1
|
Bathrinarayanan PV, Hallam SM, Grover LM, Vigolo D, Simmons MJH. Microfluidics as a Powerful Tool to Investigate Microvascular Dysfunction in Trauma Conditions: A Review of the State-of-the-Art. Adv Biol (Weinh) 2024; 8:e2400037. [PMID: 39031943 DOI: 10.1002/adbi.202400037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/18/2024] [Indexed: 07/22/2024]
Abstract
Skeletal muscle trauma such as fracture or crush injury can result in a life-threatening condition called acute compartment syndrome (ACS), which involves elevated compartmental pressure within a closed osteo-fascial compartment, leading to collapse of the microvasculature and resulting in necrosis of the tissue due to ischemia. Diagnosis of ACS is complex and controversial due to the lack of standardized objective methods, which results in high rates of misdiagnosis/late diagnosis, leading to permanent neuro-muscular damage. ACS pathophysiology is poorly understood at a cellular level due to the lack of physiologically relevant models. In this context, microfluidics organ-on-chip systems (OOCs) provide an exciting opportunity to investigate the cellular mechanisms of microvascular dysfunction that leads to ACS. In this article, the state-of-the-art OOCs designs and strategies used to investigate microvasculature dysfunction mechanisms is reviewed. The differential effects of hemodynamic shear stress on endothelial cell characteristics such as morphology, permeability, and inflammation, all of which are altered during microvascular dysfunction is highlighted. The article then critically reviews the importance of microfluidics to investigate closely related microvascular pathologies that cause ACS. The article concludes by discussing potential biomarkers of ACS with a special emphasis on glycocalyx and providing a future perspective.
Collapse
Affiliation(s)
- P Vasanthi Bathrinarayanan
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - S M Hallam
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
| | - L M Grover
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - D Vigolo
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
- The University of Sydney, School of Biomedical Engineering, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - M J H Simmons
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
| |
Collapse
|
2
|
Amin N, Abbasi IN, Wu F, Shi Z, Sundus J, Badry A, Yuan X, Zhao BX, Pan J, Mi XD, Luo Y, Geng Y, Fang M. The Janus face of HIF-1α in ischemic stroke and the possible associated pathways. Neurochem Int 2024; 177:105747. [PMID: 38657682 DOI: 10.1016/j.neuint.2024.105747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/01/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Stroke is the most devastating disease, causing paralysis and eventually death. Many clinical and experimental trials have been done in search of a new safe and efficient medicine; nevertheless, scientists have yet to discover successful remedies that are also free of adverse effects. This is owing to the variability in intensity, localization, medication routes, and each patient's immune system reaction. HIF-1α represents the modern tool employed to treat stroke diseases due to its functions: downstream genes such as glucose metabolism, angiogenesis, erythropoiesis, and cell survival. Its role can be achieved via two downstream EPO and VEGF strongly related to apoptosis and antioxidant processes. Recently, scientists paid more attention to drugs dealing with the HIF-1 pathway. This review focuses on medicines used for ischemia treatment and their potential HIF-1α pathways. Furthermore, we discussed the interaction between HIF-1α and other biological pathways such as oxidative stress; however, a spotlight has been focused on certain potential signalling contributed to the HIF-1α pathway. HIF-1α is an essential regulator of oxygen balance within cells which affects and controls the expression of thousands of genes related to sustaining homeostasis as oxygen levels fluctuate. HIF-1α's role in ischemic stroke strongly depends on the duration and severity of brain damage after onset. HIF-1α remains difficult to investigate, particularly in ischemic stroke, due to alterations in the acute and chronic phases of the disease, as well as discrepancies between the penumbra and ischemic core. This review emphasizes these contrasts and analyzes the future of this intriguing and demanding field.
Collapse
Affiliation(s)
- Nashwa Amin
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China; Department of Zoology, Faculty of Science, Aswan University, Egypt; Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Irum Naz Abbasi
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Wu
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zongjie Shi
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Javaria Sundus
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Azhar Badry
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Yuan
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Bing-Xin Zhao
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Jie Pan
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Xiao-Dan Mi
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuhuan Luo
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Geng
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Marong Fang
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China; Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
3
|
Keuters MH, Antila S, Immonen R, Plotnikova L, Wojciechowski S, Lehtonen S, Alitalo K, Koistinaho J, Dhungana H. The Impact of VEGF-C-Induced Dural Lymphatic Vessel Growth on Ischemic Stroke Pathology. Transl Stroke Res 2024:10.1007/s12975-024-01262-9. [PMID: 38822994 DOI: 10.1007/s12975-024-01262-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/15/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024]
Abstract
Timely relief of edema and clearance of waste products, as well as promotion of anti-inflammatory immune responses, reduce ischemic stroke pathology, and attenuate harmful long-term effects post-stroke. The discovery of an extensive and functional lymphatic vessel system in the outermost meningeal layer, dura mater, has opened up new possibilities to facilitate post-stroke recovery by inducing dural lymphatic vessel (dLV) growth via a single injection of a vector encoding vascular endothelial growth factor C (VEGF-C). In the present study, we aimed to improve post-stroke outcomes by inducing dLV growth in mice. We injected mice with a single intracerebroventricular dose of adeno-associated viral particles encoding VEGF-C before subjecting them to transient middle cerebral artery occlusion (tMCAo). Behavioral testing, Gadolinium (Gd) contrast agent-enhanced magnetic resonance imaging (MRI), and immunohistochemical analysis were performed to define the impact of VEGF-C on the post-stroke outcome. VEGF-C improved stroke-induced behavioral deficits, such as gait disturbances and neurological deficits, ameliorated post-stroke inflammation, and enhanced an alternative glial immune response. Importantly, VEGF-C treatment increased the drainage of brain interstitial fluid (ISF) and cerebrospinal fluid (CSF), as shown by Gd-enhanced MRI. These outcomes were closely associated with an increase in the growth of dLVs around the region where we observed increased vefgc mRNA expression within the brain, including the olfactory bulb, cortex, and cerebellum. Strikingly, VEGF-C-treated ischemic mice exhibited a faster and stronger Gd-signal accumulation in ischemic core area and an enhanced fluid outflow via the cribriform plate. In conclusion, the VEGF-C-induced dLV growth improved the overall outcome post-stroke, indicating that VEGF-C has potential to be included in the treatment strategies of post-ischemic stroke. However, to maximize the therapeutic potential of VEGF-C treatment, further studies on the impact of an enhanced dural lymphatic system at clinically relevant time points are essential.
Collapse
Affiliation(s)
- Meike Hedwig Keuters
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00014, Helsinki, Finland
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Salli Antila
- Wihuri Research Institute and Translational Cancer Medicine Program, University of Helsinki, 00014, Helsinki, Finland
| | - Riikka Immonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Lidiia Plotnikova
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Sara Wojciechowski
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Sarka Lehtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Medicine Program, University of Helsinki, 00014, Helsinki, Finland
| | - Jari Koistinaho
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00014, Helsinki, Finland
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, University of Helsinki, 00014, Helsinki, Finland
| | - Hiramani Dhungana
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00014, Helsinki, Finland.
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland.
| |
Collapse
|
4
|
Liang S, Tian X, Gao F, Man M, Wang Q, Li J, Li L, Yang Y. Prognostic significance of the stress hyperglycemia ratio and admission blood glucose in diabetic and nondiabetic patients with spontaneous intracerebral hemorrhage. Diabetol Metab Syndr 2024; 16:58. [PMID: 38438889 PMCID: PMC10910766 DOI: 10.1186/s13098-024-01293-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/15/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND The role of stress hyperglycemia ratio (SHR) on the prognosis of spontaneous intracerebral hemorrhage (ICH) in patients with different diabetic status has not been elucidated. This study aimed to evaluate the prognostic value of SHR and admission blood glucose (ABG) for the short- and long-term mortality in diabetic and nondiabetic populations with ICH. METHOD Participants with ICH were retrospectively retrieved from the Medical Information Mart for Intensive Care (MIMIC-IV). The primary outcome was all-cause 30-day and 1-year mortality. The association of SHR and ABG with the primary outcomes in diabetic and nondiabetic cohorts were assessed by Cox proportional hazard regression. RESULTS Overall, 1029 patients with a median age of 71.09 (IQR: 60.05-81.97) were included. Among them, 548 (53%) individuals were male, and 95 (19%) as well as 323 (31%) ones experienced the 30-day and 1-year mortality, respectively. After adjusting for confounding variables, individuals in quintile 5 of SHR had significantly higher risk of the 30-day and 1-year mortality than those in quintile 1 in the whole cohort (30-day mortality: HR 3.33, 95%CI 2.01-5.51; 1-year mortality: HR 2.09, 95% CI 1.46-3.00) and in nondiabetic patients (30-day mortality: HR 4.55, 95%CI 2.33-8.88; 1-year mortality: HR 3.06, 95%CI 1.93-4.86), but no significant difference was observed in diabetic patients. Similar results were observed for ABG as a categorical variable. As continuous variable, SHR was independently correlated with the 30-day and 1-year mortality in both of the diabetic and nondiabetic cohorts (30-day mortality: HR 2.63, 95%CI 1.50-4.60. 1-year mortality: HR 2.12, 95%CI 1.33-3.39), but this correlation was only observed in nondiabetic cohort for ABG (HR 1.00, 95%CI 0.99-1.01 for both of the 30-day and 1-year mortality). Moreover, compared with ABG, SHR can better improve the C-statistics of the original models regarding the 30-day and 1-year outcomes, especially in patients with diabetes (p < 0.001 in all models). CONCLUSION SHR might be a more useful and reliable marker than ABG for prognostic prediction and risk stratification in critically ill patients with ICH, especially in those with diabetes.
Collapse
Affiliation(s)
- Shengru Liang
- Department of Endocrinology, Tangdu Hospital, Fourth Military Medical University, 710038, Xi'an, China
| | - Xiaoxi Tian
- Department of Emergency, Tangdu Hospital, Fourth Military Medical University, 710038, Xi'an, China
| | - Fei Gao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, 710038, Xi'an, China
| | - Minghao Man
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, 710038, Xi'an, China
| | - Qi Wang
- Department of Emergency, Tangdu Hospital, Fourth Military Medical University, 710038, Xi'an, China
| | - Jianwei Li
- Department of Emergency, Tangdu Hospital, Fourth Military Medical University, 710038, Xi'an, China
| | - Lihong Li
- Department of Emergency, Tangdu Hospital, Fourth Military Medical University, 710038, Xi'an, China
| | - Yang Yang
- Department of Emergency, Tangdu Hospital, Fourth Military Medical University, 710038, Xi'an, China.
| |
Collapse
|
5
|
Dong H, Wen X, Zhang BW, Wu Z, Zou W. Astrocytes in intracerebral hemorrhage: impact and therapeutic objectives. Front Mol Neurosci 2024; 17:1327472. [PMID: 38419793 PMCID: PMC10899346 DOI: 10.3389/fnmol.2024.1327472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
Intracerebral hemorrhage (ICH) manifests precipitously and profoundly impairs the neurological function in patients who are affected. The etiology of subsequent injury post-ICH is multifaceted, characterized by the intricate interplay of various factors, rendering therapeutic interventions challenging. Astrocytes, a distinct class of glial cells, interact with neurons and microglia, and are implicated in a series of pathophysiological alterations following ICH. A comprehensive examination of the functions and mechanisms associated with astrocytic proteins may shed light on the role of astrocytes in ICH pathology and proffer innovative therapeutic avenues for ICH management.
Collapse
Affiliation(s)
- Hao Dong
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xin Wen
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Bai-Wen Zhang
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhe Wu
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Zou
- The Third Department of Acupuncture and Moxibustion, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
6
|
Chu H, Dong J, Tang Y, Huang C, Guo Q. Connexin 43 Promotes Neurogenesis via Regulating Aquaporin-4 after Cerebral Ischemia. Neurotox Res 2023; 41:349-361. [PMID: 37074591 DOI: 10.1007/s12640-023-00646-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 04/20/2023]
Abstract
We aimed to test the effects of connexin43 (Cx43) on ischemic neurogenesis and examined whether it was dependent on aquaporin-4 (AQP4). We detected the expression of Cx43 and AQP4 in the ipsilateral subventricular zone (SVZ) and peri-infarct cortex after middle cerebral artery occlusion (MCAO). Also, we examined neurogenesis in the above regions via co-labeling of 5-bromo-2-deoxyuridine (BrdU)/neuronal nuclear antigen (NeuN) and BrdU/doublecortin (DCX). The effects of Cx43 and AQP4 were investigated by using two transgenic animals: heterozygous Cx43 (Cx43±) mice and AQP4 knockout (AQP4-/-) mice, and connexin mimetic peptide (CMP), a selective Cx43 blocker. We demonstrated AQP4 and Cx43 were co-expressed in the astrocytes after MCAO and the expression was highly increased in ipsilateral SVZ and peri-infarct cortex. Cx43± mice had larger infarction volumes and worse neurological function. Both BrdU/NeuN and BrdU/DCX co-labeled cells in the two regions were reduced in Cx43± and AQP4-/- mice compared to wild-type (WT) mice, suggesting Cx43 and AQP4 participated in neurogenesis of neural stem cells. Moreover, CMP decreased AQP4 expression and inhibited neurogenesis in WT mice, while the latter failed to be observed in AQP4-/- mice. Besides, higher levels of IL-1β and TNF-α were detected in the SVZ and peri-infarct cortex of AQP4-/- and Cx43± mice than those in WT mice. In conclusion, our data suggest that Cx43 elicits neuroprotective effects after cerebral ischemia through promoting neurogenesis in the SVZ to regenerate the injured neurons, which is AQP4 dependent and associated with down-regulation of inflammatory cytokines IL-1β and TNF-α.
Collapse
Affiliation(s)
- Heling Chu
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, 200233, Shanghai, China
| | - Jing Dong
- Department of Internal Neurology, Qingdao Municipal Hospital, Qingdao, China
| | - Yuping Tang
- Department of Neurology, Huashan Hospital, Fudan University, No. 12 Mid. Wulumuqi Road, Shanghai, 200040, China.
| | - Chuyi Huang
- Health Management Center, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200120, China.
| | - Qihao Guo
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, 200233, Shanghai, China.
| |
Collapse
|
7
|
Chojnowski K, Opiełka M, Gozdalski J, Radziwon J, Dańczyszyn A, Aitken AV, Biancardi VC, Winklewski PJ. The Role of Arginine-Vasopressin in Stroke and the Potential Use of Arginine-Vasopressin Type 1 Receptor Antagonists in Stroke Therapy: A Narrative Review. Int J Mol Sci 2023; 24:ijms24032119. [PMID: 36768443 PMCID: PMC9916514 DOI: 10.3390/ijms24032119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
Stroke is a life-threatening condition in which accurate diagnoses and timely treatment are critical for successful neurological recovery. The current acute treatment strategies, particularly non-invasive interventions, are limited, thus urging the need for novel therapeutical targets. Arginine vasopressin (AVP) receptor antagonists are emerging as potential targets to treat edema formation and subsequent elevation in intracranial pressure, both significant causes of mortality in acute stroke. Here, we summarize the current knowledge on the mechanisms leading to AVP hyperexcretion in acute stroke and the subsequent secondary neuropathological responses. Furthermore, we discuss the work supporting the predictive value of measuring copeptin, a surrogate marker of AVP in stroke patients, followed by a review of the experimental evidence suggesting AVP receptor antagonists in stroke therapy. As we highlight throughout the narrative, critical gaps in the literature exist and indicate the need for further research to understand better AVP mechanisms in stroke. Likewise, there are advantages and limitations in using copeptin as a prognostic tool, and the translation of findings from experimental animal models to clinical settings has its challenges. Still, monitoring AVP levels and using AVP receptor antagonists as an add-on therapeutic intervention are potential promises in clinical applications to alleviate stroke neurological consequences.
Collapse
Affiliation(s)
- Karol Chojnowski
- Student Scientific Circle of the Department of Adult Neurology, Medical University of Gdansk, 17 Smoluchowskiego Street, 80-214 Gdansk, Poland
| | - Mikołaj Opiełka
- Student Scientific Circle of the Department of Adult Neurology, Medical University of Gdansk, 17 Smoluchowskiego Street, 80-214 Gdansk, Poland
| | - Jacek Gozdalski
- Department of Adult Neurology, Medical University of Gdansk, 17 Smoluchowskiego Street, 80-214 Gdansk, Poland
- Correspondence: (J.G.); (P.J.W.)
| | - Jakub Radziwon
- Student Scientific Circle of the Department of Adult Neurology, Medical University of Gdansk, 17 Smoluchowskiego Street, 80-214 Gdansk, Poland
| | - Aleksandra Dańczyszyn
- Student Scientific Circle of the Department of Adult Neurology, Medical University of Gdansk, 17 Smoluchowskiego Street, 80-214 Gdansk, Poland
| | - Andrew Vieira Aitken
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- Center for Neurosciences Initiative, Auburn University, Auburn, AL 36849, USA
| | - Vinicia Campana Biancardi
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- Center for Neurosciences Initiative, Auburn University, Auburn, AL 36849, USA
| | - Paweł Jan Winklewski
- Department of Human Physiology, Medical University of Gdansk, 15 Tuwima Street, 80-210 Gdansk, Poland
- 2nd Department of Radiology, Medical University of Gdansk, 17 Smoluchowskiego Street, 80-214 Gdansk, Poland
- Correspondence: (J.G.); (P.J.W.)
| |
Collapse
|
8
|
Sato Y, Falcone-Juengert J, Tominaga T, Su H, Liu J. Remodeling of the Neurovascular Unit Following Cerebral Ischemia and Hemorrhage. Cells 2022; 11:2823. [PMID: 36139398 PMCID: PMC9496956 DOI: 10.3390/cells11182823] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Formulated as a group effort of the stroke community, the transforming concept of the neurovascular unit (NVU) depicts the structural and functional relationship between brain cells and the vascular structure. Composed of both neural and vascular elements, the NVU forms the blood-brain barrier that regulates cerebral blood flow to meet the oxygen demand of the brain in normal physiology and maintain brain homeostasis. Conversely, the dysregulation and dysfunction of the NVU is an essential pathological feature that underlies neurological disorders spanning from chronic neurodegeneration to acute cerebrovascular events such as ischemic stroke and cerebral hemorrhage, which were the focus of this review. We also discussed how common vascular risk factors of stroke predispose the NVU to pathological changes. We synthesized existing literature and first provided an overview of the basic structure and function of NVU, followed by knowledge of how these components remodel in response to ischemic stroke and brain hemorrhage. A greater understanding of the NVU dysfunction and remodeling will enable the design of targeted therapies and provide a valuable foundation for relevant research in this area.
Collapse
Affiliation(s)
- Yoshimichi Sato
- Department of Neurological Surgery, UCSF, San Francisco, CA 94158, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA 94158, USA
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Jaime Falcone-Juengert
- Department of Neurological Surgery, UCSF, San Francisco, CA 94158, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA 94158, USA
| | - Teiji Tominaga
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Hua Su
- Department of Anesthesia, UCSF, San Francisco, CA 94143, USA
- Center for Cerebrovascular Research, UCSF, San Francisco, CA 94143, USA
| | - Jialing Liu
- Department of Neurological Surgery, UCSF, San Francisco, CA 94158, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA 94158, USA
| |
Collapse
|
9
|
Simani L, Ramezani M, Ahmadi N, Abazari F, Raminfard S, Shojaei M, Zoghi A, Karimialavijeh E, Hossein Aghamiri S, Pakdaman H. The effect of atorvastatin on the blood-brain barrier biomarkers in acute intracerebral hemorrhage, a pilot clinical trial. BRAIN HEMORRHAGES 2022. [DOI: 10.1016/j.hest.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
10
|
Cui Y, Wang XH, Zhao Y, Chen SY, Sheng BY, Wang LH, Chen HS. Change of Serum Biomarkers to Post-Thrombolytic Symptomatic Intracranial Hemorrhage in Stroke. Front Neurol 2022; 13:889746. [PMID: 35720096 PMCID: PMC9202348 DOI: 10.3389/fneur.2022.889746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/21/2022] [Indexed: 11/18/2022] Open
Abstract
Background Symptomatic intracranial hemorrhage (sICH) is a terrible complication after intravenous alteplase in stroke, and numerous biomarkers have been investigated. However, the change of biomarkers to sICH has not been well determined. Aim To investigate the association between the change of biomarkers and sICH. Methods This is a prospective cohort study, and patients with sICH within 24 h after thrombolysis were enrolled, while patients without sICH were matched by propensity score matching with a ratio of 1:1. The blood samples were collected before and 24 h after intravenous thrombolysis (IVT), and preset 49 serum biomarkers were measured by microarray analysis. Protein function enrichment analyses were performed to detect the association between the change of biomarkers and sICH. Results Of consecutive 358 patients, 7 patients with sICH in 24 h were assigned to the sICH group, while 7 matched patients without any ICH were assigned to the non-sICH group. A total of 9 biomarkers were found to significantly change before vs. after thrombolysis between groups, including increased biomarkers, such as brain-derived neurotrophic factor, C-C motif chemokine ligand (CCL)-24, interleukin (IL)-6, IL-10, IL-18, and vascular endothelial growth factor, and decreased biomarkers, such as CCL-11, intercellular adhesion molecule-1, and IL-7. Conclusions This is the first study to identify changes in serum biomarkers in patients with sICH after IVT, and found that 6 neuroinflammatory and 3 neuroprotective biomarkers may be associated with brain injury following post-thrombolytic sICH. Clinical Trial Registration https://www.clinicaltrials.gov, identifier: NCT02854592.
Collapse
Affiliation(s)
- Yu Cui
- Department of Neurology, General Hospital of Northern Theatre Command, Shenyang, China
| | - Xin-Hong Wang
- Department of Neurology, General Hospital of Northern Theatre Command, Shenyang, China
| | - Yong Zhao
- Department of Neurology, Haicheng Hospital of Traditional Chinese Medicine, Haicheng, China
| | - Shao-Yuan Chen
- Department of Neurology, Chinese People's Liberation Army 321 Hospital, Baicheng, China
| | - Bao-Ying Sheng
- Department of Neurology, Jiamusi University First Affiliated Hospital, Jiamusi, China
| | - Li-Hua Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hui-Sheng Chen
- Department of Neurology, General Hospital of Northern Theatre Command, Shenyang, China
- *Correspondence: Hui-Sheng Chen
| |
Collapse
|
11
|
TNF-α induces AQP4 overexpression in astrocytes through the NF-κB pathway causing cellular edema and apoptosis. Biosci Rep 2022; 42:230993. [PMID: 35260880 PMCID: PMC8935387 DOI: 10.1042/bsr20212224] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 11/17/2022] Open
Abstract
Aquaporin 4 (AQP4) is highly expressed on astrocytes and is critical for controlling brain water transport in neurological diseases. Tumor necrosis factor (TNF)-α is a common cytokine found in disease microenvironment. The aim of this study was to determine whether TNF-α can regulate the expression of AQP4 in astrocytes. Primary astrocyte cultures were treated with different concentrations of TNF-α and the cell viability was assessed through cell counting kit-8 assay and AQP4 expression was detected by qPCR, western blots, and immunofluorescence assays. The activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway was detected by western blot. Further, dual-luciferase reporting system and chromatin immunoprecipitation were used to detect the transcriptional regulation of AQP4 by p65. These experiments demonstrated that treatment with TNF-α can lead to astrocyte edema and an increase in AQP4 expression. Following TNF-α treatment, the expression levels of P-IKKα/β-IκBα and P-p65 increased significantly over time. The results of the dual-luciferase reporter system and chromatin immunoprecipitation assays revealed that p65 protein and AQP4 promoter had a robust binding effect after TNF-α treatment, and the NF-κB pathway inhibitor, BAY 11-7082 could inhibit these effects of TNF-α. The expression level of AQP4 was significantly decreased upon p65 interference, while the astrocyte viability was significantly increased compared to that in the TNF-α only group. In conclusion, TNF-α activated NF-κB pathway, which promoted the binding of p65 to the AQP4 gene promoter region, and enhanced AQP4 expression, ultimately reducing astrocyte viability and causing cell edema.
Collapse
|
12
|
Chu H, Huang C, Tang Y, Dong Q, Guo Q. The stress hyperglycemia ratio predicts early hematoma expansion and poor outcomes in patients with spontaneous intracerebral hemorrhage. Ther Adv Neurol Disord 2022; 15:17562864211070681. [PMID: 35082921 PMCID: PMC8785298 DOI: 10.1177/17562864211070681] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/13/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Different from diabetic hyperglycemia, stress-induced hyperglycemia (SIH) can better reflect elevated blood glucose owing to intracerebral hemorrhage (ICH). However, studies about the outcome of ICH patients with SIH are still very limited. AIMS This study aimed to investigate whether SIH measured by stress-induced hyperglycemia ratio (SHR) was associated with hematoma expansion and poor outcomes in patients with ICH. METHODS A consecutive series of patients with spontaneous ICH from two clinical centers admitted within 24 h after symptom onset were enrolled for prospective analysis. SHR was defined as admission fasting blood glucose divided by estimated average glucose [1.59 × Hemoglobin A1c (%) - 2.59]. This study investigated the association between SHR and hematoma expansion, and short-term and long-term poor outcomes using univariate and multivariate logistic regression analyses. RESULTS A total of 313 ICH patients were enrolled in the study. SHR was markedly higher in patients with hematoma expansion and poor outcomes (p < 0.001). The multivariate logistic regression analysis demonstrated SHR independently associated with hematoma expansion (p < 0.001) and poor outcomes, including secondary neurological deterioration within 48 h, 30-day mortality, and 3-month poor modified Rankin Scale (mRS 4-6) (p < 0.001), while the blood glucose only predicted 30-day mortality. Meanwhile, the diagnostic accuracy of SHR exhibited by area under the curve in receiver operating characteristic analysis was statistically equal to or higher than the well-known predictors. CONCLUSION SHR is a reliable predictor for early hematoma expansion and poor outcomes in patients with ICH.
Collapse
Affiliation(s)
- Heling Chu
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Chuyi Huang
- Health Management Center, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yuping Tang
- State Key Laboratory of Medical Neurobiology, Department of Neurology, Huashan Hospital, Fudan University, No. 12 Mid. Wulumuqi Road, Shanghai 200040, China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, No. 12 Mid. Wulumuqi Road, Shanghai 200040, China
| | - Qihao Guo
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, No. 600 Yishan Road, Shanghai 200233, China
| |
Collapse
|
13
|
Szczygielski J, Kopańska M, Wysocka A, Oertel J. Cerebral Microcirculation, Perivascular Unit, and Glymphatic System: Role of Aquaporin-4 as the Gatekeeper for Water Homeostasis. Front Neurol 2021; 12:767470. [PMID: 34966347 PMCID: PMC8710539 DOI: 10.3389/fneur.2021.767470] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
In the past, water homeostasis of the brain was understood as a certain quantitative equilibrium of water content between intravascular, interstitial, and intracellular spaces governed mostly by hydrostatic effects i.e., strictly by physical laws. The recent achievements in molecular bioscience have led to substantial changes in this regard. Some new concepts elaborate the idea that all compartments involved in cerebral fluid homeostasis create a functional continuum with an active and precise regulation of fluid exchange between them rather than only serving as separate fluid receptacles with mere passive diffusion mechanisms, based on hydrostatic pressure. According to these concepts, aquaporin-4 (AQP4) plays the central role in cerebral fluid homeostasis, acting as a water channel protein. The AQP4 not only enables water permeability through the blood-brain barrier but also regulates water exchange between perivascular spaces and the rest of the glymphatic system, described as pan-cerebral fluid pathway interlacing macroscopic cerebrospinal fluid (CSF) spaces with the interstitial fluid of brain tissue. With regards to this, AQP4 makes water shift strongly dependent on active processes including changes in cerebral microcirculation and autoregulation of brain vessels capacity. In this paper, the role of the AQP4 as the gatekeeper, regulating the water exchange between intracellular space, glymphatic system (including the so-called neurovascular units), and intravascular compartment is reviewed. In addition, the new concepts of brain edema as a misbalance in water homeostasis are critically appraised based on the newly described role of AQP4 for fluid permeation. Finally, the relevance of these hypotheses for clinical conditions (including brain trauma and stroke) and for both new and old therapy concepts are analyzed.
Collapse
Affiliation(s)
- Jacek Szczygielski
- Department of Neurosurgery, Institute of Medical Sciences, University of Rzeszów, Rzeszów, Poland.,Department of Neurosurgery, Faculty of Medicine and Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Marta Kopańska
- Department of Pathophysiology, Institute of Medical Sciences, University of Rzeszów, Rzeszów, Poland
| | - Anna Wysocka
- Chair of Internal Medicine and Department of Internal Medicine in Nursing, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland
| | - Joachim Oertel
- Department of Neurosurgery, Faculty of Medicine and Saarland University Medical Center, Saarland University, Homburg, Germany
| |
Collapse
|
14
|
Lv T, Zhao B, Hu Q, Zhang X. The Glymphatic System: A Novel Therapeutic Target for Stroke Treatment. Front Aging Neurosci 2021; 13:689098. [PMID: 34305569 PMCID: PMC8297504 DOI: 10.3389/fnagi.2021.689098] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022] Open
Abstract
The glymphatic system (GS) is a novel defined brain-wide perivascular transit network between cerebrospinal fluid (CSF) and interstitial solutes that facilitates the clearance of brain metabolic wastes. The complicated network of the GS consists of the periarterial CSF influx pathway, astrocytes-mediated convective transport of fluid and solutes supported by AQP4 water channels, and perivenous efflux pathway. Recent researches indicate that the GS dysfunction is associated with various neurological disorders, including traumatic brain injury, hydrocephalus, epilepsy, migraine, and Alzheimer’s disease (AD). Meanwhile, the GS also plays a pivotal role in the pathophysiological process of stroke, including brain edema, blood–brain barrier (BBB) disruption, immune cell infiltration, neuroinflammation, and neuronal apoptosis. In this review, we illustrated the key anatomical structures of the GS, the relationship between the GS and the meningeal lymphatic system, the interaction between the GS and the BBB, and the crosstalk between astrocytes and other GS cellular components. In addition, we contributed to the current knowledge about the role of the GS in the pathology of stroke and the role of AQP4 in stroke. We further discussed the potential use of the GS in early risk assessment, diagnostics, prognostics, and therapeutics of stroke.
Collapse
Affiliation(s)
- Tao Lv
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bing Zhao
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qin Hu
- Central Laboratory, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohua Zhang
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
15
|
Schrader JM, Xu F, Van Nostrand WE. Distinct brain regional proteome changes in the rTg-DI rat model of cerebral amyloid angiopathy. J Neurochem 2021; 159:273-291. [PMID: 34218440 DOI: 10.1111/jnc.15463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/02/2021] [Accepted: 06/30/2021] [Indexed: 12/23/2022]
Abstract
Cerebral amyloid angiopathy (CAA), a prevalent cerebral small vessel disease in the elderly and a common comorbidity of Alzheimer's disease, is characterized by cerebral vascular amyloid accumulation, cerebral infarction, microbleeds, and intracerebral hemorrhages and is a prominent contributor to vascular cognitive impairment and dementia. Here, we investigate proteome changes associated with specific pathological features in several brain regions of rTg-DI rats, a preclinical model of CAA. Whereas varying degrees of microvascular amyloid and associated neuroinflammation are found in several brain regions, the presence of microbleeds and occluded small vessels is largely restricted to the thalamic region of rTg-DI rats, indicating different levels of CAA and associated pathologies occur in distinct brain regions in this model. Here, using SWATHLC-MS/MS, we report specific proteomic analysis of isolated brain regions and employ pathway analysis to correlate regionally specific proteomic changes with uniquely implicated molecular pathways. Pathway analysis suggested common activation of tumor necrosis factor α (TNFα), abnormal nervous system morphology, and neutrophil degranulation in all three regions. Activation of transforming growth factor-β1 (TGF-β1) was common to the hippocampus and thalamus, which share high CAA loads, while the thalamus, which uniquely exhibits thrombotic events, additionally displayed activation of thrombin and aggregation of blood cells. Thus, we present significant and new insight into the cerebral proteome changes found in distinct brain regions with differential CAA-related pathologies of rTg-DI rats and provide new information on potential pathogenic mechanisms associated with these regional disease processes.
Collapse
Affiliation(s)
- Joseph M Schrader
- Department of Biomedical and Pharmaceutical Sciences, George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | - Feng Xu
- Department of Biomedical and Pharmaceutical Sciences, George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | - William E Van Nostrand
- Department of Biomedical and Pharmaceutical Sciences, George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
16
|
Dadgostar E, Tajiknia V, Shamsaki N, Naderi-Taheri M, Aschner M, Mirzaei H, Tamtaji OR. Aquaporin 4 and brain-related disorders: Insights into its apoptosis roles. EXCLI JOURNAL 2021; 20:983-994. [PMID: 34267610 PMCID: PMC8278210 DOI: 10.17179/excli2021-3735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022]
Abstract
Brain-related disorders are leading global health problems. Various internal and external factors are involved in the progression of brain-related disorders. Inflammatory pathways, oxidative stresses, apoptosis, and deregulations of various channels are critical players in brain-related disorder pathogenesis. Among these players, aquaporins (AQP) have critical roles in various physiological and pathological conditions. AQPs are water channel molecules that permit water to cross the hydrophobic lipid bilayers of cellular membranes. AQP4 is one of the important members of AQP family. AQPs are involved in controlling apoptosis pathways in brain-related disorders. In this regard, several reports have evaluated the pathological effects of AQP4 by targeting the apoptosis-related processes in brain-related disorders. Here, for the first time, we highlight the impact of AQP4 on apoptosis-related processes in brain-related disorders.
Collapse
Affiliation(s)
- Ehsan Dadgostar
- Department of Psychiatry, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vida Tajiknia
- Department of Surgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Negar Shamsaki
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Naderi-Taheri
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Omid Reza Tamtaji
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
17
|
Bahadar GA, Shah ZA. Intracerebral Hemorrhage and Diabetes Mellitus: Blood-Brain Barrier Disruption, Pathophysiology, and Cognitive Impairments. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:312-326. [PMID: 33622232 DOI: 10.2174/1871527320666210223145112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/15/2020] [Accepted: 11/02/2020] [Indexed: 11/22/2022]
Abstract
There is a surge in diabetes incidence with an estimated 463 million individuals been diagnosed worldwide. Diabetes Mellitus (DM) is a major stroke-related comorbid condition that increases the susceptibility of disabling post-stroke outcomes. Although less common, intracerebral hemorrhage (ICH) is the most dramatic subtype of stroke that is associated with higher mortality, particularly in DM population. Previous studies have focused mainly on the impact of DM on ischemic stroke. Few studies have focused on impact of DM on ICH and discussed the blood-brain barrier disruption, brain edema, and hematoma formation. However, more recently, investigating the role of oxidative damage and reactive oxygen species (ROS) production in preclinical studies involving DM-ICH animal models has gained attention. But, little is known about the correlation between neuroinflammatory processes, glial cells activation, and peripheral immune cell invasion with DM-ICH injury. DM and ICH patients experience impaired abilities in multiple cognitive domains by relatively comparable mechanisms, which could get exacerbated in the setting of comorbidities. In this review, we discuss both the pathology of DM as a comorbid condition for ICH and the potential molecular therapeutic targets for the clinical management of the ICH and its recovery.
Collapse
Affiliation(s)
- Ghaith A Bahadar
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614. United States
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614. United States
| |
Collapse
|
18
|
Deng H, Zhang Y, Li GG, Yu HH, Bai S, Guo GY, Guo WL, Ma Y, Wang JH, Liu N, Pan C, Tang ZP. P2X7 receptor activation aggravates NADPH oxidase 2-induced oxidative stress after intracerebral hemorrhage. Neural Regen Res 2021; 16:1582-1591. [PMID: 33433488 PMCID: PMC8323669 DOI: 10.4103/1673-5374.303036] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress is a crucial pathological process that contributes to secondary injury following intracerebral hemorrhage. P2X7 receptor (P2X7R), which is activated by the abnormal accumulation of extracellular ATP, plays an important role in the regulation of oxidative stress in the central nervous system, although the effects of activated P2X7R-associated oxidative stress after intracerebral hemorrhage remain unclear. Mouse models of intracerebral hemorrhage were established through the stereotactic injection of 0.075 U VII collagenase into the right basal ganglia. The results revealed that P2X7R expression peaked 24 hours after intracerebral hemorrhage, and P2X7R expressed primarily in neurons. The inhibition of P2X7R, using A438079 (100 mg/kg, intraperitoneal), reduced nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) expression and malondialdehyde generation, increased superoxide dismutase and glutathione/oxidized glutathione levels, and alleviated neurological damage, brain edema, and apoptosis after intracellular hemorrhage. The P2X7R inhibitor A438079 (100 mg/kg, intraperitoneal injection) inhibited the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and nuclear factor kappa-B (NF-κB) after intracerebral hemorrhage. Blocking ERK1/2 activation, using the ERK1/2 inhibitor U0126 (2 µg, intraventricular injection), reduced the level of NOX2-mediated oxidative stress induced by P2X7R activation after intracellular hemorrhage. Similarly, the inhibition of NF-κB, using the NF-κB inhibitor JSH-23 (3.5 µg, intraventricular), reduced the level of NOX2-mediated oxidative stress induced by P2X7R activation. Finally, GSK2795039 (100 mg/kg, intraperitoneal), a NOX2 antagonist, attenuated P2X7R-mediated oxidative stress, neurological damage, and brain edema after intracerebral hemorrhage. The results indicated that P2X7R activation aggravated NOX2-induced oxidative stress through the activation of the ERK1/2 and NF-κB pathways following intracerebral hemorrhage in mice. The present study was approved by the Ethics Committee of Huazhong University of Science and Technology, China (approval No. TJ-A20160805) on August 26, 2016.
Collapse
Affiliation(s)
- Hong Deng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Ye Zhang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Gai-Gai Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hai-Han Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shuang Bai
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Guang-Yu Guo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wen-Liang Guo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yang Ma
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jia-Hui Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Na Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Chao Pan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhou-Ping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
19
|
Li Z, Yang P, Feng B. Effect of atorvastatin on AGEs-induced injury of cerebral cortex via inhibiting NADPH oxidase -NF-κB pathway in ApoE -/- mice. Mol Biol Rep 2020; 47:9479-9488. [PMID: 33210255 DOI: 10.1007/s11033-020-05998-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/11/2020] [Indexed: 01/11/2023]
Abstract
Advanced glycation end products (AGEs) are a group of modified proteins and/or lipids with damaging potential. AGEs-RAGE pathway plays a critical role to induce neurodegenerative encephalopathy. Statins can reduce the expression of AGEs-induced AGEs receptor (RAGE) in the aorta. It is not clear whether statins have potential benefits on AGEs-induced cognitive impairment. In this study, the effects of atorvastatin (ATV) on inflammation and oxidation stress in the cerebral cortex were investigated, and the underlying mechanisms were explored. Apolipoprotein E (ApoE)-/- male mice were divided into four groups: control, AGEs, AGEs + ALT711 (Alagebrium chloride) and AGEs + ATV. β-amyloid (Aβ) formation in the cerebral cortex was assessed through Congo red staining and the functional state of neurons was evaluated by Nissl's staining. Immunostaining was performed to assess the accumulation of AGEs in the cerebral cortex. The expressions of mRNA and protein of RAGE, Nuclear factor kappa B (NF-κB) p65 and Nicotinamide adenine dinucleotide phosphate-oxidase (NADPH oxidase) p47phox were detected by real-time polymerase chain reaction (PCR) and western blot. There were significant increases in AGEs deposit, Aβ formation, and the expressions of RAGE, NF-κB p65, and NADPH oxidase p47phox, and a decrease Nissl body in AGEs group compared with control group. ALT711 group recovered above change compared with AGEs group. Atorvastatin reduced Aβ formation and suppressed AGEs-induced expressions of NF-κB p65 and NADPH oxidase p47phox. Atorvastatin has little effects on AGEs deposit and RAGE expressions. Atorvastatin alleviates AGEs-induced neuronal impairment by alleviating inflammation and oxidative stress via inhibiting NADPH oxidase-NF-κB pathway.
Collapse
Affiliation(s)
- Zhenhan Li
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peiye Yang
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Pediatric Endocrinology, The Affiliated Wuxi Childern's Hospital of Nanjing Medical University, Wuxi, China
| | - Bo Feng
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
20
|
Molecular Correlates of Hemorrhage and Edema Volumes Following Human Intracerebral Hemorrhage Implicate Inflammation, Autophagy, mRNA Splicing, and T Cell Receptor Signaling. Transl Stroke Res 2020; 12:754-777. [PMID: 33206327 PMCID: PMC8421315 DOI: 10.1007/s12975-020-00869-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/02/2020] [Accepted: 10/18/2020] [Indexed: 12/16/2022]
Abstract
Intracerebral hemorrhage (ICH) and perihematomal edema (PHE) volumes are major determinants of ICH outcomes as is the immune system which plays a significant role in damage and repair. Thus, we performed whole-transcriptome analyses of 18 ICH patients to delineate peripheral blood genes and networks associated with ICH volume, absolute perihematomal edema (aPHE) volume, and relative PHE (aPHE/ICH; rPHE). We found 440, 266, and 391 genes correlated with ICH and aPHE volumes and rPHE, respectively (p < 0.005, partial-correlation > |0.6|). These mainly represented inflammatory pathways including NF-κB, TREM1, and Neuroinflammation Signaling-most activated with larger volumes. Weighted Gene Co-Expression Network Analysis identified seven modules significantly correlated with these measures (p < 0.05). Most modules were enriched in neutrophil, monocyte, erythroblast, and/or T cell-specific genes. Autophagy, apoptosis, HIF-1α, inflammatory and neuroinflammatory response (including Toll-like receptors), cell adhesion (including MMP9), platelet activation, T cell receptor signaling, and mRNA splicing were represented in these modules (FDR p < 0.05). Module hub genes, potential master regulators, were enriched in neutrophil-specific genes in three modules. Hub genes included NCF2, NCF4, STX3, and CSF3R, and involved immune response, autophagy, and neutrophil chemotaxis. One module that correlated negatively with ICH volume correlated positively with rPHE. Its genes and hubs were enriched in T cell-specific genes including hubs LCK and ITK, Src family tyrosine kinases whose modulation improved outcomes and reduced BBB dysfunction following experimental ICH. This study uncovers molecular underpinnings associated with ICH and PHE volumes and pathophysiology in human ICH, where knowledge is scarce. The identified pathways and hub genes may represent novel therapeutic targets.
Collapse
|
21
|
Chu H, Gao Z, Huang C, Dong J, Tang Y, Dong Q. Relationship Between Hematoma Expansion Induced by Hypertension and Hyperglycemia and Blood-brain Barrier Disruption in Mice and Its Possible Mechanism: Role of Aquaporin-4 and Connexin43. Neurosci Bull 2020; 36:1369-1380. [PMID: 32623691 PMCID: PMC7674541 DOI: 10.1007/s12264-020-00540-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/24/2020] [Indexed: 12/24/2022] Open
Abstract
We aimed to select an optimized hematoma expansion (HE) model and investigate the possible mechanism of blood-brain barrier (BBB) damage in mice. The results showed that HE occurred in the group with hypertension combined with hyperglycemia (HH-HE) from 3 to 72 h after intracerebral hemorrhage; this was accompanied by neurological deficits and hardly influenced the survival rate. The receiver operating characteristic curve suggested the criterion for this model was hematoma volume expansion ≥ 45.0%. Meanwhile, HH-HE aggravated BBB disruption. A protector of the BBB reduced HH-HE, while a BBB disruptor induced a further HH-HE. Aquaporin-4 (AQP4) knock-out led to larger hematoma volume and more severe BBB disruption. Furthermore, hematoma volume and BBB disruption were reduced by multiple connexin43 (Cx43) inhibitors in the wild-type group but not in the AQP4 knock-out group. In conclusion, the optimized HE model is induced by hypertension and hyperglycemia with the criterion of hematoma volume expanding ≥ 45.0%. HH-HE leads to BBB disruption, which is dependent on AQP4 and Cx43.
Collapse
Affiliation(s)
- Heling Chu
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200040, China
- Department of Neurology, North Huashan Hospital, Fudan University, Shanghai, 201907, China
| | - Zidan Gao
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Chuyi Huang
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jing Dong
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200040, China
| | - Yuping Tang
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200040, China.
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
22
|
Freitas-Andrade M, Raman-Nair J, Lacoste B. Structural and Functional Remodeling of the Brain Vasculature Following Stroke. Front Physiol 2020; 11:948. [PMID: 32848875 PMCID: PMC7433746 DOI: 10.3389/fphys.2020.00948] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Maintenance of cerebral blood vessel integrity and regulation of cerebral blood flow ensure proper brain function. The adult human brain represents only a small portion of the body mass, yet about a quarter of the cardiac output is dedicated to energy consumption by brain cells at rest. Due to a low capacity to store energy, brain health is heavily reliant on a steady supply of oxygen and nutrients from the bloodstream, and is thus particularly vulnerable to stroke. Stroke is a leading cause of disability and mortality worldwide. By transiently or permanently limiting tissue perfusion, stroke alters vascular integrity and function, compromising brain homeostasis and leading to widespread consequences from early-onset motor deficits to long-term cognitive decline. While numerous lines of investigation have been undertaken to develop new pharmacological therapies for stroke, only few advances have been made and most clinical trials have failed. Overall, our understanding of the acute and chronic vascular responses to stroke is insufficient, yet a better comprehension of cerebrovascular remodeling following stroke is an essential prerequisite for developing novel therapeutic options. In this review, we present a comprehensive update on post-stroke cerebrovascular remodeling, an important and growing field in neuroscience, by discussing cellular and molecular mechanisms involved, sex differences, limitations of preclinical research design and future directions.
Collapse
Affiliation(s)
| | - Joanna Raman-Nair
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
23
|
Tian Y, Chen R, Jiang Y, Bai B, Yang T, Liu H. The Protective Effects and Mechanisms of Apelin/APJ System on Ischemic Stroke: A Promising Therapeutic Target. Front Neurol 2020; 11:75. [PMID: 32194492 PMCID: PMC7063119 DOI: 10.3389/fneur.2020.00075] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/22/2020] [Indexed: 12/14/2022] Open
Abstract
The orphan receptor APJ and its endogenous ligand apelin, which are expressed in the brain, are the major components of the apelin/APJ system. Growing evidence shows that the apelin/APJ system plays a vital role in the pathophysiology of cerebral ischemic injury. Targeting the apelin/APJ system may have protective effects on cerebral ischemic injury. In this review, we sum up the latest research progress relating to the actions and therapeutic potential of the apelin/APJ system in ischemic stroke. An in-depth knowledge of the pathophysiological effects of the apelin/APJ system and the underlying mechanisms will help to develop novel therapeutic interventions for ischemic stroke.
Collapse
Affiliation(s)
- Yanjun Tian
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
| | - Ruijiao Chen
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
| | - Yunlu Jiang
- School of Mental Health, Jining Medical University, Jining, China.,Institute of Neurobiology, Jining Medical University, Jining, China
| | - Bo Bai
- Institute of Neurobiology, Jining Medical University, Jining, China
| | - Tongju Yang
- Department of Pharmacy, People's Hospital of Zoucheng City, Jining, China
| | - Haiqing Liu
- Department of Physiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| |
Collapse
|
24
|
Zusman BE, Kochanek PM, Jha RM. Cerebral Edema in Traumatic Brain Injury: a Historical Framework for Current Therapy. Curr Treat Options Neurol 2020; 22:9. [PMID: 34177248 PMCID: PMC8223756 DOI: 10.1007/s11940-020-0614-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW The purposes of this narrative review are to (1) summarize a contemporary view of cerebral edema pathophysiology, (2) present a synopsis of current management strategies in the context of their historical roots (many of which date back multiple centuries), and (3) discuss contributions of key molecular pathways to overlapping edema endophenotypes. This may facilitate identification of important therapeutic targets. RECENT FINDINGS Cerebral edema and resultant intracranial hypertension are major contributors to morbidity and mortality following traumatic brain injury. Although Starling forces are physical drivers of edema based on differences in intravascular vs extracellular hydrostatic and oncotic pressures, the molecular pathophysiology underlying cerebral edema is complex and remains incompletely understood. Current management protocols are guided by intracranial pressure measurements, an imperfect proxy for cerebral edema. These include decompressive craniectomy, external ventricular drainage, hyperosmolar therapy, hypothermia, and sedation. Results of contemporary clinical trials assessing these treatments are summarized, with an emphasis on the gap between intermediate measures of edema and meaningful clinical outcomes. This is followed by a brief statement summarizing the most recent guidelines from the Brain Trauma Foundation (4th edition). While many molecular mechanisms and networks contributing to cerebral edema after TBI are still being elucidated, we highlight some promising molecular mechanism-based targets based on recent research including SUR1-TRPM4, NKCC1, AQP4, and AVP1. SUMMARY This review outlines the origins of our understanding of cerebral edema, chronicles the history behind many current treatment approaches, and discusses promising molecular mechanism-based targeted treatments.
Collapse
Affiliation(s)
- Benjamin E. Zusman
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institute for Clinical Research Education, University of Pittsburgh, Pittsburgh, PA, USA
- Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Patrick M. Kochanek
- Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Children’s Hospital of Pittsburgh, UPMC, Pittsburgh, PA, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, John G. Rangos Research Center, Pittsburgh, PA, USA
| | - Ruchira M. Jha
- Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, John G. Rangos Research Center, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
25
|
Abstract
Objective Oryeongsan (Goreisan), a formula composed of five herbal medicines, has long been used to treat impairments of the regulation of body fluid homeostasis. Goreisan has been revealed to have anti-inflammatory actions and inhibit a water channel, the aquaporin (AQP). We herein report the therapeutic effect of Goreisan on experimental autoimmune encephalomyelitis (EAE in, an animal model of inflammatory demyelinating diseases. Materials and Methods EAE mice immunized with MOG35-55 peptide were divided into Goreisan- and sham-treated groups. The clinical EAE score and histopathological finding of the central nervous system (CNS) were analyzed. For the proliferation assay, prepared spleen cells from immunized mice were cultured and analyzed for the [3H]-thymidine uptake and cytokine concentrations of the culture supernatant. The relative quantification of AQP4 mRNA in the CNS of EAE mice was analyzed quantitatively. Results The EAE score of the Goreisan-treated mice was significantly lower than that of the sham-treated mice. The CD4-positive cell number in the CNS of Goreisan-treated mice was lower than that of sham-treated mice. In the recall response to MOG35-55 peptide, the cell proliferation did not differ markedly between the spleen cells from Goreisan- and sham-treated mice. Furthermore, Goreisan decreased the mRNA level of AQP4 in the spinal cord during EAE. Conclusion Goreisan prevented the disease activity of EAE by inhibiting the migration of pathogenic cells into the CNS by suppressing the AQP4 expression in the CNS. Goreisan may have a therapeutic effect on inflammatory demyelinating diseases.
Collapse
Affiliation(s)
- Rino Inada
- Department of Neurology, Kindai University School of Medicine, Japan
| | | | - Noriko Tanaka
- Department of Neurology, Kindai University School of Medicine, Japan
| | - Kota Moriguchi
- Department of Neurology, Kindai University School of Medicine, Japan
| | - Susumu Kusunoki
- Department of Neurology, Kindai University School of Medicine, Japan
| |
Collapse
|
26
|
Cerebral Edema and Intracranial Pressure in the Neurocritical Care Unit. Neurocrit Care 2019. [DOI: 10.1017/9781107587908.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Szczygielski J, Glameanu C, Müller A, Klotz M, Sippl C, Hubertus V, Schäfer KH, Mautes AE, Schwerdtfeger K, Oertel J. Changes in Posttraumatic Brain Edema in Craniectomy-Selective Brain Hypothermia Model Are Associated With Modulation of Aquaporin-4 Level. Front Neurol 2018; 9:799. [PMID: 30333785 PMCID: PMC6176780 DOI: 10.3389/fneur.2018.00799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 09/04/2018] [Indexed: 12/19/2022] Open
Abstract
Both hypothermia and decompressive craniectomy have been considered as a treatment for traumatic brain injury. In previous experiments we established a murine model of decompressive craniectomy and we presented attenuated edema formation due to focal brain cooling. Since edema development is regulated via function of water channel proteins, our hypothesis was that the effects of decompressive craniectomy and of hypothermia are associated with a change in aquaporin-4 (AQP4) concentration. Male CD-1 mice were assigned into following groups (n = 5): sham, decompressive craniectomy, trauma, trauma followed by decompressive craniectomy and trauma + decompressive craniectomy followed by focal hypothermia. After 24 h, magnetic resonance imaging with volumetric evaluation of edema and contusion were performed, followed by ELISA analysis of AQP4 concentration in brain homogenates. Additional histopathological analysis of AQP4 immunoreactivity has been performed at more remote time point of 28d. Correlation analysis revealed a relationship between AQP4 level and both volume of edema (r2 = 0.45, p < 0.01, **) and contusion (r2 = 0.41, p < 0.01, **) 24 h after injury. Aggregated analysis of AQP4 level (mean ± SEM) presented increased AQP4 concentration in animals subjected to trauma and decompressive craniectomy (52.1 ± 5.2 pg/mL, p = 0.01; *), but not to trauma, decompressive craniectomy and hypothermia (45.3 ± 3.6 pg/mL, p > 0.05; ns) as compared with animals subjected to decompressive craniectomy only (32.8 ± 2.4 pg/mL). However, semiquantitative histopathological analysis at remote time point revealed no significant difference in AQP4 immunoreactivity across the experimental groups. This suggests that AQP4 is involved in early stages of brain edema formation after surgical decompression. The protective effect of selective brain cooling may be related to change in AQP4 response after decompressive craniectomy. The therapeutic potential of this interaction should be further explored.
Collapse
Affiliation(s)
- Jacek Szczygielski
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany.,Institute of Neuropathology, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany.,Faculty of Medicine, University of Rzeszów, Rzeszów, Poland
| | - Cosmin Glameanu
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Andreas Müller
- Department of Radiology, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Markus Klotz
- Working Group Enteric Nervous System (AGENS), University of Applied Sciences Kaiserslautern, Kaiserslautern, Germany
| | - Christoph Sippl
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Vanessa Hubertus
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany.,Department of Neurosurgery, Charité University Medicine, Berlin, Germany
| | - Karl-Herbert Schäfer
- Working Group Enteric Nervous System (AGENS), University of Applied Sciences Kaiserslautern, Kaiserslautern, Germany
| | - Angelika E Mautes
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Karsten Schwerdtfeger
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Joachim Oertel
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| |
Collapse
|
28
|
Nishinaka A, Inoue Y, Fuma S, Hida Y, Nakamura S, Shimazawa M, Hara H. Pathophysiological Role of VEGF on Retinal Edema and Nonperfused Areas in Mouse Eyes With Retinal Vein Occlusion. ACTA ACUST UNITED AC 2018; 59:4701-4713. [DOI: 10.1167/iovs.18-23994] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Anri Nishinaka
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Yuki Inoue
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Shinichiro Fuma
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Yoshifumi Hida
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
29
|
Lan YL, Wang X, Lou JC, Ma XC, Zhang B. The potential roles of aquaporin 4 in malignant gliomas. Oncotarget 2018; 8:32345-32355. [PMID: 28423683 PMCID: PMC5458289 DOI: 10.18632/oncotarget.16017] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/22/2017] [Indexed: 11/25/2022] Open
Abstract
Aquaporin 4 (AQP4) is the major water channel expressed in the central nervous system and is primarily expressed in astrocytes. Recently, accumulated evidence has pointed to AQP4 as a key molecule that could play a critical role in glioma development. Discoveries of the role of AQP4 in cell migration suggest that AQP4 could be a significant factor regarding glioma malignancies. However, the AQP4 expression levels in glioma have not been fully elucidated; furthermore, the correlation of AQP4 expression with glioma malignancy remains controversial. Here, we review the expression pattern and predictive significance of AQP4 in malignant glioma. The molecular mechanism of AQP4 as it pertains to the migration and invasion of human glioma cells has been summarized. In addition, the important roles of AQP4 in combating drug resistance as well as potential pharmacological blockers of AQP4 have been systematically discussed. More research should be conducted to elucidate the potential roles of AQP4 in malignant glioma for identifying the tumor type, progression stages and optimal treatment strategies. The observed experimental results strongly emphasize the importance of this topic for future investigations.
Collapse
Affiliation(s)
- Yu-Long Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.,Department of Pharmacy, Dalian Medical University, Dalian, China.,Department of Physiology, Dalian Medical University, Dalian, China.,Department of Neurosurgery, The Third People's Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xun Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.,Department of Neurosurgery, The Third People's Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jia-Cheng Lou
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiao-Chi Ma
- Department of Pharmacy, Dalian Medical University, Dalian, China
| | - Bo Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
30
|
Blood-Brain Barrier Damage as the Starting Point of Leukoaraiosis Caused by Cerebral Chronic Hypoperfusion and Its Involved Mechanisms: Effect of Agrin and Aquaporin-4. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2321797. [PMID: 29682525 PMCID: PMC5846350 DOI: 10.1155/2018/2321797] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/07/2017] [Accepted: 08/29/2017] [Indexed: 11/17/2022]
Abstract
White matter lesion (WML) is popular in the patients aged over 65. Brain edema and blood-brain barrier (BBB) dysfunction due to cerebral chronic hypoperfusion (CCH) contributed to WML. Preserving astrocyte polarity is vital for BBB integrity. In our experiment, CCH model is established by bilateral carotid arteries occlusion (2VO). Leukoaraiosis was verified by fiber density stain, and brain edema was evaluated using brain water content measuring. The expressions of agrin and aquaporin-4 (AQP4) were evaluated, as well as the integrity of BBB. Astrocyte polarity was assessed by visualizing the distribution of AQP4 on astrocyte end-feet membranes. The results showed that expression of AQP4 firstly increased and then decreased, as agrin expression decreased gradually. At 3 days after 2VO, AQP4 and agrin displayed the most opposite expression with the former increasing and the latter decreasing; at the same time, brain edema reached high point as well as BBB permeability, and astrocyte polarity was degeneration. In the later phase, brain edema and BBB permeability were getting recovered, but WML was getting more evident. In accordance with that, agrin and AQP4 expression decreased significantly with astrocyte polarity reducing. We speculated that agrin and AQP4 played key roles in development of WML by mediating BBB damage in CCH, and BBB dysfunction due to reduced astrocyte polarity is the starting point of WMH.
Collapse
|
31
|
Chu H, Huang C, Gao Z, Dong J, Tang Y, Dong Q. Reduction of Ischemic Brain Edema by Combined use of Paeoniflorin and Astragaloside IV via Down-Regulating Connexin 43. Phytother Res 2017; 31:1410-1418. [PMID: 28752625 DOI: 10.1002/ptr.5868] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/31/2017] [Accepted: 06/28/2017] [Indexed: 01/10/2023]
Abstract
Paeoniflorin (PF) and astragaloside IV (AS-IV) have protective effects on cerebral ischemia. We aimed to test the effects of combined use of PF and AS-IV on ischemic brain edema and investigate whether the effects were dependent on connexin43 (Cx43). We detected the expression of Cx43 induced by PF and AS-IV after cerebral ischemia. We also examined the effects of combined use of PF and AS-IV on ischemic edema and further investigated the related pathways. We demonstrated PF and AS-IV decreased Cx43 and aquaporin4 (AQP4) associating with reduction of brain edema by dry-wet weight and brain-specific gravity methods after cerebral ischemia. Administration of PF and AS-IV displayed a further attenuation of brain edema with lower Cx43 levels. Meanwhile, Cx43 blockade inhibited AQP4 down-regulation by the two drugs. Moreover, phosphorylation of C-Jun amino-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) were increased by PF and AS-IV, respectively. The effects of PF and AS-IV to down-regulate Cx43 were suppressed by JNK and ERK inhibitors, respectively. Our data indicate that PF and AS-IV alleviate ischemic brain edema, which has close relation to Cx43 down-regulation causing decrease of AQP4 via JNK and ERK pathways activation, respectively. Combined administration elicits synergistic effects on brain edema reduction. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Heling Chu
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, No.12 Mid. Wulumuqi Road, Shanghai, 200040, China
| | - Chuyi Huang
- Department of Neurology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, No. 1111 Xianxia Road, Shanghai, 200336, China
| | - Zidan Gao
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, No.12 Mid. Wulumuqi Road, Shanghai, 200040, China
| | - Jing Dong
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, No.12 Mid. Wulumuqi Road, Shanghai, 200040, China
| | - Yuping Tang
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, No.12 Mid. Wulumuqi Road, Shanghai, 200040, China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, No.12 Mid. Wulumuqi Road, Shanghai, 200040, China
| |
Collapse
|
32
|
Chu H, Yang X, Huang C, Gao Z, Tang Y, Dong Q. Apelin-13 Protects against Ischemic Blood-Brain Barrier Damage through the Effects of Aquaporin-4. Cerebrovasc Dis 2017; 44:10-25. [PMID: 28402976 DOI: 10.1159/000460261] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 01/30/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Apelin-13 has been found to have protective effects on many neurological diseases, including cerebral ischemia. However, whether Apelin-13 acts on blood-brain barrier (BBB) disruption following cerebral ischemia is largely unknown. Aquaporin-4 (AQP4) has a close link with BBB due to the high concentration in astrocyte foot processes and regulation of astrocytes function. Here, we aimed to test Apelin-13's effects on ischemic BBB injury and examine whether the effects were dependent on AQP4. METHODS We detected the expression of AQP4 induced by Apelin-13 injection at 1, 3, and 7 days after middle cerebral artery occlusion. Meanwhile, we examined the effects of Apelin-13 on neurological function, infarct volume, and BBB disruption owing to cerebral ischemia in wild type mice, and tested whether such effects were AQP4 dependent by using AQP4 knock-out mice. Furthermore, we assessed the possible signal transduction pathways activated by Apelin-13 to regulate AQP4 expression via astrocyte cultures. RESULTS It was found that Apelin-13 highly increased AQP4 expression as well as reduced neurological scores and infarct volume. Importantly, Apelin-13 played a role of BBB protection in both types of mice by reducing BBB permeability, increased vascular endothelial growth factor, upregulated endothelial nitric oxide synthase, and downregulated inducible NOS. In morphology, we demonstrated Apelin-13 suppressed tight junction opening and endothelial cell swelling via electron microscopy detection. Meanwhile, Apelin-13 also alleviated apoptosis of astrocytes and promoted angiogenesis. Interestingly, effects of AQP4 on neurological function and infarct volume varied with time course, while AQP4 elicited protective effects on BBB at all time points. Statistical analysis of 2-way analysis of variance with replication indicated that AQP4 was required for these effects. In addition, Apelin-13 upregulated phosphorylation of extracellular signal-regulated kinase (ERK) and Akt as well as AQP4 protein in cultured astrocytes. The latter was inhibited by ERK and phosphatidylinositol 3'-kinase (PI3K) inhibitors. CONCLUSION Our data suggest that Apelin-13 protects BBB from disruption after cerebral ischemia both morphologically and functionally, which is highly associated with the increased levels of AQP4, possibly through the activation of ERK and PI3K/Akt pathways. This study provides double targets to protection of ischemic BBB damage, which can present new insights to drugs development.
Collapse
Affiliation(s)
- Heling Chu
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Shanghai, China
| | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Zheng J, Sun J, Yang L, Zhao B, Fan Z. The potential role of vascular endothelial growth factor as a new biomarker in severe intracerebral hemorrhage. J Clin Lab Anal 2016; 31. [PMID: 28000287 DOI: 10.1002/jcla.22076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 08/31/2016] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND We studied the association between high serum levels of vascular endothelial growth factor (VEGF) and clinical outcomes of intracerebral hemorrhage (ICH) patients. METHODS Patients were divided into group A (<20 mL), group B (20-30 mL), and group C (>30 mL) based on the bleeding amount. ICH patients were also categorized into the mild group, moderate group (16-30), and severe group (31-45) based on the National Institutes of Health Stroke Scale (NIHSS). The serum levels of VEGF in acute ICH patients detected at 24, 48, and 72 hours were obtained using ELISA kit, and then compared with control group. Main clinical outcomes were evaluated using the modified Rankin scale at 90 days. RESULTS The serum levels of VEGF were significantly higher than those in the control group. The serum levels of VEGF in group C were specifically higher compared with those in other two groups. The severe group exhibited higher levels of VEGF than the other two groups. NIHSS scores in patients with good outcomes were lower than those with poor outcomes. Besides, VEGF levels in patients with good outcomes were much higher than those in patients with poor outcomes. ROC results indicated that the optimal cut-off value of VEGF at 72 hours for predicting good outcomes was 111.17 pg/mL with 91.5 sensitivity, 98.7 specificity, and an AUC of 0.952 Our results showed that higher serum levels of VEGF were associated with process of ICH. CONCLUSION VEGF could be a new marker in ICH for severity.
Collapse
Affiliation(s)
- Jun Zheng
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jianping Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Liang Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Bin Zhao
- Department of Neurosurgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Zhenzeng Fan
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
35
|
Huang C, Dai C, Gong K, Zuo H, Chu H. Apelin-13 protects neurovascular unit against ischemic injuries through the effects of vascular endothelial growth factor. Neuropeptides 2016; 60:67-74. [PMID: 27592408 DOI: 10.1016/j.npep.2016.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 08/05/2016] [Accepted: 08/14/2016] [Indexed: 01/28/2023]
Abstract
Apelin-13 has protective effects on many neurological diseases, including cerebral ischemia. Here, we aimed to test Apelin-13's effects on ischemic neurovascular unit (NVU) injuries and investigate whether the effects were dependent on vascular endothelial growth factor (VEGF). We detected the expression of VEGF and its receptors (VEGFRs) induced by Apelin-13 injection at 1d, 3d, 7d and 14d after middle cerebral artery occlusion (MCAO). Meanwhile, we examined the effects of Apelin-13 on NVU in both in vivo and in vitro experiments as well as whether the effects were VEGF dependent by using VEGF antibody. We also assessed the related signal transduction pathways via multiple inhibitors. We demonstrated Apelin-13 highly increased VEGF and VEGFR-2 expression, not VEGFR-1. Importantly, Apelin-13 led to neurological functions improvement by associating with promotion of angiogenesis as well as reduction of neuronal death and astrocyte activation, which was markedly blocked by VEGF antibody. In cell cultures, Apelin-13 protected neurons, astrocytes and endothelial cells against oxygen-glucose deprivation (OGD) injuries. Moreover, the effect of Apelin-13 to up-regulate VEGF was suppressed by extracellular signal-regulated kinase (ERK) inhibitor U0126 and phosphatidylinositol 3'-kinase (PI3K) inhibitor LY294002. Our data suggest protective effects of Apelin-13 on ischemic NVU injuries are highly associated with the increase of VEGF binding to VEGFR-2, possibly acting through activation of ERK and PI3K/Akt pathways.
Collapse
Affiliation(s)
- Chuyi Huang
- Department of Neurology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200030, China
| | - Chuanfu Dai
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tsinghua Changgung Hospital, Beijing 102218, China
| | - Kai Gong
- School of Medicine, Tsinghua University, No. 30 Shuangqing Road, Haidian District, Beijing 100084, China
| | - Huancong Zuo
- Department of Neurosurgery, Tsinghua University Yuquan Hospital, No. 5 Shijingshan Road, Shijingshan District, Beijing 100049, China.
| | - Heling Chu
- Department of Neurology, Huashan Hospital, Fudan University, No. 12 Mid. Wulumuqi Road, Shanghai 200040, China.
| |
Collapse
|
36
|
Aquaporin-4 and Cerebrovascular Diseases. Int J Mol Sci 2016; 17:ijms17081249. [PMID: 27529222 PMCID: PMC5000647 DOI: 10.3390/ijms17081249] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/20/2016] [Accepted: 07/26/2016] [Indexed: 12/16/2022] Open
Abstract
Cerebrovascular diseases are conditions caused by problems with brain vasculature, which have a high morbidity and mortality. Aquaporin-4 (AQP4) is the most abundant water channel in the brain and crucial for the formation and resolution of brain edema. Considering brain edema is an important pathophysiological change after stoke, AQP4 is destined to have close relation with cerebrovascular diseases. However, this relation is not limited to brain edema due to other biological effects elicited by AQP4. Till now, multiple studies have investigated roles of AQP4 in cerebrovascular diseases. This review focuses on expression of AQP4 and the effects of AQP4 on brain edema and neural cells injuries in cerebrovascular diseases including cerebral ischemia, intracerebral hemorrhage and subarachnoid hemorrhage. In the current review, we pay more attention to the studies of recent years directly from cerebrovascular diseases animal models or patients, especially those using AQP4 gene knockout mice. This review also elucidates the potential of AQP4as an excellent therapeutic target.
Collapse
|
37
|
Yang X, Chu H, Tang Y, Dong Q. The role of connexin43 in hemorrhagic transformation after thrombolysis in vivo and in vitro. Neuroscience 2016; 329:54-65. [PMID: 27138645 DOI: 10.1016/j.neuroscience.2016.04.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 11/17/2022]
Abstract
Thrombolysis with recombinant tissue plasminogen activator (rtPA) is the most effective drug treatment for acute ischemic stroke within 4.5h after symptom onset. However, the use of rtPA may increase the risk of hemorrhagic transformation (HT), particularly when it is administered after the first 4.5h. However, no effective treatments are available to reduce the HT risk. Disruption of the blood-brain barrier (BBB) is central to the genesis of HT. Connexin43 (Cx43)-mediated gap junction intercellular communication (GJIC) has been demonstrated to regulate the integrity of the BBB in ischemia. We investigated the effect of Cx43 on BBB permeability during rtPA-induced HT. Spontaneously hypertensive rats (SHRs) underwent a 1.5-h middle cerebral artery occlusion and were treated with rtPA at 4.5h. The rats were sacrificed at 24h, and their brains were evaluated for BBB permeability and the expression of tight junction (TJ) proteins and Cx43. We examined whether the effects were Cx43 dependent using multiple Cx43 inhibitors. Phosphorylated Cx43 (p-Cx43) but not total Cx43 protein expression was increased after rtPA treatment. Delayed rtPA administration induced significant HT and BBB disruption. These effects were attenuated by inhibitors that blocked GJIC and Cx43 phosphorylation and expression but not Cx43 redistribution. Additionally, rtPA administration upregulated p-Cx43 expression in hypoxia/reoxygenation (H/R)-exposed brain endothelial cells. These effects were suppressed by the phosphatidylinositol 3'-kinase (PI3K) inhibitor LY294002 and the extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitor U0126. We suggest that rtPA-associated hemorrhage due to an alteration in the integrity of the BBB is highly associated with an increase in p-Cx43 resulting from the activation of the PI3K and ERK pathways.
Collapse
Affiliation(s)
- Xiaobo Yang
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China; Department of Neurology, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Heling Chu
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Yuping Tang
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.
| |
Collapse
|
38
|
Yang Y, Zhang Y, Wang Z, Wang S, Gao M, Xu R, Liang C, Zhang H. Attenuation of Acute Phase Injury in Rat Intracranial Hemorrhage by Cerebrolysin that Inhibits Brain Edema and Inflammatory Response. Neurochem Res 2015; 41:748-57. [DOI: 10.1007/s11064-015-1745-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 10/18/2015] [Accepted: 10/22/2015] [Indexed: 11/28/2022]
|
39
|
Protection of erythropoietin against ischemic neurovascular unit injuries through the effects of connexin43. Biochem Biophys Res Commun 2015; 458:656-662. [DOI: 10.1016/j.bbrc.2015.02.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/04/2015] [Indexed: 11/19/2022]
|
40
|
Chu H, Xiang J, Wu P, Su J, Ding H, Tang Y, Dong Q. The role of aquaporin 4 in apoptosis after intracerebral hemorrhage. J Neuroinflammation 2014; 11:184. [PMID: 25359421 PMCID: PMC4243419 DOI: 10.1186/s12974-014-0184-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/12/2014] [Indexed: 12/07/2023] Open
Abstract
Background We previously reported that aquaporin-4 deletion (AQP4−/−) in mice increased edema and altered blood-brain barrier integrity following intracerebral hemorrhage (ICH). To date, little is known about the role of AQP4 in apoptosis after ICH. The purpose of this study was to examine the role of AQP4 in apoptosis and its mechanisms after ICH using AQP4−/− mice. Methods We compared the survival rate and neurological deficits in wild-type (AQP4+/+) mice with those in AQP4−/− mice following ICH. Histological changes were detected with terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining and Hoechst staining. The cell types involved were determined by immunocytochemical studies. We also measured activated caspase-3, caspase-9, caspase-8, Bax, and Bcl-2 with Western blotting at 1, 3, and 7 days after ICH. A cytokine protein assay was used to detect cytokines in AQP4+/+ and AQP4−/− mice following ICH, and the results were verified by ELISA. Results We found more apoptotic cells in AQP4−/− mice following ICH; the cell types involved were predominantly neurons and astrocytes. Western blotting showed that the expression of activated caspase-3 and caspase-8 was significantly increased (P <0.05). Moreover, we demonstrated a greater enhancement in the release of TNF-α and IL-1β, as well as their receptors, in AQP4−/− mice following ICH than in AQP4+/+ mice by cytokine protein assay and Western blotting (P <0.05). The inhibitors of TNF-α and IL-1β reduced apoptotic cells after ICH in AQP4−/− mice compared with wild-type mice (P <0.05). Conclusions AQP4 deletion increases apoptosis following ICH, and the underlying mechanism may be through cytokines, especially TNF-α and IL-1β, initiating the apoptotic cascade, as well as activation of caspase-3 and caspase-8.
Collapse
|
41
|
Chu H, Ding H, Tang Y, Dong Q. Erythropoietin protects against hemorrhagic blood-brain barrier disruption through the effects of aquaporin-4. J Transl Med 2014; 94:1042-53. [PMID: 24978642 DOI: 10.1038/labinvest.2014.84] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 04/08/2014] [Accepted: 04/10/2014] [Indexed: 11/09/2022] Open
Abstract
Erythropoietin (EPO) has protective effects against many neurological diseases, including intracerebral hemorrhage (ICH). Here, we aimed to test EPO's effects on blood-brain barrier (BBB) disruption morphologically and functionally following ICH, which has not been well investigated. We also examined whether the effects were dependent on aquaporin-4 (AQP4). We detected the expression of perihematomal AQP4 and EPO receptor (EPOR) induced by EPO injection at 1, 3 and 7 days after ICH. We also examined the effects of EPO on BBB disruption by ICH in wild-type mice, and tested whether such effects were AQP4 dependent by using AQP4 knock-out mice. Furthermore, we assessed the related signal transduction pathways via astrocyte cultures. We found that EPO highly increased perihematomal AQP4 and EPOR expression. Specifically, EPO led to BBB protection in both types of mice by functionally reducing brain edema and BBB permeability, as well as morphologically suppressing tight junction (TJ) opening and endothelial cell swelling, and increasing expression of the TJ proteins occludin and zonula occluden-1 (ZO-1). Statistical analysis indicated that AQP4 was required for these effects. In addition, EPO upregulated phosphorylation of C-Jun amino-terminal kinase (JNK) and p38-mitogen-activated protein kinase (MAPK) as well as EPOR and AQP4 proteins in cultured astrocytes. The latter was inhibited by JNK and p38-MAPK inhibitors. Our data suggest that EPO protects BBB from disruption after ICH and that the main targets are the TJ proteins occludin and ZO-1. The effects of EPO are associated with increased levels of AQP4, and may occur through activation of JNK and p38-MAPK pathways after binding to EPOR.
Collapse
Affiliation(s)
- Heling Chu
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Hongyan Ding
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Yuping Tang
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Wang H, Yang Z, Jiang Y, Hartnett ME. Endothelial NADPH oxidase 4 mediates vascular endothelial growth factor receptor 2-induced intravitreal neovascularization in a rat model of retinopathy of prematurity. Mol Vis 2014; 20:231-41. [PMID: 24623966 PMCID: PMC3945806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/28/2014] [Indexed: 12/03/2022] Open
Abstract
PURPOSE NADPH oxidase-generated reactive oxygen species (ROS) are implicated in angiogenesis. Isoforms of NADPH oxidase NOX1, NOX2, and NOX4 are reported to be expressed in endothelial cells (ECs). Of these, NOX1 and NOX2 have been reported to contribute to intravitreal neovascularization (IVNV) in oxygen-induced retinopathy (OIR) models. In this study, we tested the hypothesis that the isoform NOX4 in ECs contributed to vascular endothelial growth factor (VEGF)-induced angiogenesis and IVNV. METHODS Isoforms of NADPH oxidase MRNA were measured in several types of cultured vascular ecs: human retinal microvascular ECs (hRMVECs), choroidal ECs (CECs), and human umbilical vascular ECs (HUVECs) using real-time PCR. Newborn rat pups and dams were placed into an OIR model that cycled oxygen concentration between 50% and 10% every 24 h for 14 days, and then were placed in room air (RA) for an additional 4 days (rat OIR model). NOX4 expression in retinal lysates from the RA-raised pups at postnatal day 0 (P0), P14, and P18 was determined with western blots. STAT3 activation was determined as the ratio of phosphorylated STAT3 to total STAT3 with western blot analysis of retinal lysates from pups raised in RA or from the rat OIR model at P18. Semiquantitative assessment of the density of NOX4 colabeling with lectin-stained retinal ECs was determined by immunolabeling of retinal cryosections from P18 pups in OIR or in RA. In hRMVECs transfected with NOX4 siRNA and treated with VEGF or control, 1) ROS generation was measured using the 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate, acetyl ester fluorescence assay and 2) phosphorylated VEGF receptor 2 and STAT3, and total VEGFR2 and STAT3 were measured in western blot analyses. VEGF-stimulated hRMVEC proliferation was measured following transfection with NOX4 siRNA or STAT3 siRNA, or respective controls. RESULTS NOX4 was the most prevalent isoform of NADPH oxidase in vascular ECs. NOX4 expression in retinal lysates was significantly decreased during development in RA. Compared to RA, the expression of retinal NOX4 increased at P18. At p18 OIR, semiquantitative assessment of the density of lectin and NOX4 colabeling in retinal vascular ECs was greater in retinal cryosections and activated STAT3 was greater in retinal lysates when compared to the RA-raised pups. In cultured hRMVECs, knockdown of NOX4 by siRNA transfection inhibited VEGF-induced ROS generation. VEGF induced a physical interaction of phosphorylated-VEGFR2 and NOX4. Knockdown of NOX4: 1) reduced VEGFR2 activation but did not abolish it and 2) abolished STAT3 activation in response to VEGF. Knockdown of either NOX4 or STAT3 inhibited VEGF-induced EC proliferation. CONCLUSIONS Our data suggest that in a model representative of human retinopathy of prematurity, NOX4 was increased at a time point when IVNV developed. VEGF-activated NOX4 led to an interaction between VEGF-activated VEGFR2 and NOX4 that mediated EC proliferation via activation of STAT3. Altogether, our results suggest that NOX4 may regulate VEGFR2-mediated IVNV through activated STAT3.
Collapse
|
43
|
Protection of granulocyte-colony stimulating factor to hemorrhagic brain injuries and its involved mechanisms: Effects of vascular endothelial growth factor and aquaporin-4. Neuroscience 2014; 260:59-72. [DOI: 10.1016/j.neuroscience.2013.12.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 12/08/2013] [Accepted: 12/09/2013] [Indexed: 01/27/2023]
|
44
|
Malignant Cerebral Edema After Large Anterior Circulation Infarction: A Review. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2014; 16:275. [DOI: 10.1007/s11936-013-0275-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|