alice Vayssières
- Laboratoire des Symbioses Tropicales et Méditerranéennes (IRD/INRA/CIRAD/Université de Montpellier/Supagro), 34398, Montpellier Cedex 5, France
| | - Elodie Pirolles
- Laboratoire des Symbioses Tropicales et Méditerranéennes (IRD/INRA/CIRAD/Université de Montpellier/Supagro), 34398, Montpellier Cedex 5, France
| | - Laurent Brottier
- Laboratoire des Symbioses Tropicales et Méditerranéennes (IRD/INRA/CIRAD/Université de Montpellier/Supagro), 34398, Montpellier Cedex 5, France
| | - Hassen Gherbi
- Laboratoire des Symbioses Tropicales et Méditerranéennes (IRD/INRA/CIRAD/Université de Montpellier/Supagro), 34398, Montpellier Cedex 5, France
| | - Valérie Hocher
- Laboratoire des Symbioses Tropicales et Méditerranéennes (IRD/INRA/CIRAD/Université de Montpellier/Supagro), 34398, Montpellier Cedex 5, France
| | - Sergio Svistoonoff
- Laboratoire des Symbioses Tropicales et Méditerranéennes (IRD/INRA/CIRAD/Université de Montpellier/Supagro), 34398, Montpellier Cedex 5, France
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux, Centre de Recherche de Bel Air, CP 18524, Dakar, Sénégal
- Laboratoire Commun de Microbiologie, Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop, BP 1386, Dakar, Sénégal
| | - David G Barker
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, 31326, France
| | - Luis G Wall
- LBMIBS, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Bernal, B1876BXD, Argentina
| |
Collapse
|
21
|
Griesmann M, Chang Y, Liu X, Song Y, Haberer G, Crook MB, Billault-Penneteau B, Lauressergues D, Keller J, Imanishi L, Roswanjaya YP, Kohlen W, Pujic P, Battenberg K, Alloisio N, Liang Y, Hilhorst H, Salgado MG, Hocher V, Gherbi H, Svistoonoff S, Doyle JJ, He S, Xu Y, Xu S, Qu J, Gao Q, Fang X, Fu Y, Normand P, Berry AM, Wall LG, Ané JM, Pawlowski K, Xu X, Yang H, Spannagl M, Mayer KFX, Wong GKS, Parniske M, Delaux PM, Cheng S. Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis. Science 2018; 361:science.aat1743. [DOI: 10.1126/science.aat1743] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/16/2018] [Indexed: 12/20/2022]
|
22
|
Ktari A, Nouioui I, Furnholm T, Swanson E, Ghodhbane-Gtari F, Tisa LS, Gtari M. Permanent draft genome sequence of Frankia sp. NRRL B-16219 reveals the presence of canonical nod genes, which are highly homologous to those detected in Candidatus Frankia Dg1 genome. Stand Genomic Sci 2017; 12:51. [PMID: 28878862 PMCID: PMC5584510 DOI: 10.1186/s40793-017-0261-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 08/22/2017] [Indexed: 01/24/2023] Open
Abstract
Frankia sp. NRRL B-16219 was directly isolated from a soil sample obtained from the rhizosphere of Ceanothus jepsonii growing in the USA. Its host plant range includes members of Elaeagnaceae species. Phylogenetically, strain NRRL B-16219 is closely related to "Frankia discariae" with a 16S rRNA gene similarity of 99.78%. Because of the lack of genetic tools for Frankia, our understanding of the bacterial signals involved during the plant infection process and the development of actinorhizal root nodules is very limited. Since the first three Frankia genomes were sequenced, additional genome sequences covering more diverse strains have helped provide insight into the depth of the pangenome and attempts to identify bacterial signaling molecules like the rhizobial canonical nod genes. The genome sequence of Frankia sp. strain NRRL B-16219 was generated and assembled into 289 contigs containing 8,032,739 bp with 71.7% GC content. Annotation of the genome identified 6211 protein-coding genes, 561 pseudogenes, 1758 hypothetical proteins and 53 RNA genes including 4 rRNA genes. The NRRL B-16219 draft genome contained genes homologous to the rhizobial common nodulation genes clustered in two areas. The first cluster contains nodACIJH genes whereas the second has nodAB and nodH genes in the upstream region. Phylogenetic analysis shows that Frankia nod genes are more deeply rooted than their sister groups from rhizobia. PCR-sequencing suggested the widespread occurrence of highly homologous nodA and nodB genes in microsymbionts of field collected Ceanothus americanus.
Collapse
Affiliation(s)
- Amir Ktari
- Laboratoire Microorganismes et Biomolécules Actives, Université Tunis El Manar (FST) & Université de Carthage (INSAT), 2092 Tunis, Tunisia
| | - Imen Nouioui
- Laboratoire Microorganismes et Biomolécules Actives, Université Tunis El Manar (FST) & Université de Carthage (INSAT), 2092 Tunis, Tunisia
| | - Teal Furnholm
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 289 Rudman Hall, 46 college Road, Durham, NH 03824-2617 USA
| | - Erik Swanson
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 289 Rudman Hall, 46 college Road, Durham, NH 03824-2617 USA
| | - Faten Ghodhbane-Gtari
- Laboratoire Microorganismes et Biomolécules Actives, Université Tunis El Manar (FST) & Université de Carthage (INSAT), 2092 Tunis, Tunisia
| | - Louis S Tisa
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 289 Rudman Hall, 46 college Road, Durham, NH 03824-2617 USA
| | - Maher Gtari
- Laboratoire Microorganismes et Biomolécules Actives, Université Tunis El Manar (FST) & Université de Carthage (INSAT), 2092 Tunis, Tunisia
| |
Collapse
|
23
|
Martin FM, Uroz S, Barker DG. Ancestral alliances: Plant mutualistic symbioses with fungi and bacteria. Science 2017; 356:356/6340/eaad4501. [DOI: 10.1126/science.aad4501] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Ktari A, Gueddou A, Nouioui I, Miotello G, Sarkar I, Ghodhbane-Gtari F, Sen A, Armengaud J, Gtari M. Host Plant Compatibility Shapes the Proteogenome of Frankia coriariae. Front Microbiol 2017; 8:720. [PMID: 28512450 PMCID: PMC5411423 DOI: 10.3389/fmicb.2017.00720] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/06/2017] [Indexed: 01/24/2023] Open
Abstract
Molecular signaling networks in the actinorhizal rhizosphere select host-compatible Frankia strains, trigger the infection process and eventually the genesis of nitrogen-fixing nodules. The molecular triggers involved remain difficult to ascertain. Root exudates (RE) are highly dynamic substrates that play key roles in establishing the rhizosphere microbiome. RE are known to induce the secretion by rhizobia of Nod factors, polysaccharides, and other proteins in the case of legume symbiosis. Next-generation proteomic approach was here used to decipher the key bacterial signals matching the first-step recognition of host plant stimuli upon treatment of Frankia coriariae strain BMG5.1 with RE derived from compatible (Coriaria myrtifolia), incompatible (Alnus glutinosa), and non-actinorhizal (Cucumis melo) host plants. The Frankia proteome dynamics were mainly driven by host compatibility. Both metabolism and signal transduction were the dominant activities for BMG5.1 under the different RE conditions tested. A second set of proteins that were solely induced by C. myrtifolia RE and were mainly linked to cell wall remodeling, signal transduction and host signal processing activities. These proteins may footprint early steps in receptive recognition of host stimuli before subsequent events of symbiotic recruitment.
Collapse
Affiliation(s)
- Amir Ktari
- Laboratoire Microorganismes et Biomolécules Actives, Université de Tunis El Manar (FST) and Université de Carthage (INSAT)Tunis, Tunisia
| | - Abdellatif Gueddou
- Laboratoire Microorganismes et Biomolécules Actives, Université de Tunis El Manar (FST) and Université de Carthage (INSAT)Tunis, Tunisia
| | - Imen Nouioui
- Laboratoire Microorganismes et Biomolécules Actives, Université de Tunis El Manar (FST) and Université de Carthage (INSAT)Tunis, Tunisia
| | - Guylaine Miotello
- CEA, DRF, Joliot, Lab Innovative Technologies for Detection and DiagnosticBagnols-sur-Cèze, France
| | - Indrani Sarkar
- Department of Botany, NBU Bioinformatics Facility, University of North BengalSiliguri, India
| | - Faten Ghodhbane-Gtari
- Laboratoire Microorganismes et Biomolécules Actives, Université de Tunis El Manar (FST) and Université de Carthage (INSAT)Tunis, Tunisia
| | - Arnab Sen
- Department of Botany, NBU Bioinformatics Facility, University of North BengalSiliguri, India
| | - Jean Armengaud
- CEA, DRF, Joliot, Lab Innovative Technologies for Detection and DiagnosticBagnols-sur-Cèze, France
| | - Maher Gtari
- Laboratoire Microorganismes et Biomolécules Actives, Université de Tunis El Manar (FST) and Université de Carthage (INSAT)Tunis, Tunisia
| |
Collapse
|
25
|
Ibáñez F, Wall L, Fabra A. Starting points in plant-bacteria nitrogen-fixing symbioses: intercellular invasion of the roots. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1905-1918. [PMID: 27756807 DOI: 10.1093/jxb/erw387] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Agricultural practices contribute to climate change by releasing greenhouse gases such as nitrous oxide that are mainly derived from nitrogen fertilizers. Therefore, understanding biological nitrogen fixation in farming systems is beneficial to agriculture and environmental preservation. In this context, a better grasp of nitrogen-fixing systems and nitrogen-fixing bacteria-plant associations will contribute to the optimization of these biological processes. Legumes and actinorhizal plants can engage in a symbiotic interaction with nitrogen-fixing rhizobia or actinomycetes, resulting in the formation of specialized root nodules. The legume-rhizobia interaction is mediated by a complex molecular signal exchange, where recognition of different bacterial determinants activates the nodulation program in the plant. To invade plants roots, bacteria follow different routes, which are determined by the host plant. Entrance via root hairs is probably the best understood. Alternatively, entry via intercellular invasion has been observed in many legumes. Although there are common features shared by intercellular infection mechanisms, differences are observed in the site of root invasion and bacterial spread on the cortex reaching and infecting a susceptible cell to form a nodule. This review focuses on intercellular bacterial invasion of roots observed in the Fabaceae and considers, within an evolutionary context, the different variants, distribution and molecular determinants involved. Intercellular invasion of actinorhizal plants and Parasponia is also discussed.
Collapse
Affiliation(s)
- Fernando Ibáñez
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Luis Wall
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
| | - Adriana Fabra
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| |
Collapse
|
26
|
Barker DG, Chabaud M, Russo G, Genre A. Nuclear Ca 2+ signalling in arbuscular mycorrhizal and actinorhizal endosymbioses: on the trail of novel underground signals. THE NEW PHYTOLOGIST 2017; 214:533-538. [PMID: 27918078 DOI: 10.1111/nph.14350] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/04/2016] [Indexed: 06/06/2023]
Abstract
Contents 533 I. 533 II. 534 III. 536 IV. 536 537 References 537 SUMMARY: Root endosymbioses are beneficial associations formed between terrestrial plants and either bacterial or fungal micro-organisms. A common feature of these intracellular symbioses is the requirement for mutual recognition between the two partners before host-regulated microbial entry. As part of this molecular dialogue, symbiosis-specific microbial factors set in motion a highly conserved plant signal transduction pathway, of which a central component is the activation of sustained nuclear Ca2+ oscillations in target cells of the host epidermis. Here, we focus on recent findings concerning this crucial Ca2+ -dependent signalling step for endosymbiotic associations involving either arbuscular mycorrhizal fungi or nitrogen-fixing Frankia actinomycetes, and in particular how this knowledge is contributing to the identification of the respective microbial factors.
Collapse
Affiliation(s)
- David G Barker
- Laboratory of Plant-Microbe Interactions (LIPM), INRA-CNRS-Toulouse University, 31326, Castanet-Tolosan, France
| | - Mireille Chabaud
- Laboratory of Plant-Microbe Interactions (LIPM), INRA-CNRS-Toulouse University, 31326, Castanet-Tolosan, France
| | - Guilia Russo
- Department of Life Sciences and Systems Biology, Turin University, Viale Mattioli 25, 10125, Turin, Italy
| | - Andrea Genre
- Department of Life Sciences and Systems Biology, Turin University, Viale Mattioli 25, 10125, Turin, Italy
| |
Collapse
|
27
|
Yano K, Aoki S, Liu M, Umehara Y, Suganuma N, Iwasaki W, Sato S, Soyano T, Kouchi H, Kawaguchi M. Function and evolution of a Lotus japonicus AP2/ERF family transcription factor that is required for development of infection threads. DNA Res 2017; 24:193-203. [PMID: 28028038 PMCID: PMC5397602 DOI: 10.1093/dnares/dsw052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/25/2016] [Indexed: 01/05/2023] Open
Abstract
Legume-rhizobium symbiosis is achieved by two major events evolutionarily acquired: root hair infection and organogenesis. Infection thread (IT) development is a distinct element for rhizobial infection. Through ITs, rhizobia are efficiently transported from infection foci on root hairs to dividing meristematic cortical cells. To unveil this process, we performed genetic screening using Lotus japonicus MG-20 and isolated symbiotic mutant lines affecting nodulation, root hair morphology, and IT development. Map-based cloning identified an AP2/ERF transcription factor gene orthologous to Medicago truncatula ERN1. LjERN1 was activated in response to rhizobial infection and depended on CYCLOPS and NSP2. Legumes conserve an ERN1 homolog, ERN2, that functions redundantly with ERN1 in M. truncatula. Phylogenetic analysis showed that the lineages of ERN1 and ERN2 genes originated from a gene duplication event in the common ancestor of legume plants. However, genomic analysis suggested the lack of ERN2 gene in the L. japonicus genome, consistent with Ljern1 mutants exhibited a root hair phenotype that is observed in ern1/ern2 double mutants in M. truncatula. Molecular evolutionary analysis suggested that the nonsynonymous/synonymous rate ratios of legume ERN1 genes was almost identical to that of non-legume plants, whereas the ERN2 genes experienced a relaxed selective constraint.
Collapse
Affiliation(s)
- Koji Yano
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
- Division of Symbiotic Systems, National Institute for Basic Biology, National Institute for Natural Sciences, Okazaki 444-8585, Japan
| | - Seishiro Aoki
- Department of General Systems Studies, Graduate School of Arts and Sciences, the University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Meng Liu
- Division of Symbiotic Systems, National Institute for Basic Biology, National Institute for Natural Sciences, Okazaki 444-8585, Japan
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan and
| | - Yosuke Umehara
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | - Norio Suganuma
- Department of Life Science, Aichi University of Education, Kariya, Aichi 448–8542, Japan
| | - Wataru Iwasaki
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Shusei Sato
- Kazusa DNA Research Institute, Kisarazu, Chiba 292–0812, Japan
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Takashi Soyano
- Division of Symbiotic Systems, National Institute for Basic Biology, National Institute for Natural Sciences, Okazaki 444-8585, Japan
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan and
| | - Hiroshi Kouchi
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | - Masayoshi Kawaguchi
- Division of Symbiotic Systems, National Institute for Basic Biology, National Institute for Natural Sciences, Okazaki 444-8585, Japan
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan and
| |
Collapse
|
28
|
Cauz-Santos LA, Munhoz CF, Rodde N, Cauet S, Santos AA, Penha HA, Dornelas MC, Varani AM, Oliveira GCX, Bergès H, Vieira MLC. The Chloroplast Genome of Passiflora edulis (Passifloraceae) Assembled from Long Sequence Reads: Structural Organization and Phylogenomic Studies in Malpighiales. FRONTIERS IN PLANT SCIENCE 2017; 8:334. [PMID: 28344587 PMCID: PMC5345083 DOI: 10.3389/fpls.2017.00334] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 02/27/2017] [Indexed: 05/20/2023]
Abstract
The family Passifloraceae consists of some 700 species classified in around 16 genera. Almost all its members belong to the genus Passiflora. In Brazil, the yellow passion fruit (Passiflora edulis) is of considerable economic importance, both for juice production and consumption as fresh fruit. The availability of chloroplast genomes (cp genomes) and their sequence comparisons has led to a better understanding of the evolutionary relationships within plant taxa. In this study, we obtained the complete nucleotide sequence of the P. edulis chloroplast genome, the first entirely sequenced in the Passifloraceae family. We determined its structure and organization, and also performed phylogenomic studies on the order Malpighiales and the Fabids clade. The P. edulis chloroplast genome is characterized by the presence of two copies of an inverted repeat sequence (IRA and IRB) of 26,154 bp, each separating a small single copy region of 13,378 bp and a large single copy (LSC) region of 85,720 bp. The annotation resulted in the identification of 105 unique genes, including 30 tRNAs, 4 rRNAs, and 71 protein coding genes. Also, 36 repetitive elements and 85 SSRs (microsatellites) were identified. The structure of the complete cp genome of P. edulis differs from that of other species because of rearrangement events detected by means of a comparison based on 22 members of the Malpighiales. The rearrangements were three inversions of 46,151, 3,765 and 1,631 bp, located in the LSC region. Phylogenomic analysis resulted in strongly supported trees, but this could also be a consequence of the limited taxonomic sampling used. Our results have provided a better understanding of the evolutionary relationships in the Malpighiales and the Fabids, confirming the potential of complete chloroplast genome sequences in inferring evolutionary relationships and the utility of long sequence reads for generating very accurate biological information.
Collapse
Affiliation(s)
- Luiz A. Cauz-Santos
- Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, PiracicabaBrazil
| | - Carla F. Munhoz
- Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, PiracicabaBrazil
| | - Nathalie Rodde
- Institut National de la Recherche Agronomique, French Plant Genomic Resource Center, Castanet-TolosanFrance
| | - Stephane Cauet
- Institut National de la Recherche Agronomique, French Plant Genomic Resource Center, Castanet-TolosanFrance
| | - Anselmo A. Santos
- Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, PiracicabaBrazil
- FuturaGene Brasil Tecnologia Ltda., São PauloBrazil
| | - Helen A. Penha
- Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, PiracicabaBrazil
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, JaboticabalBrazil
| | - Marcelo C. Dornelas
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, CampinasBrazil
| | - Alessandro M. Varani
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, JaboticabalBrazil
| | - Giancarlo C. X. Oliveira
- Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, PiracicabaBrazil
| | - Hélène Bergès
- Institut National de la Recherche Agronomique, French Plant Genomic Resource Center, Castanet-TolosanFrance
| | - Maria Lucia C. Vieira
- Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, PiracicabaBrazil
- *Correspondence: Maria Lucia C. Vieira,
| |
Collapse
|
29
|
Nguyen TV, Wibberg D, Battenberg K, Blom J, Vanden Heuvel B, Berry AM, Kalinowski J, Pawlowski K. An assemblage of Frankia Cluster II strains from California contains the canonical nod genes and also the sulfotransferase gene nodH. BMC Genomics 2016; 17:796. [PMID: 27729005 PMCID: PMC5059922 DOI: 10.1186/s12864-016-3140-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/28/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The ability to establish root nodule symbioses is restricted to four different plant orders. Soil actinobacteria of the genus Frankia can establish a symbiotic relationship with a diverse group of plants within eight different families from three different orders, the Cucurbitales, Fagales and Rosales. Phylogenetically, Frankia strains can be divided into four clusters, three of which (I, II, III) contain symbiotic strains. Members of Cluster II nodulate the broadest range of host plants with species from four families from two different orders, growing on six continents. Two Cluster II genomes were sequenced thus far, both from Asia. RESULTS In this paper we present the first Frankia cluster II genome from North America (California), Dg2, which represents a metagenome of two major and one minor strains. A phylogenetic analysis of the core genomes of 16 Frankia strains shows that Cluster II the ancestral group in the genus, also ancestral to the non-symbiotic Cluster IV. Dg2 contains the canonical nod genes nodABC for the production of lipochitooligosaccharide Nod factors, but also two copies of the sulfotransferase gene nodH. In rhizobial systems, sulfation of Nod factors affects their host specificity and their stability. CONCLUSIONS A comparison with the nod gene region of the previously sequenced Dg1 genome from a Cluster II strain from Pakistan shows that the common ancestor of both strains should have contained nodABC and nodH. Phylogenetically, Dg2 NodH proteins are sister to rhizobial NodH proteins. A glnA-based phylogenetic analysis of all Cluster II strains sampled thus far supports the hypothesis that Cluster II Frankia strains came to North America with Datisca glomerata following the Madrean-Tethyan pattern.
Collapse
Affiliation(s)
- Thanh Van Nguyen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden
| | - Daniel Wibberg
- Center for Biotechnology, Bielefeld University, 33615, Bielefeld, Germany
| | - Kai Battenberg
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, USA
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus Liebig University, 35392, Giessen, Germany
| | | | - Alison M Berry
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, USA
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, 33615, Bielefeld, Germany
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden.
| |
Collapse
|
30
|
Ngom M, Gray K, Diagne N, Oshone R, Fardoux J, Gherbi H, Hocher V, Svistoonoff S, Laplaze L, Tisa LS, Sy MO, Champion A. Symbiotic Performance of Diverse Frankia Strains on Salt-Stressed Casuarina glauca and Casuarina equisetifolia Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:1331. [PMID: 27630656 PMCID: PMC5006599 DOI: 10.3389/fpls.2016.01331] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 08/18/2016] [Indexed: 05/29/2023]
Abstract
Symbiotic nitrogen-fixing associations between Casuarina trees and the actinobacteria Frankia are widely used in agroforestry in particular for salinized land reclamation. The aim of this study was to analyze the effects of salinity on the establishment of the actinorhizal symbiosis between C. glauca and two contrasting Frankia strains (salt sensitive; CcI3 vs. salt tolerant; CeD) and the role of these isolates in the salt tolerance of C. glauca and C. equisetifolia plants. We show that the number of root nodules decreased with increasing salinity levels in both plants inoculated with CcI3 and CeD. Nodule formation did not occur in seedlings inoculated with CcI3 and CeD, at NaCl concentrations above 100 and 200 mM, respectively. Salinity also affected the early deformation of plant root hairs and reduced their number and size. In addition, expression of symbiotic marker Cg12 gene, which codes for a subtilase, was reduced at 50 mM NaCl. These data suggest that the reduction of nodulation in C. glauca under salt stress is in part due to inhibition of early mechanisms of infection. We also show that prior inoculation of C. glauca and C. equisetifolia with Frankia strains CcI3 and CeD significantly improved plant height, dry biomass, chlorophyll and proline contents at all levels of salinity tested, depending on the Casuarina-Frankia association. There was no correlation between in vitro salt tolerance of Frankia strains and efficiency in planta under salt-stressed conditions. Our results strongly indicate that increased N nutrition, photosynthesis potential and proline accumulation are important factors responsible for salt tolerance of nodulated C. glauca and C. equisetifolia.
Collapse
Affiliation(s)
- Mariama Ngom
- Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Centre de Recherche de Bel-AirDakar, Sénégal
- Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta DiopDakar, Sénégal
- Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais de Recherches Agricoles/Université Cheikh Anta Diop, Centre de Recherche de Bel-AirDakar, Sénégal
| | - Krystelle Gray
- Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Centre de Recherche de Bel-AirDakar, Sénégal
- Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais de Recherches Agricoles/Université Cheikh Anta Diop, Centre de Recherche de Bel-AirDakar, Sénégal
- UMR DIADE, Institut de Recherche pour le DéveloppementMontpellier, France
| | - Nathalie Diagne
- Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Centre de Recherche de Bel-AirDakar, Sénégal
- Centre National de Recherches Agronomiques, Institut Sénégalais de Recherches AgricolesBambey, Sénégal
| | - Rediet Oshone
- Department of Molecular, Cellular, and Biomedical Sciences, University of New HampshireDurham, NH, USA
| | - Joel Fardoux
- Laboratoire des Symbioses Tropicales et Méditerranéennes, Institut de Recherche pour le Développement/INRA/CIRAD/Université Montpellier/Sup agroMontpellier, France
| | - Hassen Gherbi
- Laboratoire des Symbioses Tropicales et Méditerranéennes, Institut de Recherche pour le Développement/INRA/CIRAD/Université Montpellier/Sup agroMontpellier, France
| | - Valérie Hocher
- Laboratoire des Symbioses Tropicales et Méditerranéennes, Institut de Recherche pour le Développement/INRA/CIRAD/Université Montpellier/Sup agroMontpellier, France
| | - Sergio Svistoonoff
- Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Centre de Recherche de Bel-AirDakar, Sénégal
- Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais de Recherches Agricoles/Université Cheikh Anta Diop, Centre de Recherche de Bel-AirDakar, Sénégal
- Laboratoire des Symbioses Tropicales et Méditerranéennes, Institut de Recherche pour le Développement/INRA/CIRAD/Université Montpellier/Sup agroMontpellier, France
| | - Laurent Laplaze
- Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Centre de Recherche de Bel-AirDakar, Sénégal
- Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais de Recherches Agricoles/Université Cheikh Anta Diop, Centre de Recherche de Bel-AirDakar, Sénégal
- UMR DIADE, Institut de Recherche pour le DéveloppementMontpellier, France
| | - Louis S. Tisa
- Department of Molecular, Cellular, and Biomedical Sciences, University of New HampshireDurham, NH, USA
| | - Mame O. Sy
- Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Centre de Recherche de Bel-AirDakar, Sénégal
- Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta DiopDakar, Sénégal
| | - Antony Champion
- Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Centre de Recherche de Bel-AirDakar, Sénégal
- UMR DIADE, Institut de Recherche pour le DéveloppementMontpellier, France
| |
Collapse
|
31
|
Buendia L, Wang T, Girardin A, Lefebvre B. The LysM receptor-like kinase SlLYK10 regulates the arbuscular mycorrhizal symbiosis in tomato. THE NEW PHYTOLOGIST 2016; 210:184-95. [PMID: 26612325 DOI: 10.1111/nph.13753] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/10/2015] [Indexed: 05/19/2023]
Abstract
Most plants have the ability to establish a symbiosis with arbuscular mycorrhizal (AM) fungi, which allows better plant nutrition. A plant signaling pathway, called the common symbiosis signaling pathway (CSSP), is essential for the establishment of both AM and root nodule symbioses. The CSSP is activated by microbial signals. Plant receptor(s) for AM fungal signals required for the activation of the CSSP and initial fungal penetration are currently unknown. We set up conditions to use virus-induced gene silencing (VIGS) in Solanum lycopersicum to study the genes potentially involved in AM. We show that the lysin motif receptor-like kinase SlLYK10, whose orthologs in legumes are essential for nodulation, but not for AM, and SlCCaMK, a component of the CSSP, are required for penetration of the AM fungus Rhizophagus irregularis into the roots of young tomato plants. Our results support the hypothesis that the SILYK10 ancestral gene originally played a role in AM and underwent duplication and neofunctionalization for a role in nodulation in legumes. Moreover, we conclude that VIGS is an efficient method for fast screening of genes playing major roles in AM.
Collapse
Affiliation(s)
- Luis Buendia
- Laboratoire des Interactions Plantes-Microorganismes, INRA, UMR441, Castanet-Tolosan, F-31326, France
- Laboratoire des Interactions Plantes-Microorganismes, CNRS, UMR2594, Castanet-Tolosan, F-31326, France
| | - Tongming Wang
- Laboratoire des Interactions Plantes-Microorganismes, INRA, UMR441, Castanet-Tolosan, F-31326, France
- Laboratoire des Interactions Plantes-Microorganismes, CNRS, UMR2594, Castanet-Tolosan, F-31326, France
| | - Ariane Girardin
- Laboratoire des Interactions Plantes-Microorganismes, INRA, UMR441, Castanet-Tolosan, F-31326, France
- Laboratoire des Interactions Plantes-Microorganismes, CNRS, UMR2594, Castanet-Tolosan, F-31326, France
| | - Benoit Lefebvre
- Laboratoire des Interactions Plantes-Microorganismes, INRA, UMR441, Castanet-Tolosan, F-31326, France
- Laboratoire des Interactions Plantes-Microorganismes, CNRS, UMR2594, Castanet-Tolosan, F-31326, France
| |
Collapse
|
32
|
Froussart E, Bonneau J, Franche C, Bogusz D. Recent advances in actinorhizal symbiosis signaling. PLANT MOLECULAR BIOLOGY 2016; 90:613-622. [PMID: 26873697 DOI: 10.1007/s11103-016-0450-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/05/2016] [Indexed: 06/05/2023]
Abstract
Nitrogen and phosphorus availability are frequent limiting factors in plant growth and development. Certain bacteria and fungi form root endosymbiotic relationships with plants enabling them to exploit atmospheric nitrogen and soil phosphorus. The relationships between bacteria and plants include nitrogen-fixing Gram-negative proteobacteria called rhizobia that are able to interact with most leguminous plants (Fabaceae) but also with the non-legume Parasponia (Cannabaceae), and actinobacteria Frankia, which are able to interact with about 260 species collectively called actinorhizal plants. Fungi involved in the relationship with plants include Glomeromycota that form an arbuscular mycorrhizal (AM) association intracellularly within the roots of more than 80% of land plants. Increasing numbers of reports suggest that the rhizobial association with legumes has recycled part of the ancestral program used by most plants to interact with AM fungi. This review focuses on the most recent progress made in plant genetic control of root nodulation that occurs in non-legume actinorhizal plant species.
Collapse
Affiliation(s)
- Emilie Froussart
- Equipe Rhizogenèse, UMR DIADE (IRD-UM), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France
| | - Jocelyne Bonneau
- Equipe Rhizogenèse, UMR DIADE (IRD-UM), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France
| | - Claudine Franche
- Equipe Rhizogenèse, UMR DIADE (IRD-UM), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France.
| | - Didier Bogusz
- Equipe Rhizogenèse, UMR DIADE (IRD-UM), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France
| |
Collapse
|
33
|
Biotechnological strategies for studying actinorhizal symbiosis in Casuarinaceae: transgenesis and beyond. Symbiosis 2016. [DOI: 10.1007/s13199-016-0400-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Chabaud M, Gherbi H, Pirolles E, Vaissayre V, Fournier J, Moukouanga D, Franche C, Bogusz D, Tisa LS, Barker DG, Svistoonoff S. Chitinase-resistant hydrophilic symbiotic factors secreted by Frankia activate both Ca(2+) spiking and NIN gene expression in the actinorhizal plant Casuarina glauca. THE NEW PHYTOLOGIST 2016; 209:86-93. [PMID: 26484850 DOI: 10.1111/nph.13732] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/27/2015] [Indexed: 05/18/2023]
Abstract
Although it is now well-established that decorated lipo-chitooligosaccharide Nod factors are the key rhizobial signals which initiate infection/nodulation in host legume species, the identity of the equivalent microbial signaling molecules in the Frankia/actinorhizal association remains elusive. With the objective of identifying Frankia symbiotic factors we present a novel approach based on both molecular and cellular pre-infection reporters expressed in the model actinorhizal species Casuarina glauca. By introducing the nuclear-localized cameleon Nup-YC2.1 into Casuarina glauca we show that cell-free culture supernatants of the compatible Frankia CcI3 strain are able to elicit sustained high frequency Ca(2+) spiking in host root hairs. Furthermore, an excellent correlation exists between the triggering of nuclear Ca(2+) spiking and the transcriptional activation of the ProCgNIN:GFP reporter as a function of the Frankia strain tested. These two pre-infection symbiotic responses have been used in combination to show that the signal molecules present in the Frankia CcI3 supernatant are hydrophilic, of low molecular weight and resistant to chitinase degradation. In conclusion, the biologically active symbiotic signals secreted by Frankia appear to be chemically distinct from the currently known chitin-based rhizobial/arbuscular mycorrhizal signaling molecules. Convenient bioassays in Casuarina glauca are now available for their full characterization.
Collapse
Affiliation(s)
- Mireille Chabaud
- Laboratory of Plant-Microbe Interactions, Institut National de la Recherche Agronomique (UMR 441), Centre National de la Recherche Scientifique (UMR 2594), F-31320, Castanet-Tolosan, France
| | - Hassen Gherbi
- Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes (IRD/Université Montpellier), F-34394, Montpellier Cedex 5, France
- Laboratoire des Symbioses Tropicales et Méditerranéennes (IRD/INRA/CIRAD/Université Montpellier/Supagro), 34398, Montpellier Cedex 5, France
| | - Elodie Pirolles
- Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes (IRD/Université Montpellier), F-34394, Montpellier Cedex 5, France
- Laboratoire des Symbioses Tropicales et Méditerranéennes (IRD/INRA/CIRAD/Université Montpellier/Supagro), 34398, Montpellier Cedex 5, France
| | - Virginie Vaissayre
- Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes (IRD/Université Montpellier), F-34394, Montpellier Cedex 5, France
| | - Joëlle Fournier
- Laboratory of Plant-Microbe Interactions, Institut National de la Recherche Agronomique (UMR 441), Centre National de la Recherche Scientifique (UMR 2594), F-31320, Castanet-Tolosan, France
| | - Daniel Moukouanga
- Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes (IRD/Université Montpellier), F-34394, Montpellier Cedex 5, France
| | - Claudine Franche
- Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes (IRD/Université Montpellier), F-34394, Montpellier Cedex 5, France
| | - Didier Bogusz
- Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes (IRD/Université Montpellier), F-34394, Montpellier Cedex 5, France
| | - Louis S Tisa
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824-2617, USA
| | - David G Barker
- Laboratory of Plant-Microbe Interactions, Institut National de la Recherche Agronomique (UMR 441), Centre National de la Recherche Scientifique (UMR 2594), F-31320, Castanet-Tolosan, France
| | - Sergio Svistoonoff
- Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes (IRD/Université Montpellier), F-34394, Montpellier Cedex 5, France
- Laboratoire des Symbioses Tropicales et Méditerranéennes (IRD/INRA/CIRAD/Université Montpellier/Supagro), 34398, Montpellier Cedex 5, France
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux, Centre de Recherche de Bel Air, CP 18524, Dakar, Sénégal
- Laboratoire Commun de Microbiologie, Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop, BP 1386, Dakar, Sénégal
| |
Collapse
|
35
|
Genre A, Russo G. Does a Common Pathway Transduce Symbiotic Signals in Plant-Microbe Interactions? FRONTIERS IN PLANT SCIENCE 2016; 7:96. [PMID: 26909085 PMCID: PMC4754458 DOI: 10.3389/fpls.2016.00096] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/18/2016] [Indexed: 05/02/2023]
Abstract
Recent years have witnessed major advances in our knowledge of plant mutualistic symbioses such as the rhizobium-legume symbiosis (RLS) and arbuscular mycorrhizas (AM). Some of these findings caused the revision of longstanding hypotheses, but one of the most solid theories is that a conserved set of plant proteins rules the transduction of symbiotic signals from beneficial glomeromycetes and rhizobia in a so-called common symbiotic pathway (CSP). Nevertheless, the picture still misses several elements, and a few crucial points remain unclear. How does one common pathway discriminate between - at least - two symbionts? Can we exclude that microbes other than AM fungi and rhizobia also use this pathway to communicate with their host plants? We here discuss the possibility that our current view is biased by a long-lasting focus on legumes, whose ability to develop both AM and RLS is an exception among plants and a recent innovation in their evolution; investigations in non-legumes are starting to place legume symbiotic signaling in a broader perspective. Furthermore, recent studies suggest that CSP proteins act in a wider scenario of symbiotic and non-symbiotic signaling. Overall, evidence is accumulating in favor of distinct activities for CSP proteins in AM and RLS, depending on the molecular and cellular context where they act.
Collapse
|
36
|
Fabre S, Gully D, Poitout A, Patrel D, Arrighi JF, Giraud E, Czernic P, Cartieaux F. Nod Factor-Independent Nodulation in Aeschynomene evenia Required the Common Plant-Microbe Symbiotic Toolkit. PLANT PHYSIOLOGY 2015; 169:2654-64. [PMID: 26446590 PMCID: PMC4677901 DOI: 10.1104/pp.15.01134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/04/2015] [Indexed: 05/06/2023]
Abstract
Nitrogen fixation in the legume-rhizobium symbiosis is a crucial area of research for more sustainable agriculture. Our knowledge of the plant cascade in response to the perception of bacterial Nod factors has increased in recent years. However, the discovery that Nod factors are not involved in the Aeschynomene-Bradyrhizobium spp. interaction suggests that alternative molecular dialogues may exist in the legume family. We evaluated the conservation of the signaling pathway common to other endosymbioses using three candidate genes: Ca(2+)/Calmodulin-Dependent Kinase (CCaMK), which plays a central role in cross signaling between nodule organogenesis and infection processes; and Symbiosis Receptor Kinase (SYMRK) and Histidine Kinase1 (HK1), which act upstream and downstream of CCaMK, respectively. We showed that CCaMK, SYMRK, and HK1 are required for efficient nodulation in Aeschynomene evenia. Our results demonstrate that CCaMK and SYMRK are recruited in Nod factor-independent symbiosis and, hence, may be conserved in all vascular plant endosymbioses described so far.
Collapse
Affiliation(s)
- Sandrine Fabre
- Institut de Recherche pour le Développement, Laboratoire des Symbioses Tropicales et Méditerranéennes, Unité Mixte de Recherche Institut de Recherche pour le Développement/SupAgro/Institut National de la Recherche Agronomique/Université de Montpellier/Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Campus International de Baillarguet, F-34398 Montpellier cedex 5, France (S.F., D.G., A.P., D.P., J.-F.A., E.G., F.C.);CIRAD, Laboratoire des Interactions Plantes Microorganismes Environnement, Unité Mixte de Recherche Institut de Recherche pour le Développement/Centre de Coopération Internationale en Recherche Agronomique pour le Développement/Université de Montpellier F-34394 Montpellier cedex 5, France (S.F.); andUniversité de Montpellier, F-34095 Montpellier cedex 5, France (A.P., P.C.)
| | - Djamel Gully
- Institut de Recherche pour le Développement, Laboratoire des Symbioses Tropicales et Méditerranéennes, Unité Mixte de Recherche Institut de Recherche pour le Développement/SupAgro/Institut National de la Recherche Agronomique/Université de Montpellier/Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Campus International de Baillarguet, F-34398 Montpellier cedex 5, France (S.F., D.G., A.P., D.P., J.-F.A., E.G., F.C.);CIRAD, Laboratoire des Interactions Plantes Microorganismes Environnement, Unité Mixte de Recherche Institut de Recherche pour le Développement/Centre de Coopération Internationale en Recherche Agronomique pour le Développement/Université de Montpellier F-34394 Montpellier cedex 5, France (S.F.); andUniversité de Montpellier, F-34095 Montpellier cedex 5, France (A.P., P.C.)
| | - Arthur Poitout
- Institut de Recherche pour le Développement, Laboratoire des Symbioses Tropicales et Méditerranéennes, Unité Mixte de Recherche Institut de Recherche pour le Développement/SupAgro/Institut National de la Recherche Agronomique/Université de Montpellier/Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Campus International de Baillarguet, F-34398 Montpellier cedex 5, France (S.F., D.G., A.P., D.P., J.-F.A., E.G., F.C.);CIRAD, Laboratoire des Interactions Plantes Microorganismes Environnement, Unité Mixte de Recherche Institut de Recherche pour le Développement/Centre de Coopération Internationale en Recherche Agronomique pour le Développement/Université de Montpellier F-34394 Montpellier cedex 5, France (S.F.); andUniversité de Montpellier, F-34095 Montpellier cedex 5, France (A.P., P.C.)
| | - Delphine Patrel
- Institut de Recherche pour le Développement, Laboratoire des Symbioses Tropicales et Méditerranéennes, Unité Mixte de Recherche Institut de Recherche pour le Développement/SupAgro/Institut National de la Recherche Agronomique/Université de Montpellier/Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Campus International de Baillarguet, F-34398 Montpellier cedex 5, France (S.F., D.G., A.P., D.P., J.-F.A., E.G., F.C.);CIRAD, Laboratoire des Interactions Plantes Microorganismes Environnement, Unité Mixte de Recherche Institut de Recherche pour le Développement/Centre de Coopération Internationale en Recherche Agronomique pour le Développement/Université de Montpellier F-34394 Montpellier cedex 5, France (S.F.); andUniversité de Montpellier, F-34095 Montpellier cedex 5, France (A.P., P.C.)
| | - Jean-François Arrighi
- Institut de Recherche pour le Développement, Laboratoire des Symbioses Tropicales et Méditerranéennes, Unité Mixte de Recherche Institut de Recherche pour le Développement/SupAgro/Institut National de la Recherche Agronomique/Université de Montpellier/Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Campus International de Baillarguet, F-34398 Montpellier cedex 5, France (S.F., D.G., A.P., D.P., J.-F.A., E.G., F.C.);CIRAD, Laboratoire des Interactions Plantes Microorganismes Environnement, Unité Mixte de Recherche Institut de Recherche pour le Développement/Centre de Coopération Internationale en Recherche Agronomique pour le Développement/Université de Montpellier F-34394 Montpellier cedex 5, France (S.F.); andUniversité de Montpellier, F-34095 Montpellier cedex 5, France (A.P., P.C.)
| | - Eric Giraud
- Institut de Recherche pour le Développement, Laboratoire des Symbioses Tropicales et Méditerranéennes, Unité Mixte de Recherche Institut de Recherche pour le Développement/SupAgro/Institut National de la Recherche Agronomique/Université de Montpellier/Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Campus International de Baillarguet, F-34398 Montpellier cedex 5, France (S.F., D.G., A.P., D.P., J.-F.A., E.G., F.C.);CIRAD, Laboratoire des Interactions Plantes Microorganismes Environnement, Unité Mixte de Recherche Institut de Recherche pour le Développement/Centre de Coopération Internationale en Recherche Agronomique pour le Développement/Université de Montpellier F-34394 Montpellier cedex 5, France (S.F.); andUniversité de Montpellier, F-34095 Montpellier cedex 5, France (A.P., P.C.)
| | - Pierre Czernic
- Institut de Recherche pour le Développement, Laboratoire des Symbioses Tropicales et Méditerranéennes, Unité Mixte de Recherche Institut de Recherche pour le Développement/SupAgro/Institut National de la Recherche Agronomique/Université de Montpellier/Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Campus International de Baillarguet, F-34398 Montpellier cedex 5, France (S.F., D.G., A.P., D.P., J.-F.A., E.G., F.C.);CIRAD, Laboratoire des Interactions Plantes Microorganismes Environnement, Unité Mixte de Recherche Institut de Recherche pour le Développement/Centre de Coopération Internationale en Recherche Agronomique pour le Développement/Université de Montpellier F-34394 Montpellier cedex 5, France (S.F.); andUniversité de Montpellier, F-34095 Montpellier cedex 5, France (A.P., P.C.)
| | - Fabienne Cartieaux
- Institut de Recherche pour le Développement, Laboratoire des Symbioses Tropicales et Méditerranéennes, Unité Mixte de Recherche Institut de Recherche pour le Développement/SupAgro/Institut National de la Recherche Agronomique/Université de Montpellier/Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Campus International de Baillarguet, F-34398 Montpellier cedex 5, France (S.F., D.G., A.P., D.P., J.-F.A., E.G., F.C.);CIRAD, Laboratoire des Interactions Plantes Microorganismes Environnement, Unité Mixte de Recherche Institut de Recherche pour le Développement/Centre de Coopération Internationale en Recherche Agronomique pour le Développement/Université de Montpellier F-34394 Montpellier cedex 5, France (S.F.); andUniversité de Montpellier, F-34095 Montpellier cedex 5, France (A.P., P.C.)
| |
Collapse
|
37
|
Clavijo F, Diedhiou I, Vaissayre V, Brottier L, Acolatse J, Moukouanga D, Crabos A, Auguy F, Franche C, Gherbi H, Champion A, Hocher V, Barker D, Bogusz D, Tisa LS, Svistoonoff S. The Casuarina NIN gene is transcriptionally activated throughout Frankia root infection as well as in response to bacterial diffusible signals. THE NEW PHYTOLOGIST 2015; 208:887-903. [PMID: 26096779 DOI: 10.1111/nph.13506] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/06/2015] [Indexed: 05/26/2023]
Abstract
Root nodule symbioses (RNS) allow plants to acquire atmospheric nitrogen by establishing an intimate relationship with either rhizobia, the symbionts of legumes or Frankia in the case of actinorhizal plants. In legumes, NIN (Nodule INception) genes encode key transcription factors involved in nodulation. Here we report the characterization of CgNIN, a NIN gene from the actinorhizal tree Casuarina glauca using both phylogenetic analysis and transgenic plants expressing either ProCgNIN::reporter gene fusions or CgNIN RNAi constructs. We have found that CgNIN belongs to the same phylogenetic group as other symbiotic NIN genes and CgNIN is able to complement a legume nin mutant for the early steps of nodule development. CgNIN expression is correlated with infection by Frankia, including preinfection stages in developing root hairs, and is induced by culture supernatants. Knockdown mutants were impaired for nodulation and early root hair deformation responses were severely affected. However, no mycorrhizal phenotype was observed and no induction of CgNIN expression was detected in mycorrhizas. Our results indicate that elements specifically required for nodulation include NIN and possibly related gene networks derived from the nitrate signalling pathways.
Collapse
Affiliation(s)
- Fernando Clavijo
- Unité Mixte de Recherche Diversité Adaptation et Développement des plantes (IRD Université Montpellier), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, F-34394, Montpellier Cedex 5, France
| | - Issa Diedhiou
- Unité Mixte de Recherche Diversité Adaptation et Développement des plantes (IRD Université Montpellier), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, F-34394, Montpellier Cedex 5, France
- Laboratoire mixte international Adaptation des Plantes et microorganismes associés aux Stress Environnementaux (LAPSE), Centre de Recherche de Bel Air, CP 18524, Dakar, Sénégal
- Laboratoire Commun de Microbiologie (LCM), Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles (ISRA)/Université Cheikh Anta Diop (UCAD), BP 1386, Dakar, Sénégal
| | - Virginie Vaissayre
- Unité Mixte de Recherche Diversité Adaptation et Développement des plantes (IRD Université Montpellier), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, F-34394, Montpellier Cedex 5, France
| | - Laurent Brottier
- Unité Mixte de Recherche Diversité Adaptation et Développement des plantes (IRD Université Montpellier), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, F-34394, Montpellier Cedex 5, France
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM IRD/INRA/CIRAD/Université Montpellier/Supagro) Campus International de Baillarguet, Institut de Recherche pour le Développement (IRD), 34398, Montpellier Cedex 5, France
| | - Jennifer Acolatse
- Unité Mixte de Recherche Diversité Adaptation et Développement des plantes (IRD Université Montpellier), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, F-34394, Montpellier Cedex 5, France
| | - Daniel Moukouanga
- Unité Mixte de Recherche Diversité Adaptation et Développement des plantes (IRD Université Montpellier), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, F-34394, Montpellier Cedex 5, France
| | - Amandine Crabos
- Unité Mixte de Recherche Diversité Adaptation et Développement des plantes (IRD Université Montpellier), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, F-34394, Montpellier Cedex 5, France
| | - Florence Auguy
- Unité Mixte de Recherche Diversité Adaptation et Développement des plantes (IRD Université Montpellier), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, F-34394, Montpellier Cedex 5, France
| | - Claudine Franche
- Unité Mixte de Recherche Diversité Adaptation et Développement des plantes (IRD Université Montpellier), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, F-34394, Montpellier Cedex 5, France
| | - Hassen Gherbi
- Unité Mixte de Recherche Diversité Adaptation et Développement des plantes (IRD Université Montpellier), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, F-34394, Montpellier Cedex 5, France
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM IRD/INRA/CIRAD/Université Montpellier/Supagro) Campus International de Baillarguet, Institut de Recherche pour le Développement (IRD), 34398, Montpellier Cedex 5, France
| | - Antony Champion
- Unité Mixte de Recherche Diversité Adaptation et Développement des plantes (IRD Université Montpellier), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, F-34394, Montpellier Cedex 5, France
- Laboratoire mixte international Adaptation des Plantes et microorganismes associés aux Stress Environnementaux (LAPSE), Centre de Recherche de Bel Air, CP 18524, Dakar, Sénégal
- Laboratoire Commun de Microbiologie (LCM), Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles (ISRA)/Université Cheikh Anta Diop (UCAD), BP 1386, Dakar, Sénégal
| | - Valerie Hocher
- Unité Mixte de Recherche Diversité Adaptation et Développement des plantes (IRD Université Montpellier), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, F-34394, Montpellier Cedex 5, France
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM IRD/INRA/CIRAD/Université Montpellier/Supagro) Campus International de Baillarguet, Institut de Recherche pour le Développement (IRD), 34398, Montpellier Cedex 5, France
| | - David Barker
- Laboratory of Plant-Microbe Interactions, Institut National de la Recherche Agronomique (UMR 441), Centre National de la Recherche Scientifique (UMR 2594), Castanet-Tolosan, France
| | - Didier Bogusz
- Unité Mixte de Recherche Diversité Adaptation et Développement des plantes (IRD Université Montpellier), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, F-34394, Montpellier Cedex 5, France
| | - Louis S Tisa
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824-2617, USA
| | - Sergio Svistoonoff
- Unité Mixte de Recherche Diversité Adaptation et Développement des plantes (IRD Université Montpellier), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, F-34394, Montpellier Cedex 5, France
- Laboratoire mixte international Adaptation des Plantes et microorganismes associés aux Stress Environnementaux (LAPSE), Centre de Recherche de Bel Air, CP 18524, Dakar, Sénégal
- Laboratoire Commun de Microbiologie (LCM), Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles (ISRA)/Université Cheikh Anta Diop (UCAD), BP 1386, Dakar, Sénégal
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM IRD/INRA/CIRAD/Université Montpellier/Supagro) Campus International de Baillarguet, Institut de Recherche pour le Développement (IRD), 34398, Montpellier Cedex 5, France
| |
Collapse
|
38
|
Chen X, Miché L, Sachs S, Wang Q, Buschart A, Yang H, Vera Cruz CM, Hurek T, Reinhold-Hurek B. Rice responds to endophytic colonization which is independent of the common symbiotic signaling pathway. THE NEW PHYTOLOGIST 2015; 208:531-43. [PMID: 26009800 DOI: 10.1111/nph.13458] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 04/13/2015] [Indexed: 05/11/2023]
Abstract
As molecular interactions of plants with N2 -fixing endophytes are largely uncharacterized, we investigated whether the common signaling pathway (CSP) shared by root nodule symbioses (RNS) and arbuscular mycorrhizal (AM) symbioses may have been recruited for the endophytic Azoarcus sp.-rice (Oryza sativa) interaction, and combined this investigation with global approaches to characterize rice root responses to endophytic colonization. Putative homologs of genes required for the CSP were analyzed for their putative role in endophytic colonization. Proteomic and suppressive subtractive hybridization (SSH) approaches were also applied, and a comparison of defense-related processes was carried out by setting up a pathosystem for flooded roots with Xanthomonas oryzae pv. oryzae strain PXO99 (Xoo). All tested genes were expressed in rice roots seedlings but not induced upon Azoarcus sp. inoculation, and the oscyclops and oscastor mutants were not impaired in endophytic colonization. Global approaches highlighted changes in rice metabolic activity and Ca(2+) -dependent signaling in roots colonized by endophytes, including some stress proteins. Marker genes for defense responses were induced to a lesser extent by the endophytes than by the pathogen, indicating a more compatible interaction. Our results thus suggest that rice roots respond to endophytic colonization by inducing metabolic shifts and signaling events, for which the CSP is not essential.
Collapse
Affiliation(s)
- Xi Chen
- Department of Microbe-Plant Interactions, CBIB (Center for Biomolecular Interactions Bremen), University of Bremen, PO Box 330440, D-28334, Bremen, Germany
| | - Lucie Miché
- Department of Microbe-Plant Interactions, CBIB (Center for Biomolecular Interactions Bremen), University of Bremen, PO Box 330440, D-28334, Bremen, Germany
| | - Sabrina Sachs
- Department of Microbe-Plant Interactions, CBIB (Center for Biomolecular Interactions Bremen), University of Bremen, PO Box 330440, D-28334, Bremen, Germany
| | - Qi Wang
- Department of Microbe-Plant Interactions, CBIB (Center for Biomolecular Interactions Bremen), University of Bremen, PO Box 330440, D-28334, Bremen, Germany
| | - Anna Buschart
- Department of Microbe-Plant Interactions, CBIB (Center for Biomolecular Interactions Bremen), University of Bremen, PO Box 330440, D-28334, Bremen, Germany
| | - Haiyuan Yang
- Department of Microbe-Plant Interactions, CBIB (Center for Biomolecular Interactions Bremen), University of Bremen, PO Box 330440, D-28334, Bremen, Germany
| | - Casiana M Vera Cruz
- The International Rice Research Institute, MCPC Box 3727, 1271, Makati, Philippines
| | - Thomas Hurek
- Department of Microbe-Plant Interactions, CBIB (Center for Biomolecular Interactions Bremen), University of Bremen, PO Box 330440, D-28334, Bremen, Germany
| | - Barbara Reinhold-Hurek
- Department of Microbe-Plant Interactions, CBIB (Center for Biomolecular Interactions Bremen), University of Bremen, PO Box 330440, D-28334, Bremen, Germany
| |
Collapse
|
39
|
Granqvist E, Sun J, Op den Camp R, Pujic P, Hill L, Normand P, Morris RJ, Downie JA, Geurts R, Oldroyd GED. Bacterial-induced calcium oscillations are common to nitrogen-fixing associations of nodulating legumes and nonlegumes. THE NEW PHYTOLOGIST 2015; 207:551-8. [PMID: 26010117 PMCID: PMC4736677 DOI: 10.1111/nph.13464] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/25/2015] [Indexed: 05/03/2023]
Abstract
Plants that form root-nodule symbioses are within a monophyletic 'nitrogen-fixing' clade and associated signalling processes are shared with the arbuscular mycorrhizal symbiosis. Central to symbiotic signalling are nuclear-associated oscillations in calcium ions (Ca(2+) ), occurring in the root hairs of several legume species in response to the rhizobial Nod factor signal. In this study we expanded the species analysed for activation of Ca(2+) oscillations, including nonleguminous species within the nitrogen-fixing clade. We showed that Ca(2+) oscillations are a common feature of legumes in their association with rhizobia, while Cercis, a non-nodulating legume, does not show Ca(2+) oscillations in response to Nod factors from Sinorhizobium fredii NGR234. Parasponia andersonii, a nonlegume that can associate with rhizobia, showed Nod factor-induced calcium oscillations to S. fredii NGR234 Nod factors, but its non-nodulating sister species, Trema tomentosa, did not. Also within the nitrogen-fixing clade are actinorhizal species that associate with Frankia bacteria and we showed that Alnus glutinosa induces Ca(2+) oscillations in root hairs in response to exudates from Frankia alni, but not to S. fredii NGR234 Nod factors. We conclude that the ability to mount Ca(2+) oscillations in response to symbiotic bacteria is a common feature of nodulating species within the nitrogen-fixing clade.
Collapse
Affiliation(s)
| | - Jongho Sun
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Rik Op den Camp
- Department of Plant ScienceLaboratory of Molecular BiologyWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Petar Pujic
- Ecologie MicrobienneCentre National de la Recherche Scientifique UMR 5557Université Lyon IUniversité LyonVilleurbanneFrance
| | - Lionel Hill
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Philippe Normand
- Ecologie MicrobienneCentre National de la Recherche Scientifique UMR 5557Université Lyon IUniversité LyonVilleurbanneFrance
| | | | | | - Rene Geurts
- Department of Plant ScienceLaboratory of Molecular BiologyWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | | |
Collapse
|
40
|
Delaux PM, Radhakrishnan G, Oldroyd G. Tracing the evolutionary path to nitrogen-fixing crops. CURRENT OPINION IN PLANT BIOLOGY 2015; 26:95-99. [PMID: 26123396 DOI: 10.1016/j.pbi.2015.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/01/2015] [Accepted: 06/02/2015] [Indexed: 06/04/2023]
Abstract
Nitrogen-fixing symbioses between plants and bacteria are restricted to a few plant lineages. The plant partner benefits from these associations by gaining access to the pool of atmospheric nitrogen. By contrast, other plant species, including all cereals, rely only on the scarce nitrogen present in the soil and what they can glean from associative bacteria. Global cereal yields from conventional agriculture are dependent on the application of massive levels of chemical fertilisers. Engineering nitrogen-fixing symbioses into cereal crops could in part mitigate the economic and ecological impacts caused by the overuse of fertilisers and provide better global parity in crop yields. Comparative phylogenetics and phylogenomics are powerful tools to identify genetic and genomic innovations behind key plant traits. In this review we highlight recent discoveries made using such approaches and we discuss how these approaches could be used to help direct the engineering of nitrogen-fixing symbioses into cereals.
Collapse
Affiliation(s)
- Pierre-Marc Delaux
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom.
| | - Guru Radhakrishnan
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Giles Oldroyd
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom.
| |
Collapse
|
41
|
Persson T, Battenberg K, Demina IV, Vigil-Stenman T, Vanden Heuvel B, Pujic P, Facciotti MT, Wilbanks EG, O'Brien A, Fournier P, Cruz Hernandez MA, Mendoza Herrera A, Médigue C, Normand P, Pawlowski K, Berry AM. Candidatus Frankia Datiscae Dg1, the Actinobacterial Microsymbiont of Datisca glomerata, Expresses the Canonical nod Genes nodABC in Symbiosis with Its Host Plant. PLoS One 2015; 10:e0127630. [PMID: 26020781 PMCID: PMC4447401 DOI: 10.1371/journal.pone.0127630] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 04/16/2015] [Indexed: 11/18/2022] Open
Abstract
Frankia strains are nitrogen-fixing soil actinobacteria that can form root symbioses with actinorhizal plants. Phylogenetically, symbiotic frankiae can be divided into three clusters, and this division also corresponds to host specificity groups. The strains of cluster II which form symbioses with actinorhizal Rosales and Cucurbitales, thus displaying a broad host range, show suprisingly low genetic diversity and to date can not be cultured. The genome of the first representative of this cluster, Candidatus Frankia datiscae Dg1 (Dg1), a microsymbiont of Datisca glomerata, was recently sequenced. A phylogenetic analysis of 50 different housekeeping genes of Dg1 and three published Frankia genomes showed that cluster II is basal among the symbiotic Frankia clusters. Detailed analysis showed that nodules of D. glomerata, independent of the origin of the inoculum, contain several closely related cluster II Frankia operational taxonomic units. Actinorhizal plants and legumes both belong to the nitrogen-fixing plant clade, and bacterial signaling in both groups involves the common symbiotic pathway also used by arbuscular mycorrhizal fungi. However, so far, no molecules resembling rhizobial Nod factors could be isolated from Frankia cultures. Alone among Frankia genomes available to date, the genome of Dg1 contains the canonical nod genes nodA, nodB and nodC known from rhizobia, and these genes are arranged in two operons which are expressed in D. glomerata nodules. Furthermore, Frankia Dg1 nodC was able to partially complement a Rhizobium leguminosarum A34 nodC::Tn5 mutant. Phylogenetic analysis showed that Dg1 Nod proteins are positioned at the root of both α- and β-rhizobial NodABC proteins. NodA-like acyl transferases were found across the phylum Actinobacteria, but among Proteobacteria only in nodulators. Taken together, our evidence indicates an Actinobacterial origin of rhizobial Nod factors.
Collapse
Affiliation(s)
- Tomas Persson
- Department of Ecology, Environment and Plant Sciences, Lilla Frescati, Stockholm University, 106 91, Stockholm, Sweden
| | - Kai Battenberg
- Department of Plant Sciences, University of California Davis, Davis, California, 95616, United States of America
| | - Irina V. Demina
- Department of Ecology, Environment and Plant Sciences, Lilla Frescati, Stockholm University, 106 91, Stockholm, Sweden
| | - Theoden Vigil-Stenman
- Department of Ecology, Environment and Plant Sciences, Lilla Frescati, Stockholm University, 106 91, Stockholm, Sweden
| | - Brian Vanden Heuvel
- Department of Biology, Colorado State University, Pueblo, Colorado, 81001, United States of America
| | - Petar Pujic
- Université Lyon 1, Université Lyon, CNRS, Ecologie Microbienne UMR5557, 69622, Villeurbanne Cedex, France
| | - Marc T. Facciotti
- Department of Biomedical Engineering, University of California Davis, Davis, California, 95616, United States of America
- UC Davis Genome Center, University of California Davis, Davis, California, 95616, United States of America
| | - Elizabeth G. Wilbanks
- UC Davis Genome Center, University of California Davis, Davis, California, 95616, United States of America
| | - Anna O'Brien
- UC Davis Genome Center, University of California Davis, Davis, California, 95616, United States of America
| | - Pascale Fournier
- Université Lyon 1, Université Lyon, CNRS, Ecologie Microbienne UMR5557, 69622, Villeurbanne Cedex, France
| | | | - Alberto Mendoza Herrera
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710, Reynosa, Tamaulipas, Mexico
| | | | - Philippe Normand
- Université Lyon 1, Université Lyon, CNRS, Ecologie Microbienne UMR5557, 69622, Villeurbanne Cedex, France
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Lilla Frescati, Stockholm University, 106 91, Stockholm, Sweden
| | - Alison M. Berry
- Department of Plant Sciences, University of California Davis, Davis, California, 95616, United States of America
| |
Collapse
|
42
|
Champion A, Lucas M, Tromas A, Vaissayre V, Crabos A, Diédhiou I, Prodjinoto H, Moukouanga D, Pirolles E, Cissoko M, Bonneau J, Gherbi H, Franche C, Hocher V, Svistoonoff S, Laplaze L. Inhibition of auxin signaling in Frankia species-infected cells in Casuarina glauca nodules leads to increased nodulation. PLANT PHYSIOLOGY 2015; 167:1149-57. [PMID: 25627215 PMCID: PMC4348781 DOI: 10.1104/pp.114.255307] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 01/26/2015] [Indexed: 05/07/2023]
Abstract
Actinorhizal symbioses are mutualistic interactions between plants and the soil bacteria Frankia spp. that lead to the formation of nitrogen-fixing root nodules. The plant hormone auxin has been suggested to play a role in the mechanisms that control the establishment of this symbiosis in the actinorhizal tree Casuarina glauca. Here, we analyzed the role of auxin signaling in Frankia spp.-infected cells. Using a dominant-negative version of an endogenous auxin-signaling regulator, INDOLE-3-ACETIC ACID7, we established that inhibition of auxin signaling in these cells led to increased nodulation and, as a consequence, to higher nitrogen fixation per plant even if nitrogen fixation per nodule mass was similar to that in the wild type. Our results suggest that auxin signaling in Frankia spp.-infected cells is involved in the long-distance regulation of nodulation in actinorhizal symbioses.
Collapse
Affiliation(s)
- Antony Champion
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| | - Mikael Lucas
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| | - Alexandre Tromas
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| | - Virginie Vaissayre
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| | - Amandine Crabos
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| | - Issa Diédhiou
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| | - Hermann Prodjinoto
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| | - Daniel Moukouanga
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| | - Elodie Pirolles
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| | - Maïmouna Cissoko
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| | - Jocelyne Bonneau
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| | - Hassen Gherbi
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| | - Claudine Franche
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| | - Valérie Hocher
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| | - Sergio Svistoonoff
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| | - Laurent Laplaze
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| |
Collapse
|
43
|
Favre P, Bapaume L, Bossolini E, Delorenzi M, Falquet L, Reinhardt D. A novel bioinformatics pipeline to discover genes related to arbuscular mycorrhizal symbiosis based on their evolutionary conservation pattern among higher plants. BMC PLANT BIOLOGY 2014; 14:333. [PMID: 25465219 PMCID: PMC4274732 DOI: 10.1186/s12870-014-0333-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 11/11/2014] [Indexed: 05/07/2023]
Abstract
BACKGROUND Genes involved in arbuscular mycorrhizal (AM) symbiosis have been identified primarily by mutant screens, followed by identification of the mutated genes (forward genetics). In addition, a number of AM-related genes has been identified by their AM-related expression patterns, and their function has subsequently been elucidated by knock-down or knock-out approaches (reverse genetics). However, genes that are members of functionally redundant gene families, or genes that have a vital function and therefore result in lethal mutant phenotypes, are difficult to identify. If such genes are constitutively expressed and therefore escape differential expression analyses, they remain elusive. The goal of this study was to systematically search for AM-related genes with a bioinformatics strategy that is insensitive to these problems. The central element of our approach is based on the fact that many AM-related genes are conserved only among AM-competent species. RESULTS Our approach involves genome-wide comparisons at the proteome level of AM-competent host species with non-mycorrhizal species. Using a clustering method we first established orthologous/paralogous relationships and subsequently identified protein clusters that contain members only of the AM-competent species. Proteins of these clusters were then analyzed in an extended set of 16 plant species and ranked based on their relatedness among AM-competent monocot and dicot species, relative to non-mycorrhizal species. In addition, we combined the information on the protein-coding sequence with gene expression data and with promoter analysis. As a result we present a list of yet uncharacterized proteins that show a strongly AM-related pattern of sequence conservation, indicating that the respective genes may have been under selection for a function in AM. Among the top candidates are three genes that encode a small family of similar receptor-like kinases that are related to the S-locus receptor kinases involved in sporophytic self-incompatibility. CONCLUSIONS We present a new systematic strategy of gene discovery based on conservation of the protein-coding sequence that complements classical forward and reverse genetics. This strategy can be applied to diverse other biological phenomena if species with established genome sequences fall into distinguished groups that differ in a defined functional trait of interest.
Collapse
Affiliation(s)
- Patrick Favre
- />Department of Biology, University of Fribourg, Fribourg, Switzerland
- />Swiss Institute of Bioinformatics, Fribourg, Switzerland
- />SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Laure Bapaume
- />Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Eligio Bossolini
- />Department of Biology, University of Fribourg, Fribourg, Switzerland
- />Current address: Crop Genetics, Bayer CropScience NV, Ghent, Belgium
| | - Mauro Delorenzi
- />Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
- />Oncology Department, University of Lausanne, Lausanne, Switzerland
- />SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Laurent Falquet
- />Department of Biology, University of Fribourg, Fribourg, Switzerland
- />Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - Didier Reinhardt
- />Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
44
|
Imanishi L, Perrine-Walker FM, Ndour A, Vayssières A, Conejero G, Lucas M, Champion A, Laplaze L, Wall L, Svistoonoff S. Role of auxin during intercellular infection of Discaria trinervis by Frankia. FRONTIERS IN PLANT SCIENCE 2014; 5:399. [PMID: 25191330 PMCID: PMC4139986 DOI: 10.3389/fpls.2014.00399] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 07/25/2014] [Indexed: 05/07/2023]
Abstract
Nitrogen-fixing nodules induced by Frankia in the actinorhizal plant Discaria trinervis result from a primitive intercellular root invasion pathway that does not involve root hair deformation and infection threads. Here, we analyzed the role of auxin in this intercellular infection pathway at the molecular level and compared it with our previous work in the intracellular infected actinorhizal plant Casuarina glauca. Immunolocalisation experiments showed that auxin accumulated in Frankia-infected cells in both systems. We then characterized the expression of auxin transporters in D. trinervis nodules. No activation of the heterologous CgAUX1 promoter was detected in infected cells in D. trinervis. These results were confirmed with the endogenous D. trinervis gene, DtAUX1. However, DtAUX1 was expressed in the nodule meristem. Consistently, transgenic D. trinervis plants containing the auxin response marker DR5:VENUS showed expression of the reporter gene in the meristem. Immunolocalisation experiments using an antibody against the auxin efflux carrier PIN1, revealed the presence of this transporter in the plasma membrane of infected cells. Finally, we used in silico cellular models to analyse auxin fluxes in D. trinervis nodules. Our results point to the existence of divergent roles of auxin in intercellularly- and intracellularly-infected actinorhizal plants, an ancestral infection pathways leading to root nodule symbioses.
Collapse
Affiliation(s)
- Leandro Imanishi
- Laboratorio de Bioquímica Microbiología e Interacciones Biológicas en el Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de QuilmesBernal, Argentina
- Groupe Rhizogenèse, Institut de Recherche pour le Développement, UMR DIADEMontpellier, France
| | | | - Adama Ndour
- LAPSE and Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, Centre de Recherche de Bel-AirDakar, Senegal
| | - Alice Vayssières
- Groupe Rhizogenèse, Institut de Recherche pour le Développement, UMR DIADEMontpellier, France
| | - Genevieve Conejero
- Institut National de la Recherche Agronomique, Plateforme PHIV, CiradMontpellier, France
| | - Mikaël Lucas
- Groupe Rhizogenèse, Institut de Recherche pour le Développement, UMR DIADEMontpellier, France
| | - Antony Champion
- Groupe Rhizogenèse, Institut de Recherche pour le Développement, UMR DIADEMontpellier, France
- LAPSE and Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, Centre de Recherche de Bel-AirDakar, Senegal
| | - Laurent Laplaze
- Groupe Rhizogenèse, Institut de Recherche pour le Développement, UMR DIADEMontpellier, France
- LAPSE and Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, Centre de Recherche de Bel-AirDakar, Senegal
| | - Luis Wall
- Laboratorio de Bioquímica Microbiología e Interacciones Biológicas en el Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de QuilmesBernal, Argentina
| | - Sergio Svistoonoff
- Groupe Rhizogenèse, Institut de Recherche pour le Développement, UMR DIADEMontpellier, France
- LAPSE and Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, Centre de Recherche de Bel-AirDakar, Senegal
| |
Collapse
|
45
|
Svistoonoff S, Hocher V, Gherbi H. Actinorhizal root nodule symbioses: what is signalling telling on the origins of nodulation? CURRENT OPINION IN PLANT BIOLOGY 2014; 20:11-8. [PMID: 24691197 DOI: 10.1016/j.pbi.2014.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 02/17/2014] [Accepted: 03/03/2014] [Indexed: 05/07/2023]
Abstract
Two groups of bacteria are able to induce the formation of nitrogen-fixing nodules: proteobacteria called rhizobia, which associate with Legumes or Parasponia and actinobateria from the genus Frankia which are able to interact with ∼220 species belonging to eight families called actinorhizal plants. Legumes and different lineages of actinorhizal plants differ in bacterial partners, nodule organogenesis and infection patterns and have independent evolutionary origins. However, recent technical achievements are revealing a variety of conserved signalling molecules and gene networks. Actinorhizal interactions display several primitive features and thus provide the ideal opportunity to determine the minimal molecular toolkit needed to build a nodule and to understand the evolution of root nodule symbioses.
Collapse
Affiliation(s)
- Sergio Svistoonoff
- Institut de Recherche pour le Développement (IRD), Unité mixte de recherche DIADE, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France.
| | - Valérie Hocher
- Institut de Recherche pour le Développement (IRD), Unité mixte de recherche DIADE, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | - Hassen Gherbi
- Institut de Recherche pour le Développement (IRD), Unité mixte de recherche DIADE, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| |
Collapse
|
46
|
|
47
|
Demina IV, Persson T, Santos P, Plaszczyca M, Pawlowski K. Comparison of the nodule vs. root transcriptome of the actinorhizal plant Datisca glomerata: actinorhizal nodules contain a specific class of defensins. PLoS One 2013; 8:e72442. [PMID: 24009681 PMCID: PMC3756986 DOI: 10.1371/journal.pone.0072442] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 07/09/2013] [Indexed: 11/18/2022] Open
Abstract
Actinorhizal root nodule symbioses are very diverse, and the symbiosis of Datisca glomerata has previously been shown to have many unusual aspects. In order to gain molecular information on the infection mechanism, nodule development and nodule metabolism, we compared the transcriptomes of D. glomerata roots and nodules. Root and nodule libraries representing the 3′-ends of cDNAs were subjected to high-throughput parallel 454 sequencing. To identify the corresponding genes and to improve the assembly, Illumina sequencing of the nodule transcriptome was performed as well. The evaluation revealed 406 differentially regulated genes, 295 of which (72.7%) could be assigned a function based on homology. Analysis of the nodule transcriptome showed that genes encoding components of the common symbiosis signaling pathway were present in nodules of D. glomerata, which in combination with the previously established function of SymRK in D. glomerata nodulation suggests that this pathway is also active in actinorhizal Cucurbitales. Furthermore, comparison of the D. glomerata nodule transcriptome with nodule transcriptomes from actinorhizal Fagales revealed a new subgroup of nodule-specific defensins that might play a role specific to actinorhizal symbioses. The D. glomerata members of this defensin subgroup contain an acidic C-terminal domain that was never found in plant defensins before.
Collapse
Affiliation(s)
- Irina V. Demina
- Department of Botany, Stockholm University, Stockholm, Sweden
| | - Tomas Persson
- Department of Botany, Stockholm University, Stockholm, Sweden
| | - Patricia Santos
- Department of Plant Pathology, Michigan State University, East Lansing, Michigan, United States of America
| | | | | |
Collapse
|