1
|
Khare B, Kuhn RJ. The Japanese Encephalitis Antigenic Complex Viruses: From Structure to Immunity. Viruses 2022; 14:2213. [PMID: 36298768 PMCID: PMC9607441 DOI: 10.3390/v14102213] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
In the last three decades, several flaviviruses of concern that belong to different antigenic groups have expanded geographically. This has resulted in the presence of often more than one virus from a single antigenic group in some areas, while in Europe, Africa and Australia, additionally, multiple viruses belonging to the Japanese encephalitis (JE) serogroup co-circulate. Morphological heterogeneity of flaviviruses dictates antibody recognition and affects virus neutralization, which influences infection control. The latter is further impacted by sequential infections involving diverse flaviviruses co-circulating within a region and their cross-reactivity. The ensuing complex molecular virus-host interplay leads to either cross-protection or disease enhancement; however, the molecular determinants and mechanisms driving these outcomes are unclear. In this review, we provide an overview of the epidemiology of four JE serocomplex viruses, parameters affecting flaviviral heterogeneity and antibody recognition, host immune responses and the current knowledge of the cross-reactivity involving JE serocomplex flaviviruses that leads to differential clinical outcomes, which may inform future preventative and therapeutic interventions.
Collapse
Affiliation(s)
- Baldeep Khare
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Richard J. Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
2
|
Sinigaglia A, Peta E, Riccetti S, Barzon L. New avenues for therapeutic discovery against West Nile virus. Expert Opin Drug Discov 2020; 15:333-348. [DOI: 10.1080/17460441.2020.1714586] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Elektra Peta
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Silvia Riccetti
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
3
|
Quintel BK, Thomas A, Poer DeRaad DE, Slifka MK, Amanna IJ. Advanced oxidation technology for the development of a next-generation inactivated West Nile virus vaccine. Vaccine 2018; 37:4214-4221. [PMID: 30606462 DOI: 10.1016/j.vaccine.2018.12.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/12/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Abstract
West Nile virus (WNV) is the most frequent mosquito-borne disease reported in the continental United States and although an effective veterinary vaccine exists for horses, there is still no commercial vaccine approved for human use. We have previously tested a 3% hydrogen peroxide (H2O2)-based WNV inactivation approach termed, HydroVax, in Phase I clinical trials and the vaccine was found to be safe and modestly immunogenic. Here, we describe an advanced, next-generation oxidation approach (HydroVax-II) for the development of inactivated vaccines that utilizes reduced concentrations of H2O2 in combination with copper (cupric ions, Cu2+) complexed with the antiviral compound, methisazone (MZ). Further enhancement of this oxidative approach included the addition of a low percentage of formaldehyde, a cross-linking reagent with a different mechanism of action that, together with H2O2/Cu/MZ, provides a robust two-pronged approach to virus inactivation. Together, this new approach results in rapid virus inactivation while greatly improving the maintenance of WNV-specific neutralizing epitopes mapped across the three structural domains of the WNV envelope protein. In combination with more refined manufacturing techniques, this inactivation technology resulted in vaccine-mediated WNV-specific neutralizing antibody responses that were 130-fold higher than that observed using the first generation, H2O2-only vaccine approach and provided 100% protection against lethal WNV infection. This new approach to vaccine development represents an important area for future investigation with the potential not only for improving vaccines against WNV, but other clinically relevant viruses as well.
Collapse
Affiliation(s)
| | - Archana Thomas
- Division of Neuroscience, Oregon National Primate Research Center, Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Beaverton, OR, USA
| | | | - Mark K Slifka
- Division of Neuroscience, Oregon National Primate Research Center, Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Beaverton, OR, USA
| | | |
Collapse
|
4
|
Broad and long-lasting immune protection against various Chikungunya genotypes demonstrated by participants in a cross-sectional study in a Cambodian rural community. Emerg Microbes Infect 2018; 7:13. [PMID: 29410416 PMCID: PMC5837154 DOI: 10.1038/s41426-017-0010-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/29/2017] [Accepted: 12/03/2017] [Indexed: 12/15/2022]
Abstract
Chikungunya virus (CHIKV) is an alphavirus circulating worldwide. Its presence in Asia has been reported since the 1950s, constituting the Asian genotype. Since 2005, strains from the Eastern, Central, and Southern African (ECSA) genotype have caused several outbreaks across Asia. Viruses from the ECSA genotype were also detected in Cambodia in late 2011 and led to an outbreak in a rural community in 2012. A former investigation from 2012 found a higher risk of infection in people younger than 40 years, suggesting a pre-existing herd immunity in the older Cambodian population due to infection with an Asian genotype. In 2016, we collected serum from equivalent numbers of individuals born before 1975 and born after 1980 that were also part of the 2012 study. We analyzed the 154 serum samples from 2016 for neutralization against the Cambodian ECSA isolate and three strains belonging to the Asian genotype. This experiment revealed that 22.5% (18/80) of the younger study participants had no CHIKV antibodies, whereas 5.4% (4/74) of the older population remained naive. Study participants infected during the ECSA outbreak had twofold neutralizing titers against the ECSA and the most ancient Asian genotype virus (Thailand 1958) compared to the other two Asian genotype viruses. The neutralization data also support the older population’s exposure to an Asian genotype virus during the 1960s. The observed cross-reactivity confirms that the investigated CHIKV strains belong to a single serotype despite the emergence of novel ECSA genotype viruses and supports the importance of the development of a Chikungunya vaccine.
Collapse
|
5
|
Elliott SE, Parchim NF, Kellems RE, Xia Y, Soffici AR, Daugherty PS. A pre-eclampsia-associated Epstein-Barr virus antibody cross-reacts with placental GPR50. Clin Immunol 2016; 168:64-71. [PMID: 27181993 DOI: 10.1016/j.clim.2016.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 03/24/2016] [Accepted: 05/05/2016] [Indexed: 12/30/2022]
Abstract
To characterize antibody specificities associated with pre-eclampsia (PE), bacterial displayed peptide library screening and evolution was applied to identify peptide epitopes recognized by plasma antibodies present in women with PE near the time of delivery. Pre-eclamptic women exhibited elevated IgG1 titers towards a peptide epitope KRPSCIGCK within the Epstein-Barr virus nuclear antigen 1 (EBNA-1). EBNA-1 epitope antibodies cross-reacted with a similar epitope within the extracellular N-terminus of the human G protein-coupled receptor, GPR50, expressed in human placental tissue and immortalized placental trophoblast cells. We observed increased antibody binding activity to epitopes from EBNA-1 and GPR50 among women with PE (n=42) compared to healthy-outcome pregnancies (n=43) and nulligravid samples (n=21). The EBNA-1 peptide potently blocked binding of the PE-associated antibody to the GPR50 epitope (IC50=58-81pM). These results reveal the existence of molecular mimicry between EBNA-1 and placental GPR50, supporting a mechanism for IgG1 deposition in the pre-eclamptic placenta.
Collapse
Affiliation(s)
- Serra E Elliott
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA.
| | - Nicholas F Parchim
- Departments of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, TX 77030, USA.
| | - Rodney E Kellems
- Departments of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, TX 77030, USA.
| | - Yang Xia
- Departments of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, TX 77030, USA.
| | - Alex R Soffici
- Maternal-Fetal Medicine, Cottage Health System, Santa Barbara, CA 93105, USA.
| | - Patrick S Daugherty
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
6
|
Makert GR, Vorbrüggen S, Krautwald-Junghanns ME, Voss M, Sohn K, Buschmann T, Ulbert S. A method to identify protein antigens of Dermanyssus gallinae for the protection of birds from poultry mites. Parasitol Res 2016; 115:2705-13. [PMID: 27026505 DOI: 10.1007/s00436-016-5017-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/16/2016] [Indexed: 10/22/2022]
Abstract
The poultry red mite (PRM) Dermanyssus gallinae causes high economic losses and is among the most important parasites in poultry farming worldwide. Different chemical, physical, and biological strategies try to control the expansion of PRM. However, effective solutions to this problem still have to be found. Here, we present a method for the development of an immunological control strategy, based on the identification of mite protein antigens which elicit antibodies with anti-mite activity in the immunized chicken. Hens were immunized with different PRM protein extracts formulated with two different adjuvants, and IgY-antibodies were isolated from the eggs. A PRM in vitro feeding assay which used chicken blood spiked with these IgY-preparations was used to detect antibodies which caused PRM mortality. In vitro feeding of mites with IgY isolated from hens immunized with PRM extract formulated with one of the adjuvants showed a statistically significant increase in the mortality as compared to control mites. After the separation of total PRM extracts in two-dimensional gels, several protein spots were recognized by such IgY preparations. Ten protein spots were subjected to mass spectrometry (MS/MS) for the identification of the corresponding proteins. Complete protein sequences were deduced from genomic and transcriptomic assemblies derived from high throughput sequencing of total PRM DNA and RNA. The results may contribute to the development of an immunological control strategy of D. gallinae.
Collapse
Affiliation(s)
- Gustavo R Makert
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, 04103, Leipzig, Germany.,Clinic for Birds and Reptiles, Leipzig University, An den Tierkliniken 17, 04103, Leipzig, Germany
| | - Susanne Vorbrüggen
- Clinic for Birds and Reptiles, Leipzig University, An den Tierkliniken 17, 04103, Leipzig, Germany
| | | | - Matthias Voss
- Lohmann Tierzucht GmbH, Am Seedeich 9-11, 27454, Cuxhaven, Germany
| | - Kai Sohn
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Nobelstr. 12, 70569, Stuttgart, Germany
| | - Tilo Buschmann
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, 04103, Leipzig, Germany
| | - Sebastian Ulbert
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, 04103, Leipzig, Germany.
| |
Collapse
|
7
|
Ulbert S, Magnusson SE. Technologies for the development of West Nile virus vaccines. Future Microbiol 2015; 9:1221-32. [PMID: 25405890 DOI: 10.2217/fmb.14.67] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
West Nile virus (WNV), an emerging mosquito-borne and zoonotic flavivirus, continues to spread worldwide and represents a major problem for human and veterinary medicine. In recent years, severe outbreaks were observed in the USA and Europe with neighboring countries, and the virus is considered to be endemic in an increasing number of areas. Although most infections remain asymptomatic, WNV can cause severe, even fatal, neurological disease, which affects mostly the elderly and immunocompromised individuals. Several vaccines have been licensed in the veterinary sector, but no human vaccine is available today. This review summarizes recent strategies that are being followed to develop WNV vaccines with emphasis on technologies suitable for the use in humans.
Collapse
Affiliation(s)
- Sebastian Ulbert
- Department of Immunology, Fraunhofer Institute for Cell Therapy & Immunology, Perlickstrasse 1, 04103 Leipzig, Germany
| | | |
Collapse
|
8
|
Rizzoli A, Jimenez-Clavero MA, Barzon L, Cordioli P, Figuerola J, Koraka P, Martina B, Moreno A, Nowotny N, Pardigon N, Sanders N, Ulbert S, Tenorio A. The challenge of West Nile virus in Europe: knowledge gaps and research priorities. ACTA ACUST UNITED AC 2015; 20. [PMID: 26027485 DOI: 10.2807/1560-7917.es2015.20.20.21135] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
West Nile virus (WNV) is continuously spreading across Europe, and other continents, i.e. North and South America and many other regions of the world. Despite the overall sporadic nature of outbreaks with cases of West Nile neuroinvasive disease (WNND) in Europe, the spillover events have increased and the virus has been introduced into new areas. The high genetic diversity of the virus, with remarkable phenotypic variation, and its endemic circulation in several countries, require an intensification of the integrated and multidisciplinary research efforts built under the 7th Framework Programme of the European Union (FP7). It is important to better clarify several aspects of WNV circulation in Europe, including its ecology, genomic diversity, pathogenicity, transmissibility, diagnosis and control options, under different environmental and socio-economic scenarios. Identifying WNV endemic as well as infection-free areas is becoming a need for the development of human vaccines and therapeutics and the application of blood and organs safety regulations. This review, produced as a joint initiative among European experts and based on analysis of 118 scientific papers published between 2004 and 2014, provides the state of knowledge on WNV and highlights the existing knowledge and research gaps that need to be addressed with high priority in Europe and neighbouring countries.
Collapse
Affiliation(s)
- A Rizzoli
- Fondazione Edmund Mach, Research and Innovation Centre, Department of Biodiversity and Molecular Ecology, San Michele all Adige (TN), Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Barzon L, Pacenti M, Ulbert S, Palù G. Latest developments and challenges in the diagnosis of human West Nile virus infection. Expert Rev Anti Infect Ther 2015; 13:327-42. [PMID: 25641365 DOI: 10.1586/14787210.2015.1007044] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
West Nile virus (WNV) is a mosquito-borne flavivirus responsible for an increasing number of human outbreaks of neuroinvasive disease in Europe and in North America. Notwithstanding the improvements in the knowledge of virus epidemiology and clinical course of infection and the development of new laboratory tests, the diagnosis of WNV infection remains challenging and many cases still remain unrecognized. WNV genome diversity, transient viremia with low viral load and cross-reactivity with other flaviviruses of the antibodies induced by WNV infection are important hurdles that require the diagnosis to be performed by experienced laboratories. Herein, we present and discuss the novel findings on the molecular epidemiology and clinical features of WNV infection in humans with special focus on Europe, the performance of diagnostic tests and the novel methods that have been developed for the diagnosis of WNV infection. A view on how the field might evolve in the future is also presented.
Collapse
Affiliation(s)
- Luisa Barzon
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy
| | | | | | | |
Collapse
|
10
|
T cell epitope mapping of the e-protein of West Nile virus in BALB/c mice. PLoS One 2014; 9:e115343. [PMID: 25506689 PMCID: PMC4266646 DOI: 10.1371/journal.pone.0115343] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 11/21/2014] [Indexed: 11/29/2022] Open
Abstract
West Nile virus (WNV) is a zoonotic virus, which is transmitted by mosquitoes. It is the causative agent of the disease syndrome called West Nile fever. In some human cases, a WNV infection can be associated with severe neurological symptoms. The immune response to WNV is multifactorial and includes both humoral and cellular immunity. T-cell epitope mapping of the WNV envelope (E) protein has been performed in C57BL/6 mice, but not in BALB/c mice. Therefore, we performed in BALB/c mice a T-cell epitope mapping using a series of peptides spanning the WNV envelope (E) protein. To this end, the WNV-E specific T cell repertoire was first expanded by vaccinating BALB/c mice with a DNA vaccine that generates subviral particles that resemble West Nile virus. Furthermore, the WNV structural protein was expressed in Escherichia coli as a series of overlapping 20-mer peptides fused to a carrier-protein. Cytokine-based ELISPOT assays using these purified peptides revealed positive WNV-specific T cell responses to peptides within the different domains of the E-protein.
Collapse
|
11
|
Zhang N, Jiang M, Huang T, Cai YD. Identification of Influenza A/H7N9 virus infection-related human genes based on shortest paths in a virus-human protein interaction network. BIOMED RESEARCH INTERNATIONAL 2014; 2014:239462. [PMID: 24955349 PMCID: PMC4052153 DOI: 10.1155/2014/239462] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/18/2014] [Accepted: 04/21/2014] [Indexed: 12/15/2022]
Abstract
The recently emerging Influenza A/H7N9 virus is reported to be able to infect humans and cause mortality. However, viral and host factors associated with the infection are poorly understood. It is suggested by the "guilt by association" rule that interacting proteins share the same or similar functions and hence may be involved in the same pathway. In this study, we developed a computational method to identify Influenza A/H7N9 virus infection-related human genes based on this rule from the shortest paths in a virus-human protein interaction network. Finally, we screened out the most significant 20 human genes, which could be the potential infection related genes, providing guidelines for further experimental validation. Analysis of the 20 genes showed that they were enriched in protein binding, saccharide or polysaccharide metabolism related pathways and oxidative phosphorylation pathways. We also compared the results with those from human rhinovirus (HRV) and respiratory syncytial virus (RSV) by the same method. It was indicated that saccharide or polysaccharide metabolism related pathways might be especially associated with the H7N9 infection. These results could shed some light on the understanding of the virus infection mechanism, providing basis for future experimental biology studies and for the development of effective strategies for H7N9 clinical therapies.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Biomedical Engineering, Tianjin University, Tianjin Key Lab of BME Measurement, Tianjin 300072, China
| | - Min Jiang
- State Key Laboratory of Medical Genomics, Institute of Health Sciences, Shanghai Jiaotong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China
| | - Tao Huang
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York City, NY, USA
- Institute of Systems Biology, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yu-Dong Cai
- Institute of Systems Biology, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
12
|
Chabierski S, Barzon L, Papa A, Niedrig M, Bramson JL, Richner JM, Palù G, Diamond MS, Ulbert S. Distinguishing West Nile virus infection using a recombinant envelope protein with mutations in the conserved fusion-loop. BMC Infect Dis 2014; 14:246. [PMID: 24884467 PMCID: PMC4028281 DOI: 10.1186/1471-2334-14-246] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 05/06/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND West Nile Virus (WNV) is an emerging mosquito-transmitted flavivirus that continues to spread and cause disease throughout several parts of the world, including Europe and the Americas. Specific diagnosis of WNV infections using current serological testing is complicated by the high degree of cross-reactivity between antibodies against other clinically relevant flaviviruses, including dengue, tick-borne encephalitis (TBEV), Japanese encephalitis (JEV), and yellow fever (YFV) viruses. Cross-reactivity is particularly problematic in areas where different flaviviruses co-circulate or in populations that have been immunized with vaccines against TBEV, JEV, or YFV. The majority of cross-reactive antibodies against the immunodominant flavivirus envelope (E) protein target a conserved epitope in the fusion loop at the distal end of domain II. METHODS We tested a loss-of-function bacterially expressed recombinant WNV E protein containing mutations in the fusion loop and an adjacent loop domain as a possible diagnostic reagent. By comparing the binding of sera from humans infected with WNV or other flaviviruses to the wild type and the mutant E proteins, we analyzed the potential of this technology to specifically detect WNV antibodies. RESULTS Using this system, we could reliably determine WNV infections. Antibodies from WNV-infected individuals bound equally well to the wild type and the mutant protein. In contrast, sera from persons infected with other flaviviruses showed significantly decreased binding to the mutant protein. By calculating the mean differences between antibody signals detected using the wild type and the mutant proteins, a value could be assigned for each of the flaviviruses, which distinguished their pattern of reactivity. CONCLUSIONS Recombinant mutant E proteins can be used to discriminate infections with WNV from those with other flaviviruses. The data have important implications for the development of improved, specific serological assays for the detection of WNV antibodies in regions where other flaviviruses co-circulate or in populations that are immunized with other flavivirus vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Sebastian Ulbert
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, 04103 Leipzig, Germany.
| |
Collapse
|
13
|
B cell response and mechanisms of antibody protection to West Nile virus. Viruses 2014; 6:1015-36. [PMID: 24594676 PMCID: PMC3970136 DOI: 10.3390/v6031015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/07/2014] [Accepted: 02/08/2014] [Indexed: 01/03/2023] Open
Abstract
West Nile virus (WNV) has become the principal cause of viral encephalitis in North America since its introduction in New York in 1999. This emerging virus is transmitted to humans via the bite of an infected mosquito. While there have been several candidates in clinical trials, there are no approved vaccines or WNV-specific therapies for the treatment of WNV disease in humans. From studies with small animal models and convalescent human patients, a great deal has been learned concerning the immune response to infection with WNV. Here, we provide an overview of a subset of that information regarding the humoral and antibody response generated during WNV infection.
Collapse
|
14
|
Magnusson SE, Karlsson KH, Reimer JM, Corbach-Söhle S, Patel S, Richner JM, Nowotny N, Barzon L, Bengtsson KL, Ulbert S, Diamond MS, Stertman L. Matrix-M™ adjuvanted envelope protein vaccine protects against lethal lineage 1 and 2 West Nile virus infection in mice. Vaccine 2013; 32:800-8. [PMID: 24380682 DOI: 10.1016/j.vaccine.2013.12.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/05/2013] [Accepted: 12/12/2013] [Indexed: 12/01/2022]
Abstract
West Nile virus (WNV) is a mosquito-transmitted flavivirus and an emerging pathogen in many parts of the world. In the elderly and immunosuppressed, infection can progress rapidly to debilitating and sometimes fatal neuroinvasive disease. Currently, no WNV vaccine is approved for use in humans. As there have been several recent outbreaks in the United States and Europe, there is an increasing need for a human WNV vaccine. In this study, we formulated the ectodomain of a recombinant WNV envelope (E) protein with the particulate saponin-based adjuvant Matrix-M™ and studied the antigen-specific immune responses in mice. Animals immunized with Matrix-M™ formulated E protein developed higher serum IgG1 and IgG2a and neutralizing antibody titers at antigen doses ranging from 0.5 to 10 μg compared to those immunized with 3 or 10 μg of E alone, E adjuvanted with 1% Alum, or with the inactivated virion veterinary vaccine, Duvaxyn(®) WNV. This phenotype was accompanied by strong cellular recall responses as splenocytes from mice immunized with Matrix-M™ formulated vaccine produced high levels of Th1 and Th2 cytokines. Addition of Matrix-M™ prolonged the duration of the immune response, as elevated humoral and cellular responses were maintained for more than 200 days. Importantly, mice vaccinated with Matrix-M™ formulated E protein were protected from lethal challenge with both lineage 1 and 2 WNV strains. In summary, Matrix-M™ adjuvanted E protein elicited potent and durable immune responses that prevented lethal WNV infection, and thus is a promising vaccine candidate for humans.
Collapse
Affiliation(s)
| | | | | | | | - Sameera Patel
- University of Zürich, Institute of Virology, Switzerland
| | - Justin M Richner
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St Louis, USA
| | - Norbert Nowotny
- Institute of Virology, University of Veterinary Medicine, Vienna, Austria; Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, Italy
| | | | - Sebastian Ulbert
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St Louis, USA
| | | |
Collapse
|