1
|
Pang B, Li J, Zhang R, Luo P, Wang Z, Shi S, Gao W, Li S. RNA-Seq and WGCNA Analyses Reveal Key Regulatory Modules and Genes for Salt Tolerance in Cotton. Genes (Basel) 2024; 15:1176. [PMID: 39336767 PMCID: PMC11431110 DOI: 10.3390/genes15091176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/26/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
The problem of soil salinization has seriously hindered agricultural development. Cotton is a pioneering salinity-tolerant crop, so harvesting its key salinity-tolerant genes is important for improving crop salt tolerance. In this study, we analyzed changes in the transcriptome expression profiles of the salt-tolerant cultivar Lu Mian 28 (LM) and the salt-sensitive cultivar Zhong Mian Suo 12 (ZMS) after applying salt stress, and we constructed weighted gene co-expression networks (WGCNA). The results indicated that photosynthesis, amino acid biosynthesis, membrane lipid remodeling, autophagy, and ROS scavenging are key pathways in the salt stress response. Plant-pathogen interactions, plant hormone signal transduction, the mitogen-activated protein kinase (MAPK) signaling pathway, and carotenoid biosynthesis are the regulatory networks associated with these metabolic pathways that confer cotton salt tolerance. The gene-weighted co-expression network was used to screen four modules closely related to traits, identifying 114 transcription factors, including WRKYs, ERFs, NACs, bHLHs, bZIPs, and MYBs, and 11 hub genes. This study provides a reference for acquiring salt-tolerant cotton and abundant genetic resources for molecular breeding.
Collapse
Affiliation(s)
- Bo Pang
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; (B.P.); (J.L.); (R.Z.); (P.L.); (Z.W.); (S.S.)
| | - Jing Li
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; (B.P.); (J.L.); (R.Z.); (P.L.); (Z.W.); (S.S.)
| | - Ru Zhang
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; (B.P.); (J.L.); (R.Z.); (P.L.); (Z.W.); (S.S.)
| | - Ping Luo
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; (B.P.); (J.L.); (R.Z.); (P.L.); (Z.W.); (S.S.)
| | - Zhengrui Wang
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; (B.P.); (J.L.); (R.Z.); (P.L.); (Z.W.); (S.S.)
| | - Shunyu Shi
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; (B.P.); (J.L.); (R.Z.); (P.L.); (Z.W.); (S.S.)
| | - Wenwei Gao
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; (B.P.); (J.L.); (R.Z.); (P.L.); (Z.W.); (S.S.)
| | - Shengmei Li
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; (B.P.); (J.L.); (R.Z.); (P.L.); (Z.W.); (S.S.)
- College of Biotechnology, Xinjiang Agricultural Vocational and Technical University, Changji 831100, China
| |
Collapse
|
2
|
Yu W, Zhou X, Xu H, Zhou X. UV-B Stress-Triggered Amino Acid Reprogramming and ABA-Mediated Hormonal Crosstalk in Rhododendron chrysanthum Pall. PLANTS (BASEL, SWITZERLAND) 2024; 13:2232. [PMID: 39204669 PMCID: PMC11359875 DOI: 10.3390/plants13162232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Increased UV-B radiation due to ozone depletion adversely affects plants. This study focused on the metabolite dynamics of Rhododendron chrysanthum Pall. (R. chrysanthum) and the role of ABA in mitigating UV-B stress. Chlorophyll fluorescence metrics indicated that both JA and ABA increased UV-B resistance; however, the effect of JA was not as strong as that of ABA. Metabolomic analysis using UPLC-MS/MS (ultra-performance liquid chromatography and tandem mass spectrometry) revealed significant fluctuations in metabolites under UV-B and ABA application. UV-B decreased amino acids and increased phenolics, suggesting antioxidant defense activation. ABA treatment upregulated lipids and phenolic acids, highlighting its protective role. Multivariate analysis showed distinct metabolic clusters and pathways responding to UV-B and ABA, which impacted amino acid metabolism and hormone signal transduction. Exogenous ABA negatively regulated the JA signaling pathway in UV-B-exposed R. chrysanthum, as shown by KEGG enrichment. This study deepens understanding of plant stress-tolerance mechanisms and has implications for enhancing plant stress tolerance through metabolic and hormonal interventions.
Collapse
Affiliation(s)
| | | | - Hongwei Xu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China
| | - Xiaofu Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China
| |
Collapse
|
3
|
Yu W, Gong F, Zhou X, Xu H, Lyu J, Zhou X. Comparative Metabolomics and Transcriptome Studies of Two Forms of Rhododendron chrysanthum Pall. under UV-B Stress. BIOLOGY 2024; 13:211. [PMID: 38666823 PMCID: PMC11048268 DOI: 10.3390/biology13040211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024]
Abstract
Rhododendron chrysanthum Pall. (R. chrysanthum), a plant with UV-B resistance mechanisms that can adapt to alpine environments, has gained attention as an important plant resource with the ability to cope with UV-B stress. In this experiment, R. chrysanthums derived from the same origin were migrated to different culture environments (artificial climate chamber and intelligent artificial incubator) to obtain two forms of R. chrysanthum. After UV-B irradiation, 404 metabolites and 93,034 unigenes were detected. Twenty-six of these different metabolites were classified as UV-B-responsive metabolites. Glyceric acid is used as a potential UV-B stress biomarker. The domesticated Rhododendron chrysanthum Pall. had high amino acid and SOD contents. The study shows that the domesticated Rhododendron chrysanthum Pall. has significant UV-B resistance. The transcriptomics results show that the trends of DEGs after UV-B radiation were similar for both forms of R. chrysanthum: cellular process and metabolic process accounted for a higher proportion in biological processes, cellular anatomical entity accounted for the highest proportion in the cellular component, and catalytic activity and binding accounted for the highest proportion in the molecular function category. Through comparative study, the forms of metabolites resistant to UV-B stress in plants can be reflected, and UV-B radiation absorption complexes can be screened for application in future specific practices. Moreover, by comparing the differences in response to UV-B stress between the two forms of R. chrysanthum, references can be provided for cultivating domesticated plants with UV-B stress resistance characteristics. Research on the complex mechanism of plant adaptation to UV-B will be aided by these results.
Collapse
Affiliation(s)
- Wang Yu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China (X.Z.)
| | - Fushuai Gong
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China (X.Z.)
| | - Xiangru Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China (X.Z.)
| | - Hongwei Xu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China (X.Z.)
| | - Jie Lyu
- Faculty of Biological Science and Technology, Baotou Teachers’ College, Baotou 014030, China
| | - Xiaofu Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China (X.Z.)
| |
Collapse
|
4
|
Zhang Y, Qiao D, Zhang Z, Li Y, Shi S, Yang Y. Calcium signal regulated carbohydrate metabolism in wheat seedlings under salinity stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:123-136. [PMID: 38435855 PMCID: PMC10902238 DOI: 10.1007/s12298-024-01413-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/19/2023] [Accepted: 01/22/2024] [Indexed: 03/05/2024]
Abstract
This study aimed to explore the mechanism by which calcium (Ca) signal regulated carbohydrate metabolism and exogenous Ca alleviated salinity toxicity. Wheat seedlings were treated with sodium chloride (NaCl, 150 mM) alone or combined with 500 μM calcium chloride (CaCl2), lanthanum chloride (LaCl3) and/or ethylene glycol tetraacetic acid (EGTA) to primarily analyse carbohydrate starch and sucrose metabolism, as well as Ca signaling components. Treatment with NaCl, EGTA, or LaCl3 alone retarded wheat-seedling growth and decreased starch content accompanied by weakened ribulose-1,5-bisphosphate carboxylation/oxygenase (Rubisco) and Rubisco activase activities, as well as enhanced glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, alpha-amylase, and beta-amylase activities. However, it increased the sucrose level, up-regulated the sucrose phosphate synthase (SPS) and sucrose synthase (SuSy) activities and TaSPS and TaSuSy expression together, but down-regulated the acid invertase (SA-Inv) and alkaline/neutral invertase (A/N-Inv) activities and TaSA-Inv and TaA/N-Inv expression. Except for unchanged A/N-Inv activities and TaA/N-Inv expression, adding CaCl2 effectively blocked the sodium salt-induced changes of these parameters, which was partially eliminated by EGTA or LaCl3 presence. Furthermore, NaCl treatment also significantly inhibited Ca-dependent protein kinases and Ca2+-ATPase activities and their gene expression in wheat leaves, which was effectively relieved by adding CaCl2. Taken together, CaCl2 application effectively alleviated the sodium salt-induced retardation of wheat-seedling growth by enhancing starch anabolism and sucrose catabolism, and intracellular Ca signal regulated the enzyme activities and gene expression of starch and sucrose metabolism in the leaves of sodium salt-stressed wheat seedlings.
Collapse
Affiliation(s)
- Ya Zhang
- School of Life Science, College of Life Science, Northwest Normal University, Lanzhou, 730070 Gansu People’s Republic of China
| | - Dan Qiao
- School of Life Science, College of Life Science, Northwest Normal University, Lanzhou, 730070 Gansu People’s Republic of China
| | - Zhe Zhang
- School of Life Science, College of Life Science, Northwest Normal University, Lanzhou, 730070 Gansu People’s Republic of China
| | - Yaping Li
- School of Life Science, College of Life Science, Northwest Normal University, Lanzhou, 730070 Gansu People’s Republic of China
| | - Shuqian Shi
- School of Life Science, College of Life Science, Northwest Normal University, Lanzhou, 730070 Gansu People’s Republic of China
| | - Yingli Yang
- School of Life Science, College of Life Science, Northwest Normal University, Lanzhou, 730070 Gansu People’s Republic of China
| |
Collapse
|
5
|
Li C, Li Y, Chu P, Hao-hao Z, Wei Z, Cheng Y, Liu X, Zhao F, Li YJ, Zhang Z, Zheng Y, Mu Z. Effects of salt stress on sucrose metabolism and growth in Chinese rose ( Rosa chinensis). BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2116356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Caihua Li
- Economic Crop Research Laboratory, Economic Crops Institute, Jilin Academy of Agricultural Sciences, Changchun, PR China
| | - Yuhuan Li
- Economic Crop Research Laboratory, Economic Crops Institute, Jilin Academy of Agricultural Sciences, Changchun, PR China
| | - Peiyu Chu
- Laboratory of Economic Crops, Agricultural College, Heilongjiang Bayi Agriculture University, Daqing, PR China
| | - Zhao Hao-hao
- Laboratory of Economic Crops, Agricultural College, Heilongjiang Bayi Agriculture University, Daqing, PR China
| | - Zunmiao Wei
- Economic Crop Research Laboratory, Economic Crops Institute, Jilin Academy of Agricultural Sciences, Changchun, PR China
| | - Yan Cheng
- Economic Crop Research Laboratory, Economic Crops Institute, Jilin Academy of Agricultural Sciences, Changchun, PR China
| | - Xianxian Liu
- Economic Crop Research Laboratory, Economic Crops Institute, Jilin Academy of Agricultural Sciences, Changchun, PR China
| | - Fengzhou Zhao
- Laboratory of Economic Crops, Agricultural College, Heilongjiang Bayi Agriculture University, Daqing, PR China
| | - Yan-jun Li
- Economic Crop Research Laboratory, Economic Crops Institute, Jilin Academy of Agricultural Sciences, Changchun, PR China
| | - Zhiwen Zhang
- Laboratory of Economic Crops, Agricultural College, Heilongjiang Bayi Agriculture University, Daqing, PR China
| | - Yi Zheng
- Economic Crop Research Laboratory, Economic Crops Institute, Jilin Academy of Agricultural Sciences, Changchun, PR China
| | - Zhongsheng Mu
- Economic Crop Research Laboratory, Economic Crops Institute, Jilin Academy of Agricultural Sciences, Changchun, PR China
- Laboratory of Economic Crops, Agricultural College, Heilongjiang Bayi Agriculture University, Daqing, PR China
| |
Collapse
|
6
|
Sun Q, Liu M, Cao K, Xu H, Zhou X. UV-B Irradiation to Amino Acids and Carbohydrate Metabolism in Rhododendron chrysanthum Leaves by Coupling Deep Transcriptome and Metabolome Analysis. PLANTS (BASEL, SWITZERLAND) 2022; 11:2730. [PMID: 36297754 PMCID: PMC9607639 DOI: 10.3390/plants11202730] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Under natural environmental conditions, excess UV-B stress can cause serious injuries to plants. However, domestication conditions may allow the plant to better cope with the upcoming UV-B stress. The leaves of Rhododendron chrysanthum are an evergreen plant that grows at low temperatures and high altitudes in the Changbai Mountains, where the harsh ecological environment gives it different UV resistance properties. Metabolites in R. chrysanthum have a significant impact on UV-B resistance, but there are few studies on the dynamics of their material composition and gene expression levels. We used a combination of gas chromatography time-of-flight mass spectrometry and transcriptomics to analyze domesticated and undomesticated R. chrysanthum under UV-B radiation. A total of 404 metabolites were identified, of which amino acids were significantly higher and carbohydrates were significantly lower in domesticated R. chrysanthum. Transcript profiles throughout R. chrysanthum under UV-B were constructed and analyzed, with an emphasis on sugar and amino acid metabolism. The transcript levels of genes associated with sucrose and starch metabolism during UV-B resistance in R. chrysanthum showed a consistent trend with metabolite content, while amino acid metabolism was the opposite. We used metabolomics and transcriptomics approaches to obtain dynamic changes in metabolite and gene levels during UV-B resistance in R. chrysanthum. These results will provide some insights to elucidate the molecular mechanisms of UV tolerance in plants.
Collapse
|
7
|
Shao A, Wang H, Xu X, Li X, Amombo E, Fu J. Moderately Reducing Nitrogen Application Ameliorates Salt-Induced Growth and Physiological Damage on Forage Bermudagrass. FRONTIERS IN PLANT SCIENCE 2022; 13:896358. [PMID: 35574147 PMCID: PMC9100817 DOI: 10.3389/fpls.2022.896358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen (N) application is one of the most effective methods to alleviate salt-induced damage on plants. Forage bermudagrass has higher utilization potential on saline soil, but whether its N requirement changed under high salt stress has not been studied. Through examining plant growth-related traits, salt-stress-responsive physiological traits, photosynthesis, N metabolism, and forage quality supplied with different N concentrations under high salt stress (200 mM NaCl), we noticed that the optimum N requirement of forage bermudagrass reduced. When supplied with 10 mM N under higher salt stress, plants had a similar biomass, turf color, and chlorophyll content with plants supplied with 15 mM N, accompanied by a lower firing rate and Na+ content of leaves. The N content, crude protein, crude fat content, the expression of AMTs (ammonium transporters), NR (nitrate reductase), GS (glutamine synthetase), and GOGAT (glutamate synthetase), the chlorophyll fluorescence curve, and parameters of leaves (e.g., PIABS; PICS; ABS/RC; TRo/RC; ETo/RC) all peaked under 10 mM N under high salt stress instead of 15 mM N. Through exploring the proper N application under higher salt stress and its alleviation mechanisms, our results indicated that moderate reduction in N application under high salt level had a maximum promotion effect on the salt tolerance of forage bermudagrass without growth or forage quality inhibition. These response mechanisms obtained can provide a useful reference for N application in moderation rather than in excess on forage bermudagrass, especially in higher salinity areas.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinmin Fu
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| |
Collapse
|
8
|
Abuslima E, Kanbar A, Raorane ML, Eiche E, Junker BH, Hause B, Riemann M, Nick P. Gain time to adapt: How sorghum acquires tolerance to salinity. FRONTIERS IN PLANT SCIENCE 2022; 13:1008172. [PMID: 36325549 PMCID: PMC9619063 DOI: 10.3389/fpls.2022.1008172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/05/2022] [Indexed: 05/14/2023]
Abstract
Salinity is a global environmental threat to agricultural production and food security around the world. To delineate salt-induced damage from adaption events we analysed a pair of sorghum genotypes which are contrasting in their response to salt stress with respect to physiological, cellular, metabolomic, and transcriptional responses. We find that the salt-tolerant genotype Della can delay the transfer of sodium from the root to the shoot, more swiftly deploy accumulation of proline and antioxidants in the leaves and transfer more sucrose to the root as compared to its susceptible counterpart Razinieh. Instead Razinieh shows metabolic indicators for a higher extent photorespiration under salt stress. Following sodium accumulation by a fluorescent dye in the different regions of the root, we find that Della can sequester sodium in the vacuoles of the distal elongation zone. The timing of the adaptive responses in Della leaves indicates a rapid systemic signal from the roots that is travelling faster than sodium itself. We arrive at a model where resistance and susceptibility are mainly a matter of temporal patterns in signalling.
Collapse
Affiliation(s)
- Eman Abuslima
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Department of Botany, Faculty of Science, Suez Canal University, Ismailia, Egypt
- *Correspondence: Eman Abuslima,
| | - Adnan Kanbar
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Manish L. Raorane
- Institute of Pharmacy, Martin-Luther-University, Halle-Wittenberg, Halle, Germany
| | - Elisabeth Eiche
- Institute of Applied Geosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Laboratory for Environmental and Raw Materials Analysis (LERA), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Björn H. Junker
- Institute of Pharmacy, Martin-Luther-University, Halle-Wittenberg, Halle, Germany
| | - Bettina Hause
- Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry (IPB), Halle, Germany
| | - Michael Riemann
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
9
|
Structure and Expression Analysis of Sucrose Phosphate Synthase, Sucrose Synthase and Invertase Gene Families in Solanum lycopersicum. Int J Mol Sci 2021; 22:ijms22094698. [PMID: 33946733 PMCID: PMC8124378 DOI: 10.3390/ijms22094698] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022] Open
Abstract
Sucrose phosphate synthase (SPS), sucrose synthase (SUS) and invertase (INV) are all encoded by multigene families. In tomato (Solanum lycopersicum), a comprehensive analysis of structure characteristics of these family genes is still lacking, and the functions of individual isoforms of these families are mostly unclear under stress. Here, the structure characteristics of the three families in tomato were analyzed; moreover, as a first step toward understanding the functions of isoforms of these proteins under stress, the tissue expression pattern and stress response of these genes were also investigated. The results showed that four SPS genes, six SUS genes and nineteen INV genes were identified in tomato. The subfamily differentiation of SlSPS and SlSUS might have completed before the split of monocotyledons and dicotyledons. The conserved motifs were mostly consistent within each protein family/subfamily. These genes demonstrated differential expressions among family members and tissues, and in response to polyethylene glycerol, NaCl, H2O2, abscisic acid or salicylic acid treatment. Our results suggest that each isoform of these families may have different functions in different tissues and under environmental stimuli. SlSPS1, SlSPS3, SlSUS1, SlSUS3, SlSUS4, SlINVAN5 and SlINVAN7 demonstrated consistent expression responses and may be the major genes responding to exogenous stimuli.
Collapse
|
10
|
Sun Q, Yamada T, Han Y, Takano T. Influence of salt stress on C 4 photosynthesis in Miscanthus sinensis Anderss. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:44-56. [PMID: 33030790 DOI: 10.1111/plb.13192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Miscanthus sinensis Anderss. is a good candidate for C4 bioenergy crop development for marginal lands. As one of the characteristics of marginal lands, salinization is a major limitation to agricultural production. The present work aimed to investigate the possible factors involved in the tolerance of M. sinensis C4 photosynthesis to salinity stress. Seedlings of two accessions (salt-tolerant 'JM0119' and salt-sensitive 'JM0099') were subjected to 0 mm NaCl (control) or 250 mm NaCl (salt stress treatment) for 2 weeks. The chlorophyll content, parameters of photosynthesis and chlorophyll a fluorescence, activity of C4 enzymes and expression of C4 genes were measured. The results showed that photosynthesis rate, transpiration rate, chlorophyll content, PSII operating efficiency, coefficient of photochemical quenching, activity of phosphoenolpyruvate carboxylase (PEPC) and pyruvate, orthophosphate dikinase (PPDK) and gene expression of PEPC and PPDK under salinity were higher after long-term salinity exposure in 'JM0119' than in 'JM0099', while activity of NADP-malate dehydrogenase (NADP-MDH) and NADP-malic enzyme (NADP-ME), together with expression of NADP-MDH and NADP-ME, were much higher in 'JM0099' than in 'JM0119'. In conclusion, the increased photosynthetic capacity under long-term salt stress in the salt-tolerant relative to the salt-sensitive M. sinensis accession was mainly associated with non-stomatal factors, such as reduced chlorophyll loss, higher PSII operating efficiency, enhanced activity of PEPC and PPDK and relatively lower activity of NADP-ME.
Collapse
Affiliation(s)
- Q Sun
- Asian Natural Environmental Science Center (ANESC), The University of Tokyo, Tokyo, Japan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, Guangdong, China
| | - T Yamada
- Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Y Han
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, Guangdong, China
| | - T Takano
- Asian Natural Environmental Science Center (ANESC), The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Salinity Effects on Sugar Homeostasis and Vascular Anatomy in the Stem of the Arabidopsis Thaliana Inflorescence. Int J Mol Sci 2019; 20:ijms20133167. [PMID: 31261714 PMCID: PMC6651052 DOI: 10.3390/ijms20133167] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/23/2019] [Accepted: 06/24/2019] [Indexed: 12/23/2022] Open
Abstract
The regulation of sugar metabolism and partitioning plays an essential role for a plant’s acclimation to its environment, with specific responses in autotrophic and heterotrophic organs. In this work, we analyzed the effects of high salinity on sugar partitioning and vascular anatomy within the floral stem. Stem sucrose and fructose content increased, while starch reduced, in contrast to the response observed in rosette leaves of the same plants. In the stem, the effects were associated with changes in the expression of SWEET and TMT2 genes encoding sugar transporters, SUSY1 encoding a sucrose synthase and several FRK encoding fructokinases. By contrast, the expression of SUC2, SWEET11 and SWEET12, encoding sugar transporters for phloem loading, remained unchanged in the stem. Both the anatomy of vascular tissues and the composition of xylem secondary cell walls were altered, suggesting that high salinity triggered major readjustments of sugar partitioning in this heterotrophic organ. There were changes in the composition of xylem cell walls, associated with the collapse and deformation of xylem vessels. The data are discussed regarding sugar partitioning and homeostasis of sugars in the vascular tissues of the stem.
Collapse
|
12
|
Kırtel O, Versluys M, Van den Ende W, Toksoy Öner E. Fructans of the saline world. Biotechnol Adv 2018; 36:1524-1539. [DOI: 10.1016/j.biotechadv.2018.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/08/2018] [Accepted: 06/14/2018] [Indexed: 10/28/2022]
|
13
|
Wang G, Bi A, Amombo E, Li H, Zhang L, Cheng C, Hu T, Fu J. Exogenous Calcium Enhances the Photosystem II Photochemistry Response in Salt Stressed Tall Fescue. FRONTIERS IN PLANT SCIENCE 2017; 8:2032. [PMID: 29250091 PMCID: PMC5715236 DOI: 10.3389/fpls.2017.02032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/14/2017] [Indexed: 05/29/2023]
Abstract
Calcium enhances turfgrass response to salt stress. However, little is known about PSII photochemical changes when exogenous calcium was applied in salinity-stressed turfgrass. Here, we probe into the rearrangements of PSII electron transport and endogenous ion accumulation in tall fescue (Festuca arundinacea Schreber) treated with exogenous calcium under salt stress. Three-month-old seedlings of genotype "TF133" were subjected to the control (CK), salinity (S), salinity + calcium nitrate (SC), and salinity + ethylene glycol tetraacetic acid (SE). Calcium nitrate and ethylene glycol tetraacetic acid was used as exogenous calcium donor and calcium chelating agent respectively. At the end of a 5-day duration treatment, samples in SC regime had better photochemistry performance on several parameters than salinity only. Such as the Area (equal to the plastoquinone pool size), N (number of [Formula: see text] redox turnovers until Fm is reached), ψE0, or δRo (Efficiencdy/probability with which a PSII trapped electron is transferred from QA to QB or PSI acceptors), ABS/RC (Absorbed photon flux per RC). All the above suggested that calcium enhanced the electron transfer of PSII (especially beyond [Formula: see text]) and prevented reaction centers from inactivation in salt-stressed tall fescue. Furthermore, both grass shoot and root tissues generally accumulated more C, N, Ca2+, and K+ in the SC regime than S regime. Interrelated analysis indicated that ψE0, δRo, ABS/RC, C, and N content in shoots was highly correlated to each other and significantly positively related to Ca2+ and K+ content in roots. Besides, high salt increased ATP6E and CAMK2 transcription level in shoot at 1 and 5 day, respectively while exogenous calcium relieved it. In root, CAMK2 level was reduced by Salinity at 5 day and exogenous calcium recovered it. These observations involved in electron transport capacity and ion accumulation assist in understanding better the protective role of exogenous calcium in tall fescue under salt stress.
Collapse
Affiliation(s)
- Guangyang Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Aoyue Bi
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Erick Amombo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huiying Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Liang Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Cheng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Jinmin Fu
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| |
Collapse
|
14
|
Li X, Han S, Wang G, Liu X, Amombo E, Xie Y, Fu J. The Fungus Aspergillus aculeatus Enhances Salt-Stress Tolerance, Metabolite Accumulation, and Improves Forage Quality in Perennial Ryegrass. Front Microbiol 2017; 8:1664. [PMID: 28936200 PMCID: PMC5595160 DOI: 10.3389/fmicb.2017.01664] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 08/17/2017] [Indexed: 01/22/2023] Open
Abstract
Perennial ryegrass (Lolium perenne) is an important forage grass with high yield and superior quality in temperate regions which is widely used in parks, sport field, and other places. However, perennial ryegrass is moderately tolerant to salinity stress compared to other commercial cultivars and salt stress reduces their growth and productivity. Aspergillus aculeatus has been documented to participate in alleviating damage induced by salinity. Therefore, the objective of this study was to investigate the mechanisms underlying A. aculeatus-mediated salt tolerance, and forage quality of perennial ryegrass exposed to 0, 200, and 400 mM NaCl concentrations. Physiological markers and forage quality of perennial ryegrass to salt stress were evaluated based on the growth rate, photosynthesis, antioxidant enzymes activity, lipid peroxidation, ionic homeostasis, the nutritional value of forage, and metabolites. Plants inoculated with A. aculeatus exhibited higher relative growth rate (RGR), turf and forage quality under salt stress than un-inoculated plants. Moreover, in inoculated plants, the fungus remarkably improved plant photosynthetic efficiency, reduced the antioxidant enzymes activity (POD and CAT), and attenuated lipid peroxidation (decreased H2O2 and MDA accumulation) induced by salinity, compared to un-inoculated plants. Furthermore, the fungus also acts as an important role in maintaining the lower Na/K ratio and metabolites and lower the amino acids (Alanine, Proline, GABA, and Asparagine), and soluble sugars (Glucose and Fructose) for inoculated plants than un-inoculated ones. Our results suggest that A. aculeatus may be involved in modulating perennial ryegrass tolerance to salinity in various ways.
Collapse
Affiliation(s)
- Xiaoning Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan City, China.,University of Chinese Academy of SciencesBeijing, China
| | - Shijuan Han
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan City, China.,University of Chinese Academy of SciencesBeijing, China
| | - Guangyang Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan City, China.,University of Chinese Academy of SciencesBeijing, China
| | - Xiaoying Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan City, China.,University of Chinese Academy of SciencesBeijing, China
| | - Erick Amombo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan City, China.,University of Chinese Academy of SciencesBeijing, China
| | - Yan Xie
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan City, China
| | - Jinmin Fu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan City, China.,School of Resources and Environmental Engineering, Ludong UniversityYantai, China
| |
Collapse
|
15
|
Li X, Gitau MM, Han S, Fu J, Xie Y. Effects of cadmium-resistant fungi Aspergillus aculeatus on metabolic profiles of bermudagrass [Cynodondactylon (L.)Pers.] under Cd stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 114:38-50. [PMID: 28273510 DOI: 10.1016/j.plaphy.2017.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 02/15/2017] [Accepted: 02/15/2017] [Indexed: 05/08/2023]
Abstract
Plants' tolerance to heavy metal stress may be induced by the exploitation of microbes. The objectives of this study were to investigate the effect of cadmium (Cd)-resistant fungus, Aspergillus aculeatus, on tolerance to Cd and alteration of metabolites in bermudagrass under Cd stress, and identify the predominant metabolites associated with Cd tolerance. Two genotypes of bermudagrass with contrasting Cd tolerance (Cd-sensitive 'WB92' and Cd-tolerant 'WB242') were exposed to 0, 50, 150 and 250 mg kg-1 Cd for 21 days. Physiological responses of bermudagrass to Cd stress were evaluated based on the relative growth rate (RGR) and normalized relative transpiration rate (NRT). Plants inoculated with A. aculeatus exhibited higher RGR and NRT under Cd stress than those of non-inoculated plants, regardless of genotypes. A total of 32 Cd-responsive metabolites in leaves and 21 in roots were identified in the two genotypes, including organic acids, amino acids, sugars, and fatty acids and others. Interestingly, under Cd stress, the leaves of inoculated 'WB92' accumulated less citric acid, aspartic acid, glutamic acid, sucrose, galactose, but more sorbose and glucose, while inoculated 'WB242' leaves had less citric acid, malic acid, sucrose, sorbose, but more fructose and glucose, compared to non-inoculated plants. In 'WB92' roots, the A. aculeatus reduced mannose content, but increased trehalose and citric acid content, while in 'WB242', it decreased sucrose, but enhanced citric acid content, compared to Cd regime. The results of this study suggest that A. aculeatus may induce accumulation of different metabolites associated with Cd tolerance in bermudagrass.
Collapse
Affiliation(s)
- Xiaoning Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing, China
| | - Margaret Mukami Gitau
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shijuan Han
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jinmin Fu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan 430074, China.
| | - Yan Xie
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan 430074, China.
| |
Collapse
|
16
|
Hu T, Chen K, Hu L, Amombo E, Fu J. H 2O 2 and Ca 2+-based signaling and associated ion accumulation, antioxidant systems and secondary metabolism orchestrate the response to NaCl stress in perennial ryegrass. Sci Rep 2016; 6:36396. [PMID: 27805022 PMCID: PMC5090991 DOI: 10.1038/srep36396] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 10/13/2016] [Indexed: 12/31/2022] Open
Abstract
Little is known about the interplay between Ca2+ and H2O2 signaling in stressed cool-season turfgrass. To understand better how Ca2+ and H2O2 signals are integrated to enhance grass acclimation to stress conditions, we analyzed the rearrangements of endogenous ion accumulation, antioxidant systems and secondary metabolism in roots, stems and leaves of perennial ryegrass (Lolium perenne L.) treated with exogenous Ca2+ and H2O2 under salinity. Ca2+ signaling remarkably enhanced the physiological response to salt conditions. Ca2+ signaling could maintain ROS homeostasis in stressed grass by increasing the responses of antioxidant genes, proteins and enzymes. H2O2 signaling could activate ROS homeostasis by inducing antioxidant genes but weakened Ca2+ signaling in leaves. Furthermore, the metabolic profiles revealed that sugars and sugar alcohol accounted for 49.5-88.2% of all metabolites accumulation in all treated leaves and roots. However, the accumulation of these sugars and sugar alcohols displayed opposing trends between Ca2+ and H2O2 application in salt-stressed plants, which suggests that these metabolites are the common regulatory factor for Ca2+ and H2O2 signals. These findings assist in understanding better the integrated network in Ca2+ and H2O2 of cool-season turfgrass' response to salinity.
Collapse
Affiliation(s)
- Tao Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan 430074, Hubei, P.R. China
- Sino-Africa Joint Research Center, Chinese Academy of Science, Wuhan 430074, Hubei, P.R. China
| | - Ke Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan 430074, Hubei, P.R. China
- Sino-Africa Joint Research Center, Chinese Academy of Science, Wuhan 430074, Hubei, P.R. China
| | - Longxing Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan 430074, Hubei, P.R. China
- Sino-Africa Joint Research Center, Chinese Academy of Science, Wuhan 430074, Hubei, P.R. China
| | - Erick Amombo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan 430074, Hubei, P.R. China
- Sino-Africa Joint Research Center, Chinese Academy of Science, Wuhan 430074, Hubei, P.R. China
| | - Jinmin Fu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan 430074, Hubei, P.R. China
- Sino-Africa Joint Research Center, Chinese Academy of Science, Wuhan 430074, Hubei, P.R. China
| |
Collapse
|
17
|
Liu A, Hu Z, Bi A, Fan J, Gitau MM, Amombo E, Chen L, Fu J. Photosynthesis, antioxidant system and gene expression of bermudagrass in response to low temperature and salt stress. ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:1445-1457. [PMID: 27443677 DOI: 10.1007/s10646-016-1696-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/13/2016] [Indexed: 05/19/2023]
Abstract
There is widespread distribution of salinized lands in northern China. Harnessing such land is essential to environmental health. Bermudagrass [Cynodon dactylon (L.) Pers.] has the potential to improve the salinized lands. However, low temperature remarkably limits the growth of bermudagrass in winter. Currently, there is no information about the interaction of cold and salt in this plant. Hence, the objectives of this study were to figure out the effects of combined cold and salinity stress on bermudagrass. In this study, 4 °C and 200 mM salt solution was used as cold and salt treatments respectively while 4 °C along with 200 mM salt solution were applied as combined stress. After 5 days treatment, bermudagrass displayed a dramatic decline in the turf quality and chlorophyll content, but higher malonaldehyde, electrolyte leakage, hydrogen peroxide content, antioxidant enzyme activity in the combined stress regime as compared to cold or salt treated alone. Analysis of chlorophyll a revealed that the combined stress aggravated stress-induced inhibition of photosystem II. In addition, the expressions of stress-related genes were up-regulated with a lower expression level when cold and salt applied together. In summary, the grass exposed to combined stress presented a relatively lower stress tolerance and suffered a more severe damage than grass grown in the other regimes. These findings are crucial for elucidating the molecular mechanisms of cold and salt combined stress in bermudagrass, and provide information for breeding programs to select and develop bermudagrass cultivars that are suitable for improvement of the northern China salinized land.
Collapse
Affiliation(s)
- Ao Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture and Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Zhengrong Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture and Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Aoyue Bi
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture and Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Jibiao Fan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture and Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Margaret Mukami Gitau
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture and Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Erick Amombo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture and Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Liang Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture and Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China.
| | - Jinmin Fu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture and Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China.
| |
Collapse
|
18
|
Hu T, Jin Y, Li H, Amombo E, Fu J. Stress memory induced transcriptional and metabolic changes of perennial ryegrass (Lolium perenne) in response to salt stress. PHYSIOLOGIA PLANTARUM 2016; 156:54-69. [PMID: 25913889 DOI: 10.1111/ppl.12342] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/02/2015] [Accepted: 04/02/2015] [Indexed: 05/18/2023]
Abstract
Preexposure to a stress could induce stable signals and reactions on plant physiology and gene expression during future encounters as a 'stress memory'. In this study, we found that two trainable genes, BPSP encoding putative brown plant hopper susceptibility protein and sucs encoding sucrose synthase displayed transcriptional memory for their considerably higher transcript levels during two or more subsequent stresses (S3, S4) relative to the initial stress (S0), and their expression returning to basal transcript levels (non-stressed) during the recovery states (R1, R2 and R3). Removing the repetitive stress/recovery exercise, activated transcriptional memory from two trainable genes persisted for at least 4 days in perennial ryegrass. The pretrainable genes with stress memory effort had higher response to the subsequent elevated NaCl concentration treatment than the non-trainable plants, which was confirmed by lower electrolyte leakage and minimum H2 O2 and O2 (-) accumulation. Salt stress elevated the content of 41 metabolites in perennial ryegrass leaves, and sugars and sugar alcohol accounted for more than 74.1% of the total metabolite content. The salt stress memory was associated with higher contents of 11 sugars and 1 sugar alcohol in the pretrainable grass leaves. Similarly, six sugars showed greater content in the pretrainable grass roots. These novel phenomena associated with transcriptional memory and metabolite profiles could lead to new insights into improving plant salinity acclimation process.
Collapse
Affiliation(s)
- Tao Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan 430074, China
| | - Yupei Jin
- Institute of Molecular Biology, China Three Gorges University, Yichang 443002, China
| | - Huiying Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan 430074, China
| | - Erick Amombo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan 430074, China
| | - Jinmin Fu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan 430074, China
| |
Collapse
|
19
|
Khan HA, Siddique KHM, Munir R, Colmer TD. Salt sensitivity in chickpea: Growth, photosynthesis, seed yield components and tissue ion regulation in contrasting genotypes. JOURNAL OF PLANT PHYSIOLOGY 2015; 182:1-12. [PMID: 26037693 DOI: 10.1016/j.jplph.2015.05.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 04/30/2015] [Accepted: 05/13/2015] [Indexed: 05/20/2023]
Abstract
Chickpea is a relatively salt sensitive species but shows genotypic variation for salt tolerance, measured as grain yield per plant in mild-to-moderately saline soil. This experiment was designed to evaluate some physiological responses to salinity in three contrasting genotypes. One tolerant (Genesis836), one moderately tolerant (JG11) and one sensitive (Rupali) genotype were grown for 108d in non-saline nutrient solution (controls) and two levels of salinity treatment (30 and 60mM NaCl). No plants survived to maturity in the 60mM NaCl treatment; however, Genesis836 survived longer (87d) than JG11 (67d) while Rupali died after 27d; only Genesis836 flowered, but no pods were filled. At 30mM NaCl, Genesis836 produced a few filled pods, whereas JG11 and Rupali did not. Genotypic differences in plant dry mass at the vegetative stage were evident only at 60mM NaCl, while at maturity differences were evident at 30mM NaCl. Photosynthesis was maintained to different degrees by the three genotypes (e.g. at 30mM NaCl, 35-81% of controls; highest in Genesis836); photosynthesis was restricted predominately due to non-stomatal limitations as the intercellular CO2 concentration was only modestly affected (94-99% of controls). Photosystem II damage was evident in the less tolerant genotypes (e.g. at 30mM NaCl, actual quantum efficiency of photosystem II values were 63-96% of controls). Across treatments, shoot dry mass was negatively correlated with both Na(+) and Cl(-) shoot concentrations. However, the sensitive genotype (Rupali) had equal or lower concentrations of these ions in green leaves, stems or roots compared to tolerant genotypes (JG11 and Genesis836); ion 'exclusion' does not explain variation for salt tolerance among these three chickpea genotypes. The large difference between Rupali (sensitive) and Genesis836 (tolerant) in the salt-induced reduction in net photosynthesis via non-stomatal limitations and the assessed damage to photosystem II, but with similar leaf ion concentrations, provides evidence that variation in 'tissue tolerance' of Na(+) and/or Cl(-) in leaves contributes to the differential salt tolerance of these chickpea genotypes.
Collapse
Affiliation(s)
- Hammad Aziz Khan
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Kadambot H M Siddique
- UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Rushna Munir
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Timothy David Colmer
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| |
Collapse
|
20
|
Lee WS, Gudimella R, Wong GR, Tammi MT, Khalid N, Harikrishna JA. Transcripts and MicroRNAs Responding to Salt Stress in Musa acuminata Colla (AAA Group) cv. Berangan Roots. PLoS One 2015; 10:e0127526. [PMID: 25993649 PMCID: PMC4439137 DOI: 10.1371/journal.pone.0127526] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 04/15/2015] [Indexed: 12/03/2022] Open
Abstract
Physiological responses to stress are controlled by expression of a large number of genes, many of which are regulated by microRNAs. Since most banana cultivars are salt-sensitive, improved understanding of genetic regulation of salt induced stress responses in banana can support future crop management and improvement in the face of increasing soil salinity related to irrigation and climate change. In this study we focused on determining miRNA and their targets that respond to NaCl exposure and used transcriptome sequencing of RNA and small RNA from control and NaCl-treated banana roots to assemble a cultivar-specific reference transcriptome and identify orthologous and Musa-specific miRNA responding to salinity. We observed that, banana roots responded to salinity stress with changes in expression for a large number of genes (9.5% of 31,390 expressed unigenes) and reduction in levels of many miRNA, including several novel miRNA and banana-specific miRNA-target pairs. Banana roots expressed a unique set of orthologous and Musa-specific miRNAs of which 59 respond to salt stress in a dose-dependent manner. Gene expression patterns of miRNA compared with those of their predicted mRNA targets indicated that a majority of the differentially expressed miRNAs were down-regulated in response to increased salinity, allowing increased expression of targets involved in diverse biological processes including stress signaling, stress defence, transport, cellular homeostasis, metabolism and other stress-related functions. This study may contribute to the understanding of gene regulation and abiotic stress response of roots and the high-throughput sequencing data sets generated may serve as important resources related to salt tolerance traits for functional genomic studies and genetic improvement in banana.
Collapse
Affiliation(s)
- Wan Sin Lee
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur, Malaysia
| | - Ranganath Gudimella
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur, Malaysia
| | - Gwo Rong Wong
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur, Malaysia
| | - Martti Tapani Tammi
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur, Malaysia
- Bioinformatics, Sime Darby Technology Centre Sdn Bhd, Serdang, Selangor, Malaysia
| | - Norzulaani Khalid
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur, Malaysia
| | - Jennifer Ann Harikrishna
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|
21
|
Hu T, Liu SQ, Amombo E, Fu JM. Stress memory induced rearrangements of HSP transcription, photosystem II photochemistry and metabolism of tall fescue (Festuca arundinacea Schreb.) in response to high-temperature stress. FRONTIERS IN PLANT SCIENCE 2015; 6:403. [PMID: 26136755 PMCID: PMC4468413 DOI: 10.3389/fpls.2015.00403] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/19/2015] [Indexed: 05/20/2023]
Abstract
When plants are pre-exposed to stress, they can produce some stable signals and physiological reactions that may be carried forward as "stress memory". However, there is insufficient information about plants' stress memory responses mechanisms. Here, two tall fescue genotypes, heat-tolerant PI 574522 and heat-sensitive PI 512315, were subjected to recurring high-temperature pre-acclimation treatment. Two heat shock protein (HSP) genes, LMW-HSP and HMW-HSP, exhibited transcriptional memory for their higher transcript abundance during one or more subsequent stresses (S2, S3, S4) relative to the first stress (S1), and basal transcript levels during the recovery states (R1, R2, and R3). Activated transcriptional memory from two trainable genes could persist up to 4 days, and induce higher thermotolerance in tall fescue. This was confirmed by greater turf quality and lower electrolyte leakage. Pre-acclimation treatment inhibited the decline at steps of O-J-I-P and energy transport fluxes in active Photosystem II reaction center (PSII RC) for both tall fescue genotypes. The heat stress memory was associated with major shifts in leaf metabolite profiles. Furthermore, there was an exclusive increase in leaf organic acids (citric acid, malic acid, tris phosphoric acid, threonic acid), sugars (sucrose, glucose, idose, allose, talose, glucoheptose, tagatose, psicose), amino acids (serine, proline, pyroglutamic acid, glycine, alanine), and one fatty acid (butanoic acid) in pre-acclimated plants. These observations involved in transcriptional memory, PSII RC energy transport and metabolite profiles could provide new insights into the plant high-temperature response process.
Collapse
Affiliation(s)
| | | | | | - Jin-Min Fu
- *Correspondence: Jin-Min Fu, Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, Hubei, China
| |
Collapse
|
22
|
Xu H, Liang M, Xu L, Li H, Zhang X, Kang J, Zhao Q, Zhao H. Cloning and functional characterization of two abiotic stress-responsive Jerusalem artichoke (Helianthus tuberosus) fructan 1-exohydrolases (1-FEHs). PLANT MOLECULAR BIOLOGY 2015; 87:81-98. [PMID: 25522837 DOI: 10.1007/s11103-014-0262-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/15/2014] [Indexed: 05/07/2023]
Abstract
Two fructan hydrolases were previously reported to exist in Jerusalem artichoke (Helianthus tuberosus) and one native fructan-β-fructosidase (1-FEH) was purified to homogeneity by SDS-PAGE, but no corresponding cDNA was cloned. Here, we cloned two full-length 1-FEH cDNA sequences from Jerusalem artichoke, named Ht1-FEH I and Ht1-FEH II, which showed high levels of identity with chicory 1-FEH I and 1-FEH II. Functional characterization of the corresponding recombinant proteins in Pichia pastoris X-33 demonstrated that both Ht1-FEHs had high levels of hydrolase activity towards β(2,1)-linked fructans, but low or no activity towards β(2,6)-linked levan and sucrose. Like other plant FEHs, the activities of the recombinant Ht1-FEHs were greatly inhibited by sucrose. Real-time quantitative PCR analysis showed that Ht1-FEH I transcripts accumulated to high levels in the developing leaves and stems of artichoke, whereas the expression levels of Ht1-FEH II increased in tubers during tuber sprouting, which implies that the two Ht1-FEHs play different roles. The levels of both Ht1-FEH I and II transcript were significantly increased in the stems of NaCl-treated plants. NaCl treatment also induced transcription of both Ht1-FEHs in the tubers, while PEG treatments slightly inhibited the expression of Ht1-FEH II in tubers. Analysis of sugar-metabolizing enzyme activities and carbohydrate concentration via HPLC showed that the enzyme activities of 1-FEHs were increased but the fructose content was decreased under NaCl and PEG treatments. Given that FEH hydrolyzes fructan to yield Fru, we discuss possible explanations for the inconsistency between 1-FEH activity and fructan dynamics in artichokes subjected to abiotic stress.
Collapse
Affiliation(s)
- Huanhuan Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Tongwei Road 6, Xuanwu District, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|