1
|
Xie X, Zhang G, Liu N. Comprehensive analysis of abnormal methylation modification differential expression mRNAs between low-grade and high-grade intervertebral disc degeneration and its correlation with immune cells. Ann Med 2024; 56:2357742. [PMID: 38819022 PMCID: PMC11146251 DOI: 10.1080/07853890.2024.2357742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/10/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is an important cause of low back pain. The aim of this study is to identify the potential molecular mechanism of abnormal methylation-modified DNA in the progression of IDD, hoping to contribute to the diagnosis and management of IDD. METHODS Low-grade IDD (grade I-II) and high-grade IDD (grade III-V) data were downloaded from GSE70362 and GSE129789 datasets. The abnormally methylated modified differentially expressed mRNAs (DEmRNAs) were identified by differential expression analysis (screening criteria were p < .05 and |logFC| > 1) and differential methylation analysis (screening criteria were p < .05 and |δβ| > 0.1). The classification models were constructed, and the receiver operating characteristic analysis was also carried out. In addition, functional enrichment analysis and immune correlation analysis were performed and the miRNAs targeted for the abnormally methylated DEmRNAs were predicted. Finally, expression validation was performed using real-time PCR. RESULTS Compared with low-grade IDD, seven abnormal methylation-modified DEmRNAs (AOX1, IBSP, QDPR, ABLIM1, CRISPLD2, ACTC1 and EMILIN1) were identified in high-grade IDD, and the classification models of random forests (RF) and support vector machine (SVM) were constructed. Moreover, seven abnormal methylation-modified DEmRNAs and classification models have high diagnostic accuracy (area under the curve [AUC] > 0.8). We also found that AUC values of single abnormal methylation-modified DEmRNA were all lower than those of RF and SVM classification models. Pearson correlation analysis found that macrophages M2 and EMILIN1 had significant negative correlation, while macrophages M2 and IBSP had significant positive correlation. In addition, four targeted relationship pairs (hsa-miR-4728-5p-QDPR, hsa-miR-4533-ABLIM1, hsa-miR-4728-5p-ABLIM1 and hsa-miR-4534-CRISPLD2) and multiple signalling pathways (for example, PI3K-AKT signalling pathway, osteoclast differentiation and calcium signalling pathway) were also identified that may be involved in the progression of IDD. CONCLUSION The identification of abnormal methylation-modified DEmRNAs and the construction of classification models in this study were helpful for the diagnosis and management of IDD progression.
Collapse
Affiliation(s)
- Xuehu Xie
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Xicheng District, Beijing, China
| | - Guoqiang Zhang
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Xicheng District, Beijing, China
| | - Ning Liu
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Xicheng District, Beijing, China
| |
Collapse
|
2
|
Li D, Ou Q, Shen Q, Lu MM, Xu JY, Jin C, Gao F, Wang J, Zhang J, Zhang J, Li J, Lu L, Xu GT, Tian H. Subconjunctival injection of human umbilical cord mesenchymal stem cells alleviates experimental allergic conjunctivitis via regulating T cell response. Stem Cell Res Ther 2023; 14:281. [PMID: 37784129 PMCID: PMC10546642 DOI: 10.1186/s13287-023-03484-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/29/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND T helper 2 (Th2) cells are thought to play critical roles in allergic conjunctivitis (AC). They release inflammatory cytokines to promote an allergic response in AC. Due to individual heterogeneity and long-term chronic management, current therapies do not always effectively control AC. Mesenchymal stem cells (MSCs) have been shown to be effective in treating allergy-related disorders, but it is unclear how exactly the Th2-mediated allergic response is attenuated. This study aims to elucidate the therapeutic effect and mechanism of the human umbilical cord MSCs (hUCMSCs) in a mouse model of experimental AC (EAC). METHODS A mouse EAC model was established by inoculating short ragweed (SRW) pollen. After the SRW pollen challenge, the mice received a single subconjunctival or tail vein injection of 2 × 106 hUCMSCs, or subconjunctival injection of hUCMSCs conditioned medium (hUCMSC-CM), and dexamethasone eye drops was used as positive control; subsequent scratching behavior and clinical symptoms were assessed. Immunostaining and flow cytometry were carried out to show allergic reactions and the activation of CD4 + T cell subsets in the conjunctiva and cervical lymph nodes (CLNs). Gene expression was determined by RNA-seq and further verified by qRT-PCR and Western blot. Co-culture assays were performed to explore the regulatory role of hUCMSCs in the differentiation of CD4 + naive T cells (Th0) into Th2 cells. RESULTS Subconjunctival administration of hUCMSCs resulted in fewer instances of scratching and lower inflammation scores in EAC mice compared to the tail vein delivery, hUCMSC-CM and control groups. Subconjunctival administration of hUCMSCs reduced the number of activated mast cells and infiltrated eosinophils in the conjunctiva, as well as decreased the number of Th2 cells in CLNs. After pretreatment with EAC mouse serum in vitro to mimic the in vivo milieu, hUCMSCs were able to inhibit the differentiation of Th0 into Th2 cells. Further evidence demonstrated that repression of Th2 cell differentiation by hUCMSCs is mediated by CRISPLD2 through downregulation of STAT6 phosphorylation. Additionally, hUMCSCs were able to promote the differentiation of Th0 cells into regulatory T cells in CLNs of EAC mice. CONCLUSIONS Subconjunctival injection of hUCMSCs suppressed the Th2-allergic response and alleviated clinical symptoms. This study provides not only a potential therapeutic target for the treatment of AC but also other T cell-mediated diseases.
Collapse
Affiliation(s)
- Dongli Li
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Qingjian Ou
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Qi Shen
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Michael Mingze Lu
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Jing-Ying Xu
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Caixia Jin
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Furong Gao
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Juan Wang
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Jieping Zhang
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
- Department of Physiology and Pharmacology, TUSM, Shanghai, 200092, China
| | - Jiao Li
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Lixia Lu
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China.
| | - Guo-Tong Xu
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China.
- Department of Physiology and Pharmacology, TUSM, Shanghai, 200092, China.
- The Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China.
| | - Haibin Tian
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China.
- Department of Physiology and Pharmacology, TUSM, Shanghai, 200092, China.
| |
Collapse
|
3
|
Tängdén T, Gustafsson S, Rao AS, Ingelsson E. A genome-wide association study in a large community-based cohort identifies multiple loci associated with susceptibility to bacterial and viral infections. Sci Rep 2022; 12:2582. [PMID: 35173190 PMCID: PMC8850418 DOI: 10.1038/s41598-022-05838-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 01/14/2022] [Indexed: 12/21/2022] Open
Abstract
There is limited data on host-specific genetic determinants of susceptibility to bacterial and viral infections. Genome-wide association studies using large population cohorts can be a first step towards identifying patients prone to infectious diseases and targets for new therapies. Genetic variants associated with clinically relevant entities of bacterial and viral infections (e.g., abdominal infections, respiratory infections, and sepsis) in 337,484 participants of the UK Biobank cohort were explored by genome-wide association analyses. Cases (n = 81,179) were identified based on ICD-10 diagnosis codes of hospital inpatient and death registries. Functional annotation was performed using gene expression (eQTL) data. Fifty-seven unique genome-wide significant loci were found, many of which are novel in the context of infectious diseases. Some of the detected genetic variants were previously reported associated with infectious, inflammatory, autoimmune, and malignant diseases or key components of the immune system (e.g., white blood cells, cytokines). Fine mapping of the HLA region revealed significant associations with HLA-DQA1, HLA-DRB1, and HLA-DRB4 locus alleles. PPP1R14A showed strong colocalization with abdominal infections and gene expression in sigmoid and transverse colon, suggesting causality. Shared significant loci across infections and non-infectious phenotypes in the UK Biobank cohort were found, suggesting associations for example between SNPs identified for abdominal infections and CRP, rheumatoid arthritis, and diabetes mellitus. We report multiple loci associated with bacterial and viral infections. A better understanding of the genetic determinants of bacterial and viral infections can be useful to identify patients at risk and in the development of new drugs.
Collapse
Affiliation(s)
- Thomas Tängdén
- Infection Medicine, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| | - Stefan Gustafsson
- Molecular Epidemiology and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Abhiram S Rao
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, 94305, USA
| | - Erik Ingelsson
- Molecular Epidemiology and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
4
|
Zhang S, Pei L, Qu J, Sun L, Jiang W, Li W, Lin Z, Chen D. CRISPLD2 attenuates pro-inflammatory cytokines production in HMGB1-stimulated monocytes and septic mice. Am J Transl Res 2021; 13:4080-4091. [PMID: 34150000 PMCID: PMC8205833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
HMGB1 has been identified as a pro-inflammatory mediator which leads to sepsis lethality. Previous studies suggested that CRISPLD2 had anti-inflammatory property and might severe as a therapeutic agent in sepsis. In the present study, we first conducted bioinformatic analysis to explore the expression profile of HMGB1 in septic survivors and non-survivors. We found that the serum HMGB1 level of septic non-survivors was significantly higher than that of septic survivors, and there was a positive correlation between CRISPLD2 and HMGB1 in mRNA expression in most of the cancer and normal tissue types, revealing a co-expression or dependency relationship between the two genes. In vitro, using cultured THP-1 cells, we confirmed that HMGB1 can induce the expression of CRISPLD2 in a time dependent manner through TLR4-dependent pathway. Given that CRISPLD2 and HMGB1 shared a wide range of time scales in gene expression and the anti-inflammatory property of CRISPLD2, we further verified that HMGB1 induced cytokines production might be partially reversed by CRISPLD2. In vivo, intravenously treatment of CRISPLD2 failed to rescue septic mice, although the serum levels of inflammatory cytokines were decreased. In conclusion, our study demonstrated that HMGB1 can act as stimuli to up-regulate the expression of CRISPLD2 in THP-1 cells, and in turn, increased CRISPLD2 can curtail HMGB1 induced pro-inflammatory cytokines production. Unfortunately, the anti-inflammatory effects of CRISPLD2 did not translate into survival benefit in mice with sepsis.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Lei Pei
- Department of Critical Care Medicine, Changzheng Hospital, Second Military Medical UniversityShanghai, China
| | - Jinlong Qu
- Department of Critical Care Medicine, Changzheng Hospital, Second Military Medical UniversityShanghai, China
| | - Lizhu Sun
- Department of Critical Care Medicine, Changzheng Hospital, Second Military Medical UniversityShanghai, China
| | - Weiwei Jiang
- Department of Critical Care Medicine, Changzheng Hospital, Second Military Medical UniversityShanghai, China
| | - Wenfang Li
- Department of Critical Care Medicine, Changzheng Hospital, Second Military Medical UniversityShanghai, China
| | - Zhaofen Lin
- Department of Critical Care Medicine, Changzheng Hospital, Second Military Medical UniversityShanghai, China
| | - Dechang Chen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| |
Collapse
|
5
|
|
6
|
Hernández-Beeftink T, Guillen-Guio B, Villar J, Flores C. Genomics and the Acute Respiratory Distress Syndrome: Current and Future Directions. Int J Mol Sci 2019; 20:E4004. [PMID: 31426444 PMCID: PMC6721149 DOI: 10.3390/ijms20164004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/05/2019] [Accepted: 08/11/2019] [Indexed: 12/19/2022] Open
Abstract
The excessive hospital mortality associated with acute respiratory distress syndrome (ARDS) in adults mandates an urgent need for developing new therapies and tools for the early risk assessment of these patients. ARDS is a heterogeneous syndrome with multiple different pathogenetic processes contributing differently in different patients depending on clinical as well as genetic factors. Identifying genetic-based biomarkers holds the promise for establishing effective predictive and prognostic stratification methods and for targeting new therapies to improve ARDS outcomes. Here we provide an updated review of the available evidence supporting the presence of genetic factors that are predictive of ARDS development and of fatal outcomes in adult critically ill patients and that have been identified by applying different genomic and genetic approaches. We also introduce other incipient genomics approximations, such as admixture mapping, metagenomics and genome sequencing, among others, that will allow to boost this knowledge and likely reveal new genetic predictors of ARDS susceptibility and prognosis among critically ill patients.
Collapse
Affiliation(s)
- Tamara Hernández-Beeftink
- Research Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria 35010, Spain
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife 38010, Spain
| | - Beatriz Guillen-Guio
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife 38010, Spain
| | - Jesús Villar
- Research Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria 35010, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife 38010, Spain.
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid 28029, Spain.
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife 38600, Spain.
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Santa Cruz de Tenerife 38200, Spain.
| |
Collapse
|
7
|
Zhang H, Kho AT, Wu Q, Halayko AJ, Limbert Rempel K, Chase RP, Sweezey NB, Weiss ST, Kaplan F. CRISPLD2 (LGL1) inhibits proinflammatory mediators in human fetal, adult, and COPD lung fibroblasts and epithelial cells. Physiol Rep 2017; 4:4/17/e12942. [PMID: 27597766 PMCID: PMC5027350 DOI: 10.14814/phy2.12942] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/07/2016] [Indexed: 11/24/2022] Open
Abstract
Chronic lung disease of prematurity/bronchopulmonary dysplasia (BPD) is the leading cause of perinatal morbidity in developed countries. Inflammation is a prominent finding. Currently available interventions have associated toxicities and limited efficacy. While BPD often resolves in childhood, survivors of preterm birth are at risk for acquired respiratory disease in early life and are more likely to develop chronic obstructive pulmonary disease (COPD) in adulthood. We previously cloned Crispld2 (Lgl1), a glucocorticoid‐regulated mesenchymal secretory protein that modulates lung branching and alveogenesis through mesenchymal–epithelial interactions. Absence of Crispld2 is embryonic lethal. Heterozygous Crispld2+/− mice display features of BPD, including distal airspace enlargement, disruption of elastin, and neonatal lung inflammation. CRISPLD2 also plays a role in human fetal lung fibroblast cell expansion, migration, and mesenchymal–epithelial signaling. This study assessed the effects of endogenous and exogenous CRISPLD2 on expression of proinflammatory mediators in human fetal and adult (normal and COPD) lung fibroblasts and epithelial cells. CRISPLD2 expression was upregulated in a lipopolysaccharide (LPS)‐induced human fetal lung fibroblast line (MRC5). LPS‐induced upregulation of the proinflammatory cytokines IL‐8 and CCL2 was exacerbated in MRC5‐CRISPLD2knockdown cells. siRNA suppression of endogenous CRISPLD2 in adult lung fibroblasts (HLFs) led to augmented expression of IL‐8, IL‐6, CCL2. LPS‐stimulated expression of proinflammatory mediators by human lung epithelial HAEo‐ cells was attenuated by purified secretory CRISPLD2. RNA sequencing results from HLF‐CRISPLD2knockdown suggest roles for CRISPLD2 in extracellular matrix and in inflammation. Our data suggest that suppression of CRISPLD2 increases the risk of lung inflammation in early life and adulthood.
Collapse
Affiliation(s)
- Hui Zhang
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Alvin T Kho
- Children's Hospital Informatics Program Boston Children's Hospital, Boston, Massachusetts
| | - Qing Wu
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Andrew J Halayko
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - Karen Limbert Rempel
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - Robert P Chase
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts
| | - Neil B Sweezey
- The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada Departments of Paediatrics and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts
| | - Feige Kaplan
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada Departments of Human Genetics and Pediatrics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Genetic Factors of the Disease Course after Sepsis: A Genome-Wide Study for 28Day Mortality. EBioMedicine 2016; 12:239-246. [PMID: 27639821 PMCID: PMC5078589 DOI: 10.1016/j.ebiom.2016.08.043] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/26/2016] [Accepted: 08/27/2016] [Indexed: 12/30/2022] Open
Abstract
Sepsis is the dysregulated host response to an infection which leads to life-threatening organ dysfunction that varies by host genomic factors. We conducted a genome-wide association study (GWAS) in 740 adult septic patients and focused on 28 day mortality as outcome. Variants with suggestive evidence for an association (p ≤ 10− 5) were validated in two additional GWA studies (n = 3470) and gene coding regions related to the variants were assessed in an independent exome sequencing study (n = 74). In the discovery GWAS, we identified 243 autosomal variants which clustered in 14 loci (p ≤ 10− 5). The best association signal (rs117983287; p = 8.16 × 10− 8) was observed for a missense variant located at chromosome 9q21.2 in the VPS13A gene. VPS13A was further supported by additional GWAS (p = 0.03) and sequencing data (p = 0.04). Furthermore, CRISPLD2 (p = 5.99 × 10− 6) and a region on chromosome 13q21.33 (p = 3.34 × 10− 7) were supported by both our data and external biological evidence. We found 14 loci with suggestive evidence for an association with 28 day mortality and found supportive, converging evidence for three of them in independent data sets. Elucidating the underlying biological mechanisms of VPS13A, CRISPLD2, and the chromosome 13 locus should be a focus of future research activities. A low frequency missense variant in VPS13A on chromosome 9q21.2 was associated with 28 day mortality after sepsis A frequent intronic variant in CRISPLD2 was also supported and was reported to be associated with procalcitonin levels Similarly supported was an intergenic frequent variant on chromosome13q21.33 – a region related to chronic kidney disease
Sepsis is the dysregulated host response to an infection which leads to life-threatening organ dysfunction that is known to vary by host genomic factors. However, the detection of genetic variants related to sepsis outcomes has been challenging so far. We conducted a discovery genome-wide association study (GWAS) in 740 adult patients with sepsis looking for variants that vary with 28 day mortality. We followed-up our best findings by additional GWAS and exome sequencing data in 3544 adult patients and report three regions including the genes VPS13A and CRISPLD2 that were supported by our data and external biological evidence.
Collapse
|
9
|
Strouts FR, Popper SJ, Partidos CD, Stinchcomb DT, Osorio JE, Relman DA. Early Transcriptional Signatures of the Immune Response to a Live Attenuated Tetravalent Dengue Vaccine Candidate in Non-human Primates. PLoS Negl Trop Dis 2016; 10:e0004731. [PMID: 27214236 PMCID: PMC4877054 DOI: 10.1371/journal.pntd.0004731] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/03/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The development of a vaccine against dengue faces unique challenges, including the complexity of the immune responses to the four antigenically distinct serotypes. Genome-wide transcriptional profiling provides insight into the pathways and molecular features that underlie responses to immune system stimulation, and may facilitate predictions of immune protection. METHODOLOGY/PRINCIPAL FINDINGS In this study, we measured early transcriptional responses in the peripheral blood of cynomolgus macaques following vaccination with a live, attenuated tetravalent dengue vaccine candidate, TDV, which is based on a DENV-2 backbone. Different doses and routes of vaccine administration were used, and viral load and neutralizing antibody titers were measured at different time-points following vaccination. All 30 vaccinated animals developed a neutralizing antibody response to each of the four dengue serotypes, and only 3 of these animals had detectable serum viral RNA after challenge with wild-type dengue virus (DENV), suggesting protection of vaccinated animals to DENV infection. The vaccine induced statistically significant changes in 595 gene transcripts on days 1, 3, 5 and 7 as compared with baseline and placebo-treated animals. Genes involved in the type I interferon (IFN) response, including IFI44, DDX58, MX1 and OASL, exhibited the highest fold-change in transcript abundance, and this response was strongest following double dose and subcutaneous (versus intradermal) vaccine administration. In addition, modules of genes involved in antigen presentation, dendritic cell activation, and T cell activation and signaling were enriched following vaccination. Increased abundance of gene transcripts related to T cell activation on day 5, and the type I IFN response on day 7, were significantly correlated with the development of high neutralizing antibody titers on day 30. CONCLUSIONS/SIGNIFICANCE These results suggest that early transcriptional responses may be predictive of development of adaptive immunity to TDV vaccination in cynomolgus macaques, and will inform studies of human responses to dengue vaccines.
Collapse
Affiliation(s)
- Fiona R. Strouts
- Department of Microbiology and Immunology, Stanford University, Stanford, California, United States of America
| | - Stephen J. Popper
- Department of Microbiology and Immunology, Stanford University, Stanford, California, United States of America
| | | | - Dan T. Stinchcomb
- Takeda Vaccines, Inc., Deerfield, Illinois, United States of America
| | - Jorge E. Osorio
- Takeda Vaccines, Inc., Deerfield, Illinois, United States of America
| | - David A. Relman
- Department of Microbiology and Immunology, Stanford University, Stanford, California, United States of America
- Department of Medicine, Stanford University, Stanford, California, United States of America
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Procalcitonin Levels in Survivors and Nonsurvivors of Sepsis: Systematic Review and Meta-Analysis. Shock 2016; 43:212-21. [PMID: 25423128 DOI: 10.1097/shk.0000000000000305] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Procalcitonin (PCT) is an acute-phase reactant that has been used to diagnose and potentially track the treatment of sepsis. Procalcitonin values rise initially as the infection sets in and eventually fall with resolution. Its level has been reported to be significantly higher in potential nonsurvivors of a septic episode than among survivors. However, there is also a significant amount of evidence against this. We thus conducted a meta-analysis to pool data from all the available studies regarding PCT levels in survivors and nonsurvivors of sepsis. An extensive literature search was conducted using the key words "procalcitonin," "sepsis," and "prognosis." The references of the relevant studies were also scanned. The data from the eligible studies were extracted and analyzed for any significant pooled mean difference between survivors and nonsurvivors both on days 1 and 3. The mean difference in the day 1 PCT values between survivors and nonsurvivors was found to be statistically significant (P = 0.02). The mean difference on day 3 was also statistically significant (P = 0.002). However, in a subgroup consisting of studies on patients with severe sepsis and septic shock, day 1 difference was not found to be significant (P = 0.62). We found heterogeneity of 90% in our study population, which decreased to 62% after exclusion of studies conducted in emergency department patients. Procalcitonin levels in early stages of sepsis are significantly lower among survivors as compared with nonsurvivors of sepsis.
Collapse
|
11
|
Swindell EC, Yuan Q, Maili LE, Tandon B, Wagner DS, Hecht JT. Crispld2 is required for neural crest cell migration and cell viability during zebrafish craniofacial development. Genesis 2015; 53:660-7. [PMID: 26297922 DOI: 10.1002/dvg.22897] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/20/2015] [Indexed: 12/28/2022]
Abstract
The CAP superfamily member, CRISPLD2, has previously been shown to be associated with nonsyndromic cleft lip and palate (NSCLP) in human populations and to be essential for normal craniofacial development in the zebrafish. Additionally, in rodent models, CRISPLD2 has been shown to play a role in normal lung and kidney development. However, the specific role of CRISPLD2 during these developmental processes has yet to be determined. In this study, it was demonstrated that Crispld2 protein localizes to the orofacial region of the zebrafish embryo and knockdown of crispld2 resulted in abnormal migration of neural crest cells (NCCs) during both early and late time points. An increase in cell death after crispld2 knockdown as well as an increase in apoptotic marker genes was also shown. This data suggests that Crispld2 modulates the migration, differentiation, and/or survival of NCCs during early craniofacial development. These results indicate an important role for Crispld2 in NCC migration during craniofacial development and suggests involvement of Crispld2 in cell viability during formation of the orofacies.
Collapse
Affiliation(s)
- Eric C Swindell
- Pediatric Research Center, Department of Pediatrics, The University of Texas Medical School, Houston, Texas.,The University of Texas Graduate School of Biomedical Sciences, Houston, Texas
| | - Qiuping Yuan
- Pediatric Research Center, Department of Pediatrics, The University of Texas Medical School, Houston, Texas
| | - Lorena E Maili
- Pediatric Research Center, Department of Pediatrics, The University of Texas Medical School, Houston, Texas.,The University of Texas Graduate School of Biomedical Sciences, Houston, Texas
| | - Bhavna Tandon
- Department of BioSciences, Rice University, Houston, Texas
| | | | - Jacqueline T Hecht
- Pediatric Research Center, Department of Pediatrics, The University of Texas Medical School, Houston, Texas.,The University of Texas Graduate School of Biomedical Sciences, Houston, Texas.,The University of Texas School of Dentistry, Houston, Texas
| |
Collapse
|
12
|
Yoo JY, Shin H, Kim TH, Choi WS, Ferguson SD, Fazleabas AT, Young SL, Lessey BA, Ha UH, Jeong JW. CRISPLD2 is a target of progesterone receptor and its expression is decreased in women with endometriosis. PLoS One 2014; 9:e100481. [PMID: 24955763 PMCID: PMC4067330 DOI: 10.1371/journal.pone.0100481] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/24/2014] [Indexed: 01/08/2023] Open
Abstract
Endometriosis, defined as the presence of endometrial cells outside of the uterine cavity, is a major cause of infertility and pelvic pain, afflicting more than 10% of reproductive age women. Endometriosis is a chronic inflammatory disease and lipopolysaccharide promotes the proliferation and invasion of endometriotic stromal cells. Cysteine-rich secretory protein LCCL domain-containing 2 (CRISPLD2) has high affinity for lipopolysaccharide and plays a critical role in defense against endotoxin shock. However, the function of CRISPLD2 has not been studied in endometriosis and uterine biology. Herein, we examined the expression of CRISPLD2 in endometrium from patients with and without endometriosis using immunohistochemistry. The expression of CRISPLD2 was higher in the secretory phase in human menstrual cycle compared to proliferative phase. The expression of CRISPLD2 was significantly decreased in the endometrium of women with endometriosis in the early secretory phase compared to women without endometriosis. The increase of CRISPLD2 expression at the early secretory and dysregulation of its expression in endometriosis suggest progesterone (P4) regulation of CRISPLD2. To investigate whether CRISPLD2 is regulated by P4, we examined the expression of the CRISPLD2 in the uteri of wild-type and progesterone receptor knock out (PRKO) mice. The expression of CRISPLD2 was significantly increased after P4 treatment in the wild-type mice. However, CRISPLD2 expression was significantly decreased in the (PRKO) mice treated with P4. During early pregnancy, the expression of CRISPLD2 was increased in decidua of implantation and post-implantation stages. CRISPLD2 levels were also increased in cultured human endometrial stromal cells during in vitro decidualization. These results suggest that the CRISPLD2 is a target of the progesterone receptor and may play an important role in pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Jung-Yoon Yoo
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, Michigan, United States of America
| | - Heesung Shin
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, Michigan, United States of America
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, South Korea
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, Michigan, United States of America
| | - Won-Seok Choi
- Department of Food Science and Technology, Korea National University of Transportation, Chungbuk, South Korea
| | - Susan D. Ferguson
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, Michigan, United States of America
| | - Asgerally T. Fazleabas
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, Michigan, United States of America
| | - Steven L. Young
- Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Bruce A. Lessey
- Department of Obstetrics and Gynecology, University Medical Group, Greenville Hospital System, Greenville, South Carolina, United States of America
| | - Un-Hwan Ha
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, South Korea
- * E-mail: (JWJ); (UHH)
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, Michigan, United States of America
- * E-mail: (JWJ); (UHH)
| |
Collapse
|
13
|
Himes BE, Jiang X, Wagner P, Hu R, Wang Q, Klanderman B, Whitaker RM, Duan Q, Lasky-Su J, Nikolos C, Jester W, Johnson M, Panettieri RA, Tantisira KG, Weiss ST, Lu Q. RNA-Seq transcriptome profiling identifies CRISPLD2 as a glucocorticoid responsive gene that modulates cytokine function in airway smooth muscle cells. PLoS One 2014; 9:e99625. [PMID: 24926665 PMCID: PMC4057123 DOI: 10.1371/journal.pone.0099625] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 05/17/2014] [Indexed: 12/20/2022] Open
Abstract
Asthma is a chronic inflammatory respiratory disease that affects over 300 million people worldwide. Glucocorticoids are a mainstay therapy for asthma because they exert anti-inflammatory effects in multiple lung tissues, including the airway smooth muscle (ASM). However, the mechanism by which glucocorticoids suppress inflammation in ASM remains poorly understood. Using RNA-Seq, a high-throughput sequencing method, we characterized transcriptomic changes in four primary human ASM cell lines that were treated with dexamethasone--a potent synthetic glucocorticoid (1 µM for 18 hours). Based on a Benjamini-Hochberg corrected p-value <0.05, we identified 316 differentially expressed genes, including both well known (DUSP1, KLF15, PER1, TSC22D3) and less investigated (C7, CCDC69, CRISPLD2) glucocorticoid-responsive genes. CRISPLD2, which encodes a secreted protein previously implicated in lung development and endotoxin regulation, was found to have SNPs that were moderately associated with inhaled corticosteroid resistance and bronchodilator response among asthma patients in two previously conducted genome-wide association studies. Quantitative RT-PCR and Western blotting showed that dexamethasone treatment significantly increased CRISPLD2 mRNA and protein expression in ASM cells. CRISPLD2 expression was also induced by the inflammatory cytokine IL1β, and small interfering RNA-mediated knockdown of CRISPLD2 further increased IL1β-induced expression of IL6 and IL8. Our findings offer a comprehensive view of the effect of a glucocorticoid on the ASM transcriptome and identify CRISPLD2 as an asthma pharmacogenetics candidate gene that regulates anti-inflammatory effects of glucocorticoids in the ASM.
Collapse
Affiliation(s)
- Blanca E. Himes
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Partners HealthCare Personalized Medicine, Boston, Massachusetts, United States of America
- Children's Hospital Informatics Program, Boston, Massachusetts, United States of America
| | - Xiaofeng Jiang
- Program in Molecular and Integrative Physiological Sciences, Departments of Environmental Health, and Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Peter Wagner
- Program in Molecular and Integrative Physiological Sciences, Departments of Environmental Health, and Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Ruoxi Hu
- Program in Molecular and Integrative Physiological Sciences, Departments of Environmental Health, and Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Qiyu Wang
- Program in Molecular and Integrative Physiological Sciences, Departments of Environmental Health, and Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Barbara Klanderman
- Partners HealthCare Personalized Medicine, Boston, Massachusetts, United States of America
| | - Reid M. Whitaker
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Qingling Duan
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christina Nikolos
- Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - William Jester
- Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Martin Johnson
- Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Reynold A. Panettieri
- Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kelan G. Tantisira
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Partners HealthCare Personalized Medicine, Boston, Massachusetts, United States of America
| | - Quan Lu
- Program in Molecular and Integrative Physiological Sciences, Departments of Environmental Health, and Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|