1
|
Peters SJ, Mitrovic SM, Rodgers KJ, Bishop DP. Bioaccumulation of β-methylamino-L-alanine (BMAA) by mussels exposed to the cyanobacteria Microcystis aeruginosa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125081. [PMID: 39374762 DOI: 10.1016/j.envpol.2024.125081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/06/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Cyanobacterial blooms are increasingly common in aquatic environments, raising concerns about the health impacts associated with the toxins they produce. One of these toxins is β-methylamino-L-alanine (BMAA), a neurotoxin linked to neurodegenerative diseases. Monitoring BMAA levels in the environment is challenging due to trace concentrations and complex matrices, and new approaches are needed for assessing exposure risk. In this laboratory study, Australian freshwater mussels, Velesunio ambiguus, were exposed to a BMAA-producing cyanobacterium, Microcystis aeruginosa, to assess its accumulation of the toxin over time. A sample preparation and analysis method was developed to allow accurate quantification of BMAA in the mussels at concentrations as low as 0.4 ng/g. Mussels exposed to M. aeruginosa accumulated BMAA, with concentrations increasing over the exposure period. Rapid depuration occurred after exposure to the cyanobacterium ended, with concentrations of BMAA quickly returning to pre-exposure levels. These results demonstrate the potential for mussels to be used as bioindicators in the field for monitoring BMAA levels over time, where rapid depuration is unlikely.
Collapse
Affiliation(s)
- Siobhan J Peters
- Hyphenated Mass Spectrometry Laboratory, Faculty of Science, The University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Simon M Mitrovic
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kenneth J Rodgers
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - David P Bishop
- Hyphenated Mass Spectrometry Laboratory, Faculty of Science, The University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
2
|
Abbes S, Vo Duy S, Munoz G, Dinh QT, Simon DF, Husk B, Baulch HM, Vinçon-Leite B, Fortin N, Greer CW, Larsen ML, Venkiteswaran JJ, Martínez Jerónimo FF, Giani A, Lowe CD, Tromas N, Sauvé S. Occurrence of BMAA Isomers in Bloom-Impacted Lakes and Reservoirs of Brazil, Canada, France, Mexico, and the United Kingdom. Toxins (Basel) 2022; 14:251. [PMID: 35448860 PMCID: PMC9026818 DOI: 10.3390/toxins14040251] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 11/21/2022] Open
Abstract
The neurotoxic alkaloid β-N-methyl-amino-l-alanine (BMAA) and related isomers, including N-(2-aminoethyl glycine) (AEG), β-amino-N-methyl alanine (BAMA), and 2,4-diaminobutyric acid (DAB), have been reported previously in cyanobacterial samples. However, there are conflicting reports regarding their occurrence in surface waters. In this study, we evaluated the impact of amending lake water samples with trichloroacetic acid (0.1 M TCA) on the detection of BMAA isomers, compared with pre-existing protocols. A sensitive instrumental method was enlisted for the survey, with limits of detection in the range of 5−10 ng L−1. Higher detection rates and significantly greater levels (paired Wilcoxon’s signed-rank tests, p < 0.001) of BMAA isomers were observed in TCA-amended samples (method B) compared to samples without TCA (method A). The overall range of B/A ratios was 0.67−8.25 for AEG (up to +725%) and 0.69−15.5 for DAB (up to +1450%), with absolute concentration increases in TCA-amended samples of up to +15,000 ng L−1 for AEG and +650 ng L−1 for DAB. We also documented the trends in the occurrence of BMAA isomers for a large breadth of field-collected lakes from Brazil, Canada, France, Mexico, and the United Kingdom. Data gathered during this overarching campaign (overall, n = 390 within 45 lake sampling sites) indicated frequent detections of AEG and DAB isomers, with detection rates of 30% and 43% and maximum levels of 19,000 ng L−1 and 1100 ng L−1, respectively. In contrast, BAMA was found in less than 8% of the water samples, and BMAA was not found in any sample. These results support the analyses of free-living cyanobacteria, wherein BMAA was often reported at concentrations of 2−4 orders of magnitude lower than AEG and DAB. Seasonal measurements conducted at two bloom-impacted lakes indicated limited correlations of BMAA isomers with total microcystins or chlorophyll-a, which deserves further investigation.
Collapse
Affiliation(s)
- Safa Abbes
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada; (S.A.); (S.V.D.); (G.M.); (Q.T.D.); (D.F.S.)
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada; (S.A.); (S.V.D.); (G.M.); (Q.T.D.); (D.F.S.)
| | - Gabriel Munoz
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada; (S.A.); (S.V.D.); (G.M.); (Q.T.D.); (D.F.S.)
| | - Quoc Tuc Dinh
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada; (S.A.); (S.V.D.); (G.M.); (Q.T.D.); (D.F.S.)
| | - Dana F. Simon
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada; (S.A.); (S.V.D.); (G.M.); (Q.T.D.); (D.F.S.)
| | - Barry Husk
- BlueLeaf Inc., Drummondville, QC J2B 5E9, Canada;
| | - Helen M. Baulch
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK S7N 3H5, Canada;
| | | | - Nathalie Fortin
- National Research Council Canada, Energy, Mining, and Environment, Montréal, QC H4P 2R2, Canada; (N.F.); (C.W.G.)
| | - Charles W. Greer
- National Research Council Canada, Energy, Mining, and Environment, Montréal, QC H4P 2R2, Canada; (N.F.); (C.W.G.)
| | - Megan L. Larsen
- Faculty of Science, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada; (M.L.L.); (J.J.V.)
| | - Jason J. Venkiteswaran
- Faculty of Science, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada; (M.L.L.); (J.J.V.)
| | | | - Alessandra Giani
- Department of Botany, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | - Chris D. Lowe
- Centre for Ecology and Conservation, University of Exeter, Exeter TR10 9FE, UK;
| | - Nicolas Tromas
- Department of Biological Sciences, Université de Montréal, Montréal, QC H2V 0B3, Canada;
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada; (S.A.); (S.V.D.); (G.M.); (Q.T.D.); (D.F.S.)
| |
Collapse
|
3
|
Zhang Y, Husk BR, Duy SV, Dinh QT, Sanchez JS, Sauvé S, Whalen JK. Quantitative screening for cyanotoxins in soil and groundwater of agricultural watersheds in Quebec, Canada. CHEMOSPHERE 2021; 274:129781. [PMID: 33556664 DOI: 10.1016/j.chemosphere.2021.129781] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Cyanotoxins, as secondary metabolites of cyanobacteria, are highly toxic to humans, animals and plants. Cyanobacterial blooms are 'hot spots' for cyanotoxin production, but we hypothesized that cyanotoxins will be present in multiple ecological compartments of agricultural watersheds. We detected cyanotoxins in the vadose zone (soil and drainage water from the soil profile) and in groundwater used as a drinking water source from agricultural watersheds. Cyanotoxins detection was confirmed with enzyme-linked immunosorbent assay kits and ultra-high liquid chromatography with tandem mass spectrometry. This work confirms that cyanotoxins exist outside of freshwater lakes, based on detection of microcystins in the vadose zone and in drinking water sourced from groundwater in agricultural watersheds. This suggests that cyanotoxins may be transferred from cyanobacterial blooms in lakes to groundwater through normal hydrologic processes. Public health authorities should be alerted to cyanotoxins in drinking water supplies and proper monitoring and treatment protocols should be implemented to protect citizens from this potential health hazard.
Collapse
Affiliation(s)
- Yanyan Zhang
- McGill University, Department of Natural Resource Science, Macdonald Campus, 21,111 Lakeshore Road, Ste-Anne-de Bellevue, Quebec, H9X 3V9, Canada
| | - Barry R Husk
- BlueLeaf Inc., 310 Chapleau Street, Drummondville, Quebec, J2B 5E9, Canada
| | - Sung Vo Duy
- Université de Montréal, Department of Chemistry, C.p. 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | - Quoc Tuc Dinh
- Université de Montréal, Department of Chemistry, C.p. 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | | | - Sébastien Sauvé
- Université de Montréal, Department of Chemistry, C.p. 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | - Joann K Whalen
- McGill University, Department of Natural Resource Science, Macdonald Campus, 21,111 Lakeshore Road, Ste-Anne-de Bellevue, Quebec, H9X 3V9, Canada.
| |
Collapse
|
4
|
Ra D, Sa B, Sl B, Js M, Sj M, DA D, Ew S, O K, Eb B, Ad C, Vx T, Gg G, Pa C, Dc M, Wg B. Is Exposure to BMAA a Risk Factor for Neurodegenerative Diseases? A Response to a Critical Review of the BMAA Hypothesis. Neurotox Res 2021; 39:81-106. [PMID: 33547590 PMCID: PMC7904546 DOI: 10.1007/s12640-020-00302-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
In a literature survey, Chernoff et al. (2017) dismissed the hypothesis that chronic exposure to β-N-methylamino-L-alanine (BMAA) may be a risk factor for progressive neurodegenerative disease. They question the growing scientific literature that suggests the following: (1) BMAA exposure causes ALS/PDC among the indigenous Chamorro people of Guam; (2) Guamanian ALS/PDC shares clinical and neuropathological features with Alzheimer's disease, Parkinson's disease, and ALS; (3) one possible mechanism for protein misfolds is misincorporation of BMAA into proteins as a substitute for L-serine; and (4) chronic exposure to BMAA through diet or environmental exposures to cyanobacterial blooms can cause neurodegenerative disease. We here identify multiple errors in their critique including the following: (1) their review selectively cites the published literature; (2) the authors reported favorably on HILIC methods of BMAA detection while the literature shows significant matrix effects and peak coelution in HILIC that may prevent detection and quantification of BMAA in cyanobacteria; (3) the authors build alternative arguments to the BMAA hypothesis, rather than explain the published literature which, to date, has been unable to refute the BMAA hypothesis; and (4) the authors erroneously attribute methods to incorrect studies, indicative of a failure to carefully consider all relevant publications. The lack of attention to BMAA research begins with the review's title which incorrectly refers to BMAA as a "non-essential" amino acid. Research regarding chronic exposure to BMAA as a cause of human neurodegenerative diseases is emerging and requires additional resources, validation, and research. Here, we propose strategies for improvement in the execution and reporting of analytical methods and the need for additional and well-executed inter-lab comparisons for BMAA quantitation. We emphasize the need for optimization and validation of analytical methods to ensure that they are fit-for-purpose. Although there remain gaps in the literature, an increasingly large body of data from multiple independent labs using orthogonal methods provides increasing evidence that chronic exposure to BMAA may be a risk factor for neurological illness.
Collapse
Affiliation(s)
- Dunlop Ra
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA.
| | - Banack Sa
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA
| | - Bishop Sl
- Lewis Research Group, Faculty of Science, University of Calgary, Alberta, Canada
| | - Metcalf Js
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA
| | - Murch Sj
- Department of Chemistry, University of British Columbia, Kelowna, BC, Canada
| | - Davis DA
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Stommel Ew
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Karlsson O
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Brittebo Eb
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | | | - Tan Vx
- Department of Biological Sciences, Macquarie University Centre for Motor Neuron Disease Research, Macquarie University, Ryde, Australia
| | - Guillemin Gg
- Department of Biological Sciences, Macquarie University Centre for Motor Neuron Disease Research, Macquarie University, Ryde, Australia
| | - Cox Pa
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA
| | - Mash Dc
- Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Bradley Wg
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
5
|
Roy-Lachapelle A, Solliec M, Sauvé S, Gagnon C. Evaluation of ELISA-based method for total anabaenopeptins determination and comparative analysis with on-line SPE-UHPLC-HRMS in freshwater cyanobacterial blooms. Talanta 2020; 223:121802. [PMID: 33298288 DOI: 10.1016/j.talanta.2020.121802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 11/30/2022]
Abstract
Anabaenopeptins (APs) are bioactive cyanopeptides of emerging concern produced by cyanobacteria. The research for analytical development has recently gained in importance due to their abundance in toxic cyanobacterial blooms. A new commercial enzyme-linked immunosorbent assay kit for the determination of total APs (APtot ELISA) has been released promising a rapid response with good cost efficiency for the routine monitoring of uncommon cyanopeptides. The present study explores the suitability of this new kit in comparison with a validated quantitative analytical method based on liquid chromatography coupled to mass spectrometry (LC-MS). The validation results were comparable with both methods for accuracy, precision, and calibration. Method detection limits were more sensitive using LC-MS specifically evaluated at 0.011 and 0.013 μg L-1 for AP-A and B respectively, compared to APtot ELISA evaluated at 0.10 μg L-1 for total of the two. For APtot ELISA, results were independent from the matrix; however, a systematic signal response was measured in blanks, requiring a blank subtraction in data treatment. Cross-reactivity of APtot ELISA was investigated by analyzing ten cyanopeptides selected for their abundance and diversity. Cyanopeptolin A (CP-A), nodularin-R (NOD), microcystin (MC)-RR, [Asp3]RR, and HilR showed cross-reactivity with an average overestimation going from 25 to 66%. Considering the contribution of cross-reactive cyanopeptides, thirteen lake samples out of fifteen showed higher concentrations using APtot ELISA with overestimation values up to 2261% compared to LC-MS. In light of this study results, LC-MS should still be preconized for the study and monitoring of APs when sensitivity and specificity are needed.
Collapse
Affiliation(s)
- Audrey Roy-Lachapelle
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill, Montréal, Québec, H2Y 2E7, Canada
| | - Morgan Solliec
- NSERC-Industrial Chair on Drinking Water, CGM Department, École Polytechnique de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montréal, Québec, H3C 3J7, Canada
| | - Christian Gagnon
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill, Montréal, Québec, H2Y 2E7, Canada.
| |
Collapse
|
6
|
Ai Y, Lee S, Lee J. Drinking water treatment residuals from cyanobacteria bloom-affected areas: Investigation of potential impact on agricultural land application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135756. [PMID: 31940734 DOI: 10.1016/j.scitotenv.2019.135756] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/22/2019] [Accepted: 11/24/2019] [Indexed: 05/22/2023]
Abstract
In cyanobacteria bloom-affected areas, drinking water treatment processes are optimized to ensure the absence of cyanotoxins in their finished water. A concern about the sludge generated from water treatment has emerged because the removed cyanotoxins and cyanobacteria can get concentrated in the sludge, called water treatment residuals (WTR), and these WTR are often applied on land for beneficial purposes. However, the impact of WTR from bloom-affected areas on the agricultural application and public health is hardly reported. The objective of this study was to characterize bloom-affected WTR by focusing on cyanotoxins, toxin-producing cyanobacteria, microbiomes, and resistome profiles. In addition, the fate of WTR-originated microcystin in crops and soil was examined. WTR samples were obtained from a bloom-affected area in Ohio, USA in November 2017. Cyanotoxins and toxin-producing cyanobacteria were quantified with the enzyme-linked immunosorbent assay and droplet digital PCR, respectively. Microbiome and resistome were determined with Nanopore sequencing. Cyanotoxin concentrations were measured: microcystin (259 μg/kg), saxitoxin (0.16 μg/kg), anatoxin-a (not detected), and β-Methylamino-L-alanine (BMAA) (575 μg/kg). MC-producing cyanobacteria concentrations were determined: Planktothrix (5.3 × 107 gene copies/g) and Microcystis (3.3 × 103 gene copies/g). Proteobacteria was the most predominant and Planktothrix phage was a remarkably dominant virus in the WTR microbiome. Aminoglycoside resistance was the most abundant class, and antibiotic resistance was found in multiple pathogens (e.g. Mycobacterium). WTR land application was simulated by growing carrots with a mixture of WTR and soil in a greenhouse. At harvest, ~80% of WTR-originated microcystin was found in the soil (83-96 μg/kg) and 5% accumulated in carrots (19-28 μg/kg). This study provides the first insight into the cyanotoxin, microbiome, and resistome profile of bloom-affected WTR. Our finding suggests that careful WTR management is needed for the beneficial use of WTR for protecting agricultural environments, especially soil and groundwater, and food safety.
Collapse
Affiliation(s)
- Yuehan Ai
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
| | - Seungjun Lee
- College of Public Health, Division of Environmental Health Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Jiyoung Lee
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; College of Public Health, Division of Environmental Health Sciences, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
7
|
Bishop SL, Murch SJ. A systematic review of analytical methods for the detection and quantification of β-N-methylamino-l-alanine (BMAA). Analyst 2019; 145:13-28. [PMID: 31742261 DOI: 10.1039/c9an01252d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are influenced by environmental factors such as exposure to toxins including the cyanotoxin β-N-methylamino-l-alanine (BMAA) that can bioaccumulate in common food sources such as fish, mussels and crabs. Accurate and precise analytical methods are needed to detect and quantify BMAA to minimize human health risks. The objective of this review is to provide a comprehensive overview of the methods used for BMAA analysis from 2003 to 2019 and to evaluate the reported performance characteristics for each method to determine the consensus data for each analytical approach and different sample matrices. Detailed searches of the database Web of Science™ (WoS) were performed between August 21st, 2018 and April 5th, 2019. Eligible studies included analytical methods for the detection and quantification of BMAA in cyanobacteria and bioaccumulated BMAA in higher trophic levels, in phytoplankton and zooplankton and in human tissues and fluids. This systematic review has limitations in that only the English language literature is included and it did not include standard operating protocols nor any method validation data that have not been made public. We identified 148 eligible studies, of which a positive result for BMAA in one or more samples analyzed was reported in 84% (125 out of 148) of total studies, 57% of HILIC studies, 92% of RPLC studies and 71% of other studies. The largest discrepancy between different methods arose from the analysis of cyanobacteria samples, where BMAA was detected in 95% of RPLC studies but only in 25% of HILIC studies. Without sufficient published validation of each method's performance characteristics, it is difficult to establish each method as fit for purpose for each sample matrix. The importance of establishing methods as appropriate for their intended use is evidenced by the inconsistent reporting of BMAA across environmental samples, despite its prevalence in diverse ecosystems and food webs.
Collapse
Affiliation(s)
- Stephanie L Bishop
- Chemistry, University of British Columbia, Kelowna, British Columbia, CanadaV1V 1V7.
| | | |
Collapse
|
8
|
A Single Laboratory Validation for the Analysis of Underivatized β-N-Methylamino-L-Alanine (BMAA). Neurotox Res 2019; 39:49-71. [PMID: 31823228 DOI: 10.1007/s12640-019-00137-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/28/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023]
Abstract
β-N-Methylamino-L-alanine (BMAA) is a non-protein amino acid produced by cyanobacteria that can accumulate in ecosystems and food webs. Human exposure to cyanobacterial and algal blooms may be a risk factor for neurodegenerative diseases such as Alzheimer's disease and amyotrophic lateral sclerosis. Analytical chemists have struggled to find reliable methods for BMAA analysis in complex sample matrices. Analysis of BMAA is complicated by at least 3 naturally occurring isomers: N-(2-aminoethyl)glycine (AEG), 2,4-diaminobutyric acid (DAB), and β-aminomethyl-L-alanine (BAMA). More than 350 publications have reported detection and quantification of BMAA and its isomers, but varying results have led to controversy in the literature. The objective of this study was to perform a single laboratory validation (SLV) of a frequently published method for BMAA analysis using a ZIC-HILIC column. We investigated the selectivity, linearity, accuracy, precision, and sensitivity of the method and our data show that this HILIC method fails many of the criteria for a validated method. The method fails the criterion for selectivity as the chromatography does not separate BMAA from its isomer BAMA. Sensitivity of the method greatly decreased over the experimental period and it demonstrated a higher limit of detection (LOD) (7.5 pg on column) and a higher lower limit of quantification (LLOQ) (30 pg on column) than other published validated methods. The method demonstrated poor precision of repeated injections of standards of BMAA with % relative standard deviation (%RSD) values that ranged from 37 to 107% while HorRat values for BMAA had a fail rate of 80% and BAMA had a fail rate of 73%. No HorRat values between 0.5 and 2 were found for repeated injections of standards of AEG and DAB. Recovery of 13C3,15N2-BMAA in a cyanobacterial matrix was < 10% in experiments and we were also unable to accurately detect other protein amino acids including methionine, cysteine, or alanine, indicating matrix effects. The results of this study demonstrate that the ZIC-HILIC column is not fit for purpose for the analysis of BMAA in cyanobacterial matrices and further provides explanations for the high level of negative results reported by researchers using this method.
Collapse
|
9
|
Vo Duy S, Munoz G, Dinh QT, Tien Do D, Simon DF, Sauvé S. Analysis of the neurotoxin β-N-methylamino-L-alanine (BMAA) and isomers in surface water by FMOC derivatization liquid chromatography high resolution mass spectrometry. PLoS One 2019; 14:e0220698. [PMID: 31386693 PMCID: PMC6684067 DOI: 10.1371/journal.pone.0220698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/22/2019] [Indexed: 11/18/2022] Open
Abstract
The neurotoxin β-N-methylamino-L-alanine (BMAA), suspected to trigger neurodegenerative diseases, can be produced during cyanobacterial bloom events and subsequently affect ecosystems and water sources. Some of its isomers including β-amino-N-methylalanine (BAMA), N-(2-aminoethyl) glycine (AEG), and 2,4-diaminobutyric acid (DAB) may show different toxicities than BMAA. Here, we set out to provide a fast and sensitive method for the monitoring of AEG, BAMA, DAB and BMAA in surface waters. A procedure based on aqueous derivatization with 9-fluorenylmethyl chloroformate (FMOC-Cl) was investigated for this purpose. Under optimized conditions, a small aqueous sample aliquot (5 mL) was spiked with BMAA-d3 internal standard, subjected to FMOC-Cl derivatization, centrifuged, and analyzed. The high-throughput instrumental method (10 min per sample) involved on-line pre-concentration and desalting coupled to ultra-high-performance liquid chromatography high-resolution mass spectrometry (UHPLC-HRMS). Chromatographic gradient and mobile phases were adjusted to obtain suitable separation of the 4 isomers. The method limits of detection were in the range of 2-5 ng L-1. In-matrix validation parameters including linearity range, accuracy, precision, and matrix effects were assessed. The method was applied to surface water samples (n = 82) collected at a large spatial scale in lakes and rivers in Canada. DAB was found in >70% of samples at variable concentrations (<3-1,900 ng L-1), the highest concentrations corresponding to lake samples in cyanobacterial bloom periods. BMAA was only reported (110 ng L-1) at one HAB-impacted location. This is one of the first studies to report on the profiles of AEG, BAMA, DAB, and BMAA in background and impacted surface waters.
Collapse
Affiliation(s)
- Sung Vo Duy
- Department of Chemistry, Université de Montréal, Montréal, Quebec, Canada
| | - Gabriel Munoz
- Department of Chemistry, Université de Montréal, Montréal, Quebec, Canada
| | - Quoc Tuc Dinh
- Department of Chemistry, Université de Montréal, Montréal, Quebec, Canada
| | - Dat Tien Do
- Department of Chemistry, Université de Montréal, Montréal, Quebec, Canada
| | - Dana F. Simon
- Department of Chemistry, Université de Montréal, Montréal, Quebec, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
10
|
Rutkowska M, Płotka-Wasylka J, Majchrzak T, Wojnowski W, Mazur-Marzec H, Namieśnik J. Recent trends in determination of neurotoxins in aquatic environmental samples. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
11
|
Cyanotoxins and Cyanobacteria Cell Accumulations in Drinking Water Treatment Plants with a Low Risk of Bloom Formation at the Source. Toxins (Basel) 2018; 10:toxins10110430. [PMID: 30373126 PMCID: PMC6266306 DOI: 10.3390/toxins10110430] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/18/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022] Open
Abstract
Toxic cyanobacteria have been shown to accumulate in drinking water treatment plants that are susceptible to algal blooms. However, the risk for plants that do not experience algal blooms, but that receive a low influx of cells, is not well known. This study determined the extent of cell accumulation and presence of cyanotoxins across the treatment trains of four plants in the Great Lakes region. Samples were collected for microscopic enumeration and enzyme-linked immunosorbent assay (ELISA) measurements for microcystins, anatoxin-a, saxitoxin, cylindrospermopsin, and β-methylamino-L-alanine (BMAA). Low cell influxes (under 1000 cells/mL) resulted in significant cell accumulations (over 1 × 105 cells/mL) in clarifier sludge and filter backwash samples. Microcystins peaked at 7.2 µg/L in one clarifier sludge sample, exceeding the raw water concentration by a factor of 12. Anatoxin-a was detected in the finished drinking water of one plant at 0.6 µg/L. BMAA may have been detected in three finished water samples, though inconsistencies among the BMAA ELISAs call these results into question. In summary, the results show that plants receiving a low influx of cells can be at risk of toxic cyanobacterial accumulation, and therefore, the absence of a bloom at the source does not indicate the absence of risk.
Collapse
|
12
|
Lugliè A, Giacobbe MG, Riccardi E, Bruno M, Pigozzi S, Mariani MA, Satta CT, Stacca D, Bazzoni AM, Caddeo T, Farina P, Padedda BM, Pulina S, Sechi N, Milandri A. Paralytic Shellfish Toxins and Cyanotoxins in the Mediterranean: New Data from Sardinia and Sicily (Italy). Microorganisms 2017; 5:microorganisms5040072. [PMID: 29144421 PMCID: PMC5748581 DOI: 10.3390/microorganisms5040072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/12/2017] [Accepted: 11/13/2017] [Indexed: 12/14/2022] Open
Abstract
Harmful algal blooms represent a severe issue worldwide. They affect ecosystem functions and related services and goods, with consequences on human health and socio-economic activities. This study reports new data on paralytic shellfish toxins (PSTs) from Sardinia and Sicily (Italy), the largest Mediterranean islands where toxic events, mainly caused by Alexandrium species (Dinophyceae), have been ascertained in mussel farms since the 2000s. The toxicity of the A. minutum, A. tamarense and A. pacificum strains, established from the isolation of vegetative cells and resting cysts, was determined by high performance liquid chromatography (HPLC). The analyses indicated the highest toxicity for A. pacificum strains (total PSTs up to 17.811 fmol cell-1). The PSTs were also assessed in a strain of A. tamarense. The results encourage further investigation to increase the knowledge of toxic species still debated in the Mediterranean. This study also reports new data on microcystins (MCs) and β-N-methylamino-L-alanine (BMAA) from a Sardinian artificial lake (Lake Bidighinzu). The presence of MCs and BMAA was assessed in natural samples and in cell cultures by enzyme-linked immunosorbent assay (ELISA). BMAA positives were found in all the analysed samples with a maximum of 17.84 µg L-1. The obtained results added further information on cyanotoxins in Mediterranean reservoirs, particularly BMAA, which have not yet been thoroughly investigated.
Collapse
Affiliation(s)
- Antonella Lugliè
- Dipartimento di Architettura, Design e Urbanistica, University of Sassari, Via Piandanna 4, 07100 Sassari, Italy.
| | - Maria Grazia Giacobbe
- Istituto per l'Ambiente Marino Costiero, CNR, Spianata S. Raineri 86, 98122 Messina, Italy.
| | - Elena Riccardi
- Fondazione Centro Ricerche Marine, National Reference Laboratory for Marine Biotoxins, Viale A. Vespucci 2, 47042 Cesenatico (FC), Italy.
| | - Milena Bruno
- Environmental Quality and Fish Farming, Environment and Primary Prevention, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161 Rome, Italy.
| | - Silvia Pigozzi
- Fondazione Centro Ricerche Marine, National Reference Laboratory for Marine Biotoxins, Viale A. Vespucci 2, 47042 Cesenatico (FC), Italy.
| | - Maria Antonietta Mariani
- Dipartimento di Architettura, Design e Urbanistica, University of Sassari, Via Piandanna 4, 07100 Sassari, Italy.
| | - Cecilia Teodora Satta
- Dipartimento di Architettura, Design e Urbanistica, University of Sassari, Via Piandanna 4, 07100 Sassari, Italy.
- Agenzia Regionale per la Ricerca in Agricoltura (AGRIS), Servizio Ittico, S.S. Sassari-Fertilia Km 18,600, Bonassai, 07040 Olmedo, Italy.
| | - Daniela Stacca
- Dipartimento di Architettura, Design e Urbanistica, University of Sassari, Via Piandanna 4, 07100 Sassari, Italy.
| | - Anna Maria Bazzoni
- Dipartimento di Ispezione degli Alimenti, Istituto Zooprofilattico Sperimentale della Sardegna G. Pegreffi, Via Duca degli Abruzzi 8, 07100 Sassari, Italy.
| | - Tiziana Caddeo
- Dipartimento di Architettura, Design e Urbanistica, University of Sassari, Via Piandanna 4, 07100 Sassari, Italy.
| | - Pasqualina Farina
- Dipartimento di Architettura, Design e Urbanistica, University of Sassari, Via Piandanna 4, 07100 Sassari, Italy.
| | - Bachisio Mario Padedda
- Dipartimento di Architettura, Design e Urbanistica, University of Sassari, Via Piandanna 4, 07100 Sassari, Italy.
| | - Silvia Pulina
- Dipartimento di Architettura, Design e Urbanistica, University of Sassari, Via Piandanna 4, 07100 Sassari, Italy.
- Department of Life and Environmental Sciences, University of Cagliari, Via Fiorelli 1, 09126 Cagliari, Italy.
| | - Nicola Sechi
- Dipartimento di Architettura, Design e Urbanistica, University of Sassari, Via Piandanna 4, 07100 Sassari, Italy.
| | - Anna Milandri
- Fondazione Centro Ricerche Marine, National Reference Laboratory for Marine Biotoxins, Viale A. Vespucci 2, 47042 Cesenatico (FC), Italy.
| |
Collapse
|
13
|
Diaz-Parga P, Goto JJ, Krishnan VV. Chemistry and Chemical Equilibrium Dynamics of BMAA and Its Carbamate Adducts. Neurotox Res 2017; 33:76-86. [PMID: 28921378 DOI: 10.1007/s12640-017-9801-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/23/2017] [Accepted: 08/18/2017] [Indexed: 02/06/2023]
Abstract
Beta-N-methylamino-L-alanine (BMAA) has been demonstrated to contribute to the onset of the ALS/Parkinsonism-dementia complex (ALS/PDC) and is implicated in the progression of other neurodegenerative diseases. While the role of BMAA in these diseases is still debated, one of the suggested mechanisms involves the activation of excitatory glutamate receptors. In particular, the excitatory effects of BMAA are shown to be dependent on the presence of bicarbonate ions, which in turn forms carbamate adducts in physiological conditions. The formation of carbamate adducts from BMAA and bicarbonate is similar to the formation of carbamate adducts from non-proteinogenic amino acids. Structural, chemical, and biological information related to non-proteinogenic amino acids provide insight into the formation of and possible neurological action of BMAA. This article reviews the carbamate formation of BMAA in the presence of bicarbonate ions, with a particular focus on how the chemical equilibrium of BMAA carbamate adducts may affect the molecular mechanism of its function. Highlights of nuclear magnetic resonance (NMR)-based studies on the equilibrium process between free BMAA and its adducts are presented. The role of divalent metals on the equilibrium process is also explored. The formation and the equilibrium process of carbamate adducts of BMAA may answer questions on their neuroactive potency and provide strong motivation for further investigations into other toxic mechanisms.
Collapse
Affiliation(s)
- Pedro Diaz-Parga
- Department of Chemistry, California State University, Fresno, CA, 93740, USA
| | - Joy J Goto
- Department of Chemistry, California State University, Fresno, CA, 93740, USA.
| | - V V Krishnan
- Department of Chemistry, California State University, Fresno, CA, 93740, USA.
- Department of Medical Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
14
|
Rzymski P, Poniedziałek B, Mankiewicz-Boczek J, Faassen EJ, Jurczak T, Gągała-Borowska I, Ballot A, Lürling M, Kokociński M. Polyphasic toxicological screening of Cylindrospermopsis raciborskii and Aphanizomenon gracile isolated in Poland. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.02.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Bláhová L, Kohoutek J, Kadlecová E, Kozáková L, Bláha L. Assessment of non-derivatized β-N-methylamino-l-alanine (BMAA) neurotoxin in free form in urine of patients with nonspecific neurological symptoms. Toxicon 2017; 133:48-57. [PMID: 28428069 DOI: 10.1016/j.toxicon.2017.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/13/2017] [Accepted: 04/16/2017] [Indexed: 12/12/2022]
Abstract
The beta-N-methylamino-l-alanine (BMAA) is a non-proteinogenic amino acid discussed to be produced by cyanobacteria forming harmful blooms. Since BMAA is suspected etiological agent in neurodegenerative diseases, there is a need to study and validate whether and in what concentrations can BMAA be present in human tissues. The aim of the present study was to validate analytical and extraction procedures for quantification of non-derivatized BMAA in the urine using liquid chromatography and commercial ELISA Kit. The study was focused on BMAA in different forms - dissolved, protein associated and total. The validated protocol included SPE followed by HILIC MS/MS for analyses of non-derivatized free form of BMAA with a limit of quantification 20 ng/mL. The methods for other BMAA forms (i.e. protein-associated and total) were also assessed but high matrix interferences did not allow their implementation. The method was used for analyses of free BMAA in 23 urine samples from healthy volunteers and psychiatric patients suffering from nonspecific neurological symptoms. Traces of BMAA were suspectedly detected in a single urine sample but they were not unequivocally proved according to all conservative analytical criteria. BMAA was also not confirmed in a repeatedly collected sample from the same person. The evaluated commercial BMAA ELISA Kit (Abraxis) was not suitable for determination of BMAA in extracted urine samples because of systematically highly false positive results. In agreement with recent findings, analyses of BMAA appear to methodologically challenging, and further research on BMAA in human tissues (or its precursors with potency to form BMAA under natural conditions or - eventually - during sample processing) is needed to clarify its potential ethiological role in neurodegenerative diseases.
Collapse
Affiliation(s)
- L Bláhová
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, Building A29, CZ62500 Brno, Czech Republic
| | - J Kohoutek
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, Building A29, CZ62500 Brno, Czech Republic
| | - E Kadlecová
- Psychiatric Hospital Písek, Vladislavova 490, CZ39701 Písek, Czech Republic
| | - L Kozáková
- Psychiatric Hospital Písek, Vladislavova 490, CZ39701 Písek, Czech Republic
| | - L Bláha
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, Building A29, CZ62500 Brno, Czech Republic.
| |
Collapse
|
16
|
Presence of the neurotoxin BMAA in aquatic ecosystems: what do we really know? Toxins (Basel) 2014; 6:1109-38. [PMID: 24662480 PMCID: PMC3968380 DOI: 10.3390/toxins6031109] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 02/28/2014] [Accepted: 03/04/2014] [Indexed: 11/16/2022] Open
Abstract
The neurotoxin β-N-methylamino-l-alanine (BMAA) is suspected to play a role in the neurological diseases amyotrophic lateral sclerosis, Alzheimer’s disease, and Parkinson’s disease. BMAA production by cyanobacteria has been reported and contact with cyanobacteria infested waters or consumption of aquatic organisms are possible pathways to human exposure. However, there is little consensus regarding whether BMAA is present in cyanobacteria or not, and if so, at what concentrations. The aim of this review is to indicate the current state of knowledge on the presence of BMAA in aquatic ecosystems. Some studies have convincingly shown that BMAA can be present in aquatic samples at the µg/g dry weight level, which is around the detection limit of some equally credible studies in which no BMAA was detected. However, for the majority of the reviewed articles, it was unclear whether BMAA was correctly identified, either because inadequate analytical methods were used, or because poor reporting of analyses made it impossible to verify the results. Poor analysis, reporting and prolific errors have shaken the foundations of BMAA research. First steps towards estimation of human BMAA exposure are to develop and use selective, inter-laboratory validated methods and to correctly report the analytical work.
Collapse
|