1
|
Reusswig F, An O, Deppermann C. Platelet life cycle during aging: function, production and clearance. Platelets 2024; 35:2433750. [PMID: 39618096 DOI: 10.1080/09537104.2024.2433750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/10/2024] [Accepted: 11/15/2024] [Indexed: 12/13/2024]
Abstract
Platelets are important players in hemostasis. Alterations in platelet number and/or function lead to life-threatening conditions like thrombosis, myocardial infarction and stroke. During aging, changes at the cellular, organ and systemic level occur that affect platelet counts, platelet functionality, the expression of platelet surface receptors, clearance markers as well as their interactions with immune cells. Understanding how these changes influence platelets can help to prevent the alterations of hemostasis and thrombosis we observe in the elderly. In this review, we highlight the respective changes at important sites of the platelet life cycle: bone marrow, liver and spleen, but also show how alterations in immunity contribute. We point out the necessity for further research on age-related systemic alterations in these systems and their interplay with platelets to better understand the complex processes that cause alterations in the platelet life cycle during aging.
Collapse
Affiliation(s)
- Friedrich Reusswig
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Olga An
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Carsten Deppermann
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Research Center for Immune Therapy, Forschungszentrum für Immuntherapie (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
2
|
Pilling D, Martinez TC, Gomer RH. Inhibition of CCl4-induced liver inflammation and fibrosis by a NEU3 inhibitor. PLoS One 2024; 19:e0308060. [PMID: 39570922 PMCID: PMC11581222 DOI: 10.1371/journal.pone.0308060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/26/2024] [Indexed: 11/24/2024] Open
Abstract
Sialic acids are located on the ends of many glycoconjugates and are cleaved off by enzymes called sialidases (neuraminidases). Upregulation of neuraminidase 3 (NEU3) is associated with intestinal inflammation and colitis, neuroinflammation, and lung fibrosis. Genetic ablation of NEU3 or pharmacological inhibition of NEU3 reduces lung fibrosis in mice. To determine if inhibiting NEU3 can inhibit liver fibrosis in the commonly-used CCl4 model, in this report, we examined the effects of injections of the NEU3 inhibitor 2-acetyl pyridine (2AP). 2AP inhibited CCl4-induced weight loss in female but not male mice. 2AP attenuated CCl4-induced liver inflammation and fibrosis in male and female mice, but did not affect CCl4-induced steatosis. After CCl4 treatment, female but not male mice had significant increases in liver neutrophils, and 2AP attenuated this response. 2AP also reversed CCl4-induced liver desialylation and CCl4-induced increased expression of NEU3. Patients with pulmonary fibrosis have increased desialylation of some serum proteins, and elevated serum levels of NEU3. We find that sera from patients with nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) have elevated desialylation of a serum protein and patients with NAFLD have increased levels of NEU3. These data suggest that elevated levels of NEU3 may be associated with liver inflammation and fibrosis, and that in mice this is ameliorated by injections of a NEU3 inhibitor.
Collapse
Affiliation(s)
- Darrell Pilling
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Trevor C. Martinez
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Richard H. Gomer
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
3
|
De Ponti FF, Liu Z, Scott CL. Understanding the complex macrophage landscape in MASLD. JHEP Rep 2024; 6:101196. [PMID: 39524202 PMCID: PMC11550213 DOI: 10.1016/j.jhepr.2024.101196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 11/16/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a spectrum of disease states ranging from simple steatosis to metabolic dysfunction-associated steatohepatitis (MASH), which can eventually lead to the development of cirrhosis and hepatocellular carcinoma. Macrophages have long been implicated in driving the progression from steatosis to end-stage disease, yet we still know relatively little about the precise involvement of these cells in MASLD progression and/or regression. Rather, there are a considerable number of conflicting reports regarding the precise roles of these cells. This confusion stems from the fact that, until recently, macrophages in the liver were considered a homogenous population. However, thanks to recent technological advances including multi-parameter flow cytometry, single-cell RNA sequencing and spatial proteogenomics, we now know that this is not the case. Rather hepatic macrophages, even in the healthy liver, are heterogenous, existing in multiple subsets with distinct transcriptional profiles and hence likely functions. This heterogeneity is even more prominent in MASLD, where the macrophage pool consists of multiple different subsets of resident and recruited cells. To probe the unique functions of these cells and determine if targeting macrophages may be a viable therapeutic strategy in MASLD, we first need to unravel this complexity and decipher which populations and/or activation states are present and what functions each of these may play in driving MASLD progression. In this review, we summarise recent advances in the field, highlighting what is currently known about the hepatic macrophage landscape in MASLD and the questions that remain to be tackled.
Collapse
Affiliation(s)
- Federico F. De Ponti
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Belgium
| | - Zhuangzhuang Liu
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Belgium
| | - Charlotte L. Scott
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Belgium
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Castletroy, Co. Limerick, Ireland
| |
Collapse
|
4
|
Huang HY, Chen YZ, Zhao C, Zheng XN, Yu K, Yue JX, Ju HQ, Shi YX, Tian L. Alternations in inflammatory macrophage niche drive phenotypic and functional plasticity of Kupffer cells. Nat Commun 2024; 15:9337. [PMID: 39472435 PMCID: PMC11522483 DOI: 10.1038/s41467-024-53659-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Inflammatory signals lead to recruitment of circulating monocytes and induce their differentiation into pro-inflammatory macrophages. Therefore, whether blocking inflammatory monocytes can mitigate disease progression is being actively evaluated. Here, we employ multiple lineage-tracing models and show that monocyte-derived macrophages (mo-mac) are the major population of immunosuppressive, liver metastasis-associated macrophages (LMAM), while the proportion of Kupffer cells (KC) as liver-resident macrophages is diminished in metastatic nodules. Paradoxically, genetic ablation of mo-macs results in only a marginal decrease in LMAMs. Using a proliferation-recording system and a KC-tracing model in a monocyte-deficient background, we find that LMAMs can be replenished either via increased local macrophage proliferation or by promoting KC infiltration. In the latter regard, KCs undergo transient proliferation and exhibit substantial phenotypic and functional alterations through epigenetic reprogramming following the vacating of macrophage niches by monocyte depletion. Our data thus suggest that a simultaneous blockade of monocyte recruitment and macrophage proliferation may effectively target immunosuppressive myelopoiesis and reprogram the microenvironment towards an immunostimulatory state.
Collapse
Affiliation(s)
- Han-Ying Huang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yan-Zhou Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Chuang Zhao
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Xin-Nan Zheng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Kai Yu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jia-Xing Yue
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Huai-Qiang Ju
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yan-Xia Shi
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Lin Tian
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
5
|
Graham CT, Gordon S, Kubes P. A historical perspective of Kupffer cells in the context of infection. Cell Tissue Res 2024:10.1007/s00441-024-03924-4. [PMID: 39392500 DOI: 10.1007/s00441-024-03924-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
The Kupffer cell was first discovered by Karl Wilhelm von Kupffer in 1876, labeling them as "Sternzellen." Since their discovery as the primary macrophages of the liver, researchers have gradually gained an in-depth understanding of the identity, functions, and influential role of Kupffer cells, particularly in infection. It is becoming clear that Kupffer cells perform important tissue-specific functions in homeostasis and disease. Stationary in the sinusoids of the liver, Kupffer cells have a high phagocytic capacity and are adept in clearing the bloodstream of foreign material, toxins, and pathogens. Thus, they are indispensable to host defense and prevent the dissemination of bacteria during infections. To highlight the importance of this cell, this review will explore the history of the Kupffer cell in the context of infection beginning with its discovery to the present day.
Collapse
Affiliation(s)
- Carolyn T Graham
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| | - Siamon Gordon
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, 259 Wenhua 1st Road Guishan Dist., Taoyuan, Taiwan
| | - Paul Kubes
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
6
|
Aryal RP, Noel M, Zeng J, Matsumoto Y, Sinard R, Waki H, Erger F, Reusch B, Beck BB, Cummings RD. Cosmc regulates O-glycan extension in murine hepatocytes. Glycobiology 2024; 34:cwae069. [PMID: 39216105 PMCID: PMC11398974 DOI: 10.1093/glycob/cwae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
Hepatocytes synthesize a vast number of glycoproteins found in their membranes and secretions, many of which contain O-glycans linked to Ser/Thr residues. As the functions and distribution of O-glycans on hepatocyte-derived membrane glycoproteins and blood glycoproteins are not well understood, we generated mice with a targeted deletion of Cosmc (C1Galt1c1) in hepatocytes. Liver glycoproteins in WT mice express typical sialylated core 1 O-glycans (T antigen/CD176) (Galβ1-3GalNAcα1-O-Ser/Thr), whereas the Cosmc knockout hepatocytes (HEP-Cosmc-KO) lack extended O-glycans and express the Tn antigen (CD175) (GalNAcα1-O-Ser/Thr). Tn-containing glycoproteins occur in the sera of HEP-Cosmc-KO mice but not in WT mice. The LDL-receptor (LDLR), a well-studied O-glycosylated glycoprotein in hepatocytes, behaves as a ∼145kD glycoprotein in WT liver lysates, whereas it is reduced to ∼120 kDa in lysates from HEP-Cosmc-KO mice. Interestingly, the expression of the LDLR, as well as HMG-CoA reductase, which is typically altered in response to dysregulated cholesterol metabolism, are similar between WT and HEP-Cosmc-KO mice, indicating no significant effect by Cosmc deletion on either LDLR stability or cholesterol metabolism. Consistent with this, we observed no detectable phenotype in the HEP-Cosmc-KO mice regarding development, appearance or aging compared to WT. These results provide surprising, novel information about the pathway of O-glycosylation in the liver.
Collapse
Affiliation(s)
- Rajindra P Aryal
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Maxence Noel
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Junwei Zeng
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Yasuyuki Matsumoto
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Rachael Sinard
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Hannah Waki
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Florian Erger
- Institute of Human Genetics, University Hospital Cologne, Faculty of Medicine, University of Cologne, Kerpenerstr. 34, Cologne 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, Cologne 50931, Germany
| | - Björn Reusch
- Institute of Human Genetics, University Hospital Cologne, Faculty of Medicine, University of Cologne, Kerpenerstr. 34, Cologne 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, Cologne 50931, Germany
| | - Bodo B Beck
- Institute of Human Genetics, University Hospital Cologne, Faculty of Medicine, University of Cologne, Kerpenerstr. 34, Cologne 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, Cologne 50931, Germany
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| |
Collapse
|
7
|
Pessenda G, Ferreira TR, Paun A, Kabat J, Amaral EP, Kamenyeva O, Gazzinelli-Guimaraes PH, Perera SR, Ganesan S, Hun Lee S, Sacks DL. Kupffer cell and recruited macrophage heterogeneity orchestrate granuloma maturation and hepatic immunity in visceral leishmaniasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602717. [PMID: 39372777 PMCID: PMC11451627 DOI: 10.1101/2024.07.09.602717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
In murine models of visceral leishmaniasis (VL), parasitization of resident Kupffer cells (resKCs) is responsible for early growth of Leishmania infantum in the liver, which leads to granuloma formation and eventual parasite control. We employed the chronic VL model, and revealed an open niche established by KCs death and their migration outside of the sinusoids, resulting in their gradual replacement by monocyte-derived KCs (moKCs). While early granulomas were composed of resKCs, late granulomas were found outside of the sinusoids and contained resKC-derived macrophages, and monocyte-derived macrophages (momacs). ResKCs and moKCs within the sinusoids were identified as homeostatic/regulatory cells, while resKC-derived macrophages and momacs within late granulomas were pro-inflammatory. Despite the infection being largely confined to the resKC-derived macrophages, in the absence of monocyte recruitment, parasite control was strongly compromised. Macrophage heterogeneity, involving migration and reprogramming of resKCs, along with recruitment of monocyte-derived cells, is a hallmark of granuloma maturation and hepatic immunity in VL.
Collapse
Affiliation(s)
- Gabriela Pessenda
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tiago R. Ferreira
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrea Paun
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juraj Kabat
- Biological Imaging Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eduardo P. Amaral
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Olena Kamenyeva
- Biological Imaging Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pedro Henrique Gazzinelli-Guimaraes
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shehan R. Perera
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43201, USA
| | - Sundar Ganesan
- Biological Imaging Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sang Hun Lee
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David L. Sacks
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Grezzi L, González C, Díaz Á, Casaravilla C. The Acute Inflammatory Potential of Particles From the Echinococcus granulosus Laminated Layer Is Moderated by Its Calcium Inositol Hexakisphosphate Component. Parasite Immunol 2024; 46:e13040. [PMID: 38801355 DOI: 10.1111/pim.13040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/11/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
Cystic echinococcosis is caused by the tissue-dwelling larva (hydatid) of Echinococcus granulosus sensu lato. A salient feature is that this larva is protected by the acellular laminated layer (LL). As the parasite grows, the LL sheds abundant particles that can accumulate in the parasite's vicinity. The potential of LL particles to induce inflammation in vivo has not been specifically analysed. It is not known how each of its two major components, namely highly glycosylated mucins and calcium inositol hexakisphosphate (InsP6) deposits, impacts inflammation induced by the LL as a whole. In this work, we show that LL particles injected intraperitoneally cause infiltration of eosinophils, neutrophils and monocytes/macrophages as well as the disappearance of resident (large peritoneal) macrophages. Strikingly, the absence of calcium InsP6 enhanced the recruitment of all the inflammatory cell types analysed. In contrast, oxidation of the mucin carbohydrates caused decreased recruitment of neutrophils. The carbohydrate-oxidised particles caused cell influx nonetheless, which may be explained by possible receptor-independent effects of LL particles on innate immune cells, as suggested by previous works from our group. In summary, LL particles can induce acute inflammatory cell recruitment partly dependent on its mucin glycans, and this recruitment is attenuated by the calcium InsP6 component.
Collapse
Affiliation(s)
- Leticia Grezzi
- Área Inmunología, Departamento de Biociencias (Facultad de Química), Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Inmunología, Instituto de Química Biológica (Facultad de Ciencias), Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
| | | | - Álvaro Díaz
- Área Inmunología, Departamento de Biociencias (Facultad de Química), Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Inmunología, Instituto de Química Biológica (Facultad de Ciencias), Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
| | - Cecilia Casaravilla
- Área Inmunología, Departamento de Biociencias (Facultad de Química), Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Inmunología, Instituto de Química Biológica (Facultad de Ciencias), Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
9
|
Abbas N, You K, Getachew A, Wu F, Hussain M, Huang X, Chen Y, Pan T, Li Y. Kupffer cells abrogate homing and repopulation of allogeneic hepatic progenitors in injured liver site. Stem Cell Res Ther 2024; 15:48. [PMID: 38378583 PMCID: PMC10877762 DOI: 10.1186/s13287-024-03656-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Allogeneic hepatocyte transplantation is an emerging approach to treat acute liver defects. However, durable engraftment of the transplanted cells remains a daunting task, as they are actively cleared by the recipient's immune system. Therefore, a detailed understanding of the innate or adaptive immune cells-derived responses against allogeneic transplanted hepatic cells is the key to rationalize cell-based therapies. METHODS Here, we induced an acute inflammatory regenerative niche (3-96 h) on the surface of the liver by the application of cryo-injury (CI) to systematically evaluate the innate immune response against transplanted allogeneic hepatic progenitors in a sustained micro-inflammatory environment. RESULTS The resulting data highlighted that the injured site was significantly repopulated by alternating numbers of innate immune cells, including neutrophils, monocytes and Kupffer cells (KCs), from 3 to 96 h. The transplanted allo-HPs, engrafted 6 h post-injury, were collectively eliminated by the innate immune response within 24 h of transplantation. Selective depletion of the KCs demonstrated a delayed recruitment of monocytes from day 2 to day 6. In addition, the intrasplenic engraftment of the hepatic progenitors 54 h post-transplantation was dismantled by KCs, while a time-dependent better survival and translocation of the transplanted cells into the injured site could be observed in samples devoid of KCs. CONCLUSION Overall, this study provides evidence that KCs ablation enables a better survival and integration of allo-HPs in a sustained liver inflammatory environment, having implications for rationalizing the cell-based therapeutic interventions against liver defects.
Collapse
Affiliation(s)
- Nasir Abbas
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Centre for Regenerative Medicine and Health (CRMH), Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong, Hong Kong SAR, China
| | - Kai You
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Anteneh Getachew
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, USA
| | - Feima Wu
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Muzammal Hussain
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Xinping Huang
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yan Chen
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Tingcai Pan
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong Province, China
| | - Yinxiong Li
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China.
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou, 510530, China.
| |
Collapse
|
10
|
An O, Deppermann C. Platelet lifespan and mechanisms for clearance. Curr Opin Hematol 2024; 31:6-15. [PMID: 37905750 DOI: 10.1097/moh.0000000000000792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
PURPOSE OF REVIEW Activated or aged platelets are removed from circulation under (patho)physiologic conditions, the exact mechanism of platelet clearance under such conditions remains unclear and are currently being investigated. This review focuses on recent findings and controversies regarding platelet clearance and the disruption of platelet life cycle. RECENT FINDINGS The platelet life span is determined by glycosylation of platelet surface receptors with sialic acid. Recently, it was shown that platelet activation and granule release leads to desialylation of glycans and accelerated clearance of platelets under pathological conditions. This phenomenon was demonstrated to be a main reason for thrombocytopenia being a complication in several infections and immune disorders. SUMMARY Although we have recently gained some insight into how aged platelets are cleared from circulation, we are still not seeing the full picture. Further investigations of the platelet clearance pathways under pathophysiologic conditions are needed as well as studies to unravel the connection between platelet clearance and platelet production.
Collapse
Affiliation(s)
- Olga An
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | | |
Collapse
|
11
|
Kim DM, Lee JH, Pan Q, Han HW, Shen Z, Eshghjoo S, Wu CS, Yang W, Noh JY, Threadgill DW, Guo S, Wright G, Alaniz R, Sun Y. Nutrient-sensing growth hormone secretagogue receptor in macrophage programming and meta-inflammation. Mol Metab 2024; 79:101852. [PMID: 38092245 PMCID: PMC10772824 DOI: 10.1016/j.molmet.2023.101852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/03/2023] [Accepted: 12/08/2023] [Indexed: 12/20/2023] Open
Abstract
OBJECTIVE Obesity-associated chronic inflammation, aka meta-inflammation, is a key pathogenic driver for obesity-associated comorbidity. Growth hormone secretagogue receptor (GHSR) is known to mediate the effects of nutrient-sensing hormone ghrelin in food intake and fat deposition. We previously reported that global Ghsr ablation protects against diet-induced inflammation and insulin resistance, but the site(s) of action and mechanism are unknown. Macrophages are key drivers of meta-inflammation. To unravel the role of GHSR in macrophages, we generated myeloid-specific Ghsr knockout mice (LysM-Cre;Ghsrf/f). METHODS LysM-Cre;Ghsrf/f and control Ghsrf/f mice were subjected to 5 months of high-fat diet (HFD) feeding to induce obesity. In vivo, metabolic profiling of food intake, physical activity, and energy expenditure, as well as glucose and insulin tolerance tests (GTT and ITT) were performed. At termination, peritoneal macrophages (PMs), epididymal white adipose tissue (eWAT), and liver were analyzed by flow cytometry and histology. For ex vivo studies, bone marrow-derived macrophages (BMDMs) were generated from the mice and treated with palmitic acid (PA) or lipopolysaccharide (LPS). For in vitro studies, macrophage RAW264.7 cells with Ghsr overexpression or Insulin receptor substrate 2 (Irs2) knockdown were studied. RESULTS We found that Ghsr expression in PMs was increased under HFD feeding. In vivo, HFD-fed LysM-Cre;Ghsrf/f mice exhibited significantly attenuated systemic inflammation and insulin resistance without affecting food intake or body weight. Tissue analysis showed that HFD-fed LysM-Cre;Ghsrf/f mice have significantly decreased monocyte/macrophage infiltration, pro-inflammatory activation, and lipid accumulation, showing elevated lipid-associated macrophages (LAMs) in eWAT and liver. Ex vivo, Ghsr-deficient macrophages protected against PA- or LPS-induced pro-inflammatory polarization, showing reduced glycolysis, increased fatty acid oxidation, and decreased NF-κB nuclear translocation. At molecular level, GHSR metabolically programs macrophage polarization through PKA-CREB-IRS2-AKT2 signaling pathway. CONCLUSIONS These novel results demonstrate that macrophage GHSR plays a key role in the pathogenesis of meta-inflammation, and macrophage GHSR promotes macrophage infiltration and induces pro-inflammatory polarization. These exciting findings suggest that GHSR may serve as a novel immunotherapeutic target for the treatment of obesity and its associated comorbidity.
Collapse
Affiliation(s)
- Da Mi Kim
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Jong Han Lee
- Department of Marine Bioindustry, Hanseo University, Seosan 31962, South Korea; USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College Medicine, Houston, TX 77030, USA
| | - Quan Pan
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Hye Won Han
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Zheng Shen
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Sahar Eshghjoo
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Agilent technologies, Aanta Clara, CA 95051, USA
| | - Chia-Shan Wu
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College Medicine, Houston, TX 77030, USA
| | - Wanbao Yang
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Ji Yeon Noh
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - David W Threadgill
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; Texas A&M Institute for Genome Sciences and Society, Department of Cell Biology and Genetics, Texas A&M University, College Station, TX 77843, USA
| | - Shaodong Guo
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Gus Wright
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA
| | - Robert Alaniz
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Tlaloc Therapeutics Inc., College Station, TX 77845, USA
| | - Yuxiang Sun
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College Medicine, Houston, TX 77030, USA.
| |
Collapse
|
12
|
Ait Ahmed Y, Lafdil F, Tacke F. Ambiguous Pathogenic Roles of Macrophages in Alcohol-Associated Liver Diseases. Hepat Med 2023; 15:113-127. [PMID: 37753346 PMCID: PMC10519224 DOI: 10.2147/hmer.s326468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Alcohol-associated liver disease (ALD) represents a major public health issue worldwide and is a leading etiology of liver cirrhosis. Alcohol-related liver injuries include a range of manifestations including alcoholic hepatitis (AH), simple steatosis, steatohepatitis, hepatic fibrosis, cirrhosis and liver cancer. Liver disease occurs from several pathological disturbances such as the metabolism of ethanol, which generates reactive oxygen species (ROS) in hepatocytes, alterations in the gut microbiota, and the immune response to these changes. A common hallmark of these liver affections is the establishment of an inflammatory environment, and some (broad) anti-inflammatory approaches are used to treat AH (eg, corticosteroids). Macrophages, which represent the main innate immune cells in the liver, respond to a wide variety of (pathogenic) stimuli and adopt a large spectrum of phenotypes. This translates to a diversity of functions including pathogen and debris clearance, recruitment of other immune cells, activation of fibroblasts, or tissue repair. Thus, macrophage populations play a crucial role in the course of ALD, but the underlying mechanisms driving macrophage polarization and their functionality in ALD are complex. In this review, we explore the various populations of hepatic macrophages in alcohol-associated liver disease and the underlying mechanisms driving their polarization. Additionally, we summarize the crosstalk between hepatic macrophages and other hepatic cell types in ALD, in order to support the exploration of targeted therapeutics by modulating macrophage polarization.
Collapse
Affiliation(s)
- Yeni Ait Ahmed
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | - Fouad Lafdil
- Université Paris-Est, UMR-S955, UPEC, Créteil, France
- Institut National de la Sante et de la Recherche Medicale (INSERM), U955, Créteil, France
- Institut Universitaire de France (IUF), Paris, France
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| |
Collapse
|
13
|
Hassan GS, Flores Molina M, Shoukry NH. The multifaceted role of macrophages during acute liver injury. Front Immunol 2023; 14:1237042. [PMID: 37736102 PMCID: PMC10510203 DOI: 10.3389/fimmu.2023.1237042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/15/2023] [Indexed: 09/23/2023] Open
Abstract
The liver is situated at the interface of the gut and circulation where it acts as a filter for blood-borne and gut-derived microbes and biological molecules, promoting tolerance of non-invasive antigens while driving immune responses against pathogenic ones. Liver resident immune cells such as Kupffer cells (KCs), a subset of macrophages, maintain homeostasis under physiological conditions. However, upon liver injury, these cells and others recruited from circulation participate in the response to injury and the repair of tissue damage. Such response is thus spatially and temporally regulated and implicates interconnected cells of immune and non-immune nature. This review will describe the hepatic immune environment during acute liver injury and the subsequent wound healing process. In its early stages, the wound healing immune response involves a necroinflammatory process characterized by partial depletion of resident KCs and lymphocytes and a significant infiltration of myeloid cells including monocyte-derived macrophages (MoMFs) complemented by a wave of pro-inflammatory mediators. The subsequent repair stage includes restoring KCs, initiating angiogenesis, renewing extracellular matrix and enhancing proliferation/activation of resident parenchymal and mesenchymal cells. This review will focus on the multifaceted role of hepatic macrophages, including KCs and MoMFs, and their spatial distribution and roles during acute liver injury.
Collapse
Affiliation(s)
- Ghada S. Hassan
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Manuel Flores Molina
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Naglaa H. Shoukry
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de médecine, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
14
|
Dart SJ, Prosser AC, Huang WH, Liu L, Lucas AD, Delriviere L, Gaudieri S, Jeffrey GP, Lucas M. Subset-specific Retention of Donor Myeloid Cells After Major Histocompatibility Complex-matched and Mismatched Liver Transplantation. Transplantation 2023; 107:1502-1512. [PMID: 36584373 PMCID: PMC10508270 DOI: 10.1097/tp.0000000000004481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/14/2022] [Accepted: 11/03/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND During solid organ transplantation, donor leukocytes, including myeloid cells, are transferred within the organ to the recipient. Both tolerogenic and alloreactive roles have been attributed to donor myeloid cells; however, their subset-specific retention posttransplantation has not been investigated in detail. METHODS Major histocompatibility complex (MHC)-matched and mismatched liver transplants were performed in mice, and the fate of donor and recipient myeloid cells was assessed. RESULTS Following MHC-matched transplantation, a proportion of donor myeloid cells was retained in the graft, whereas others egressed and persisted in the blood, spleen, and bone marrow but not the lymph nodes. In contrast, after MHC-mismatched transplantation, all donor myeloid cells, except Kupffer cells, were depleted. This depletion was caused by recipient T and B cells because all donor myeloid subsets were retained in MHC-mismatched grafts when recipients lacked T and B cells. Recipient myeloid cells rapidly infiltrated MHC-matched and, to a greater extent, MHC-mismatched liver grafts. MHC-mismatched grafts underwent a transient rejection episode on day 7, coinciding with a transition in macrophages to a regulatory phenotype, after which rejection resolved. CONCLUSIONS Phenotypic and kinetic differences in the myeloid cell responses between MHC-matched and mismatched grafts were identified. A detailed understanding of the dynamics of immune responses to transplantation is critical to improving graft outcomes.
Collapse
Affiliation(s)
- Sarah J. Dart
- Medical School, The University of Western Australia, Perth, WA, Australia
| | - Amy C. Prosser
- Medical School, The University of Western Australia, Perth, WA, Australia
| | - Wen Hua Huang
- Medical School, The University of Western Australia, Perth, WA, Australia
- Western Australian Liver Transplant Service, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Liu Liu
- Medical School, The University of Western Australia, Perth, WA, Australia
| | - Andrew D. Lucas
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Luc Delriviere
- Medical School, The University of Western Australia, Perth, WA, Australia
- Western Australian Liver Transplant Service, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Silvana Gaudieri
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
| | - Gary P. Jeffrey
- Medical School, The University of Western Australia, Perth, WA, Australia
- Western Australian Liver Transplant Service, Sir Charles Gairdner Hospital, Perth, WA, Australia
- Department of Hepatology, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Michaela Lucas
- Medical School, The University of Western Australia, Perth, WA, Australia
- Department of Immunology, Sir Charles Gairdner Hospital and PathWest Laboratory Medicine, Perth, WA, Australia
| |
Collapse
|
15
|
Barrios AA, Mouhape C, Schreiber L, Zhang L, Nell J, Suárez-Martins M, Schlapp G, Meikle MN, Mulet AP, Hsu TL, Hsieh SL, Mourglia-Ettlin G, González C, Crispo M, Barth TFE, Casaravilla C, Jenkins SJ, Díaz Á. Mucins Shed from the Laminated Layer in Cystic Echinococcosis Are Captured by Kupffer Cells via the Lectin Receptor Clec4F. Infect Immun 2023; 91:e0003123. [PMID: 37162364 PMCID: PMC10269144 DOI: 10.1128/iai.00031-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
Cystic echinococcosis is caused by the larval stages (hydatids) of cestode parasites belonging to the species cluster Echinococcus granulosus sensu lato, with E. granulosus sensu stricto being the main infecting species. Hydatids are bladderlike structures that attain large sizes within various internal organs of livestock ungulates and humans. Hydatids are protected by the massive acellular laminated layer (LL), composed mainly of mucins. Parasite growth requires LL turnover, and abundant LL-derived particles are found at infection sites in infected humans, raising the question of how LL materials are dealt with by the hosts. In this article, we show that E. granulosus sensu stricto LL mucins injected into mice are taken up by Kupffer cells, the liver macrophages exposed to the vascular space. This uptake is largely dependent on the intact mucin glycans and on Clec4F, a C-type lectin receptor which, in rodents, is selectively expressed in Kupffer cells. This uptake mechanism operates on mucins injected both in soluble form intravenously (i.v.) and in particulate form intraperitoneally (i.p.). In mice harboring intraperitoneal infections by the same species, LL mucins were found essentially only at the infection site and in the liver, where they were taken up by Kupffer cells via Clec4F. Therefore, shed LL materials circulate in the host, and Kupffer cells can act as a sink for these materials, even when the parasite grows in sites other than the liver.
Collapse
Affiliation(s)
- Anabella A. Barrios
- Área Inmunología, Departamento de Biociencias (Facultad de Química) and Cátedra de Inmunología, Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| | - Camila Mouhape
- Área Inmunología, Departamento de Biociencias (Facultad de Química) and Cátedra de Inmunología, Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| | | | - Linyun Zhang
- Institute of Pathology, University Ulm, Ulm, Germany
| | - Juliane Nell
- Institute of Pathology, University Ulm, Ulm, Germany
| | - Mariana Suárez-Martins
- Área Inmunología, Departamento de Biociencias (Facultad de Química) and Cátedra de Inmunología, Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| | - Geraldine Schlapp
- Unidad de Biotecnología en Animales de Laboratorio, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - María Noel Meikle
- Unidad de Biotecnología en Animales de Laboratorio, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Ana Paula Mulet
- Unidad de Biotecnología en Animales de Laboratorio, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Tsui-Ling Hsu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Gustavo Mourglia-Ettlin
- Área Inmunología, Departamento de Biociencias (Facultad de Química) and Cátedra de Inmunología, Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| | | | - Martina Crispo
- Unidad de Biotecnología en Animales de Laboratorio, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | - Cecilia Casaravilla
- Área Inmunología, Departamento de Biociencias (Facultad de Química) and Cátedra de Inmunología, Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| | - Stephen J. Jenkins
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Álvaro Díaz
- Área Inmunología, Departamento de Biociencias (Facultad de Química) and Cátedra de Inmunología, Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
16
|
Díaz Á, Barrios AA, Grezzi L, Mouhape C, Jenkins SJ, Allen JE, Casaravilla C. Immunology of a unique biological structure: the Echinococcus laminated layer. Protein Cell 2023; 14:87-104. [PMID: 36929004 PMCID: PMC10019577 DOI: 10.1093/procel/pwac023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/29/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
The larval stages of the cestode parasites belonging to the genus Echinococcus grow within internal organs of humans and a range of animal species. The resulting diseases, collectively termed echinococcoses, include major neglected tropical diseases of humans and livestock. Echinococcus larvae are outwardly protected by the laminated layer (LL), an acellular structure that is unique to this genus. The LL is based on a fibrillar meshwork made up of mucins, which are decorated by galactose-rich O-glycans. In addition, in the species cluster termed E. granulosus sensu lato, the LL features nano-deposits of the calcium salt of myo-inositol hexakisphosphate (Insp6). The main purpose of our article is to update the immunobiology of the LL. Major recent advances in this area are (i) the demonstration of LL "debris" at the infection site and draining lymph nodes, (ii) the characterization of the decoy activity of calcium Insp6 with respect to complement, (iii) the evidence that the LL mucin carbohydrates interact specifically with a lectin receptor expressed in Kupffer cells (Clec4F), and (iv) the characterization of what appear to be receptor-independent effects of LL particles on dendritic cells and macrophages. Much information is missing on the immunology of this intriguing structure: we discuss gaps in knowledge and propose possible avenues for research.
Collapse
Affiliation(s)
| | - Anabella A Barrios
- Área Inmunología, Departamento de Biociencias (Facultad de Química) and Cátedra de Inmunología, Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| | - Leticia Grezzi
- Área Inmunología, Departamento de Biociencias (Facultad de Química) and Cátedra de Inmunología, Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| | - Camila Mouhape
- Área Inmunología, Departamento de Biociencias (Facultad de Química) and Cátedra de Inmunología, Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| | - Stephen J Jenkins
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH8 9JU, UK
| | - Judith E Allen
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, M13 9NQ, UK
| | - Cecilia Casaravilla
- Área Inmunología, Departamento de Biociencias (Facultad de Química) and Cátedra de Inmunología, Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
17
|
Radhakrishnan A, Chellapandian H, Ramasamy P, Jeyachandran S. Back2Basics: animal lectins: an insight into a highly versatile recognition protein. JOURNAL OF PROTEINS AND PROTEOMICS 2023; 14:43-59. [PMID: 36597476 PMCID: PMC9799708 DOI: 10.1007/s42485-022-00102-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/15/2022] [Accepted: 12/08/2022] [Indexed: 12/31/2022]
Abstract
The rapid advancement of molecular research has contributed to the discovery of 'Lectin', a carbohydrate-binding protein which specifically interacts with receptors on surface glycan moieties that regulate various critical cellular activities. The first animal lectin reported was 'the asialoglycoprotein receptor' in mammalian cells which helped analyze how animal lectins differ in glycoconjugate binding. Animal lectins are classified into several families, depending on their diverse cellular localization, and the binding specificities of their Carbohydrate-Recognition Domain (CRD) modules. Earlier characterization of animal lectins classified them into two structural families, the C-type (Ca2+-dependent binding) and S-type galectins (sulfhydryl-dependent binding) lectins. The C-type lectin includes the most significant animal lectins, such as endocytic receptors, mannose receptors, selectins, and collectins. The recent developments in research based on the complexity of the carbohydrate ligands, the metabolic processes they perform, their expression levels, and their reliance on divalent cations have identified more than 100 animal lectins and classified them into around 13 different families, such as Calnexin, F-lectin, Intelectin, Chitinase-like lectin, F-box lectin, etc. Understanding their structure and expression patterns have aided in defining their significant functions including cell adhesion, antimicrobial activity, innate immunity, disease diagnostic biomarkers, and drug delivery through specific carbohydrate-protein interactions. Such extensive potential roles of animal lectins made it equally important to plant lectins among researchers. Hence, the review focuses on providing an overview of animal lectins, their taxonomy, structural characteristics, and functions in diverse aspects interconnected to their specific carbohydrate and glycoconjugate binding. Graphical abstract
Collapse
Affiliation(s)
- Akshaya Radhakrishnan
- PG & Research Department of Biotechnology & Microbiology, National College, Tiruchirappalli, Tamil Nadu 620001 India
| | - Hethesh Chellapandian
- PG & Research Department of Biotechnology & Microbiology, National College, Tiruchirappalli, Tamil Nadu 620001 India
| | - Pasiyappazham Ramasamy
- Department of Physiology, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 600077 India
| | - Sivakamavalli Jeyachandran
- PG & Research Department of Biotechnology & Microbiology, National College, Tiruchirappalli, Tamil Nadu 620001 India
- Centre for Biotechnology & Biosignal Transduction, Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 600077 India
| |
Collapse
|
18
|
Kaufmann B, Leszczynska A, Reca A, Booshehri LM, Onyuru J, Tan Z, Wree A, Friess H, Hartmann D, Papouchado B, Broderick L, Hoffman HM, Croker BA, Zhu YP, Feldstein AE. NLRP3 activation in neutrophils induces lethal autoinflammation, liver inflammation, and fibrosis. EMBO Rep 2022; 23:e54446. [PMID: 36194627 PMCID: PMC9638850 DOI: 10.15252/embr.202154446] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 08/17/2022] [Accepted: 09/06/2022] [Indexed: 11/05/2022] Open
Abstract
Sterile inflammation is a central element in liver diseases. The immune response following injurious stimuli involves hepatic infiltration of neutrophils and monocytes. Neutrophils are major effectors of liver inflammation, rapidly recruited to sites of inflammation, and can augment the recruitment of other leukocytes. The NLRP3 inflammasome has been increasingly implicated in severe liver inflammation, fibrosis, and cell death. In this study, the role of NLRP3 activation in neutrophils during liver inflammation and fibrosis was investigated. Mouse models with neutrophil-specific expression of mutant NLRP3 were developed. Mutant mice develop severe liver inflammation and lethal autoinflammation phenocopying mice with a systemic expression of mutant NLRP3. NLRP3 activation in neutrophils leads to a pro-inflammatory cytokine and chemokine profile in the liver, infiltration by neutrophils and macrophages, and an increase in cell death. Furthermore, mutant mice develop liver fibrosis associated with increased expression of pro-fibrogenic genes. Taken together, the present work demonstrates how neutrophils, driven by the NLRP3 inflammasome, coordinate other inflammatory myeloid cells in the liver, and propagate the inflammatory response in the context of inflammation-driven fibrosis.
Collapse
Affiliation(s)
- Benedikt Kaufmann
- Department of PediatricsUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, TechnicalUniversity of MunichMunichGermany
| | | | - Agustina Reca
- Department of PediatricsUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Laela M Booshehri
- Department of PediatricsUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Janset Onyuru
- Department of PediatricsUniversity of California San DiegoLa JollaCaliforniaUSA
| | - ZheHao Tan
- Department of PediatricsUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Alexander Wree
- Department of Hepatology and GastroenterologyCharité, Universitätsmedizin BerlinBerlinGermany
| | - Helmut Friess
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, TechnicalUniversity of MunichMunichGermany
| | - Daniel Hartmann
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, TechnicalUniversity of MunichMunichGermany
| | - Bettina Papouchado
- Department of PathologyUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Lori Broderick
- Department of PediatricsUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Hal M Hoffman
- Department of PediatricsUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Ben A Croker
- Department of PediatricsUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Yanfang Peipei Zhu
- Department of PediatricsUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Ariel E Feldstein
- Department of PediatricsUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
19
|
Flores Molina M, Abdelnabi MN, Mazouz S, Villafranca-Baughman D, Trinh VQH, Muhammad S, Bédard N, Osorio Laverde D, Hassan GS, Di Polo A, Shoukry NH. Distinct spatial distribution and roles of Kupffer cells and monocyte-derived macrophages in mouse acute liver injury. Front Immunol 2022; 13:994480. [PMID: 36248843 PMCID: PMC9562324 DOI: 10.3389/fimmu.2022.994480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Macrophages are key regulators of inflammation and repair, but their heterogeneity and multiple roles in the liver are not fully understood. We aimed herein to map the intrahepatic macrophage populations and their function(s) during acute liver injury. We used flow cytometry, gene expression analysis, multiplex-immunofluorescence, 3D-reconstruction, and spatial image analysis to characterize the intrahepatic immune landscape in mice post-CCl4-induced acute liver injury during three distinct phases: necroinflammation, and early and late repair. We observed hepatocellular necrosis and a reduction in liver resident lymphocytes during necroinflammation accompanied by the infiltration of circulating myeloid cells and upregulation of inflammatory cytokines. These parameters returned to baseline levels during the repair phase while pro-repair chemokines were upregulated. We identified resident CLEC4F+ Kupffer cells (KCs) and infiltrating IBA1+CLEC4F- monocyte-derived macrophages (MoMFs) as the main hepatic macrophage populations during this response to injury. While occupying most of the necrotic area, KCs and MoMFs exhibited distinctive kinetics, distribution and morphology at the site of injury. The necroinflammation phase was characterized by low levels of KCs and a remarkable invasion of MoMFs suggesting their potential role in phagoctosing necrotic hepatocytes, while opposite kinetics/distribution were observed during repair. During the early repair phase, yolksac - derived KCs were restored, whereas MoMFs diminished gradually then dissipated during late repair. MoMFs interacted with hepatic stellate cells during the necroinflammatory and early repair phases, potentially modulating their activation state and influencing their fibrogenic and pro-repair functions that are critical for wound healing. Altogether, our study reveals novel and distinct spatial and temporal distribution of KCs and MoMFs and provides insights into their complementary roles during acute liver injury.
Collapse
Affiliation(s)
- Manuel Flores Molina
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Mohamed N. Abdelnabi
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Sabrina Mazouz
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Deborah Villafranca-Baughman
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de neurosciences, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Vincent Quoc-Huy Trinh
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Shafi Muhammad
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Nathalie Bédard
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - David Osorio Laverde
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Ghada S. Hassan
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Adriana Di Polo
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de neurosciences, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Naglaa H. Shoukry
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de médecine, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
- *Correspondence: Naglaa H. Shoukry,
| |
Collapse
|
20
|
Qin Q, Liu H, He W, Guo Y, Zhang J, She J, Zheng F, Zhang S, Muyldermans S, Wen Y. Single Domain Antibody application in bacterial infection diagnosis and neutralization. Front Immunol 2022; 13:1014377. [PMID: 36248787 PMCID: PMC9558170 DOI: 10.3389/fimmu.2022.1014377] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022] Open
Abstract
Increasing antibiotic resistance to bacterial infections causes a serious threat to human health. Efficient detection and treatment strategies are the keys to preventing and reducing bacterial infections. Due to the high affinity and antigen specificity, antibodies have become an important tool for diagnosis and treatment of various human diseases. In addition to conventional antibodies, a unique class of “heavy-chain-only” antibodies (HCAbs) were found in the serum of camelids and sharks. HCAbs binds to the antigen through only one variable domain Referred to as VHH (variable domain of the heavy chain of HCAbs). The recombinant format of the VHH is also called single domain antibody (sdAb) or nanobody (Nb). Sharks might also have an ancestor HCAb from where SdAbs or V-NAR might be engineered. Compared with traditional Abs, Nbs have several outstanding properties such as small size, high stability, strong antigen-binding affinity, high solubility and low immunogenicity. Furthermore, they are expressed at low cost in microorganisms and amenable to engineering. These superior properties make Nbs a highly desired alternative to conventional antibodies, which are extensively employed in structural biology, unravelling biochemical mechanisms, molecular imaging, diagnosis and treatment of diseases. In this review, we summarized recent progress of nanobody-based approaches in diagnosis and neutralization of bacterial infection and further discussed the challenges of Nbs in these fields.
Collapse
Affiliation(s)
- Qian Qin
- Department of General Surgery, Center for Microbiome Research of Med-X Institute, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Hao Liu
- Center for Biomedical Research, Institute of Future Agriculture, Northwest A&F University, Yangling, China
| | - Wenbo He
- Department of General Surgery, Center for Microbiome Research of Med-X Institute, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yucheng Guo
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jiaxin Zhang
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Junjun She
- Department of General Surgery, Center for Microbiome Research of Med-X Institute, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Fang Zheng
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Sicai Zhang
- Center for Biomedical Research, Institute of Future Agriculture, Northwest A&F University, Yangling, China
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yurong Wen
- Department of General Surgery, Center for Microbiome Research of Med-X Institute, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
21
|
Elchaninov A, Vishnyakova P, Menyailo E, Sukhikh G, Fatkhudinov T. An Eye on Kupffer Cells: Development, Phenotype and the Macrophage Niche. Int J Mol Sci 2022; 23:ijms23179868. [PMID: 36077265 PMCID: PMC9456487 DOI: 10.3390/ijms23179868] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/14/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Macrophages are key participants in the maintenance of tissue homeostasis under normal and pathological conditions, and implement a rich diversity of functions. The largest population of resident tissue macrophages is found in the liver. Hepatic macrophages, termed Kupffer cells, are involved in the regulation of multiple liver functionalities. Specific differentiation profiles and functional activities of tissue macrophages have been attributed to the shaping role of the so-called tissue niche microenvironments. The fundamental macrophage niche concept was lately shaken by a flood of new data, leading to a revision and substantial update of the concept, which constitutes the main focus of this review. The macrophage community discusses contemporary evidence on the developmental origins of resident macrophages, notably Kupffer cells and the issues of heterogeneity of the hepatic macrophage populations, as well as the roles of proliferation, cell death and migration processes in the maintenance of macrophage populations of the liver. Special consideration is given to interactions of Kupffer cells with other local cell lineages, including Ito cells, sinusoidal endothelium and hepatocytes, which participate in the maintenance of their phenotypical and functional identity.
Collapse
Affiliation(s)
- Andrey Elchaninov
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
- Histology Department, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Correspondence:
| | - Polina Vishnyakova
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Egor Menyailo
- Laboratory of Growth and Development, Avtsyn Research Institute of Human Morphology of FSBI “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
| | - Gennady Sukhikh
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
| | - Timur Fatkhudinov
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
- Laboratory of Growth and Development, Avtsyn Research Institute of Human Morphology of FSBI “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
| |
Collapse
|
22
|
Taylor RS, Ruiz Daniels R, Dobie R, Naseer S, Clark TC, Henderson NC, Boudinot P, Martin SA, Macqueen DJ. Single cell transcriptomics of Atlantic salmon ( Salmo salar L.) liver reveals cellular heterogeneity and immunological responses to challenge by Aeromonas salmonicida. Front Immunol 2022; 13:984799. [PMID: 36091005 PMCID: PMC9450062 DOI: 10.3389/fimmu.2022.984799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
The liver is a multitasking organ with essential functions for vertebrate health spanning metabolism and immunity. In contrast to mammals, our understanding of liver cellular heterogeneity and its role in regulating immunological status remains poorly defined in fishes. Addressing this knowledge gap, we generated a transcriptomic atlas of 47,432 nuclei isolated from the liver of Atlantic salmon (Salmo salar L.) contrasting control fish with those challenged with a pathogenic strain of Aeromonas salmonicida, a problematic bacterial pathogen in global aquaculture. We identified the major liver cell types and their sub-populations, revealing poor conservation of many hepatic cell marker genes utilized in mammals, while identifying novel heterogeneity within the hepatocyte, lymphoid, and myeloid lineages. This included polyploid hepatocytes, multiple T cell populations including γδ T cells, and candidate populations of monocytes/macrophages and dendritic cells. A dominant hepatocyte population radically remodeled its transcriptome following infection to activate the acute phase response and other defense functions, while repressing routine functions such as metabolism. These defense-specialized hepatocytes showed strong activation of genes controlling protein synthesis and secretion, presumably to support the release of acute phase proteins into circulation. The infection response further involved up-regulation of numerous genes in an immune-cell specific manner, reflecting functions in pathogen recognition and killing, antigen presentation, phagocytosis, regulation of inflammation, B cell differentiation and T cell activation. Overall, this study greatly enhances our understanding of the multifaceted role played by liver immune and non-immune cells in host defense and metabolic remodeling following infection and provides many novel cell-specific marker genes to empower future studies of this organ in fishes.
Collapse
Affiliation(s)
- Richard S. Taylor
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Rose Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Ross Dobie
- Centre for Inflammation Research, The Queen’s Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Shahmir Naseer
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Thomas C. Clark
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Neil C. Henderson
- Centre for Inflammation Research, The Queen’s Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Samuel A.M. Martin
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Daniel J. Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
23
|
Ngo W, Ahmed S, Blackadar C, Bussin B, Ji Q, Mladjenovic SM, Sepahi Z, Chan WC. Why nanoparticles prefer liver macrophage cell uptake in vivo. Adv Drug Deliv Rev 2022; 185:114238. [PMID: 35367524 DOI: 10.1016/j.addr.2022.114238] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/26/2022] [Accepted: 03/23/2022] [Indexed: 02/08/2023]
Abstract
Effective delivery of therapeutic and diagnostic nanoparticles is dependent on their ability to accumulate in diseased tissues. However, most nanoparticles end up in liver macrophages regardless of nanoparticle design after administration. In this review, we describe the interactions of liver macrophages with nanoparticles. Liver macrophages have significant advantages in interacting with circulating nanoparticles over most target cells and tissues in the body. We describe these advantages in this article. Understanding these advantages will enable the development of strategies to overcome liver macrophages and deliver nanoparticles to targeted diseased tissues effectively. Ultimately, these approaches will increase the therapeutic efficacy and diagnostic signal of nanoparticles.
Collapse
|
24
|
Köhler N, Höring M, Czepukojc B, Rose TD, Buechler C, Kröhler T, Haybaeck J, Liebisch G, Pauling JK, Kessler SM, Kiemer AK. Kupffer cells are protective in alcoholic steatosis. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166398. [DOI: 10.1016/j.bbadis.2022.166398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/29/2022]
|
25
|
Zhao D, Yang F, Wang Y, Li S, Li Y, Hou F, Yang W, Liu D, Tao Y, Li Q, Wang J, He F, Tang L. ALK1 signaling is required for the homeostasis of Kupffer cells and prevention of bacterial infection. J Clin Invest 2021; 132:150489. [PMID: 34874921 PMCID: PMC8803331 DOI: 10.1172/jci150489] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 11/30/2021] [Indexed: 11/18/2022] Open
Abstract
Macrophages are highly heterogeneous immune cells that fulfill tissue-specific functions. Tissue-derived signals play a critical role in determining macrophage heterogeneity. However, these signals remain largely unknown. The BMP receptor activin receptor–like kinase 1 (ALK1) is well known for its role in blood vessel formation; however, its role within the immune system has never been revealed to our knowledge. Here, we found that BMP9/BMP10/ALK1 signaling controlled the identity and self-renewal of Kupffer cells (KCs) through a Smad4-dependent pathway. In contrast, ALK1 was dispensable for the maintenance of macrophages located in the lung, kidney, spleen, and brain. Following ALK1 deletion, KCs were lost over time and were replaced by monocyte-derived macrophages. These hepatic macrophages showed significantly reduced expression of the complement receptor VSIG4 and alterations in immune zonation and morphology, which is important for the tissue-specialized function of KCs. Furthermore, we found that this signaling pathway was important for KC-mediated Listeria monocytogenes capture, as the loss of ALK1 and Smad4 led to a failure of bacterial capture and overwhelming disseminated infections. Thus, ALK1 signaling instructs a tissue-specific phenotype that allows KCs to protect the host from systemic bacterial dissemination.
Collapse
Affiliation(s)
- Dianyuan Zhao
- Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Fengjiao Yang
- Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Yang Wang
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Site Li
- Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Yang Li
- Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Fei Hou
- Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Wenting Yang
- Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Di Liu
- Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Yuandong Tao
- Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Qian Li
- Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Jing Wang
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuchu He
- Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Li Tang
- Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| |
Collapse
|
26
|
Hildebrandt F, Andersson A, Saarenpää S, Larsson L, Van Hul N, Kanatani S, Masek J, Ellis E, Barragan A, Mollbrink A, Andersson ER, Lundeberg J, Ankarklev J. Spatial Transcriptomics to define transcriptional patterns of zonation and structural components in the mouse liver. Nat Commun 2021; 12:7046. [PMID: 34857782 PMCID: PMC8640072 DOI: 10.1038/s41467-021-27354-w] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 11/10/2021] [Indexed: 12/19/2022] Open
Abstract
Reconstruction of heterogeneity through single cell transcriptional profiling has greatly advanced our understanding of the spatial liver transcriptome in recent years. However, global transcriptional differences across lobular units remain elusive in physical space. Here, we apply Spatial Transcriptomics to perform transcriptomic analysis across sectioned liver tissue. We confirm that the heterogeneity in this complex tissue is predominantly determined by lobular zonation. By introducing novel computational approaches, we enable transcriptional gradient measurements between tissue structures, including several lobules in a variety of orientations. Further, our data suggests the presence of previously transcriptionally uncharacterized structures within liver tissue, contributing to the overall spatial heterogeneity of the organ. This study demonstrates how comprehensive spatial transcriptomic technologies can be used to delineate extensive spatial gene expression patterns in the liver, indicating its future impact for studies of liver function, development and regeneration as well as its potential in pre-clinical and clinical pathology.
Collapse
Affiliation(s)
- Franziska Hildebrandt
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Svante Arrhenius Väg 20C, SE-106 91, Stockholm, Sweden.
| | - Alma Andersson
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Tomtebodavägen 23a, SE-171 65, Solna, Sweden
| | - Sami Saarenpää
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Tomtebodavägen 23a, SE-171 65, Solna, Sweden
| | - Ludvig Larsson
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Tomtebodavägen 23a, SE-171 65, Solna, Sweden
| | - Noémi Van Hul
- Department of Cell and Molecular Biology, Karolinska Institutet Stockholm, SE-171 77, Solna, Sweden
| | - Sachie Kanatani
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Svante Arrhenius Väg 20C, SE-106 91, Stockholm, Sweden
| | - Jan Masek
- Department of Cell and Molecular Biology, Karolinska Institutet Stockholm, SE-171 77, Solna, Sweden
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic
| | - Ewa Ellis
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 141-86, Stockholm, Sweden
| | - Antonio Barragan
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Svante Arrhenius Väg 20C, SE-106 91, Stockholm, Sweden
| | - Annelie Mollbrink
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Tomtebodavägen 23a, SE-171 65, Solna, Sweden
| | - Emma R Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet Stockholm, SE-171 77, Solna, Sweden
| | - Joakim Lundeberg
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Tomtebodavägen 23a, SE-171 65, Solna, Sweden
| | - Johan Ankarklev
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Svante Arrhenius Väg 20C, SE-106 91, Stockholm, Sweden.
- Microbial Single Cell Genomics facility, SciLifeLab, Biomedical Center (BMC) Uppsala University, SE-751 23, Uppsala, Sweden.
| |
Collapse
|
27
|
Jiang Y, Tang Y, Hoover C, Kondo Y, Huang D, Restagno D, Shao B, Gao L, Michael McDaniel J, Zhou M, Silasi-Mansat R, McGee S, Jiang M, Bai X, Lupu F, Ruan C, Marth JD, Wu D, Han Y, Xia L. Kupffer cell receptor CLEC4F is important for the destruction of desialylated platelets in mice. Cell Death Differ 2021; 28:3009-3021. [PMID: 33993195 PMCID: PMC8564511 DOI: 10.1038/s41418-021-00797-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 02/04/2023] Open
Abstract
The liver has recently been identified as a major organ for destruction of desialylated platelets. However, the underlying mechanism remains unclear. Kupffer cells, which are professional phagocytic cells in the liver, comprise the largest population of resident tissue macrophages in the body. Kupffer cells express a C-type lectin receptor, CLEC4F, that recognizes desialylated glycans with an unclear in vivo role in mediating platelet destruction. In this study, we generated a CLEC4F-deficient mouse model (Clec4f-/-) and found that CLEC4F was specifically expressed by Kupffer cells. Using the Clec4f-/- mice and a newly generated platelet-specific reporter mouse line, we revealed a critical role for CLEC4F on Kupffer cells in mediating destruction of desialylated platelets in the liver in vivo. Platelet clearance experiments and ultrastructural analysis revealed that desialylated platelets were phagocytized predominantly by Kupffer cells in a CLEC4F-dependent manner in mice. Collectively, these findings identify CLEC4F as a Kupffer cell receptor important for the destruction of desialylated platelets induced by bacteria-derived neuraminidases, which provide new insights into the pathogenesis of thrombocytopenia in disease conditions such as sepsis.
Collapse
Affiliation(s)
- Yizhi Jiang
- grid.429222.d0000 0004 1798 0228Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China ,grid.452929.10000 0004 8513 0241Department of Hematology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001 China ,grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA ,grid.263761.70000 0001 0198 0694Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006 China
| | - Yaqiong Tang
- grid.429222.d0000 0004 1798 0228Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China ,grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA ,grid.263761.70000 0001 0198 0694Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006 China
| | - Christopher Hoover
- grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - Yuji Kondo
- grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - Dongping Huang
- grid.452929.10000 0004 8513 0241Department of Hematology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001 China
| | - Damien Restagno
- grid.263761.70000 0001 0198 0694State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123 China
| | - Bojing Shao
- grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - Liang Gao
- grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - J. Michael McDaniel
- grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - Meixiang Zhou
- grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - Robert Silasi-Mansat
- grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - Samuel McGee
- grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - Miao Jiang
- grid.429222.d0000 0004 1798 0228Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China ,grid.263761.70000 0001 0198 0694Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006 China
| | - Xia Bai
- grid.429222.d0000 0004 1798 0228Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China ,grid.263761.70000 0001 0198 0694Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006 China ,grid.263761.70000 0001 0198 0694State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123 China
| | - Florea Lupu
- grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - Changgeng Ruan
- grid.429222.d0000 0004 1798 0228Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China ,grid.263761.70000 0001 0198 0694Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006 China ,grid.263761.70000 0001 0198 0694State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123 China
| | - Jamey D. Marth
- grid.133342.40000 0004 1936 9676Center for Nanomedicine, SBP Medical Discovery Institute, and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106 USA
| | - Depei Wu
- grid.429222.d0000 0004 1798 0228Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China ,grid.263761.70000 0001 0198 0694Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006 China
| | - Yue Han
- grid.429222.d0000 0004 1798 0228Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China ,grid.263761.70000 0001 0198 0694Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006 China
| | - Lijun Xia
- grid.429222.d0000 0004 1798 0228Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China ,grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA ,grid.263761.70000 0001 0198 0694Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006 China
| |
Collapse
|
28
|
De Muynck K, Vanderborght B, Van Vlierberghe H, Devisscher L. The Gut-Liver Axis in Chronic Liver Disease: A Macrophage Perspective. Cells 2021; 10:2959. [PMID: 34831182 PMCID: PMC8616442 DOI: 10.3390/cells10112959] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic liver disease (CLD) is a growing health concern which accounts for two million deaths per year. Obesity, alcohol overconsumption, and progressive cholestasis are commonly characterized by persistent low-grade inflammation and advancing fibrosis, which form the basis for development of end-stage liver disease complications, including hepatocellular carcinoma. CLD pathophysiology extends to the intestinal tract and is characterized by intestinal dysbiosis, bile acid dysregulation, and gut barrier disruption. In addition, macrophages are key players in CLD progression and intestinal barrier breakdown. Emerging studies are unveiling macrophage heterogeneity and driving factors of their plasticity in health and disease. To date, in-depth investigation of how gut-liver axis disruption impacts the hepatic and intestinal macrophage pool in CLD pathogenesis is scarce. In this review, we give an overview of the role of intestinal and hepatic macrophages in homeostasis and gut-liver axis disruption in progressive stages of CLD.
Collapse
Affiliation(s)
- Kevin De Muynck
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium; (K.D.M.); (B.V.)
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium;
| | - Bart Vanderborght
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium; (K.D.M.); (B.V.)
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium;
| | - Hans Van Vlierberghe
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium;
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium; (K.D.M.); (B.V.)
| |
Collapse
|
29
|
Kuter DJ. Novel therapies for immune thrombocytopenia. Br J Haematol 2021; 196:1311-1328. [PMID: 34611885 DOI: 10.1111/bjh.17872] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 01/02/2023]
Abstract
Current therapies for immune thrombocytopenia (ITP) are successful in providing a haemostatic platelet count in over two-thirds of patients. Still, some patients have an inadequate response and there is a need for other therapies. A number of novel therapies for ITP are currently being developed based upon the current pathophysiology of ITP. Many therapies are targetted at reducing platelet destruction by decreasing anti-platelet antibody production by immunosuppression with monoclonal antibodies targetted against CD40, CD38 and the immunoproteasome or physically reducing the anti-platelet antibody concentration by inhibition of the neonatal Fc receptor. Others target the phagocytic system by inhibiting FcγR function with staphylococcal protein A, hypersialylated IgG, polymeric Fc fragments, or Bruton kinase. With a recognition that platelet destruction is also mediated by complement, inhibitors of C1s are also being tested. Inhibition of platelet desialylation may also play a role. Other novel therapies promote platelet production with new oral thrombopoietin receptor agonists or the use of low-level laser light to improve mitochondrial activity and prevent megakaryocyte apoptosis. This review will focus on these novel mechanisms for treating ITP and assess the status of treatments currently under development. Successful new treatments for ITP might also provide a pathway to treat other autoimmune disorders.
Collapse
Affiliation(s)
- David J Kuter
- Hematology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Lin WL, Mizobuchi M, Kawahigashi M, Nakahashi O, Maekawa Y, Sakai T. Functional kupffer cells migrate to the liver from the intraperitoneal cavity. Biochem Biophys Rep 2021; 27:101103. [PMID: 34458593 PMCID: PMC8379421 DOI: 10.1016/j.bbrep.2021.101103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/28/2021] [Accepted: 08/11/2021] [Indexed: 11/23/2022] Open
Abstract
We established a method of KC transplantation by intraperitoneal (i.p.) injection using EGFP-expressing cells (EGFP-KCs) and normal KCs. The novel method is easier and less invasive than conventional methods so that it is not only technically advantageous but also ethically preferable for experiments using animals. We demonstrated that KCs migrated to the liver following i.p. Injection. Engraftment in the liver was not observed for peritoneal macrophages (pMPs). This suggests that KCs migrate to the liver via a sorting mechanism. KC injection decreased the KC number at 24 h and then recovered the KCs at 10 days to a normal level. Additionally, recovery to the normal level by KC injection was observed in mice with KC depletion induced by GdCl3. These results suggest that a regulatory mechanism exists for controlling the number of KCs.
Collapse
Affiliation(s)
- Wen-Ling Lin
- Institute for Health Sciences, Tokushima Bunri University, 180 Nishihama-bouji, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Mizuki Mizobuchi
- Institute for Health Sciences, Tokushima Bunri University, 180 Nishihama-bouji, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Mina Kawahigashi
- Institute for Health Sciences, Tokushima Bunri University, 180 Nishihama-bouji, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Otoki Nakahashi
- Institute for Health Sciences, Tokushima Bunri University, 180 Nishihama-bouji, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Yuuki Maekawa
- Institute for Health Sciences, Tokushima Bunri University, 180 Nishihama-bouji, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Takashi Sakai
- Institute for Health Sciences, Tokushima Bunri University, 180 Nishihama-bouji, Yamashiro-cho, Tokushima, 770-8514, Japan
| |
Collapse
|
31
|
Elchaninov A, Lokhonina A, Vishnyakova P, Soboleva A, Poltavets A, Artemova D, Makarov A, Glinkina V, Goldshtein D, Bolshakova G, Sukhikh G, Fatkhudinov T. MARCO + Macrophage Dynamics in Regenerating Liver after 70% Liver Resection in Mice. Biomedicines 2021; 9:biomedicines9091129. [PMID: 34572315 PMCID: PMC8471044 DOI: 10.3390/biomedicines9091129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Macrophages play a key role in liver regeneration. The fates of resident macrophages after 70% resection are poorly investigated. In this work, using the MARCO macrophage marker (abbreviated from macrophage receptor with collagenous structure), we studied the dynamics of mouse liver resident macrophages after 70% resection. METHODS In BALB/c male mice, a model of liver regeneration after 70% resection was reproduced. The dynamics of markers CD68, TIM4, and MARCO were studied immunohistochemically and by using a Western blot. RESULTS The number of MARCO- and CD68-positive macrophages in the regenerating liver increased 1 day and 3 days after resection, respectively. At the same time, the content of the MARCO protein increased in the sorted macrophages of the regenerating liver on the third day. CONCLUSIONS The data indicate that the number of MARCO-positive macrophages in the regenerating liver increases due to the activation of MARCO synthesis in the liver macrophages. The increased expression of MARCO by macrophages can be regarded as a sign of their activation. In the present study, stimulation with LPS led to an increase in the expression of the Marco gene in both Kupffer cells and macrophages of bone marrow origin.
Collapse
Affiliation(s)
- Andrey Elchaninov
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.L.); (P.V.); (A.P.); (G.S.)
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (A.M.); (T.F.)
- Correspondence:
| | - Anastasia Lokhonina
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.L.); (P.V.); (A.P.); (G.S.)
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (A.M.); (T.F.)
| | - Polina Vishnyakova
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.L.); (P.V.); (A.P.); (G.S.)
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (A.M.); (T.F.)
| | - Anna Soboleva
- Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, 117418 Moscow, Russia; (A.S.); (D.A.); (G.B.)
| | - Anastasiya Poltavets
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.L.); (P.V.); (A.P.); (G.S.)
| | - Daria Artemova
- Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, 117418 Moscow, Russia; (A.S.); (D.A.); (G.B.)
| | - Andrey Makarov
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (A.M.); (T.F.)
| | - Valeria Glinkina
- Histology Department, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 117997 Moscow, Russia;
| | - Dmitry Goldshtein
- Stem Cell Genetics Laboratory, Research Centre for Medical Genetics, 115522 Moscow, Russia;
| | - Galina Bolshakova
- Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, 117418 Moscow, Russia; (A.S.); (D.A.); (G.B.)
| | - Gennady Sukhikh
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.L.); (P.V.); (A.P.); (G.S.)
| | - Timur Fatkhudinov
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (A.M.); (T.F.)
- Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, 117418 Moscow, Russia; (A.S.); (D.A.); (G.B.)
| |
Collapse
|
32
|
Ait Ahmed Y, Fu Y, Rodrigues RM, He Y, Guan Y, Guillot A, Ren R, Feng D, Hidalgo J, Ju C, Lafdil F, Gao B. Kupffer cell restoration after partial hepatectomy is mainly driven by local cell proliferation in IL-6-dependent autocrine and paracrine manners. Cell Mol Immunol 2021; 18:2165-2176. [PMID: 34282300 PMCID: PMC8429713 DOI: 10.1038/s41423-021-00731-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Kupffer cells (KCs), which are liver-resident macrophages, originate from the fetal yolk sac and represent one of the largest macrophage populations in the body. However, the current data on the origin of the cells that restore macrophages during liver injury and regeneration remain controversial. Here, we address the question of whether liver macrophage restoration results from circulating monocyte infiltration or local KC proliferation in regenerating livers after partial hepatectomy (PHx) and uncover the underlying mechanisms. By using several strains of genetically modified mice and performing immunohistochemical analyses, we demonstrated that local KC proliferation mainly contributed to the restoration of liver macrophages after PHx. Peak KC proliferation was impaired in Il6-knockout (KO) mice and restored after the administration of IL-6 protein, whereas KC proliferation was not affected in Il4-KO or Csf2-KO mice. The source of IL-6 was identified using hepatocyte- and myeloid-specific Il6-KO mice and the results revealed that both hepatocytes and myeloid cells contribute to IL-6 production after PHx. Moreover, peak KC proliferation was also impaired in myeloid-specific Il6 receptor-KO mice after PHx, suggesting that IL-6 signaling directly promotes KC proliferation. Studies using several inhibitors to block the IL-6 signaling pathway revealed that sirtuin 1 (SIRT1) contributed to IL-6-mediated KC proliferation in vitro. Genetic deletion of the Sirt1 gene in myeloid cells, including KCs, impaired KC proliferation after PHx. In conclusion, our data suggest that KC repopulation after PHx is mainly driven by local KC proliferation, which is dependent on IL-6 and SIRT1 activation in KCs.
Collapse
Affiliation(s)
- Yeni Ait Ahmed
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
- Université Paris-Est-Créteil, Créteil, France
| | - Yaojie Fu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Robim M Rodrigues
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Yukun Guan
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Adrien Guillot
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Ruixue Ren
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Juan Hidalgo
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cynthia Ju
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fouad Lafdil
- Université Paris-Est-Créteil, Créteil, France.
- INSERM U955, Institut Mondor de Recherche Biomédicale, Créteil, France.
- Institut Universitaire de France (IUF), Paris, France.
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
33
|
Ishikiriyama T, Nakashima H, Endo-Umeda K, Nakashima M, Ito S, Kinoshita M, Ikarashi M, Makishima M, Seki S. Contrasting functional responses of resident Kupffer cells and recruited liver macrophages to irradiation and liver X receptor stimulation. PLoS One 2021; 16:e0254886. [PMID: 34297734 PMCID: PMC8301620 DOI: 10.1371/journal.pone.0254886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
In the murine liver, there are two major macrophage populations, namely resident Kupffer cells (resKCs) with phagocytic activity and recruited macrophages (recMφs) with cytokine-producing capacity. This study was performed to clarify the functional differences between these two populations, focusing on their susceptibility to radiation and response to stimulation via liver X receptors (LXRs), which are implicated in cholesterol metabolism and immune regulation. Liver mononuclear cells (MNCs) were obtained from C57BL/6 (WT) mice with or without 2 Gy irradiation, and the phagocytic activity against Escherichia coli (E. coli) as well as TNF-α production were compared between the two macrophage populations. To assess LXR functions, phagocytosis, TNF-α production, and endocytosis of acetylated low-density lipoprotein (LDL) were compared after synthetic LXR ligand stimulation. Furthermore, LXRα/β knockout (KO) mice and LXRα KO mice were compared with WT mice. Irradiation decreased intracellular TNF-α production by recMφs but did not affect the phagocytic activity of resKCs. In vitro LXR stimulation enhanced E. coli phagocytosis by resKCs but decreased E. coli-stimulated TNF-α production by recMφs. Phagocytic activity and acetylated LDL endocytosis were decreased in both LXRα/β KO mice and LXRα KO mice, with serum TNF-α levels after E. coli injection in the former being higher than those in WT mice. In conclusion, resKCs and recMφs exhibited different functional features in response to radiation and LXR stimulation, highlighting their distinct roles liver immunity and lipid metabolism.
Collapse
Affiliation(s)
- Takuya Ishikiriyama
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hiroyuki Nakashima
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, Japan
- * E-mail:
| | - Kaori Endo-Umeda
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Itabashi, Tokyo, Japan
| | - Masahiro Nakashima
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Seigo Ito
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Manabu Kinoshita
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Masami Ikarashi
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Itabashi, Tokyo, Japan
| | - Shuhji Seki
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
34
|
The Role of Macrophages in the Host's Defense against Sporothrix schenckii. Pathogens 2021; 10:pathogens10070905. [PMID: 34358055 PMCID: PMC8308788 DOI: 10.3390/pathogens10070905] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 01/19/2023] Open
Abstract
The role of immune cells associated with sporotrichosis caused by Sporothrix schenckii is not yet fully clarified. Macrophages through pattern recognition receptors (PRRs) can recognize pathogen-associated molecular patterns (PAMPs) of Sporothrix, engulf it, activate respiratory burst, and secrete pro-inflammatory or anti-inflammatory biological mediators to control infection. It is important to consider that the characteristics associated with S. schenckii and/or the host may influence macrophage polarization (M1/M2), cell recruitment, and the type of immune response (1, 2, and 17). Currently, with the use of new monocyte-macrophage cell lines, it is possible to evaluate different host-pathogen interaction processes, which allows for the proposal of new mechanisms in human sporotrichosis. Therefore, in order to contribute to the understanding of these host-pathogen interactions, the aim of this review is to summarize and discuss the immune responses induced by macrophage-S. schenckii interactions, as well as the PRRs and PAMPs involved during the recognition of S. schenckii that favor the immune evasion by the fungus.
Collapse
|
35
|
Zwicker C, Bujko A, Scott CL. Hepatic Macrophage Responses in Inflammation, a Function of Plasticity, Heterogeneity or Both? Front Immunol 2021; 12:690813. [PMID: 34177948 PMCID: PMC8220199 DOI: 10.3389/fimmu.2021.690813] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
With the increasing availability and accessibility of single cell technologies, much attention has been given to delineating the specific populations of cells present in any given tissue. In recent years, hepatic macrophage heterogeneity has also begun to be examined using these strategies. While previously any macrophage in the liver was considered to be a Kupffer cell (KC), several studies have recently revealed the presence of distinct subsets of hepatic macrophages, including those distinct from KCs both under homeostatic and non-homeostatic conditions. This heterogeneity has brought the concept of macrophage plasticity into question. Are KCs really as plastic as once thought, being capable of responding efficiently and specifically to any given stimuli? Or are the differential responses observed from hepatic macrophages in distinct settings due to the presence of multiple subsets of these cells? With these questions in mind, here we examine what is currently understood regarding hepatic macrophage heterogeneity in mouse and human and examine the role of heterogeneity vs plasticity in regards to hepatic macrophage responses in settings of both pathogen-induced and sterile inflammation.
Collapse
Affiliation(s)
- Christian Zwicker
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium
| | - Anna Bujko
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium
| | - Charlotte L. Scott
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
36
|
Coelho I, Duarte N, Macedo MP, Penha-Gonçalves C. Insights into Macrophage/Monocyte-Endothelial Cell Crosstalk in the Liver: A Role for Trem-2. J Clin Med 2021; 10:1248. [PMID: 33802948 PMCID: PMC8002813 DOI: 10.3390/jcm10061248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/12/2022] Open
Abstract
Liver disease accounts for millions of deaths worldwide annually being a major cause of global morbidity. Hepatotoxic insults elicit a multilayered response involving tissue damage, inflammation, scar formation, and tissue regeneration. Liver cell populations act coordinately to maintain tissue homeostasis and providing a barrier to external aggressors. However, upon hepatic damage, this tight regulation is disrupted, leading to liver pathology which spans from simple steatosis to cirrhosis. Inflammation is a hallmark of liver pathology, where macrophages and endothelial cells are pivotal players in promoting and sustaining disease progression. Understanding the drivers and mediators of these interactions will provide valuable information on what may contribute to liver resilience against disease. Here, we summarize the current knowledge on the role of macrophages and liver sinusoidal endothelial cells (LSEC) in homeostasis and liver pathology. Moreover, we discuss the expanding body of evidence on cell-to-cell communication between these two cell compartments and present triggering receptor expressed on myeloid cells-2 (Trem-2) as a plausible mediator of this cellular interlink. This review consolidates relevant knowledge that might be useful to guide the pursue of successful therapeutic targets and pharmacological strategies for controlling liver pathogenesis.
Collapse
Affiliation(s)
- Inês Coelho
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal; (I.C.); (M.P.M.)
| | - Nádia Duarte
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal;
| | - Maria Paula Macedo
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal; (I.C.); (M.P.M.)
- APDP Diabetes Portugal, Education and Research Center (APDP-ERC), 1250-189 Lisbon, Portugal
- Department of Medical Sciences, Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlos Penha-Gonçalves
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal;
- APDP Diabetes Portugal, Education and Research Center (APDP-ERC), 1250-189 Lisbon, Portugal
- Department of Medical Sciences, Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
37
|
Zheng F, Zhou J, Ouyang Z, Zhang J, Wang X, Muyldermans S, Van Ginderachter J, Devoogdt N, Wen Y, Schoonooghe S, Raes G. Development and Characterization of Nanobodies Targeting the Kupffer Cell. Front Immunol 2021; 12:641819. [PMID: 33692811 PMCID: PMC7937711 DOI: 10.3389/fimmu.2021.641819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/01/2021] [Indexed: 01/22/2023] Open
Abstract
Nanobodies that are derived from single-chain antibodies of camelids have served as powerful tools in diagnostics, therapeutics and investigation of membrane receptors' structure and function. In this study, we developed a series of nanobodies by a phage display screening building from lymphocytes isolated from an alpaca immunized with recombinant mouse Kupffer cell receptor Clec4F, which is involved in pathogen recognition by binding to galactose and N-acetylgalactosamine. Bio-panning selections retrieved 14 different nanobodies against Clec4F with an affinity ranging from 0.2 to 2 nM as determined by SPR. Those nanobodies mainly recognize 4 different epitopes as analyzed via competitive epitope binning. By analysis of the radioactivity in each organ after injection of 99mTc labeled Clec4F nanobodies in naïve mice, we found that these nanobodies are targeting the liver. Furthermore, we performed a structural characterization at atomic resolution of two of the Clec4F nanobodies from different epitope groups, which revealed distinct features within the CDR2 and CDR3 regions. Taken together, we developed a series of nanobodies targeting multiple distinct recognition epitopes of the Kupffer cell-specific receptor Clec4F which may be useful for its structural and functional investigation as well as for use as molecular imaging and therapeutic agents.
Collapse
Affiliation(s)
- Fang Zheng
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, China.,Research Group of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, Brussels, Belgium
| | - Jinhong Zhou
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, China.,Talent Highland, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Zhenlin Ouyang
- Talent Highland, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Jiaxin Zhang
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xinyi Wang
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Serge Muyldermans
- Research Group of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jo Van Ginderachter
- Research Group of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, Brussels, Belgium
| | - Nick Devoogdt
- In vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yurong Wen
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, China.,Talent Highland, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Steve Schoonooghe
- Research Group of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, Brussels, Belgium
| | - Geert Raes
- Research Group of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, Brussels, Belgium
| |
Collapse
|
38
|
Raposo CD, Canelas AB, Barros MT. Human Lectins, Their Carbohydrate Affinities and Where to Find Them. Biomolecules 2021; 11:188. [PMID: 33572889 PMCID: PMC7911577 DOI: 10.3390/biom11020188] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/02/2021] [Accepted: 01/26/2021] [Indexed: 12/20/2022] Open
Abstract
Lectins are a class of proteins responsible for several biological roles such as cell-cell interactions, signaling pathways, and several innate immune responses against pathogens. Since lectins are able to bind to carbohydrates, they can be a viable target for targeted drug delivery systems. In fact, several lectins were approved by Food and Drug Administration for that purpose. Information about specific carbohydrate recognition by lectin receptors was gathered herein, plus the specific organs where those lectins can be found within the human body.
Collapse
Affiliation(s)
- Cláudia D. Raposo
- LAQV-Requimte, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
| | - André B. Canelas
- Glanbia-AgriChemWhey, Lisheen Mine, Killoran, Moyne, E41 R622 Tipperary, Ireland;
| | - M. Teresa Barros
- LAQV-Requimte, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
| |
Collapse
|
39
|
Pidwill GR, Gibson JF, Cole J, Renshaw SA, Foster SJ. The Role of Macrophages in Staphylococcus aureus Infection. Front Immunol 2021; 11:620339. [PMID: 33542723 PMCID: PMC7850989 DOI: 10.3389/fimmu.2020.620339] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/02/2020] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus aureus is a member of the human commensal microflora that exists, apparently benignly, at multiple sites on the host. However, as an opportunist pathogen it can also cause a range of serious diseases. This requires an ability to circumvent the innate immune system to establish an infection. Professional phagocytes, primarily macrophages and neutrophils, are key innate immune cells which interact with S. aureus, acting as gatekeepers to contain and resolve infection. Recent studies have highlighted the important roles of macrophages during S. aureus infections, using a wide array of killing mechanisms. In defense, S. aureus has evolved multiple strategies to survive within, manipulate and escape from macrophages, allowing them to not only subvert but also exploit this key element of our immune system. Macrophage-S. aureus interactions are multifaceted and have direct roles in infection outcome. In depth understanding of these host-pathogen interactions may be useful for future therapeutic developments. This review examines macrophage interactions with S. aureus throughout all stages of infection, with special emphasis on mechanisms that determine infection outcome.
Collapse
Affiliation(s)
- Grace R. Pidwill
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
| | - Josie F. Gibson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Joby Cole
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Stephen A. Renshaw
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Simon J. Foster
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
40
|
Huang H, Zuzarte-Luis V, Fragoso G, Calvé A, Hoang TA, Oliero M, Chabot-Roy G, Mullins-Dansereau V, Lesage S, Santos MM. Acute invariant NKT cell activation triggers an immune response that drives prominent changes in iron homeostasis. Sci Rep 2020; 10:21026. [PMID: 33273556 PMCID: PMC7713400 DOI: 10.1038/s41598-020-78037-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022] Open
Abstract
Iron homeostasis is an essential biological process that ensures the tissue distribution of iron for various cellular processes. As the major producer of hepcidin, the liver is central to the regulation of iron metabolism. The liver is also home to many immune cells, which upon activation may greatly impact iron metabolism. Here, we focus on the role of invariant natural killer T (iNKT) cells, a subset of T lymphocytes that, in mice, is most abundant in the liver. Activation of iNKT cells with the prototypical glycosphingolipid antigen, α-galactosylceramide, resulted in immune cell proliferation and biphasic changes in iron metabolism. This involved an early phase characterized by hypoferremia, hepcidin induction and ferroportin suppression, and a second phase associated with strong suppression of hepcidin despite elevated levels of circulating and tissue iron. We further show that these changes in iron metabolism are fully dependent on iNKT cell activation. Finally, we demonstrate that the biphasic regulation of hepcidin is independent of NK and Kupffer cells, and is initially driven by the STAT3 inflammatory pathway, whereas the second phase is regulated by repression of the BMP/SMAD signaling pathway. These findings indicate that iNKT activation and the resulting cell proliferation influence iron homeostasis.
Collapse
Affiliation(s)
- Hua Huang
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.,Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | | | - Gabriela Fragoso
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Annie Calvé
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Tuan Anh Hoang
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.,Département de Médecine, Université de Montréal, Montréal, Québec, Canada.,Centre INRS-Institut Armand-Frappier, Institut National de La Recherche Scientifique, 531 Boulevard des Prairies, Laval, Québec, Canada
| | - Manon Oliero
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | | | - Victor Mullins-Dansereau
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Sylvie Lesage
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada.,Maisonneuve-Rosemont Hospital Research Centre (CRHMR), Montréal, Québec, Canada
| | - Manuela M Santos
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada. .,Département de Médecine, Université de Montréal, Montréal, Québec, Canada. .,Nutrition and Microbiome Laboratory, CRCHUM-R10.426, 900 rue Saint-Denis, Montréal, Québec, H2X 0A9, Canada.
| |
Collapse
|
41
|
Acute liver failure is regulated by MYC- and microbiome-dependent programs. Nat Med 2020; 26:1899-1911. [DOI: 10.1038/s41591-020-1102-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 09/09/2020] [Indexed: 02/07/2023]
|
42
|
Wen Y, Lambrecht J, Ju C, Tacke F. Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities. Cell Mol Immunol 2020; 18:45-56. [PMID: 33041338 DOI: 10.1038/s41423-020-00558-8] [Citation(s) in RCA: 352] [Impact Index Per Article: 70.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
Macrophages, which are key cellular components of the liver, have emerged as essential players in the maintenance of hepatic homeostasis and in injury and repair processes in acute and chronic liver diseases. Upon liver injury, resident Kupffer cells (KCs) sense disturbances in homeostasis, interact with hepatic cell populations and release chemokines to recruit circulating leukocytes, including monocytes, which subsequently differentiate into monocyte-derived macrophages (MoMϕs) in the liver. Both KCs and MoMϕs contribute to both the progression and resolution of tissue inflammation and injury in various liver diseases. The diversity of hepatic macrophage subsets and their plasticity explain their different functional responses in distinct liver diseases. In this review, we highlight novel findings regarding the origins and functions of hepatic macrophages and discuss the potential of targeting macrophages as a therapeutic strategy for liver disease.
Collapse
Affiliation(s)
- Yankai Wen
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joeri Lambrecht
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Cynthia Ju
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany.
| |
Collapse
|
43
|
Hepatocellular carcinoma-derived high mobility group box 1 triggers M2 macrophage polarization via a TLR2/NOX2/autophagy axis. Sci Rep 2020; 10:13582. [PMID: 32788720 PMCID: PMC7423894 DOI: 10.1038/s41598-020-70137-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
In many human cancers, including hepatocellular carcinoma (HCC), high density of infiltrating tumor-associated macrophages (TAM) is associated with poor prognosis. Most TAMs express a M2 phenotype subsequently supporting tumor growth. How tumor cells polarize these TAMs to a pro-tumor M2 phenotype is still poorly understood. Our previous studies have revealed that a Toll-like receptor 2 (TLR2)-dependent autophagy triggered by hepatoma-derived factors down-regulates NF-κB p65 and drives M2 macrophage differentiation. However, the underlying mechanisms and potential hepatoma-derived TLR2 ligands are not clear. Here, we provide evidence to reveal that NADPH oxidase 2 (NOX2)-dependent reactive oxygen species (ROS) generation is crucial for HCC-induced autophagy, NF-κB p65 down-regulation and M2 phenotype polarization in primary macrophages. This NOX2-generated ROS production in abolished in TLR2-deficient macrophages. HCC-derived or recombinant high-mobility group box 1 (HMGB1) is able to trigger this TLR2-mediated M2 macrophage polarization. Blockage of HMGB1 and ROS by inhibitors, ethyl pyruvate and N-acetylcysteine amide, respectively, significantly reduces both M2 macrophage accumulation and liver nodule formation in HCC-bearing mice. Our findings uncover a HMGB1/TLR2/NOX2/autophagy axis to trigger M2 macrophage polarization in HCC that can be considered as a novel therapeutic target for treating HCC.
Collapse
|
44
|
da Silva Meirelles L, Marson RF, Solari MIG, Nardi NB. Are Liver Pericytes Just Precursors of Myofibroblasts in Hepatic Diseases? Insights from the Crosstalk between Perivascular and Inflammatory Cells in Liver Injury and Repair. Cells 2020; 9:cells9010188. [PMID: 31940814 PMCID: PMC7017158 DOI: 10.3390/cells9010188] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/31/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022] Open
Abstract
Cirrhosis, a late form of liver disease, is characterized by extensive scarring due to exacerbated secretion of extracellular matrix proteins by myofibroblasts that develop during this process. These myofibroblasts arise mainly from hepatic stellate cells (HSCs), liver-specific pericytes that become activated at the onset of liver injury. Consequently, HSCs tend to be viewed mainly as myofibroblast precursors in a fibrotic process driven by inflammation. Here, the molecular interactions between liver pericytes and inflammatory cells such as macrophages and neutrophils at the first moments after injury and during the healing process are brought into focus. Data on HSCs and pericytes from other tissues indicate that these cells are able to sense pathogen- and damage-associated molecular patterns and have an important proinflammatory role in the initial stages of liver injury. On the other hand, further data suggest that as the healing process evolves, activated HSCs play a role in skewing the initial proinflammatory (M1) macrophage polarization by contributing to the emergence of alternatively activated, pro-regenerative (M2-like) macrophages. Finally, data suggesting that some HSCs activated during liver injury could behave as hepatic progenitor or stem cells will be discussed.
Collapse
Affiliation(s)
- Lindolfo da Silva Meirelles
- PPGBioSaúde and School of Medicine, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900 Canoas, RS, Brazil
| | - Renan Fava Marson
- PPGBioSaúde, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900 Canoas, RS, Brazil
| | - Maria Inês Gonzalez Solari
- Institute of Cardiology of Rio Grande do Sul, Av Princesa Isabel 370, 90620-001 Porto Alegre, RS, Brazil
| | - Nance Beyer Nardi
- Institute of Cardiology of Rio Grande do Sul, Av Princesa Isabel 370, 90620-001 Porto Alegre, RS, Brazil
- Correspondence: ; Tel.: +55-51-3230-3600
| |
Collapse
|
45
|
Guillot A, Buch C, Jourdan T. Kupffer Cell and Monocyte-Derived Macrophage Identification by Immunofluorescence on Formalin-Fixed, Paraffin-Embedded (FFPE) Mouse Liver Sections. Methods Mol Biol 2020; 2164:45-53. [PMID: 32607882 DOI: 10.1007/978-1-0716-0704-6_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Kupffer cells are the liver-resident macrophages and represent the first line of defense between the pathogens circulating from the intestines through the portal vein and systemic circulation. Recent works have highlighted the complex heterogeneity of macrophage functions and origins, thus raising awareness on the need for a better characterization of macrophage populations. The immunohistochemistry method here described, allows for a rapid distinction between Kupffer cells and monocyte-derived macrophages present on formalin-fixed, paraffin-embedded mouse liver samples. This protocol has been optimized for its reproducibility, reliability, and simplicity.
Collapse
Affiliation(s)
- Adrien Guillot
- Department of Hepatology/Gastroenterology, Charité University Medical Center, Berlin, Germany.
| | - Chloé Buch
- Team Pathophysiology of Dyslipidemia, INSERM UMR1231 "Lipids, Nutrition, Cancer" and Université de Bourgogne Franche-Comté, Dijon, France
| | - Tony Jourdan
- Team Pathophysiology of Dyslipidemia, INSERM UMR1231 "Lipids, Nutrition, Cancer" and Université de Bourgogne Franche-Comté, Dijon, France.
| |
Collapse
|
46
|
Particles from the Echinococcus granulosus Laminated Layer Inhibit CD40 Upregulation in Dendritic Cells by Interfering with Akt Activation. Infect Immun 2019; 87:IAI.00641-19. [PMID: 31570562 PMCID: PMC6867849 DOI: 10.1128/iai.00641-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/20/2019] [Indexed: 12/22/2022] Open
Abstract
The larval stage of the cestode Echinococcus granulosus causes cystic echinococcosis in humans and livestock. This larva is protected by the millimeter-thick, mucin-based laminated layer (LL), from which materials have to be shed to allow parasite growth. We previously reported that dendritic cells (DCs) respond to microscopic pieces of the mucin gel of the LL (pLL) with unconventional maturation phenotypes, in the absence or presence of Toll-like receptor (TLR) agonists, including lipopolysaccharide (LPS). The larval stage of the cestode Echinococcus granulosus causes cystic echinococcosis in humans and livestock. This larva is protected by the millimeter-thick, mucin-based laminated layer (LL), from which materials have to be shed to allow parasite growth. We previously reported that dendritic cells (DCs) respond to microscopic pieces of the mucin gel of the LL (pLL) with unconventional maturation phenotypes, in the absence or presence of Toll-like receptor (TLR) agonists, including lipopolysaccharide (LPS). We also reported that the presence of pLL inhibited the activating phosphorylation of the phosphatidylinositol 3-kinase (PI3K) effector Akt induced by granulocyte-macrophage colony-stimulating factor or interleukin-4. We now show that the inhibitory effect of pLL extends to LPS as a PI3K activator, and results in diminished phosphorylation of GSK3 downstream from Akt. Functionally, the inhibition of Akt and GSK3 phosphorylation are linked to the blunted upregulation of CD40, a major feature of the unconventional maturation phenotype. Paradoxically, all aspects of unconventional maturation induced by pLL depend on PI3K class I. Additional components of the phagocytic machinery are needed, but phagocytosis of pLL particles is not required. These observations hint at a DC response mechanism related to receptor-independent mechanisms proposed for certain crystalline and synthetic polymer-based particles; this would fit the previously reported lack of detection of molecular-level motifs necessary of the effects of pLL on DCs. Finally, we report that DCs exposed to pLL are able to condition DCs not exposed to the material so that these cannot upregulate CD40 in full in response to LPS.
Collapse
|
47
|
Endo-Umeda K, Makishima M. Liver X Receptors Regulate Cholesterol Metabolism and Immunity in Hepatic Nonparenchymal Cells. Int J Mol Sci 2019; 20:ijms20205045. [PMID: 31614590 PMCID: PMC6834202 DOI: 10.3390/ijms20205045] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/06/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023] Open
Abstract
Excess dietary cholesterol intake and the dysregulation of cholesterol metabolism are associated with the pathogenesis and progression of nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, and fibrosis. Hepatic accumulation of free cholesterol induces activation of nonparenchymal cells, including Kupffer cells, macrophages, and hepatic stellate cells, which leads to persistent inflammation and fibrosis. The nuclear receptors liver X receptor α (LXRα) and LXRβ act as negative regulators of cholesterol metabolism through the induction of hepatocyte cholesterol catabolism, excretion, and the reverse cholesterol transport pathway. Additionally, LXRs exert an anti-inflammatory effect in immune cell types, such as macrophages. LXR activation suppresses acute hepatic inflammation that is mediated by Kupffer cells/macrophages. Acute liver injury, diet-induced steatohepatitis, and fibrosis are exacerbated by significant hepatic cholesterol accumulation and inflammation in LXR-deficient mice. Therefore, LXRs regulate hepatic lipid metabolism and immunity and they are potential therapeutic targets in the treatment of hepatic inflammation that is associated with cholesterol accumulation.
Collapse
Affiliation(s)
- Kaori Endo-Umeda
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan.
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan.
| |
Collapse
|
48
|
Wilson DS, Damo M, Hirosue S, Raczy MM, Brünggel K, Diaceri G, Quaglia-Thermes X, Hubbell JA. Synthetically glycosylated antigens induce antigen-specific tolerance and prevent the onset of diabetes. Nat Biomed Eng 2019; 3:817-829. [DOI: 10.1038/s41551-019-0424-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/07/2019] [Indexed: 12/19/2022]
|
49
|
Guillot A, Tacke F. Liver Macrophages: Old Dogmas and New Insights. Hepatol Commun 2019; 3:730-743. [PMID: 31168508 PMCID: PMC6545867 DOI: 10.1002/hep4.1356] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/28/2019] [Indexed: 12/12/2022] Open
Abstract
Inflammation is a hallmark of virtually all liver diseases, such as liver cancer, fibrosis, nonalcoholic steatohepatitis, alcoholic liver disease, and cholangiopathies. Liver macrophages have been thoroughly studied in human disease and mouse models, unravelling that the hepatic mononuclear phagocyte system is more versatile and complex than previously believed. Liver macrophages mainly consist of liver‐resident phagocytes, or Kupffer cells (KCs), and bone marrow‐derived recruited monocytes. Although both cell populations in the liver demonstrate principal functions of macrophages, such as phagocytosis, danger signal recognition, cytokine release, antigen processing, and the ability to orchestrate immune responses, KCs and recruited monocytes retain characteristic ontogeny markers and remain remarkably distinct on several functional aspects. While KCs dominate the hepatic macrophage pool in homeostasis (“sentinel function”), monocyte‐derived macrophages prevail in acute or chronic injury (“emergency response team”), making them an interesting target for novel therapeutic approaches in liver disease. In addition, recent data acquired by unbiased large‐scale techniques, such as single‐cell RNA sequencing, unraveled a previously unrecognized complexity of human and murine macrophage polarization abilities, far beyond the old dogma of inflammatory (M1) and anti‐inflammatory (M2) macrophages. Despite tremendous progress, numerous challenges remain in deciphering the full spectrum of macrophage activation and its implication in either promoting liver disease progression or repairing injured liver tissue. Being aware of such heterogeneity in cell origin and function is of crucial importance when studying liver diseases, developing novel therapeutic interventions, defining macrophage‐based prognostic biomarkers, or designing clinical trials. Growing knowledge in gene expression modulation and emerging technologies in drug delivery may soon allow shaping macrophage populations toward orchestrating beneficial rather than detrimental inflammatory responses.
Collapse
Affiliation(s)
- Adrien Guillot
- Laboratory of Liver Diseases National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health Bethesda MD.,Department of Hepatology/Gastroenterology Charité University Medical Center Berlin Germany
| | - Frank Tacke
- Department of Hepatology/Gastroenterology Charité University Medical Center Berlin Germany
| |
Collapse
|
50
|
Taylor ME, Snelling T, Smith DF, Drickamer K. Absence of a human ortholog of rodent Kupffer cell galactose-binding receptor encoded by the CLEC4f gene. Glycobiology 2019; 29:332-345. [PMID: 30590594 PMCID: PMC6422238 DOI: 10.1093/glycob/cwy113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/13/2018] [Accepted: 12/20/2018] [Indexed: 01/21/2023] Open
Abstract
The murine CLEC4f gene encodes the Kupffer cell receptor, a galactose-binding receptor containing a C-type carbohydrate-recognition domain. Orthologs have been identified in nearly 100 species. The receptors from rat and mouse have previously been characterized and data presented here show that functional CLEC4f protein is expressed in domestic cattle (Bos taurus). However, the human CLEC4f gene does not encode a functional receptor because a mutation in the splice acceptor site of the final exon prevents appropriate splicing and a missense mutation disrupts the sugar-binding site. Transcriptomic and PCR analysis of transcripts confirms the absence of a spliced transcript containing the final exon and only background levels of transcripts are detected in human tissues. These mutations are also present in the CLEC4f gene in Neanderthals. In contrast to humans, closely related species, including chimpanzees, do have CLEC4f genes that encode full-length receptors. Affinity chromatography and glycan array results demonstrate that the chimpanzee, bovine and murine proteins all bind to galactose, but they show preferences for different subsets of galactose-containing glycans. In non-human primates, the receptor is expressed in spleen rather than in liver. The results indicate that the CLEC4f protein probably has distinct functions in different species. Absence of the receptor precludes using it for targeting of glycoconjugates to cells in human liver. The fact that CLEC4f protein is expressed in spleen in non-human primates and the close evolutionary relationship of the CLEC4f protein to langerin (CD207) suggest that it may function in the immune system, possibly as a pathogen receptor.
Collapse
Affiliation(s)
| | - Tom Snelling
- Department of Life Sciences, Imperial College, London, UK
| | - David F Smith
- Emory Comprehensive Glycomics Core, Emory University, Atlanta, GA, USA
| | - Kurt Drickamer
- Department of Life Sciences, Imperial College, London, UK
| |
Collapse
|