1
|
Jankásek M, Kočárek P, Št’áhlavský F. Comparative cytogenetics of three Zoraptera species as a basis for understanding chromosomal evolution in Polyneoptera insects. PeerJ 2024; 12:e18051. [PMID: 39399435 PMCID: PMC11471171 DOI: 10.7717/peerj.18051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/16/2024] [Indexed: 10/15/2024] Open
Abstract
Zoraptera (also called "angel insects") is one of the most unexplored insect orders. However, it holds promise for understanding the evolution of insect karyotypes and genome organization given its status as an early branching group of Polyneoptera and Pterygota (winged insects) during the Paleozoic. Here, we provide karyotype descriptions of three Zorapteran species: Brazilozoros huxleyi (2n♂; ♀ = 42; 42), B. kukalovae (2n♂; ♀ = 43; 44) and Latinozoros cacaoensis (2n♂; ♀ = 36; 36). These species represent two of the four recently recognized Zorapteran subfamilies. Contrary to an earlier suggestion that Zoraptera has holocentric chromosomes, we found karyotypes that were always monocentric. Interestingly, we detected both X0 (B. kukalovae) and XY (B. huxleyi, L. cacaoensis) sex chromosome systems. In addition to conventional karyotype descriptions, we applied fluorescent in situ hybridization for the first time in Zoraptera to map karyotype distributions of 18S rDNA, histone H3 genes, telomeres and (CAG)n and (GATA)n microsatellites. This study provides a foundation for cytogenetic research in Zoraptera.
Collapse
Affiliation(s)
- Marek Jankásek
- Department of Zoology, Charles University Prague, Praha 2, Czech Republic
| | - Petr Kočárek
- Department of Biology and Ecology, University of Ostrava, Ostrava, Czech Republic
| | | |
Collapse
|
2
|
Milani D, Gasparotto AE, Loreto V, Martí DA, Cabral-de-Mello DC. Chromosomal and genomic analysis suggests single origin and high molecular differentiation of the B chromosome of Abracris flavolineata. Genome 2024; 67:327-338. [PMID: 38723289 DOI: 10.1139/gen-2023-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Supernumerary chromosomes (B chromosomes) have been an intriguing subject of study. Our understanding of the molecular differentiation of B chromosomes from an interpopulation perspective remains limited, with most analyses involving chromosome banding and mapping of a few sequences. To gain insights into the molecular composition, origin, and evolution of B chromosomes, we conducted cytogenetic and next-generation sequencing analysis of the repeatome in the grasshopper Abracris flavolineata across various populations. Our results unveiled the presence of B chromosomes in two newly investigated populations and described new satellite DNA sequences. While we observed some degree of genetic connection among A. flavolineata populations, our comparative analysis of genomes with and without B chromosomes provided evidence of two new B chromosome variants. These variants exhibited distinct compositions of various repeat classes, including transposable elements and satellite DNAs. Based on shared repeats, their chromosomal location, and the C-positive heterochromatin content on the B chromosome, these variants likely share a common origin but have undergone distinct molecular differentiation processes, resulting in varying degrees of heterochromatinization. Our data serve as a detailed example of the dynamic and differentiated nature of B chromosome molecular content at the interpopulation level, even when they share a common origin.
Collapse
Affiliation(s)
- Diogo Milani
- Univ Estadual Paulista (UNESP), Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Rio Claro, São Paulo, Brazil
| | - Ana Elisa Gasparotto
- Univ Estadual Paulista (UNESP), Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Rio Claro, São Paulo, Brazil
| | - Vilma Loreto
- Univ Federal de Pernambuco (UFPE), Centro de Biociências, Departamento de Genética, Recife, Pernambuco, Brazil
| | | | - Diogo C Cabral-de-Mello
- Univ Estadual Paulista (UNESP), Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Rio Claro, São Paulo, Brazil
| |
Collapse
|
3
|
Gokhman VE, Kuznetsova VG. Structure and Evolution of Ribosomal Genes of Insect Chromosomes. INSECTS 2024; 15:593. [PMID: 39194798 DOI: 10.3390/insects15080593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024]
Abstract
Currently, clusters of 45S and 5S ribosomal DNA (rDNA) have been studied in about 1000 and 100 species of the class Insecta, respectively. Although the number of insect species with known 45S rDNA clusters (also referred to as nucleolus-organizing regions, or NORs) constitutes less than 0.1 percent of the described members of this enormous group, certain conclusions can already be drawn. Since haploid karyotypes with single 45S and 5S rDNA clusters predominate in both basal and derived insect groups, this character state is apparently ancestral for the class Insecta in general. Nevertheless, the number, chromosomal location, and other characteristics of both 45S and 5S rDNA sites substantially vary across different species, and sometimes even within the same species. There are several main factors and molecular mechanisms that either maintain these parameters or alter them on the short-term and/or long-term scale. Chromosome structure (i.e., monocentric vs. holokinetic chromosomes), excessive numbers of rRNA gene copies per cluster, interactions with transposable elements, pseudogenization, and meiotic recombination are perhaps the most important among them.
Collapse
Affiliation(s)
| | - Valentina G Kuznetsova
- Department of Karyosystematics, Zoological Institute, Russian Academy of Sciences, St. Petersburg 199034, Russia
| |
Collapse
|
4
|
Fornaini NR, Černohorská H, do Vale Martins L, Knytl M. Cytogenetic Analysis of the Fish Genus Carassius Indicates Divergence, Fission, and Segmental Duplication as Drivers of Tandem Repeat and Microchromosome Evolution. Genome Biol Evol 2024; 16:evae028. [PMID: 38340334 PMCID: PMC11079324 DOI: 10.1093/gbe/evae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/28/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024] Open
Abstract
Fishes of the genus Carassius are useful experimental vertebrate models for the study of evolutionary biology and cytogenetics. Carassius demonstrates diverse biological characteristics, such as variation in ploidy levels and chromosome numbers, and presence of microchromosomes. Those Carassius polyploids with ≥150 chromosomes have microchromosomes, but the origin of microchromosomes, especially in European populations, is unknown. We used cytogenetics to study evolution of tandem repeats (U1 and U2 small nuclear DNAs and H3 histone) and microchromosomes in Carassius from the Czech Republic. We tested the hypotheses whether the number of tandem repeats was affected by polyploidization or divergence between species and what mechanism drives evolution of microchromosomes. Tandem repeats were found in tetraploid and hexaploid Carassius gibelio, and tetraploid Carassius auratus and Carassius carassius in conserved numbers, with the exception of U1 small nuclear DNA in C. auratus. This conservation indicates reduction and/or loss in the number of copies per locus in hexaploids and may have occurred by divergence rather than polyploidization. To study the evolution of microchromosomes, we used the whole microchromosome painting probe from hexaploid C. gibelio and hybridized it to tetraploid and hexaploid C. gibelio, and tetraploid C. auratus and C. carassius. Our results revealed variation in the number of microchromosomes in hexaploids and indicated that the evolution of the Carassius karyotype is governed by macrochromosome fissions followed by segmental duplication in pericentromeric areas. These are potential mechanisms responsible for the presence of microchromosomes in Carassius hexaploids. Differential efficacy of one or both of these mechanisms in different tetraploids could ensure variability in chromosome number in polyploids in general.
Collapse
Affiliation(s)
- Nicola R Fornaini
- Department of Cell Biology, Faculty of Science, Charles University, Prague 12843, Czech Republic
| | - Halina Černohorská
- Genetics and Reproductive Biotechnologies, CEITEC—Veterinary Research Institute, Brno 62100, Czech Republic
| | | | - Martin Knytl
- Department of Cell Biology, Faculty of Science, Charles University, Prague 12843, Czech Republic
- Department of Biology, McMaster University, Hamilton, Ontario L8S4K1, Canada
| |
Collapse
|
5
|
Garcia S, Kovarik A, Maiwald S, Mann L, Schmidt N, Pascual-Díaz JP, Vitales D, Weber B, Heitkam T. The Dynamic Interplay Between Ribosomal DNA and Transposable Elements: A Perspective From Genomics and Cytogenetics. Mol Biol Evol 2024; 41:msae025. [PMID: 38306580 PMCID: PMC10946416 DOI: 10.1093/molbev/msae025] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/06/2023] [Accepted: 01/29/2024] [Indexed: 02/04/2024] Open
Abstract
Although both are salient features of genomes, at first glance ribosomal DNAs and transposable elements are genetic elements with not much in common: whereas ribosomal DNAs are mainly viewed as housekeeping genes that uphold all prime genome functions, transposable elements are generally portrayed as selfish and disruptive. These opposing characteristics are also mirrored in other attributes: organization in tandem (ribosomal DNAs) versus organization in a dispersed manner (transposable elements); evolution in a concerted manner (ribosomal DNAs) versus evolution by diversification (transposable elements); and activity that prolongs genomic stability (ribosomal DNAs) versus activity that shortens it (transposable elements). Re-visiting relevant instances in which ribosomal DNA-transposable element interactions have been reported, we note that both repeat types share at least four structural and functional hallmarks: (1) they are repetitive DNAs that shape genomes in evolutionary timescales, (2) they exchange structural motifs and can enter co-evolution processes, (3) they are tightly controlled genomic stress sensors playing key roles in senescence/aging, and (4) they share common epigenetic marks such as DNA methylation and histone modification. Here, we give an overview of the structural, functional, and evolutionary characteristics of both ribosomal DNAs and transposable elements, discuss their roles and interactions, and highlight trends and future directions as we move forward in understanding ribosomal DNA-transposable element associations.
Collapse
Affiliation(s)
- Sònia Garcia
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, 08038 Barcelona, Catalonia, Spain
| | - Ales Kovarik
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 61265 Brno, Czech Republic
| | - Sophie Maiwald
- Faculty of Biology, Technische Universität Dresden, D-01069 Dresden, Germany
| | - Ludwig Mann
- Faculty of Biology, Technische Universität Dresden, D-01069 Dresden, Germany
| | - Nicola Schmidt
- Faculty of Biology, Technische Universität Dresden, D-01069 Dresden, Germany
| | | | - Daniel Vitales
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, 08038 Barcelona, Catalonia, Spain
- Laboratori de Botànica–Unitat Associada CSIC, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| | - Beatrice Weber
- Faculty of Biology, Technische Universität Dresden, D-01069 Dresden, Germany
| | - Tony Heitkam
- Faculty of Biology, Technische Universität Dresden, D-01069 Dresden, Germany
- Institute of Biology, NAWI Graz, Karl-Franzens-Universität, A-8010 Graz, Austria
| |
Collapse
|
6
|
Orosová M, Marková A, Zrzavá M, Marec F, Oros M. Chromosome analysis and the occurrence of B chromosomes in fish parasite Acanthocephalus anguillae (Palaeacanthocephala: Echinorhynchida). Parasite 2023; 30:44. [PMID: 37870409 PMCID: PMC10592040 DOI: 10.1051/parasite/2023045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023] Open
Abstract
The cytogenetics of Acanthocephala is a neglected area in the study of this group of endoparasites. Chromosome number and/or karyotypes are known for only 12 of the 1,270 described species, and molecular cytogenetic data are limited to rDNA mapping in two species. The standard karyological technique and mapping of 18S rRNA and H3 histone genes on the chromosomes of Acanthocephalus anguillae individuals from three populations, one of which originated from the unfavorable environmental conditions of the Zemplínska Šírava reservoir in eastern Slovakia, were applied for the first time. All specimens had 2n = 7/8 (male/female); n = 1m + 1m-sm + 1a + 1a (X). Fluorescence in situ hybridization (FISH) revealed three loci of 18S rDNA on two autosomes and dispersion of H3 histone genes on all autosomes and the X chromosome. In addition to the standard A chromosome set, 34% of specimens from Zemplínska Šírava possessed a small acrocentric B chromosome, which was always found to be univalent, with no pairing observed between the B chromosome and the A complement. The B chromosome had a small amount of heterochromatin in the centromeric and telomeric regions of the chromosomal arms and showed two clusters of H3 genes. It is well known that an environment permanently polluted with chemicals leads to an increased incidence of chromosomal rearrangements. As a possible scenario for the B chromosome origin, we propose chromosomal breaks due to the mutagenic effect of pollutants in the aquatic environment. The results are discussed in comparison with previous chromosome data from Echinorhynchida species.
Collapse
Affiliation(s)
- Martina Orosová
- Institute of Parasitology, Slovak Academy of Sciences Hlinkova 3 040 01 Košice Slovakia
| | - Anna Marková
- Institute of Parasitology, Slovak Academy of Sciences Hlinkova 3 040 01 Košice Slovakia
- Department of Zoology, Faculty of Natural Sciences, Comenius University Ilkovičova 6 842 15 Bratislava Slovakia
| | - Magda Zrzavá
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology Branišovská 31 370 05 České Budějovice Czech Republic
- Faculty of Science, University of South Bohemia Branišovská 1760 370 05 České Budějovice Czech Republic
| | - František Marec
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology Branišovská 31 370 05 České Budějovice Czech Republic
| | - Mikuláš Oros
- Institute of Parasitology, Slovak Academy of Sciences Hlinkova 3 040 01 Košice Slovakia
| |
Collapse
|
7
|
Fornaini NR, Bergelová B, Gvoždík V, Černohorská H, Krylov V, Kubíčková S, Fokam EB, Badjedjea G, Evans BJ, Knytl M. Consequences of polyploidy and divergence as revealed by cytogenetic mapping of tandem repeats in African clawed frogs ( Xenopus, Pipidae). EUR J WILDLIFE RES 2023; 69:81. [PMID: 37483536 PMCID: PMC10361878 DOI: 10.1007/s10344-023-01709-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/13/2023] [Accepted: 06/27/2023] [Indexed: 07/25/2023]
Abstract
Repetitive elements have been identified in several amphibian genomes using whole genome sequencing, but few studies have used cytogenetic mapping to visualize these elements in this vertebrate group. Here, we used fluorescence in situ hybridization and genomic data to map the U1 and U2 small nuclear RNAs and histone H3 in six species of African clawed frog (genus Xenopus), including, from subgenus Silurana, the diploid Xenopus tropicalis and its close allotetraploid relative X. calcaratus and, from subgenus Xenopus, the allotetraploid species X. pygmaeus, X. allofraseri, X. laevis, and X. muelleri. Results allowed us to qualitatively evaluate the relative roles of polyploidization and divergence in the evolution of repetitive elements because our focal species include allotetraploid species derived from two independent polyploidization events - one that is relatively young that gave rise to X. calcaratus and another that is older that gave rise to the other (older) allotetraploids. Our results demonstrated conserved loci number and position of signals in the species from subgenus Silurana; allotetraploid X. calcaratus has twice as many signals as diploid X. tropicalis. However, the content of repeats varied among the other allotetraploid species. We detected almost same number of signals in X. muelleri as in X. calcaratus and same number of signals in X. pygmaeus, X. allofraseri, X. laevis as in the diploid X. tropicalis. Overall, these results are consistent with the proposal that allopolyploidization duplicated these tandem repeats and that variation in their copy number was accumulated over time through reduction and expansion in a subset of the older allopolyploids.
Collapse
Affiliation(s)
- Nicola R. Fornaini
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague, 12843 Czech Republic
| | - Barbora Bergelová
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague, 12843 Czech Republic
| | - Václav Gvoždík
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
- Department of Zoology, National Museum of the Czech Republic, Prague, Czech Republic
| | - Halina Černohorská
- Department of Genetics and Reproduction, CEITEC - Veterinary Research Institute, Hudcova 296/70, Brno, 62100 Czech Republic
| | - Vladimír Krylov
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague, 12843 Czech Republic
| | - Svatava Kubíčková
- Department of Genetics and Reproduction, CEITEC - Veterinary Research Institute, Hudcova 296/70, Brno, 62100 Czech Republic
| | - Eric B. Fokam
- Department of Animal Biology and Conservation, University of Buea, PO Box 63, Buea, 00237 Cameroon
| | - Gabriel Badjedjea
- Department of Aquatic Ecology, Biodiversity Monitoring Center, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Ben J. Evans
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S4K1 Canada
| | - Martin Knytl
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague, 12843 Czech Republic
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S4K1 Canada
| |
Collapse
|
8
|
Haerter CAG, Blanco DR, Traldi JB, Feldberg E, Margarido VP, Lui RL. Are scattered microsatellites weak chromosomal markers? Guided mapping reveals new insights into Trachelyopterus (Siluriformes: Auchenipteridae) diversity. PLoS One 2023; 18:e0285388. [PMID: 37310952 DOI: 10.1371/journal.pone.0285388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 04/22/2023] [Indexed: 06/15/2023] Open
Abstract
The scattered distribution pattern of microsatellites is a challenging problem in fish cytogenetics. This type of array hinders the identification of useful patterns and the comparison between species, often resulting in over-limited interpretations that only label it as "scattered" or "widely distributed". However, several studies have shown that the distribution pattern of microsatellites is non-random. Thus, here we tested whether a scattered microsatellite could have distinct distribution patterns on homeologous chromosomes of closely related species. The clustered sites of 18S and 5S rDNA, U2 snRNA and H3/H4 histone genes were used as a guide to compare the (GATA)n microsatellite distribution pattern on the homeologous chromosomes of six Trachelyopterus species: T. coriaceus and Trachelyopterus aff. galeatus from the Araguaia River basin; T. striatulus, T. galeatus and T. porosus from the Amazonas River basin; and Trachelyopterus aff. coriaceus from the Paraguay River basin. Most species had similar patterns of the (GATA)n microsatellite in the histone genes and 5S rDNA carriers. However, we have found a chromosomal polymorphism of the (GATA)n sequence in the 18S rDNA carriers of Trachelyopterus galeatus, which is in Hard-Weinberg equilibrium and possibly originated through amplification events; and a chromosome polymorphism in Trachelyopterus aff. galeatus, which combined with an inversion polymorphism of the U2 snRNA in the same chromosome pair resulted in six possible cytotypes, which are in Hardy-Weinberg disequilibrium. Therefore, comparing the distribution pattern on homeologous chromosomes across the species, using gene clusters as a guide to identify it, seems to be an effective way to further the analysis of scattered microsatellites in fish cytogenetics.
Collapse
Affiliation(s)
| | | | - Josiane Baccarin Traldi
- Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Brasil
| | | | - Vladimir Pavan Margarido
- Universidade Estadual do Oeste do Paraná, Centro de Ciências Biológicas e da Saúde, Cascavel, Paraná, Brasil
| | - Roberto Laridondo Lui
- Universidade Estadual do Oeste do Paraná, Centro de Ciências Biológicas e da Saúde, Cascavel, Paraná, Brasil
| |
Collapse
|
9
|
Dalíková M, Provazníková I, Provazník J, Grof-Tisza P, Pepi A, Nguyen P. The Role of Repetitive Sequences in Repatterning of Major Ribosomal DNA Clusters in Lepidoptera. Genome Biol Evol 2023; 15:evad090. [PMID: 37226278 PMCID: PMC10257491 DOI: 10.1093/gbe/evad090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
Genes for major ribosomal RNAs (rDNA) are present in multiple copies mainly organized in tandem arrays. The number and position of rDNA loci can change dynamically and their repatterning is presumably driven by other repetitive sequences. We explored a peculiar rDNA organization in several representatives of Lepidoptera with either extremely large or numerous rDNA clusters. We combined molecular cytogenetics with analyses of second- and third-generation sequencing data to show that rDNA spreads as a transcription unit and reveal association between rDNA and various repeats. Furthermore, we performed comparative long read analyses among the species with derived rDNA distribution and moths with a single rDNA locus, which is considered ancestral. Our results suggest that satellite arrays, rather than mobile elements, facilitate homology-mediated spread of rDNA via either integration of extrachromosomal rDNA circles or ectopic recombination. The latter arguably better explains preferential spread of rDNA into terminal regions of lepidopteran chromosomes as efficiency of ectopic recombination depends on the proximity of homologous sequences to telomeres.
Collapse
Affiliation(s)
- Martina Dalíková
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre CAS, České Budějovice, Czech Republic
| | - Irena Provazníková
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre CAS, České Budějovice, Czech Republic
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jan Provazník
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Patrick Grof-Tisza
- Institute of Biology, Laboratory of Evolutionary Entomology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Adam Pepi
- Department of Biology, Tufts University
| | - Petr Nguyen
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre CAS, České Budějovice, Czech Republic
| |
Collapse
|
10
|
Tura V, Kretschmer R, Sassi FDMC, de Moraes RLR, Barcellos SA, de Rosso VO, de Souza MS, Cioffi MDB, Gunski RJ, Garnero ADV. Chromosomal Evolution of Suboscines: Karyotype Diversity and Evolutionary Trends in Ovenbirds (Passeriformes, Furnariidae). Cytogenet Genome Res 2023; 162:644-656. [PMID: 36996794 DOI: 10.1159/000530428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/28/2023] [Indexed: 04/01/2023] Open
Abstract
Furnariidae (ovenbirds) is one of the most diversified families in the Passeriformes order and Suboscines suborder. Despite the great diversity of species, cytogenetic research is still in its early stages, restricting our knowledge of their karyotype evolution. We combined traditional and molecular cytogenetic analyses in three representative species, Synallaxis frontalis, Syndactyla rufosuperciliata, and Cranioleuca obsoleta, to examine the chromosomal structure and evolution of ovenbirds. Our findings revealed that all the species studied had the same diploid number (2n = 82). Differences in chromosomal morphology of some macrochromosomes indicate the presence of intrachromosomal rearrangements. Although the three species only had the 18S rDNA on one microchromosome pair, chromosomal mapping of six simple short repeats revealed a varied pattern of chromosome distribution among them, suggesting that each species underwent different repetitive DNA accumulation upon their divergence. The interspecific comparative genomic hybridization experiment revealed that the Furnariidae species investigated carry centromeric regions enriched in similar repetitive sequences, bolstering the Furnariidae family's karyotype conservation. Nonetheless, the outgroup species Turdus rufiventris (Turdidae) demonstrated an advanced stage of sequence divergence with hybridization signals that were almost entirely limited to a few microchromosomes. Overall, the findings imply that Furnariidae species have a high degree of chromosomal conservation, and we could also observe a differentiation of repetitive sequences in both Passeriformes suborders (Suboscines and Oscines).
Collapse
Affiliation(s)
- Victoria Tura
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel, Brazil
| | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, Brazil
| | | | | | - Suziane Alves Barcellos
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel, Brazil
| | - Vitor Oliveira de Rosso
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel, Brazil
| | - Marcelo Santos de Souza
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel, Brazil
| | | | - Ricardo J Gunski
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel, Brazil
| | | |
Collapse
|
11
|
Araya-Jaime CA, Silva DMZDA, da Silva LRR, do Nascimento CN, Oliveira C, Foresti F. Karyotype description and comparative chromosomal mapping of rDNA and U2 snDNA sequences in Eigenmannialimbata and E.microstoma (Teleostei, Gymnotiformes, Sternopygidae). COMPARATIVE CYTOGENETICS 2022; 16:127-142. [PMID: 36761809 PMCID: PMC9849054 DOI: 10.3897/compcytogen.v16i2.72190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 04/09/2022] [Indexed: 06/18/2023]
Abstract
The genus Eigenmannia Jordan et Evermann,1896 includes electric fishes endemic to the Neotropical region with extensive karyotype variability and occurrence of different sex chromosome systems, however, cytogenetic studies within this group are restricted to few species. Here, we describe the karyotypes of Eigenmannialimbata (Schreiner et Miranda Ribeiro, 1903) and E.microstoma (Reinhardt, 1852) and the chromosomal locations of 5S and 18S rDNAs (ribosomal RNA genes) and U2 snDNA (small nuclear RNA gene). Among them, 18S rDNA sites were situated in only one chromosomal pair in both species, and co-localized with 5S rDNA in E.microstoma. On the other hand, 5S rDNA and U2 snRNA sites were observed on several chromosomes, with variation in the number of sites between species under study. These two repetitive DNAs were observed co-localized in one chromosomal pair in E.limbata and in four pairs in E.microstoma. Our study shows a new case of association of these two types of repetitive DNA in the genome of Gymnotiformes.
Collapse
Affiliation(s)
- Cristian Andrés Araya-Jaime
- Instituto de Investigación Multidisciplinar en Ciencia y Tecnología, Universidad de La Serena, La Serena, Chile
| | | | | | | | - Claudio Oliveira
- Departamento de Biología, Universidad de La Serena, La Serena, Chile
| | - Fausto Foresti
- Departamento de Biología, Universidad de La Serena, La Serena, Chile
| |
Collapse
|
12
|
Classical and molecular cytogenetics of Markiana nigripinnis (Pisces - Characiformes) from brazilian Pantanal: a comparative analysis with cytotaxonomic contributions. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01091-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
13
|
Haq IU, Muhammad M, Yuan H, Ali S, Abbasi A, Asad M, Ashraf HJ, Khurshid A, Zhang K, Zhang Q, Liu C. Satellitome Analysis and Transposable Elements Comparison in Geographically Distant Populations of Spodoptera frugiperda. Life (Basel) 2022; 12:521. [PMID: 35455012 PMCID: PMC9026859 DOI: 10.3390/life12040521] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
Spodoptera frugiperda (fall armyworm) is a member of the superfamily Noctuoidea that accounts for more than a third of all Lepidoptera and includes a considerable number of agricultural and forest pest species. Spodoptera frugiperda is a polyphagous species that is a significant agricultural pest worldwide, emphasizing its economic importance. Spodoptera frugiperda's genome size, assembly, phylogenetic classification, and transcriptome analysis have all been previously described. However, the different studies reported different compositions of repeated DNA sequences that occupied the whole assembled genome, and the Spodoptera frugiperda genome also lacks the comprehensive study of dynamic satellite DNA. We conducted a comparative analysis of repetitive DNA across geographically distant populations of Spodoptera frugiperda, particularly satellite DNA, using publicly accessible raw genome data from eight different geographical regions. Our results showed that most transposable elements (TEs) were commonly shared across all geographically distant samples, except for the Maverick and PIF/Harbinger elements, which have divergent repeat copies. The TEs age analysis revealed that most TEs families consist of young copies 1-15 million years old; however, PIF/Harbinger has some older/degenerated copies of 30-35 million years old. A total of seven satellite DNA families were discovered, accounting for approximately 0.65% of the entire genome of the Spodoptera frugiperda fall armyworm. The repeat profiling analysis of satellite DNA families revealed differential read depth coverage or copy numbers. The satellite DNA families range in size from the lowest 108 bp SfrSat06-108 families to the largest (1824 bp) SfrSat07-1824 family. We did not observe a statistically significant correlation between monomer length and K2P divergence, copy number, or abundance of each satellite family. Our findings suggest that the satellite DNA families identified in Spodoptera frugiperda account for a considerable proportion of the genome's repetitive fraction. The satellite DNA families' repeat profiling revealed a point mutation along the reference sequences. Limited TEs differentiation exists among geographically distant populations of Spodoptera frugiperda.
Collapse
Affiliation(s)
- Inzamam Ul Haq
- College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, China; (I.U.H.); (A.K.); (K.Z.); (Q.Z.)
| | - Majid Muhammad
- College of Life Sciences, Shaanxi Normal University, Xi’an 710100, China; (M.M.); (H.Y.)
| | - Huang Yuan
- College of Life Sciences, Shaanxi Normal University, Xi’an 710100, China; (M.M.); (H.Y.)
| | - Shahbaz Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan;
| | - Asim Abbasi
- Department of Zoology, Bahawalpur Campus, University of Central Punjab, Bahawalpur 63100, Pakistan;
| | - Muhammad Asad
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Hafiza Javaria Ashraf
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Aroosa Khurshid
- College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, China; (I.U.H.); (A.K.); (K.Z.); (Q.Z.)
| | - Kexin Zhang
- College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, China; (I.U.H.); (A.K.); (K.Z.); (Q.Z.)
| | - Qiangyan Zhang
- College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, China; (I.U.H.); (A.K.); (K.Z.); (Q.Z.)
| | - Changzhong Liu
- College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, China; (I.U.H.); (A.K.); (K.Z.); (Q.Z.)
| |
Collapse
|
14
|
Pita S, Lorite P, Cuadrado A, Panzera Y, De Oliveira J, Alevi KCC, Rosa JA, Freitas SPC, Gómez-Palacio A, Solari A, Monroy C, Dorn PL, Cabrera-Bravo M, Panzera F. High chromosomal mobility of rDNA clusters in holocentric chromosomes of Triatominae, vectors of Chagas disease (Hemiptera-Reduviidae). MEDICAL AND VETERINARY ENTOMOLOGY 2022; 36:66-80. [PMID: 34730244 DOI: 10.1111/mve.12552] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/15/2021] [Accepted: 10/14/2021] [Indexed: 05/28/2023]
Abstract
The subfamily Triatominae (Hemiptera-Reduviidae) includes more than 150 blood-sucking species, potential vectors of the protozoan Trypanosoma cruzi, causative agent of Chagas disease. A distinctive cytogenetic characteristic of this group is the presence of extremely stable chromosome numbers. Unexpectedly, the analyses of the chromosomal location of ribosomal gene clusters and other repetitive sequences place Triatominae as a significantly diverse hemipteran subfamily. Here, we advance the understanding of Triatominae chromosomal evolution through the analysis of the 45S rDNA cluster chromosomal location in 92 Triatominae species. We found the 45S rDNA clusters in one to four loci per haploid genome with different chromosomal patterns: On one or two autosomes, on one, two or three sex chromosomes, on the X chromosome plus one to three autosomes. The movement of 45S rDNA clusters is discussed in an evolutionary context. Our results illustrate that rDNA mobility has been relatively common in the past and in recent evolutionary history of the group. The high frequency of rDNA patterns involving autosomes and sex chromosomes among closely related species could affect genetic recombination and the viability of hybrid populations, which suggests that the mobility of rDNA clusters could be a driver of species diversification.
Collapse
Affiliation(s)
- S Pita
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - P Lorite
- Department of Experimental Biology, Genetics, University of Jaén, Jaén, Spain
| | - A Cuadrado
- Department of Biomedicine and Biotechnology, University of Alcalá, Madrid, Spain
| | - Y Panzera
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - J De Oliveira
- Laboratório de Entomologia em Saúde Pública, Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brazil
| | - K C C Alevi
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista "Júlio de Mesquita Filho" (Unesp), São Paulo, Brazil
| | - J A Rosa
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista "Júlio de Mesquita Filho" (Unesp), São Paulo, Brazil
| | | | - A Gómez-Palacio
- Laboratorio de Investigación en Genética Evolutiva - LIGE, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - A Solari
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - C Monroy
- Laboratorio de Entomología Aplicada y Parasitología, Escuela de Biología, Facultad de Farmacia, Universidad de San Carlos de Guatemala, Guatemala City, Guatemala
| | - P L Dorn
- Department of Biological Sciences, Loyola University New Orleans, New Orleans, Louisiana, U.S.A
| | - M Cabrera-Bravo
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - F Panzera
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
15
|
Santander MD, Cabral-de-Mello DC, Taffarel A, Martí E, Martí DA, Palacios-Gimenez OM, Castillo ERD. New insights into the six decades of Mesa’s hypothesis of chromosomal evolution in Ommexechinae grasshoppers (Orthoptera: Acridoidea). Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlaa188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
In Acridoidea grasshoppers, chromosomal rearrangements are frequently found as deviations from the standard acrocentric karyotype (2n = 23♂/24♀, FN = 23♂/24♀) in either phylogenetically unrelated species or shared by closely related ones, i.e. genus. In the South American subfamily Ommexechinae, most of the species show a unique karyotype (2n = 23♂/24♀, FN = 25♂/26♀) owing to the occurrence of a large autosomal pair (L1) with submetacentric morphology. In the early 1960s, Alejo Mesa proposed the hypothesis of an ancestral pericentric inversion to explain this karyotype variation. Furthermore, in Ommexechinae, extra chromosomal rearrangements (e.g. centric fusions) are recorded between the ancestral X chromosome and autosomes that originated the so-called neo-sex chromosomes. However, the evolutionary significance of the pericentric inversions and centric fusions in Ommexechinae remains poorly explored. Aiming for a better understanding of chromosomal evolution in Ommexechinae, we performed a detailed cytogenetic analysis in five species. Our findings support the hypothesis about the occurrence of an early pericentric inversion in the ancestor of Ommexechinae. Moreover, our results show a complex karyotype diversification pattern due to several chromosome rearrangements, variations in heterochromatin and repetitive DNA dynamics. Finally, the chromosomal mapping of U2 snDNA in L1 provided new insights about the morphological evolution of this autosomal pair and revealed unnoticed chromosome reorganizations.
Collapse
Affiliation(s)
- Mylena D Santander
- Laboratorio de Genética Evolutiva Dr. Claudio J. Bidau. Instituto de Biología Subtropical (IBS) CONICET-UNaM. FCEQyN. Posadas, Misiones, Argentina
- Departamento de Genética e Biologia Evolutiva. Instituto de Biociências, Universidade de São Paulo (USP). São Paulo, São Paulo, Brazil
| | - Diogo C Cabral-de-Mello
- Departamento de Biologia Geral e Aplicada, Universidade Estadual Paulista (UNESP), Instituto de Biociências/IB. Rio Claro, São Paulo, Brazil
| | - Alberto Taffarel
- Laboratorio de Genética Evolutiva Dr. Claudio J. Bidau. Instituto de Biología Subtropical (IBS) CONICET-UNaM. FCEQyN. Posadas, Misiones, Argentina
| | - Emiliano Martí
- Departamento de Biologia Geral e Aplicada, Universidade Estadual Paulista (UNESP), Instituto de Biociências/IB. Rio Claro, São Paulo, Brazil
| | - Dardo A Martí
- Laboratorio de Genética Evolutiva Dr. Claudio J. Bidau. Instituto de Biología Subtropical (IBS) CONICET-UNaM. FCEQyN. Posadas, Misiones, Argentina
| | - Octavio M Palacios-Gimenez
- Department of Organismal Biology – Systematic Biology Program, Evolutionary Biology Centre, Uppsala University
| | - Elio Rodrigo D Castillo
- Laboratorio de Genética Evolutiva Dr. Claudio J. Bidau. Instituto de Biología Subtropical (IBS) CONICET-UNaM. FCEQyN. Posadas, Misiones, Argentina
| |
Collapse
|
16
|
Milani D, Ruiz-Ruano FJ, Camacho JPM, Cabral-de-Mello DC. Out of patterns, the euchromatic B chromosome of the grasshopper Abracris flavolineata is not enriched in high-copy repeats. Heredity (Edinb) 2021; 127:475-483. [PMID: 34482369 PMCID: PMC8551250 DOI: 10.1038/s41437-021-00470-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
In addition to the normal set of standard (A) chromosomes, some eukaryote species harbor supernumerary (B) chromosomes. In most cases, B chromosomes show differential condensation with respect to A chromosomes and display dark C-bands of heterochromatin, and some of them are highly enriched in repetitive DNA. Here we perform a comprehensive NGS (next-generation sequencing) analysis of the repeatome in the grasshopper Abracris flavolineata aimed at uncovering the molecular composition and origin of its B chromosome. Our results have revealed that this B chromosome shows a DNA repeat content highly similar to the DNA repeat content observed for euchromatic (non-C-banded) regions of A chromosomes. Moreover, this B chromosome shows little enrichment for high-copy repeats, with only a few elements showing overabundance in B-carrying individuals compared to the 0B individuals. Consequently, the few satellite DNAs (satDNAs) mapping on the B chromosome were mostly restricted to its centromeric and telomeric regions, and they displayed much smaller bands than those observed on the A chromosomes. Our data support the intraspecific origin of the B chromosome from the longest autosome by misdivision, isochromosome formation, and additional restructuring, with accumulation of specific repeats in one or both B chromosome arms, yielding a submetacentric B. Finally, the absence of B-specific satDNAs, which are frequent in other species, along with its euchromatic nature, suggest that this B chromosome arose recently and might still be starting a heterochromatinization process. On this basis, it could be a good model to investigate the initial steps of B chromosome evolution.
Collapse
Affiliation(s)
- Diogo Milani
- Departamento de Biologia Geral e Aplicada, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, São Paulo, Brazil
| | - Francisco J Ruiz-Ruano
- Evolutionary Biology Centre, Department of Organismal Biology - Systematic Biology, Uppsala University, Uppsala, Sweden
- Norwich Research Park, School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Juan Pedro M Camacho
- Departamento de Genética, Facultad de Ciencias, UGR - Univ de Granada, Granada, Spain
| | - Diogo C Cabral-de-Mello
- Departamento de Biologia Geral e Aplicada, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, São Paulo, Brazil.
| |
Collapse
|
17
|
Comparative Analysis of Transposable Elements in Genus Calliptamus Grasshoppers Revealed That Satellite DNA Contributes to Genome Size Variation. INSECTS 2021; 12:insects12090837. [PMID: 34564277 PMCID: PMC8466570 DOI: 10.3390/insects12090837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/01/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Calliptamus is a genus of grasshoppers belonging to the family Acrididae. The genus Calliptamus includes approximately 17 recognized species. Calliptamus abbreviatus, Calliptamus italicus, and Calliptamus barbarus are three species that are widely found in northern China. These species are polyphagous, feeding on a variety of wild plants as well as crops, particularly legumes. The genome sizes, phylogenetic position, and transcriptome analysis of the genus Calliptamus were already known previous to this research. The repeatome analysis of these species was missing, which is directly linked to the larger genome sizes of the grasshoppers. Here, we classified repetitive DNA sequences at the level of superfamilies and sub-families, and found that LINE, TcMar-Tc1 and Ty3-gypsy LTR retrotransposons dominated the repeatomes of all genomes, accounting for 16–34% of the total genomes of these species. Satellite DNA dynamic evolutionary changes in all three genomes played a role in genome size evolution. This study would be a valuable source for future genome assemblies. Abstract Transposable elements (TEs) play a significant role in both eukaryotes and prokaryotes genome size evolution, structural changes, duplication, and functional variabilities. However, the large number of different repetitive DNA has hindered the process of assembling reference genomes, and the genus level TEs diversification of the grasshopper massive genomes is still under investigation. The genus Calliptamus diverged from Peripolus around 17 mya and its species divergence dated back about 8.5 mya, but their genome size shows rather large differences. Here, we used low-coverage Illumina unassembled short reads to investigate the effects of evolutionary dynamics of satDNAs and TEs on genome size variations. The Repeatexplorer2 analysis with 0.5X data resulted in 52%, 56%, and 55% as repetitive elements in the genomes of Calliptamus barbarus, Calliptamus italicus, and Calliptamus abbreviatus, respectively. The LINE and Ty3-gypsy LTR retrotransposons and TcMar-Tc1 dominated the repeatomes of all genomes, accounting for 16–35% of the total genomes of these species. Comparative analysis unveiled that most of the transposable elements (TEs) except satDNAs were highly conserved across three genomes in the genus Calliptamus grasshoppers. Out of a total of 20 satDNA families, 17 satDNA families were commonly shared with minor variations in abundance and divergence between three genomes, and 3 were Calliptamus barbarus specific. Our findings suggest that there is a significant amplification or contraction of satDNAs at genus phylogeny which is the main cause that made genome size different.
Collapse
|
18
|
Martí E, Milani D, Bardella VB, Albuquerque L, Song H, Palacios-Gimenez OM, Cabral-de-Mello DC. Cytogenomic analysis unveils mixed molecular evolution and recurrent chromosomal rearrangements shaping the multigene families on Schistocerca grasshopper genomes. Evolution 2021; 75:2027-2041. [PMID: 34155627 DOI: 10.1111/evo.14287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/11/2021] [Accepted: 05/26/2021] [Indexed: 11/26/2022]
Abstract
Multigene families are essential components of eukaryotic genomes and play key roles either structurally and functionally. Their modes of evolution remain elusive even in the era of genomics, because multiple multigene family sequences coexist in genomes, particularly in large repetitive genomes. Here, we investigate how the multigene families 18S rDNA, U2 snDNA, and H3 histone evolved in 10 species of Schistocerca grasshoppers with very large and repeat-enriched genomes. Using sequenced genomes and fluorescence in situ hybridization mapping, we find substantial differences between species, including the number of chromosomal clusters, changes in sequence abundance and nucleotide composition, pseudogenization, and association with transposable elements (TEs). The intragenomic analysis of Schistocerca gregaria using long-read sequencing and genome assembly unveils conservation for H3 histone and recurrent pseudogenization for 18S rDNA and U2 snDNA, likely promoted by association with TEs and sequence truncation. Remarkably, TEs were frequently associated with truncated copies, were also among the most abundant in the genome, and revealed signatures of recent activity. Our findings suggest a combined effect of concerted and birth-and-death models driving the evolution of multigene families in Schistocerca over the last 8 million years, and the occurrence of intra- and interchromosomal rearrangements shaping their chromosomal distribution. Despite the conserved karyotype in Schistocerca, our analysis highlights the extensive reorganization of repetitive DNAs in Schistocerca, contributing to the advance of comparative genomics for this important grasshopper genus.
Collapse
Affiliation(s)
- Emiliano Martí
- Departamento de Biologia Geral e Aplicada, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, 13506-900, Brazil
| | - Diogo Milani
- Departamento de Biologia Geral e Aplicada, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, 13506-900, Brazil
| | - Vanessa B Bardella
- Departamento de Biologia Geral e Aplicada, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, 13506-900, Brazil
| | - Lucas Albuquerque
- Departamento de Biologia Geral e Aplicada, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, 13506-900, Brazil
| | - Hojun Song
- Department of Entomology, Texas A&M University, College Station, Texas, 77843
| | - Octavio M Palacios-Gimenez
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, SE-75236, Sweden.,Population Ecology Group, Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena, DE-07743, Germany
| | - Diogo C Cabral-de-Mello
- Departamento de Biologia Geral e Aplicada, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, 13506-900, Brazil
| |
Collapse
|
19
|
Nascimento-Oliveira JI, Fantinatti BEA, Wolf IR, Cardoso AL, Ramos E, Rieder N, de Oliveira R, Martins C. Differential expression of miRNAs in the presence of B chromosome in the cichlid fish Astatotilapia latifasciata. BMC Genomics 2021; 22:344. [PMID: 33980143 PMCID: PMC8117508 DOI: 10.1186/s12864-021-07651-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND B chromosomes (Bs) are extra elements observed in diverse eukaryotes, including animals, plants and fungi. Although Bs were first identified a century ago and have been studied in hundreds of species, their biology is still enigmatic. Recent advances in omics and big data technologies are revolutionizing the B biology field. These advances allow analyses of DNA, RNA, proteins and the construction of interactive networks for understanding the B composition and behavior in the cell. Several genes have been detected on the B chromosomes, although the interaction of B sequences and the normal genome remains poorly understood. RESULTS We identified 727 miRNA precursors in the A. latifasciata genome, 66% which were novel predicted sequences that had not been identified before. We were able to report the A. latifasciata-specific miRNAs and common miRNAs identified in other fish species. For the samples carrying the B chromosome (B+), we identified 104 differentially expressed (DE) miRNAs that are down or upregulated compared to samples without B chromosome (B-) (p < 0.05). These miRNAs share common targets in the brain, muscle and gonads. These targets were used to construct a protein-protein-miRNA network showing the high interaction between the targets of differentially expressed miRNAs in the B+ chromosome samples. Among the DE-miRNA targets there are protein-coding genes reported for the B chromosome that are present in the protein-protein-miRNA network. Additionally, Gene Ontology (GO) terms related to nuclear matrix organization and response to stimulus are exclusive to DE miRNA targets of B+ samples. CONCLUSIONS This study is the first to report the connection of B chromosomes and miRNAs in a vertebrate species. We observed that the B chromosome impacts the miRNAs expression in several tissues and these miRNAs target several mRNAs involved with important biological processes.
Collapse
Affiliation(s)
- Jordana Inácio Nascimento-Oliveira
- Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | | | - Ivan Rodrigo Wolf
- Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Adauto Lima Cardoso
- Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Erica Ramos
- Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Nathalie Rieder
- Faculty of Mathematics and Natural Sciences, University of Bonn, Bonn, Germany
| | - Rogerio de Oliveira
- Department of Biostatistics, Plant Biology, Parasitology and Zoology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Cesar Martins
- Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil.
| |
Collapse
|
20
|
Felicetti D, Haerter CAG, Baumgärtner L, Paiz LM, Takagui FH, Margarido VP, Blanco DR, Feldberg E, da Silva M, Lui RL. A New Variant B Chromosome in Auchenipteridae: The Role of (GATA)n and (TTAGGG)n Sequences in Understanding the Evolution of Supernumeraries in Trachelyopterus. Cytogenet Genome Res 2021; 161:70-81. [PMID: 33601372 DOI: 10.1159/000513107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/20/2020] [Indexed: 11/19/2022] Open
Abstract
Basic and molecular cytogenetic techniques were carried out in 3 Neotropical region populations of catfishes, two of Trachelyopterus galeatus (one from the marshlands of Paraguay River basin and another from Lago Catalão, Amazon River basin) and one of Trachelyopterus porosus, a sympatric population to T. galeatus from the Amazon River basin. This study aimed to describe and understand the structure and evolution of Trachelyopterus B chromosomes, mainly through physical mapping of repetitive elements. A diploid number of 58 chromosomes was found for all individuals, as well as the presence of B chromosomes. For T. porosus this is the first report of a supernumerary. The sympatric species of T. galeatus and T. porosus from Amazon River had 1-3 B chromosomes and T. galeatus from Paraguay River had 1-2 B chromosomes, all of them showed intra- and interindividual numerical variation. Two females of T. porosus exhibited a new variant B chromosome (B2), previously not seen in Auchenipteridae, which might have originated from B1 chromosomes. All B chromosomes were entirely heterochromatic. In contrast to all complement A and B2 chromosomes, in which the telomeric sequences were found in the telomeric regions, B1 chromosomes of all populations were totally marked by (TTAGGG)n probes. (GATA)n sequence sites were found through all complement A chromosomes, but B1 and B2 chromosomes exhibited only a clustered block in one of the chromosome arms. The most frequent B chromosomes (B1) in all populations/species, including those previously studied in Auchenipteridae catfishes, share the following characteristics: totally heterochromatic, small, metacentric, with accumulation of repetitive (TTAGGG)n sequences, and a low number of (GATA)n copies, which might suggest a common ancient origin in Trachelyopterus species/populations.
Collapse
Affiliation(s)
- Denise Felicetti
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil
| | - Chrystian A G Haerter
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil
| | - Lucas Baumgärtner
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil
| | - Leonardo M Paiz
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil
| | - Fábio H Takagui
- Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Vladimir P Margarido
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil
| | - Daniel R Blanco
- Universidade Tecnológica Federal do Paraná, Santa Helena, Brazil
| | - Eliana Feldberg
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Manaus, Brazil
| | - Maelin da Silva
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| | - Roberto L Lui
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil,
| |
Collapse
|
21
|
Nascimento CND, Troy WP, Alves JCP, Carvalho ML, Oliveira C, Foresti F. Molecular cytogenetic analyses reveal extensive chromosomal rearrangements and novel B chromosomes in Moenkhausia (Teleostei, Characidae). Genet Mol Biol 2020; 43:e20200027. [PMID: 33156889 PMCID: PMC7649911 DOI: 10.1590/1678-4685-gmb-2020-0027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 09/01/2020] [Indexed: 11/30/2022] Open
Abstract
The cytogenetic characteristics of five fish species of the Moenkhausia are described, based on the analysis of specimens collected in different headwater. All the species analyzed presented 2n=50 chromosomes. The C-banding revealed a similar distribution pattern of heterochromatic blocks in all the species, except Moenkhausia nigromarginata. The 5S rDNA sites were distributed on multiple chromosome pairs in all five species. Single and multiple histone H1 sites were observed in all the species, and histone H1 was shown to be co-located with the 18S rRNA gene in a single chromosome pair. The U2 snDNA gene was distributed at multiple sites in all the Moenkhausia species. The presence of B microchromosomes was confirmed in Moenkhausia forestii, while individuals of the three study populations of Moenkhausia oligolepis presented three morphologically distinct types of B chromosome. The chromosomal mapping of the 18S rDNA sites using the FISH technique revealed signals in the B chromosomes of M. forestii, while clusters of the H1 histone and U2 snDNA genes were found in the B chromosomes of M. forestii and M. oligolepis. The classical and molecular cytogenetic markers used in this study revealed ample variation in the Moenkhausia karyotypes, reflecting the dynamic nature of the chromosomal evolution.
Collapse
Affiliation(s)
- Cristiano Neves do Nascimento
- Universidade Estadual Paulista - UNESP, Instituto de Biociências, Departamento de Biologia Estrutural e Funcional, Botucatu, SP, Brazil
| | - Waldo Pinheiro Troy
- Universidade do Estado de Mato Grosso - UNEMAT, Departamento de Ciências Biológicas, Tangará da Serra, MT, Brazil
| | | | - Margarida Lima Carvalho
- Universidade Federal do Acre - UFAC, Centro de Ciências Biológicas e Naturais, Rio Branco, AC, Brazil
| | - Claudio Oliveira
- Universidade Estadual Paulista - UNESP, Instituto de Biociências, Departamento de Biologia Estrutural e Funcional, Botucatu, SP, Brazil
| | - Fausto Foresti
- Universidade Estadual Paulista - UNESP, Instituto de Biociências, Departamento de Biologia Estrutural e Funcional, Botucatu, SP, Brazil
| |
Collapse
|
22
|
Mao Y, Zhang N, Nie Y, Zhang X, Li X, Huang Y. Genome Size of 17 Species From Caelifera (Orthoptera) and Determination of Internal Standards With Very Large Genome Size in Insecta. Front Physiol 2020; 11:567125. [PMID: 33192564 PMCID: PMC7642767 DOI: 10.3389/fphys.2020.567125] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/24/2020] [Indexed: 12/31/2022] Open
Abstract
Comparative studies of insect genome size show that Orthoptera is a unique group of Insecta with a significantly enlarged genome. To determine a suitable internal standard for a large genome and to compare the effects of different internal standards on estimates of genome size, we used four internal standards to estimate nuclear DNA content in nine insect species with large genomes. The results showed that the combination of two internal standards, Locusta migratoria (♂1C = 6.20 pg, ♀1C = 6.60 pg) and Periplaneta americana♂ (1C = 3.41 pg), was suitable for estimating large genome of Caelifera by flow cytometry. Using these two internal standards, we estimated the genome sizes of 17 species of Caelifera (12 genera in Acrididae, 2 genera in Pamphagidae, 1 genus in Pyrgomorphidae) using flow cytometry. Genomes ranged from 6.57 pg (Shirakiacris shirakii) to 18.64 pg (Bryodemella holdereri), the largest described in insects to date. These species showed significant genomic dimorphism based on sex: females had a 0.56 pg larger genome than males on average, which might be due to the sex chromosome determinism mechanism of X0(♂)/XX(♀). To test the results obtained by flow cytometry, we used k-mers of Illumina sequencing data to gauge the C-value of Calliptamus abbreviatus and Haplotropis brunneriana. The results of the two methods are slightly different. Genomes were estimated to be about 0.28 and 0.26 pg smaller, respectively, than the flow cytometry values. Furthermore, we also reconstructed the evolutionary relationships of these taxa and discuss the genome size evolution in a phylogenetic framework.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuan Huang
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
23
|
Ahmad SF, Jehangir M, Cardoso AL, Wolf IR, Margarido VP, Cabral-de-Mello DC, O'Neill R, Valente GT, Martins C. B chromosomes of multiple species have intense evolutionary dynamics and accumulated genes related to important biological processes. BMC Genomics 2020; 21:656. [PMID: 32967626 PMCID: PMC7509943 DOI: 10.1186/s12864-020-07072-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/14/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND One of the biggest challenges in chromosome biology is to understand the occurrence and complex genetics of the extra, non-essential karyotype elements, commonly known as supernumerary or B chromosomes (Bs). The non-Mendelian inheritance and non-pairing abilities of B chromosomes make them an interesting model for genomics studies, thus bringing to bear different questions about their genetic composition, evolutionary survival, maintenance and functional role inside the cell. This study uncovers these phenomena in multiple species that we considered as representative organisms of both vertebrate and invertebrate models for B chromosome analysis. RESULTS We sequenced the genomes of three animal species including two fishes Astyanax mexicanus and Astyanax correntinus, and a grasshopper Abracris flavolineata, each with and without Bs, and identified their B-localized genes and repeat contents. We detected unique sequences occurring exclusively on Bs and discovered various evolutionary patterns of genomic rearrangements associated to Bs. In situ hybridization and quantitative polymerase chain reactions further validated our genomic approach confirming detection of sequences on Bs. The functional annotation of B sequences showed that the B chromosome comprises regions of gene fragments, novel genes, and intact genes, which encode a diverse set of functions related to important biological processes such as metabolism, morphogenesis, reproduction, transposition, recombination, cell cycle and chromosomes functions which might be important for their evolutionary success. CONCLUSIONS This study reveals the genomic structure, composition and function of Bs, which provide new insights for theories of B chromosome evolution. The selfish behavior of Bs seems to be favored by gained genes/sequences.
Collapse
Affiliation(s)
- Syed F Ahmad
- Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, Sao Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Maryam Jehangir
- Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, Sao Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Adauto L Cardoso
- Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, Sao Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Ivan R Wolf
- Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, Sao Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Vladimir P Margarido
- Western Paraná State University (UNIOESTE), Center for Biology Science and Health, Cascavel, PR, Brazil
| | - Diogo C Cabral-de-Mello
- Department of General and Applied Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - Rachel O'Neill
- Department of Molecular and Cell Biology, University of Connecticut (UCONN), Storrs, CT, USA
- Institute for Systems Genomics, University of Connecticut (UCONN), Storrs, CT, USA
| | - Guilherme T Valente
- Bioprocess and Biotechnology Department, Agronomical Science Faculty, Sao Paulo State University - UNESP, Botucatu, SP, Brazil
| | - Cesar Martins
- Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, Sao Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil.
| |
Collapse
|
24
|
Malimpensa GDC, Traldi JB, Martinez JDF, Deon G, Azambuja M, Nogaroto V, Vicari MR, Moreira-Filho O. Chromosomal Diversification in Two Species of Pimelodus (Siluriformes: Pimelodidae): Comparative Cytogenetic Mapping of Multigene Families. Zebrafish 2020; 17:278-286. [DOI: 10.1089/zeb.2020.1892] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
| | | | | | - Geize Deon
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Matheus Azambuja
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, Brazil
| | - Viviane Nogaroto
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| | - Marcelo Ricardo Vicari
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, Brazil
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| | - Orlando Moreira-Filho
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| |
Collapse
|
25
|
Cholak LR, Haddad CFB, Parise-Maltempi PP. Cytogenetic analysis of the genus Thoropa Cope, 1865 (Anura-Cycloramphidae) with evolutionary inferences based on repetitive sequences. Genet Mol Biol 2020; 43:e20190364. [PMID: 32648889 PMCID: PMC7344750 DOI: 10.1590/1678-4685-gmb-2019-0364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 06/06/2020] [Indexed: 11/30/2022] Open
Abstract
Cytogenetics can be a useful tool to assist in taxonomic problems by adding information to the widely used morphological and molecular approaches. These taxonomic problems are especially common in anurans, once they are very diverse, highly polymorphic, and present many cryptic species. The genus Thoropa Cope, 1865 is composed of six specialist species that reproduce in rocky outcrops and are distributed throughout the Atlantic Forest and Cerrado ecotones. Phylogenetic studies point to possible cryptic species within the T. miliaris group. To assist in the evolutionary and taxonomic understanding of this group, classical cytogenetic techniques were used to find possible molecular markers for the genus through rDNA5S, rDNA18S, and U2snDNA probes and analyze their chromosome distribution in the group of T. miliaris. Despite the well conserved karyotype under conventional staining and classical techniques, such as Ag-NOR, our C-banding results showed differences in the centromeric heterochromatin concentration between two populations of T. miliaris. Furthermore, some differences among the populations and species were found for rDNA5S and U2snDNA. This study contributes to a better understanding of the evolutionary relationships within the genus; however, the use of different probe sequences, such as satDNA, is essential for a more robust cytogenetic analysis.
Collapse
Affiliation(s)
- Luiza Rieder Cholak
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Programa de Pós-graduação em Biologia Celular e Molecular, Rio Claro, SP, Brazil
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Laboratório de Citogenética Animal, Departamento de Biologia Geral e Aplicada, Rio Claro, SP, Brazil
| | - Célio F B Haddad
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Laboratório de Herpetologia, Departmento de Biodiversidade e Centro de Aquacultura (CAUNESP), Rio Claro, SP, Brazil
| | - Patrícia P Parise-Maltempi
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Programa de Pós-graduação em Biologia Celular e Molecular, Rio Claro, SP, Brazil
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Laboratório de Citogenética Animal, Departamento de Biologia Geral e Aplicada, Rio Claro, SP, Brazil
| |
Collapse
|
26
|
Melo AS, Cruz GAS, Félix AP, Rocha MF, Loreto V, Moura RC. Wide dispersion of B chromosomes in Rhammatocerus brasiliensis (Orthoptera, Acrididae). Genet Mol Biol 2020; 43:e20190077. [PMID: 32542305 PMCID: PMC7295183 DOI: 10.1590/1678-4685-gmb-2019-0077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/16/2019] [Indexed: 01/01/2023] Open
Abstract
The grasshopper Rhammatocerus brasiliensis shows polymorphism of B chromosomes, but the magnitude of B-chromosome occurrence and the factors that may contribute to their dispersion in the species remain unknown thus far. The present study analyzed the occurrence and dispersion of B chromosomes in R. brasiliensis individuals from 21 populations widely distributed in the Brazilian Northeast. The genetic connectivity between 10 populations was verified through analysis of ISSR markers from 200 individuals. Of the 21 populations, 19 presented individuals with one B chromosome, three with two, and one with three B chromosomes. The B chromosome is of medium size and constitutive heterochromatin (CH) located in the pericentromeric region. A variant B chromosome was observed in three populations, similar in size to that of chromosome X, gap and CH, and located in the terminal region. B chromosome frequencies in different populations varied from 0% to 18,8%, mean 8,5%. The wide distribution of the B chromosome is likely a consequence of the positive gene flow among the analyzed populations. B-chromosome occurrence in populations of R. brasiliensis possibly follows the population genetic structure of the species and, owing to the existence of a variant, its origin may not be recent.
Collapse
Affiliation(s)
- Adriana S Melo
- Universidade de Pernambuco (UPE), Instituto de Ciências Biológicas, Laboratório de Biodiversidade e Genética de Insetos, Recife, PE, Brazil
| | - Geyner A S Cruz
- Universidade de Pernambuco (UPE), Instituto de Ciências Biológicas, Laboratório de Biodiversidade e Genética de Insetos, Recife, PE, Brazil
- Universidade de Pernambuco (UPE), Laboratório de Biodiversidade e Genética Evolutiva, Campus Petrolina, Petrolina, PE, Brazil
| | - Aline P Félix
- Universidade de Pernambuco (UPE), Instituto de Ciências Biológicas, Laboratório de Biodiversidade e Genética de Insetos, Recife, PE, Brazil
| | - Marília F Rocha
- Universidade de Pernambuco (UPE), Instituto de Ciências Biológicas, Laboratório de Biodiversidade e Genética de Insetos, Recife, PE, Brazil
| | - Vilma Loreto
- Universidade Federal de Pernambuco (UFPE), Departamento de Genética, Laboratório de Genética Animal e Humana e Citogenética, Recife, PE, Brazil
| | - Rita C Moura
- Universidade de Pernambuco (UPE), Instituto de Ciências Biológicas, Laboratório de Biodiversidade e Genética de Insetos, Recife, PE, Brazil
| |
Collapse
|
27
|
Cavalcante MG, Nagamachi CY, Pieczarka JC, Noronha RCR. Evolutionary insights in Amazonian turtles (Testudines, Podocnemididae): co-location of 5S rDNA and U2 snRNA and wide distribution of Tc1/Mariner. Biol Open 2020; 9:bio049817. [PMID: 32229487 PMCID: PMC7197720 DOI: 10.1242/bio.049817] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/18/2020] [Indexed: 12/29/2022] Open
Abstract
Eukaryotic genomes exhibit substantial accumulation of repetitive DNA sequences. These sequences can participate in chromosomal reorganization events and undergo molecular cooption to interfere with the function and evolution of genomes. In turtles, repetitive DNA sequences appear to be accumulated at probable break points and may participate in events such as non-homologous recombination and chromosomal rearrangements. In this study, repeated sequences of 5S rDNA, U2 snRNA and Tc1/Mariner transposons were amplified from the genomes of the turtles, Podocnemis expansa and Podocnemis unifilis, and mapped by fluorescence in situ hybridization. Our data confirm the 2n=28 chromosomes for these species (the second lowest 2n in the order Testudines). We observe high conservation of the co-located 5S rDNA and U2 snRNA genes on a small chromosome pair (pair 13), and surmise that this represents the ancestral condition. Our analysis reveals a wide distribution of the Tc1/Mariner transposons and we discuss how the mobility of these transposons can act on karyotypic reorganization events (contributing to the 2n decrease of those species). Our data add new information for the order Testudines and provide important insights into the dynamics and organization of these sequences in the chelonian genomes.
Collapse
Affiliation(s)
- Manoella Gemaque Cavalcante
- Centro de Estudos Avançados da Biodiversidade, Cytogenetics Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Cleusa Yoshiko Nagamachi
- Centro de Estudos Avançados da Biodiversidade, Cytogenetics Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Julio Cesar Pieczarka
- Centro de Estudos Avançados da Biodiversidade, Cytogenetics Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Renata Coelho Rodrigues Noronha
- Centro de Estudos Avançados da Biodiversidade, Cytogenetics Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
28
|
Piscor D, Paiz LM, Baumgärtner L, Cerqueira FJ, Fernandes CA, Lui RL, Parise-Maltempi PP, Margarido VP. Chromosomal mapping of repetitive sequences in Hyphessobrycon eques (Characiformes, Characidae): a special case of the spreading of 5S rDNA clusters in a genome. Genetica 2020; 148:25-32. [PMID: 31997050 DOI: 10.1007/s10709-020-00086-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 10/28/2019] [Accepted: 01/20/2020] [Indexed: 01/23/2023]
Abstract
Cytogenetic data showed a variation in diploid chromosome number in the genus Hyphessobrycon ranging from 2n = 46 to 52, and studies involving repetitive DNA sequences are scarce in representatives of this genus. The purpose of this paper was the chromosomal mapping of repetitive sequences (rDNA, histone genes, U snDNA and microsatellites) and investigation of the amplification of 5S rDNA clusters in the Hyphessobrycon eques genome. Two H. eques populations displayed 2n = 52 chromosomes, with the acrocentric pair No. 24 bearing Ag-NORs corresponding with CMA3+/DAPI-. FISH with a 18S rDNA probe identified the NORs on the short (p) arms of the acrocentric pairs Nos. 22 and 24. The 5S rDNA probe visualized signals on almost all chromosomes in genomes of individuals from both populations (40 signals); FISH with H3 histone probe identified two chromosome pairs, with the pericentromeric location of signals; FISH with a U2 snDNA probe identified one chromosome pair bearing signals, on the interstitial chromosomal region. The mononucleotide (A), dinucleotide (CA) and tetranucleotide (GATA) repeats were observed on the centromeric/pericentromeric and/or terminal positions of all chromosomes, while the trinucleotide (CAG) repeat showed signals on few chromosomes. Molecular analysis of 5S rDNA and non-transcribed spacers (NTS) showed microsatellites (GATA and A repeats) and a fragment of retrotransposon (SINE3/5S-Sauria) inside the sequences. This study expanded the available cytogenetic data for H. eques and demonstrated to the dispersion of the 5S rDNA sequences on almost all chromosomes.
Collapse
Affiliation(s)
- Diovani Piscor
- Centro de Ciências Biológicas e da Saúde, Laboratório de Citogenética, Universidade Estadual do Oeste do Paraná (UNIOESTE), Rua Universitária, 2069, Cascavel, PR, ZIP: 85819-110, Brazil. .,Universidade Estadual de Mato Grosso do Sul (UEMS), Unidade de Mundo Novo, BR 163, Km 20.2, Mundo Novo, MS, ZIP: 79980-000, Brazil.
| | - Leonardo Marcel Paiz
- Centro de Ciências Biológicas e da Saúde, Laboratório de Citogenética, Universidade Estadual do Oeste do Paraná (UNIOESTE), Rua Universitária, 2069, Cascavel, PR, ZIP: 85819-110, Brazil
| | - Lucas Baumgärtner
- Centro de Ciências Biológicas e da Saúde, Laboratório de Citogenética, Universidade Estadual do Oeste do Paraná (UNIOESTE), Rua Universitária, 2069, Cascavel, PR, ZIP: 85819-110, Brazil
| | - Fiorindo José Cerqueira
- Centro de Ciências Biológicas e da Saúde, Laboratório de Citogenética, Universidade Estadual do Oeste do Paraná (UNIOESTE), Rua Universitária, 2069, Cascavel, PR, ZIP: 85819-110, Brazil
| | - Carlos Alexandre Fernandes
- Universidade Estadual de Mato Grosso do Sul (UEMS), Unidade de Mundo Novo, BR 163, Km 20.2, Mundo Novo, MS, ZIP: 79980-000, Brazil
| | - Roberto Laridondo Lui
- Centro de Ciências Biológicas e da Saúde, Laboratório de Citogenética, Universidade Estadual do Oeste do Paraná (UNIOESTE), Rua Universitária, 2069, Cascavel, PR, ZIP: 85819-110, Brazil
| | - Patricia Pasquali Parise-Maltempi
- Instituto de Biociências, Departamento de Biologia, Laboratório de Citogenética, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Av. 24A, 1515, Rio Claro, SP, ZIP: 13506-900, Brazil
| | - Vladimir Pavan Margarido
- Centro de Ciências Biológicas e da Saúde, Laboratório de Citogenética, Universidade Estadual do Oeste do Paraná (UNIOESTE), Rua Universitária, 2069, Cascavel, PR, ZIP: 85819-110, Brazil
| |
Collapse
|
29
|
Kuznetsova V, Grozeva S, Gokhman V. Telomere structure in insects: A review. J ZOOL SYST EVOL RES 2019. [DOI: 10.1111/jzs.12332] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Valentina Kuznetsova
- Department of Karyosystematics, Zoological Institute Russian Academy of Sciences St. Petersburg Russia
| | - Snejana Grozeva
- Cytotaxonomy and Evolution Research Group, Institute of Biodiversity and Ecosystem Research Bulgarian Academy of Sciences Sofia Bulgaria
| | | |
Collapse
|
30
|
Travenzoli NM, Lima BA, Cardoso DC, Dergam JA, Fernandes-Salomão TM, Lopes DM. Cytogenetic Analysis and Chromosomal Mapping of Repetitive DNA in Melipona Species (Hymenoptera, Meliponini). Cytogenet Genome Res 2019; 158:213-224. [DOI: 10.1159/000501754] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2019] [Indexed: 01/17/2023] Open
Abstract
Stingless bees of the genus Melipona are subdivided into 4 subgenera called Eomelipona, Melikerria, Melipona sensu stricto, and Michmelia according to species morphology. Cytogenetically, the species of the genus Melipona show variation in the amount and distribution of heterochromatin along their chromosomes and can be separated into 2 groups: the first with low content of heterochromatin and the second with high content of heterochromatin. These heterochromatin patterns and the number of chromosomes are characteristics exclusive to Melipona karyotypes that distinguish them from the other genera of the Meliponini. To better understand the karyotype organization in Melipona and the relationship among the subgenera, we mapped repetitive sequences and analyzed previously reported cytogenetic data with the aim to identify cytogenetic markers to be used for investigating the phylogenetic relationships and chromosome evolution in the genus. In general, Melipona species have 2n = 18 chromosomes, and the species of each subgenus share the same characteristics in relation to heterochromatin regions, DAPI/CMA3 fluorophores, and the number and distribution of 18S rDNA sites. Microsatellites were observed only in euchromatin regions, whereas the (TTAGG)6 repeats were found at telomeric sites in both groups. Our data indicate that in addition to the chromosome number, the karyotypes in Melipona could be separated into 2 groups that are characterized by conserved cytogenetic features and patterns that generally are shared by species within each subgenus, which may reflect evolutionary constraints. Our results agree with the morphological separation of the Melipona into 4 subgenera, suggesting that they must be independent evolutionary lineages.
Collapse
|
31
|
Jehangir M, Ahmad SF, Cardoso AL, Ramos E, Valente GT, Martins C. De novo genome assembly of the cichlid fish Astatotilapia latifasciata reveals a higher level of genomic polymorphism and genes related to B chromosomes. Chromosoma 2019; 128:81-96. [PMID: 31115663 DOI: 10.1007/s00412-019-00707-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/27/2019] [Accepted: 05/07/2019] [Indexed: 12/15/2022]
Abstract
Supernumerary B chromosomes (Bs) are accessory elements to the regular chromosome set (As) and have been observed in a huge diversity of eukaryotic species. Although extensively investigated, the biological significance of Bs remains enigmatic. Here, we present de novo genome assemblies for the cichlid fish Astatotilapia latifasciata, a well-known model to study Bs. High coverage data with Illumina sequencing was obtained for males and females with 0B (B-), 1B, and 2B (B+) chromosomes to provide information regarding the diversity among these genomes. The draft assemblies comprised 771 Mb for the B- genome and 781 Mb for the B+ genome. Comparative analysis of the B+ and B- assemblies reveals syntenic discontinuity, duplicated blocks and several insertions, deletions, and inversions indicative of rearrangements in the B+ genome. Hundreds of transposable elements and 1546 protein coding sequences were annotated in the duplicated B+ regions. Our work contributes a list of thousands of genes harbored on the B chromosome, with functions in several biological processes, including the cell cycle.
Collapse
Affiliation(s)
- Maryam Jehangir
- Department of Morphology, Institute of Bioscience at Botucatu, São Paulo State University - UNESP, Botucatu, SP, 18618-689, Brazil
| | - Syed F Ahmad
- Department of Morphology, Institute of Bioscience at Botucatu, São Paulo State University - UNESP, Botucatu, SP, 18618-689, Brazil
| | - Adauto L Cardoso
- Department of Morphology, Institute of Bioscience at Botucatu, São Paulo State University - UNESP, Botucatu, SP, 18618-689, Brazil
| | - Erica Ramos
- Department of Morphology, Institute of Bioscience at Botucatu, São Paulo State University - UNESP, Botucatu, SP, 18618-689, Brazil
| | - Guilherme T Valente
- Bioprocess and Biotechnology Department, Agronomical Science Faculty, Sao Paulo State University - UNESP, Botucatu, SP, Brazil
| | - Cesar Martins
- Department of Morphology, Institute of Bioscience at Botucatu, São Paulo State University - UNESP, Botucatu, SP, 18618-689, Brazil.
| |
Collapse
|
32
|
How dynamic could be the 45S rDNA cistron? An intriguing variability in a grasshopper species revealed by integration of chromosomal and genomic data. Chromosoma 2019; 128:165-175. [DOI: 10.1007/s00412-019-00706-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 10/26/2022]
|
33
|
Ahmad SF, Martins C. The Modern View of B Chromosomes Under the Impact of High Scale Omics Analyses. Cells 2019; 8:E156. [PMID: 30781835 PMCID: PMC6406668 DOI: 10.3390/cells8020156] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/10/2019] [Accepted: 02/12/2019] [Indexed: 12/11/2022] Open
Abstract
Supernumerary B chromosomes (Bs) are extra karyotype units in addition to A chromosomes, and are found in some fungi and thousands of animals and plant species. Bs are uniquely characterized due to their non-Mendelian inheritance, and represent one of the best examples of genomic conflict. Over the last decades, their genetic composition, function and evolution have remained an unresolved query, although a few successful attempts have been made to address these phenomena. A classical concept based on cytogenetics and genetics is that Bs are selfish and abundant with DNA repeats and transposons, and in most cases, they do not carry any function. However, recently, the modern quantum development of high scale multi-omics techniques has shifted B research towards a new-born field that we call "B-omics". We review the recent literature and add novel perspectives to the B research, discussing the role of new technologies to understand the mechanistic perspectives of the molecular evolution and function of Bs. The modern view states that B chromosomes are enriched with genes for many significant biological functions, including but not limited to the interesting set of genes related to cell cycle and chromosome structure. Furthermore, the presence of B chromosomes could favor genomic rearrangements and influence the nuclear environment affecting the function of other chromatin regions. We hypothesize that B chromosomes might play a key function in driving their transmission and maintenance inside the cell, as well as offer an extra genomic compartment for evolution.
Collapse
Affiliation(s)
- Syed Farhan Ahmad
- Department of Morphology, Institute of Biosciences at Botucatu, Sao Paulo State University (UNESP), CEP 18618689, Botucatu, SP, Brazil.
| | - Cesar Martins
- Department of Morphology, Institute of Biosciences at Botucatu, Sao Paulo State University (UNESP), CEP 18618689, Botucatu, SP, Brazil.
| |
Collapse
|
34
|
Milani D, Bardella VB, Ferretti ABSM, Palacios-Gimenez OM, Melo ADS, Moura RC, Loreto V, Song H, Cabral-de-Mello DC. Satellite DNAs Unveil Clues about the Ancestry and Composition of B Chromosomes in Three Grasshopper Species. Genes (Basel) 2018; 9:genes9110523. [PMID: 30373193 PMCID: PMC6265867 DOI: 10.3390/genes9110523] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/12/2018] [Accepted: 10/21/2018] [Indexed: 11/16/2022] Open
Abstract
Supernumerary (B) chromosomes are dispensable genomic elements occurring frequently among grasshoppers. Most B chromosomes are enriched with repetitive DNAs, including satellite DNAs (satDNAs) that could be implicated in their evolution. Although studied in some species, the specific ancestry of B chromosomes is difficult to ascertain and it was determined in only a few examples. Here we used bioinformatics and cytogenetics to characterize the composition and putative ancestry of B chromosomes in three grasshopper species, Rhammatocerus brasiliensis, Schistocerca rubiginosa, and Xyleus discoideus angulatus. Using the RepeatExplorer pipeline we searched for the most abundant satDNAs in Illumina sequenced reads, and then we generated probes used in fluorescent in situ hybridization (FISH) to determine chromosomal position. We used this information to infer ancestry and the events that likely occurred at the origin of B chromosomes. We found twelve, nine, and eighteen satDNA families in the genomes of R. brasiliensis, S. rubiginosa, and X. d. angulatus, respectively. Some satDNAs revealed clustered organization on A and B chromosomes varying in number of sites and position along chromosomes. We did not find specific satDNA occurring in the B chromosome. The satDNAs shared among A and B chromosomes support the idea of putative intraspecific ancestry from small autosomes in the three species, i.e., pair S11 in R. brasiliensis, pair S9 in S. rubiginosa, and pair S10 in X. d. angulatus. The possibility of involvement of other chromosomal pairs in B chromosome origin is also hypothesized. Finally, we discussed particular aspects in composition, origin, and evolution of the B chromosome for each species.
Collapse
Affiliation(s)
- Diogo Milani
- Instituto de Biociências/IB, Departamento de Biologia, UNESP-Universidade Estadual Paulista, Rio Claro, São Paulo 01049-010, Brazil.
| | - Vanessa B Bardella
- Instituto de Biociências/IB, Departamento de Biologia, UNESP-Universidade Estadual Paulista, Rio Claro, São Paulo 01049-010, Brazil.
| | - Ana B S M Ferretti
- Instituto de Biociências/IB, Departamento de Biologia, UNESP-Universidade Estadual Paulista, Rio Claro, São Paulo 01049-010, Brazil.
| | - Octavio M Palacios-Gimenez
- Instituto de Biociências/IB, Departamento de Biologia, UNESP-Universidade Estadual Paulista, Rio Claro, São Paulo 01049-010, Brazil.
- Department of Evolutionary Biology, Evolutionary Biology Center, Uppsala University, 75236 Uppsala, Sweden.
| | - Adriana de S Melo
- Instituto de Ciências Biológicas, Laboratório de Biodiversidade e Genética de Insetos, UPE-Universidade de Pernambuco, Recife 50100-130, Pernambuco, Brazil.
| | - Rita C Moura
- Instituto de Ciências Biológicas, Laboratório de Biodiversidade e Genética de Insetos, UPE-Universidade de Pernambuco, Recife 50100-130, Pernambuco, Brazil.
| | - Vilma Loreto
- Centro de Biociências/CB, Departamento de Genética, UFPE-Universidade Federal de Pernambuco, Recife 50670-901, Pernambuco, Brazil.
| | - Hojun Song
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX 77843-2475, USA.
| | - Diogo C Cabral-de-Mello
- Instituto de Biociências/IB, Departamento de Biologia, UNESP-Universidade Estadual Paulista, Rio Claro, São Paulo 01049-010, Brazil.
| |
Collapse
|
35
|
Coan RLB, Martins C. Landscape of Transposable Elements Focusing on the B Chromosome of the Cichlid Fish Astatotilapia latifasciata. Genes (Basel) 2018; 9:genes9060269. [PMID: 29882892 PMCID: PMC6027319 DOI: 10.3390/genes9060269] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/26/2022] Open
Abstract
B chromosomes (Bs) are supernumerary elements found in many taxonomic groups. Most B chromosomes are rich in heterochromatin and composed of abundant repetitive sequences, especially transposable elements (TEs). B origin is generally linked to the A-chromosome complement (A). The first report of a B chromosome in African cichlids was in Astatotilapia latifasciata, which can harbor 0, 1, or 2 Bs Classical cytogenetic studies found high a TE content on this B chromosome. In this study, we aimed to understand TE composition and expression in the A. latifasciata genome and its relation to the B chromosome. We used bioinformatics analysis to explore the genomic organization of TEs and their composition on the B chromosome. The bioinformatics findings were validated by fluorescent in situ hybridization (FISH) and real-time PCR (qPCR). A. latifasciata has a TE content similar to that of other cichlid fishes and several expanded elements on its B chromosome. With RNA sequencing data (RNA-seq), we showed that all major TE classes are transcribed in the brain, muscle, and male and female gonads. An evaluation of TE transcription levels between B- and B+ individuals showed that few elements are differentially expressed between these groups and that the expanded B elements are not highly transcribed. Putative silencing mechanisms may act on the B chromosome of A. latifasciata to prevent the adverse consequences of repeat transcription and mobilization in the genome.
Collapse
Affiliation(s)
- Rafael L B Coan
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), 18618-689 Botucatu, SP, Brazil.
| | - Cesar Martins
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), 18618-689 Botucatu, SP, Brazil.
| |
Collapse
|
36
|
Malimpensa GC, Traldi JB, Toyama D, Henrique-Silva F, Vicari MR, Moreira-Filho O. Chromosomal Mapping of Repeat DNA in Bergiaria westermanni (Pimelodidae, Siluriformes): Localization of 45S rDNA in B Chromosomes. Cytogenet Genome Res 2018; 154:99-106. [PMID: 29635248 DOI: 10.1159/000487652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2017] [Indexed: 12/19/2022] Open
Abstract
The occurrence of repetitive DNA in autosomes and B chromosomes of Bergiaria westermanni was examined using conventional and molecular cytogenetic techniques. This species exhibited 2n = 56 chromosomes, with intra- and interindividual variation in the number of heterochromatic B chromosomes (from 0 to 4). The 5S rDNA was localized in pairs 1 and 5, and histone probes (H1, H3, and H4) and U2 small nuclear RNA were syntenic with 5S rDNA in pair 5. Histone sequences were also located in chromosome pair 14. The (GATA)n sequence was dispersed throughout the autosomes and B chromosomes, with clusters (microsatellite accumulation) in some chromosome regions. The telomeric probe revealed no signs of chromosomal rearrangements in the genome of B. westermanni. The 45S rDNA sites were detected in the terminal region of pair 27; these sites corresponded to a GC-rich heterochromatin block. In addition, 3 of the 4 B chromosomes also contained 45S rDNA copies. Silver nitrate staining in interphase nuclei provided indirect evidence of the expression of these rRNA genes in B chromosomes, indicating the probable origin of these elements. This report shows plasticity in the chromosomal localization of repeat DNA in B. westermanni and features a discussion of genomic diversification.
Collapse
Affiliation(s)
- Geovana C Malimpensa
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | | | | | | | | | | |
Collapse
|
37
|
Sember A, Bohlen J, Šlechtová V, Altmanová M, Pelikánová Š, Ráb P. Dynamics of tandemly repeated DNA sequences during evolution of diploid and tetraploid botiid loaches (Teleostei: Cobitoidea: Botiidae). PLoS One 2018; 13:e0195054. [PMID: 29590207 PMCID: PMC5874072 DOI: 10.1371/journal.pone.0195054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/15/2018] [Indexed: 12/16/2022] Open
Abstract
Polyploidization has played an important role in the evolution of vertebrates, particularly at the base of Teleostei-an enormously successful ray-finned fish group with additional genome doublings on lower taxonomic levels. The investigation of post-polyploid genome dynamics might provide important clues about the evolution and ecology of respective species and can help to decipher the role of polyploidy per se on speciation. Few studies have attempted to investigate the dynamics of repetitive DNA sequences in the post-polyploid genome using molecular cytogenetic tools in fishes, though recent efforts demonstrated their usefulness. The demonstrably monophyletic freshwater loach family Botiidae, branching to evolutionary diploid and tetraploid lineages separated >25 Mya, offers a suited model group for comparing the long-term repetitive DNA evolution. For this, we integrated phylogenetic analyses with cytogenetical survey involving Giemsa- and Chromomycin A3 (CMA3)/DAPI stainings and fluorescence in situ hybridization with 5S/45S rDNA, U2 snDNA and telomeric probes in representative sample of 12 botiid species. The karyotypes of all diploids were composed of 2n = 50 chromosomes, while majority of tetraploids had 2n = 4x = 100, with only subtle interspecific karyotype differences. The exceptional karyotype of Botia dario (2n = 4x = 96) suggested centric fusions behind the 2n reduction. Variable patterns of FISH signals revealed cases of intraspecific polymorphisms, rDNA amplification, variable degree of correspondence with CMA3+ sites and almost no phylogenetic signal. In tetraploids, either additivity or loci gain/loss was recorded. Despite absence of classical interstitial telomeric sites, large blocks of interspersed rDNA/telomeric regions were found in diploids only. We uncovered different molecular drives of studied repetitive DNA classes within botiid genomes as well as the advanced stage of the re-diploidization process in tetraploids. Our results may contribute to link genomic approach with molecular cytogenetic analyses in addressing the origin and mechanism of this polyploidization event.
Collapse
Affiliation(s)
- Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, Czech Republic
| | - Jörg Bohlen
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, Czech Republic
| | - Vendula Šlechtová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, Czech Republic
| | - Marie Altmanová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague 2, Czech Republic
| | - Šárka Pelikánová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, Czech Republic
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, Czech Republic
| |
Collapse
|
38
|
Piscor D, Fernandes CA, Parise-Maltempi PP. Conserved number of U2 snDNA sites in Piabina argentea, Piabarchus stramineus and two Bryconamericus species (Characidae, Stevardiinae). NEOTROPICAL ICHTHYOLOGY 2018. [DOI: 10.1590/1982-0224-20170066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT The chromosomal location of 5S rRNA and U2 snRNA genes of Piabina argentea, Piabarchus stramineus and two Bryconamericus species from two different Brazilian river basins were investigated, in order to contribute to the understanding of evolutionary characteristics of these repetitive DNAs in the subfamily Stevardiinae. The diploid chromosome number was 2n = 52 for Bryconamericus cf. iheringii, Bryconamericus turiuba, Piabarchus stramineus and Piabina argentea. The 5S rDNA clusters were located on one chromosome pair in P. stramineus and B. cf. iheringii, and on two pairs in B. turiuba and P. argentea. The U2 snDNA clusters were located on the one pair in all species. Two-color FISH experiments showed that the co-localization between 5S rDNA and U2 snDNA in P. stramineus can represent a marker for this species. Thus, the present study demonstrated that the number of U2 snDNA clusters observed for the four species was conserved, but particular characteristics can be found in the genome of each species.
Collapse
Affiliation(s)
- Diovani Piscor
- Universidade Estadual Paulista “Júlio de Mesquita Filho”, Brazil
| | | | | |
Collapse
|
39
|
Insights into the karyotype evolution and speciation of the beetle Euchroma gigantea (Coleoptera: Buprestidae). Chromosome Res 2018. [PMID: 29524007 DOI: 10.1007/s10577-018-9576-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Euchroma Dejean, 1833 (Buprestidae: Coleoptera) is a monotypic genus comprising the species Euchroma gigantea, with populations presenting a degree of karyotypic variation/polymorphism rarely found within a single taxonomic (specific) unit, as well as drastically incompatible meiotic configurations in populations from extremes of the species range. To better understand the complex karyotypic evolution of E. gigantea, the karyotypes of specimens from five populations in Brazil were investigated using molecular cytogenetics and phylogenetic approaches. Herein, we used FISH with histone genes as well as sequencing of the COI to determine differential distribution of markers and relationships among populations. The analyses revealed new karyotypes, with variability for chromosome number and morphology of multiple sex chromosome mechanisms, occurrence of B chromosome variants (punctiform and large ones), and high dispersion of histone genes in different karyotypes. These data indicate that chromosomal polymorphism in E. gigantea is greater than previously reported, and that the species can be a valuable model for cytogenetic studies. The COI phylogenetic and haplotype analyses highlighted the formation of three groups with chromosomally polymorphic individuals. Finally, we compared the different karyotypes and proposed a model for the chromosomal evolution of this species. The species E. gigantea includes at least three cytogenetically polymorphic lineages. Moreover, in each of these lineages, different chromosomal rearrangements have been fixed. Dispersion of repetitive sequences may have favored the high frequency of these rearrangements, which could be related to both adaptation of the species to different habitats and the speciation process.
Collapse
|
40
|
Chromosomal locations of U2 snDNA clusters in Megaleporinus, Leporinus and Schizodon (Characiformes: Anostomidae). Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0031-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
41
|
|
42
|
Ruiz-Ruano FJ, Cabrero J, López-León MD, Sánchez A, Camacho JPM. Quantitative sequence characterization for repetitive DNA content in the supernumerary chromosome of the migratory locust. Chromosoma 2017; 127:45-57. [PMID: 28868580 DOI: 10.1007/s00412-017-0644-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 12/23/2022]
Abstract
Repetitive DNA is a major component in most eukaryotic genomes but is ignored in most genome sequencing projects. Here, we report the quantitative composition in repetitive DNA for a supernumerary (B) chromosome, in the migratory locust (Locusta migratoria), by Illumina sequencing of genomic DNA from B-carrying and B-lacking individuals and DNA obtained from a microdissected B chromosome, as well as the physical mapping of some elements. B chromosome DNA of 94.9% was repetitive, in high contrast with the 64.1% of standard (A) chromosomes. B chromosomes are enriched in satellite DNA (satDNA) (65.2% of B-DNA), with a single satellite (LmiSat02-176) comprising 55% of the B. Six satDNAs were visualized by FISH on the B chromosome, and the only A chromosome carrying all these satellites was autosome 9, pointing to this chromosome, along with autosome 8 (which shares histone genes with the B) as putative ancestors of the B chromosome. We found several transposable elements (TEs) showing nucleotidic variation specific to B-carrying individuals, which was also present in B-carrying transcriptomes. Remarkably, an interstitial region of the B chromosome included a 17 kb chimera composed of 29 different TEs, suggesting reiterative TE insertion in this B chromosome region.
Collapse
Affiliation(s)
- Francisco J Ruiz-Ruano
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain.
| | - Josefa Cabrero
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain
| | - María Dolores López-León
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain
| | - Antonio Sánchez
- Departamento de Biología Experimental, Universidad de Jaén, Jaén, Spain
| | - Juan Pedro M Camacho
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain
| |
Collapse
|
43
|
Milani D, Ramos É, Loreto V, Martí DA, Cardoso AL, de Moraes KCM, Martins C, Cabral-de-Mello DC. The satellite DNA AflaSAT-1 in the A and B chromosomes of the grasshopper Abracris flavolineata. BMC Genet 2017; 18:81. [PMID: 28851268 PMCID: PMC5575873 DOI: 10.1186/s12863-017-0548-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/22/2017] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Satellite DNAs (satDNAs) are organized in repetitions directly contiguous to one another, forming long arrays and composing a large portion of eukaryote genomes. These sequences evolve according to the concerted evolution model, and homogenization of repeats is observed at the intragenomic level. Satellite DNAs are the primary component of heterochromatin, located primarily in centromeres and telomeres. Moreover, satDNA enrichment in specific chromosomes has been observed, such as in B chromosomes, that can provide clues about composition, origin and evolution of this chromosome. In this study, we isolated and characterized a satDNA in A and B chromosomes of Abracris flavolineata by integrating cytogenetic, molecular and genomics approaches at intra- and inter-population levels, with the aim to understand the evolution of satDNA and composition of B chromosomes. RESULTS AflaSAT-1 satDNA was shared with other species and in A. flavolineata, was associated with another satDNA, AflaSAT-2. Chromosomal mapping revealed centromeric blocks variable in size in almost all chromosomes (except pair 11) of A complement for both satDNAs, whereas for B chromosome, only a small centromeric signal occurred. In distinct populations, variable number of AflaSAT-1 chromosomal sites correlated with variability in copy number. Instead of such variability, low sequence diversity was observed in A complement, but monomers from B chromosome were more variable, presenting also exclusive mutations. AflaSAT-1 was transcribed in five tissues of adults in distinct life cycle phases. CONCLUSIONS The sharing of AflaSAT-1 with other species is consistent with the library hypothesis and indicates common origin in a common ancestor; however, AflaSAT-1 was highly amplified in the genome of A. flavolineata. At the population level, homogenization of repeats in distinct populations was documented, but dynamic expansion or elimination of repeats was also observed. Concerning the B chromosome, our data provided new information on the composition in A. flavolineata. Together with previous results, the sequences of heterochromatic nature were not likely highly amplified in the entire B chromosome. Finally, the constitutive transcriptional activity suggests a possible unknown functional role, which should be further investigated.
Collapse
Affiliation(s)
- Diogo Milani
- Departamento de Biologia, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, São Paulo CEP 13506-900 Brazil
| | - Érica Ramos
- Departamento de Morfologia, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Botucatu, São Paulo Brazil
| | - Vilma Loreto
- Departamento de Genética, UFPE - Univ Federal de Pernambuco, Centro de Biociências/CB, Recife, Pernambuco Brazil
| | | | - Adauto Lima Cardoso
- Departamento de Morfologia, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Botucatu, São Paulo Brazil
| | | | - Cesar Martins
- Departamento de Morfologia, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Botucatu, São Paulo Brazil
| | - Diogo Cavalcanti Cabral-de-Mello
- Departamento de Biologia, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, São Paulo CEP 13506-900 Brazil
| |
Collapse
|
44
|
Araya-Jaime C, Lam N, Pinto IV, Méndez MA, Iturra P. Chromosomal organization of four classes of repetitive DNA sequences in killifish Orestias ascotanensis Parenti, 1984 (Cyprinodontiformes, Cyprinodontidae). COMPARATIVE CYTOGENETICS 2017; 11:463-475. [PMID: 29093798 PMCID: PMC5646654 DOI: 10.3897/compcytogen.v11i3.11729] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 06/14/2017] [Indexed: 06/01/2023]
Abstract
Orestias Valenciennes, 1839 is a genus of freshwater fish endemic to the South American Altiplano. Cytogenetic studies of these species have focused on conventional karyotyping. The aim of this study was to use classical and molecular cytogenetic methods to identify the constitutive heterochromatin distribution and chromosome organization of four classes of repetitive DNA sequences (histone H3 DNA, U2 snRNA, 18S rDNA and 5S rDNA) in the chromosomes of O. ascotanensis Parenti, 1984, an endemic species restricted to the Salar de Ascotán in the Chilean Altiplano. All individuals analyzed had a diploid number of 48 chromosomes. C-banding identified constitutive heterochromatin mainly in the pericentromeric region of most chromosomes, especially a GC-rich heterochromatic block of the short arm of pair 3. FISH assay with an 18S probe confirmed the location of the NOR in pair 3 and revealed that the minor rDNA cluster occurs interstitially on the long arm of pair 2. Dual FISH identified a single block of U2 snDNA sequences in the pericentromeric regions of a subtelocentric chromosome pair, while histone H3 sites were observed as small signals scattered in throughout the all chromosomes. This work represents the first effort to document the physical organization of the repetitive fraction of the Orestias genome. These data will improve our understanding of the chromosomal evolution of a genus facing serious conservation problems.
Collapse
Affiliation(s)
- Cristian Araya-Jaime
- Facultad de Medicina, Universidad de Chile, ICBM, Programa de Genética Humana, Casilla 70061, Santiago, Chile
| | - Natalia Lam
- Departamento de Producción Animal, Facultad de Ciencias Agronómicas, Universidad de Chile. Santa Rosa 11315, La Pintana, Santiago, Chile
| | - Irma Vila Pinto
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, CP 780-0024, Santiago, Chile
| | - Marco A. Méndez
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, CP 780-0024, Santiago, Chile
| | - Patricia Iturra
- Facultad de Medicina, Universidad de Chile, ICBM, Programa de Genética Humana, Casilla 70061, Santiago, Chile
| |
Collapse
|
45
|
Almeida BRRD, Milhomem-Paixão SSR, Noronha RCR, Nagamachi CY, Costa MJRD, Pardal PPDO, Coelho JS, Pieczarka JC. Karyotype diversity and chromosomal organization of repetitive DNA in Tityus obscurus (Scorpiones, Buthidae). BMC Genet 2017; 18:35. [PMID: 28412934 PMCID: PMC5392961 DOI: 10.1186/s12863-017-0494-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 03/25/2017] [Indexed: 01/22/2023] Open
Abstract
Background Holocentric chromosomes occur in approximately 750 species of eukaryotes. Among them, the genus Tityus (Scorpiones, Buthidae) has a labile karyotype that shows complex multivalent associations during male meiosis. Thus, taking advantage of the excellent model provided by the Buthidae scorpions, here we analyzed the chromosomal distribution of several repetitive DNA classes on the holocentric chromosomes of different populations of the species Tityus obscurus Gervais, 1843, highlighting their involvement in the karyotypic differences found among them. Results This species shows inter- and intrapopulational karyotype variation, with seven distinct cytotypes: A (2n = 16), B (2n = 14), C (2n = 13), D (2n = 13), E (2n = 12), F (2n = 12) and G (2n = 11). Furthermore, exhibits achiasmatic male meiosis and lacks heteromorphic sex chromosomes. Trivalent and quadrivalent meiotic associations were found in some cytotypes. In them, 45S rDNAs were found in the terminal portions of two pairs, while TTAGG repeats were found only at the end of the chromosomes. In the cytotype A (2n = 16), the U2 snRNA gene mapped to pair 1, while the H3 histone cluster and C0t-1 DNA fraction was terminally distributed on all pairs. Mariner transposons were found throughout the chromosomes, with the exception of one individual of cytotype A (2n = 16), in which it was concentrated in heterochromatic regions. Conclusions Chromosomal variability found in T. obscurus are due to rearrangements of the type fusion/fission and reciprocal translocations in heterozygous. These karyotype differences follow a geographical pattern and may be contributing to reproductive isolation between populations analyzed. Our results also demonstrate high mobility of histone H3 genes. In contrast, other multigene families (45S rDNA and U2 snRNA) have conserved distribution among individuals. The accumulation of repetitive sequences in distal regions of T. obscurus chromosomes, suggests that end of chromosome are not covered by the kinetochore.
Collapse
Affiliation(s)
- Bruno Rafael Ribeiro de Almeida
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Avenida Augusto Corrêa, n°01, Av. Perimetral, s/n. Guamá, 66075-900, Belém, Pará, Brazil
| | - Susana Suely Rodrigues Milhomem-Paixão
- Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Campus Valparaíso de Goiás, BR-040, km 6, Avenida Saia Velha, S/N, Área 8, Parque Esplanada V, 72876-601, Valparaíso de Goiás, Goiás, Brazil
| | - Renata Coelho Rodrigues Noronha
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Avenida Augusto Corrêa, n°01, Av. Perimetral, s/n. Guamá, 66075-900, Belém, Pará, Brazil
| | - Cleusa Yoshiko Nagamachi
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Avenida Augusto Corrêa, n°01, Av. Perimetral, s/n. Guamá, 66075-900, Belém, Pará, Brazil
| | - Marlyson Jeremias Rodrigues da Costa
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Avenida Augusto Corrêa, n°01, Av. Perimetral, s/n. Guamá, 66075-900, Belém, Pará, Brazil
| | - Pedro Pereira de Oliveira Pardal
- Laboratório de Entomologia Médica e Artrópodes Peçonhentos, Núcleo de Medicina Tropical, Universidade Federal do Pará, Avenida Generalíssimo Deodoro, 92, 66055-240, Belém, Pará, Brazil
| | - Johne Souza Coelho
- Laboratório de Entomologia Médica e Artrópodes Peçonhentos, Núcleo de Medicina Tropical, Universidade Federal do Pará, Avenida Generalíssimo Deodoro, 92, 66055-240, Belém, Pará, Brazil
| | - Julio Cesar Pieczarka
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Avenida Augusto Corrêa, n°01, Av. Perimetral, s/n. Guamá, 66075-900, Belém, Pará, Brazil.
| |
Collapse
|
46
|
Pine MB, Gallo RB, da Silva CRM, Pezenti LF, Domenico FCD, Loreto V, da Rosa R. Chromosome mapping in Abracris flavolineata (De Geer, 1773) (Orthoptera) from the Iguaçu National Park - Foz do Iguaçu, Paraná, Brazil. COMPARATIVE CYTOGENETICS 2017; 11:203-212. [PMID: 28919959 PMCID: PMC5596987 DOI: 10.3897/compcytogen.v11i2.10282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 02/01/2017] [Indexed: 06/07/2023]
Abstract
In this paper, we present the cytomolecular analysis of a population of Abracris flavolineata collected in the largest fragment of the Brazilian Atlantic forest, the Iguaçu National Park. The diploid number in males was 23 (22+X0), with two large pairs (1-2), 7 medium (3-9), 2 small (10-11) and the X chromosome of medium size. Heterochromatic blocks were evident in the pericentromeric regions of all chromosomes. Heterogeneity in the distribution of heterochromatin was observed, with a predominance of DAPI+ blocks. However, some chromosomes showed CMA3+ blocks and other DAPI+/CMA3+ blocks. The 18S rDNA sites were distributed on the short arms of 5 pairs. In two of these pairs, such sites were in the same chromosome bearing 5S rDNA, and one of the bivalents, they were co-located. Histone H3 genes were found on one bivalent. The results added to the existing cytogenetic studies provided evidence of great karyotypic plasticity in the species. This pliancy may be the result of vicariant events related to the geographical distribution of different populations of A. flavolineata.
Collapse
Affiliation(s)
- Mariana Bozina Pine
- Departamento de Biologia Geral, CCB, Universidade Estadual de Londrina (UEL), Londrina, Paraná, Brazil
| | - Raquel Bozini Gallo
- Departamento de Biologia Geral, CCB, Universidade Estadual de Londrina (UEL), Londrina, Paraná, Brazil
| | | | - Larissa Forim Pezenti
- Departamento de Biologia Geral, CCB, Universidade Estadual de Londrina (UEL), Londrina, Paraná, Brazil
| | | | - Vilma Loreto
- Departamento de Genética, CCB, Universidade Federal de Pernambuco, Recife, Brazil
| | - Renata da Rosa
- Departamento de Biologia Geral, CCB, Universidade Estadual de Londrina (UEL), Londrina, Paraná, Brazil
| |
Collapse
|
47
|
Castillo ERD, Taffarel A, Maronna MM, Cigliano MM, Palacios-Gimenez OM, Cabral-de-Mello DC, Martí DA. Phylogeny and chromosomal diversification in the Dichroplus elongatus species group (Orthoptera, Melanoplinae). PLoS One 2017; 12:e0172352. [PMID: 28245223 PMCID: PMC5330476 DOI: 10.1371/journal.pone.0172352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 02/04/2017] [Indexed: 11/19/2022] Open
Abstract
In an attempt to track the chromosomal differentiation in the Dichroplus elongatus species group, we analyzed the karyotypes of four species with classical cytogenetic and mapping several multigene families through fluorescent in situ hybridization (FISH). We improved the taxon sampling of the D. elongatus species group adding new molecular data to infer the phylogeny of the genus and reconstruct the karyotype evolution. Our molecular analyses recovered a fully resolved tree with no evidence for the monophyly of Dichroplus. However, we recovered several stable clades within the genus, including the D. elongatus species group, under the different strategies of tree analyses (Maximum Parsimony and Maximum Likelihood). The chromosomal data revealed minor variation in the D. elongatus species group's karyotypes caused by chromosome rearrangements compared to the phylogenetically related D. maculipennis species group. The karyotypes of D. intermedius and D. exilis described herein showed the standard characteristics found in most Dichroplini, 2n = 23/24, X0♂ XX♀, Fundamental number (FN) = 23/24. However, we noticed two established pericentric inversions in D. intermedius karyotype, raising the FN to 27♂/28♀. A strong variation in the heterochromatic blocks distribution was evidenced at interespecific level. The multigene families' mapping revealed significant variation, mainly in rDNA clusters. These variations are probably caused by micro chromosomal changes, such as movement of transposable elements (TEs) and ectopic recombination. These observations suggest a high genomic dynamism for these repetitive DNA sequences in related species. The reconstruction of the chromosome character "variation in the FN" posits the FN = 23/24 as the ancestral state, and it is hypothesized that variations due to pericentric inversions has arisen independently three times in the evolutionary history of Dichroplus. One of these independent events occurred in the D. elongatus species group, where D. intermedius is the unique case with the highest FN described in the tribe Dichroplini.
Collapse
Affiliation(s)
- Elio R. D. Castillo
- Laboratorio de Genética Evolutiva. Instituto de Biología Subtropical (IBS) CONICET-UNaM. FCEQyN, Félix de Azara 1552, Piso 6°. Posadas, Misiones, Argentina
| | - Alberto Taffarel
- Laboratorio de Genética Evolutiva. Instituto de Biología Subtropical (IBS) CONICET-UNaM. FCEQyN, Félix de Azara 1552, Piso 6°. Posadas, Misiones, Argentina
- Comité Ejecutivo de Desarrollo e Innovación Tecnológica (CEDIT). Posadas, Misiones, Argentina
| | - Maximiliano M. Maronna
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Travessa 14, São Paulo, Brazil
| | - María Marta Cigliano
- Museo de La Plata, CEPAVE, CCT La Plata, CONICET-UNLP. La Plata, Buenos Aires, Argentina
| | - Octavio M. Palacios-Gimenez
- UNESP—Universidade Estadual Paulista, Instituto de Biociências/IB, Departamento de Biologia, Rio Claro/SP, Brazil
| | - Diogo C. Cabral-de-Mello
- UNESP—Universidade Estadual Paulista, Instituto de Biociências/IB, Departamento de Biologia, Rio Claro/SP, Brazil
| | - Dardo A. Martí
- Laboratorio de Genética Evolutiva. Instituto de Biología Subtropical (IBS) CONICET-UNaM. FCEQyN, Félix de Azara 1552, Piso 6°. Posadas, Misiones, Argentina
| |
Collapse
|
48
|
Comparative Analysis of Satellite DNA in the Drosophila melanogaster Species Complex. G3-GENES GENOMES GENETICS 2017; 7:693-704. [PMID: 28007840 PMCID: PMC5295612 DOI: 10.1534/g3.116.035352] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Satellite DNAs are highly repetitive sequences that account for the majority of constitutive heterochromatin in many eukaryotic genomes. It is widely recognized that sequences and locations of satellite DNAs are highly divergent even in closely related species, contributing to the hypothesis that satellite DNA differences may underlie speciation. However, due to its repetitive nature, the mapping of satellite DNAs has been mostly left out of recent genomics analyses, hampering the use of molecular genetics techniques to better understand their role in speciation and evolution. Satellite DNAs are most extensively and comprehensively mapped in Drosophila melanogaster, a species that is also an excellent model system with which to study speciation. Yet the lack of comprehensive knowledge regarding satellite DNA identity and location in its sibling species (D. simulans, D. mauritiana, and D. sechellia) has prevented the full utilization of D. melanogaster in studying speciation. To overcome this problem, we initiated the mapping of satellite DNAs on the genomes of the D. melanogaster species complex (D. melanogaster, D. simulans, D. mauritiana, and D. sechellia) using multi-color fluorescent in situ hybridization (FISH) probes. Our study confirms a striking divergence of satellite DNAs in the D. melanogaster species complex, even among the closely related species of the D. simulans clade (D. simulans, D. mauritiana, and D. sechellia), and suggests the presence of unidentified satellite sequences in these species.
Collapse
|
49
|
Serrano ÉA, Utsunomia R, Scudeller PS, Oliveira C, Foresti F. Origin of B chromosomes in Characidium alipioi (Characiformes, Crenuchidae) and its relationship with supernumerary chromosomes in other Characidium species. COMPARATIVE CYTOGENETICS 2017; 11:81-95. [PMID: 28919951 PMCID: PMC5599694 DOI: 10.3897/compcytogen.v11i1.10886] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 11/29/2017] [Indexed: 06/07/2023]
Abstract
B chromosomes are apparently dispensable components found in the genomes of many species that are mainly composed of repetitive DNA sequences. Among the numerous questions concerning B chromosomes, the origin of these elements has been widely studied. To date, supernumerary chromosomes have been identified in approximately 60 species of fish, including species of the genus Characidium Reinhardt, 1867 in which these elements appear to have independently originated. In this study, we used molecular cytogenetic techniques to investigate the origin of B chromosomes in a population of Characidium alipioi Travassos, 1955 and determine their relationship with the extra chromosomes of other species of the genus. The results showed that the B chromosomes of Characidium alipioi had an intraspecific origin, apparently originated independently in relation to the B chromosomes of Characidium gomesi Travassos, 1956 Characidium pterostictum Gomes, 1947 and Characidium oiticicai Travassos, 1967, since they do not share specific DNA sequences, as well as their possible ancestral chromosomes and belong to different phylogenetic clades. The shared sequences between the supernumerary chromosomes and the autosommal sm pair indicate the origin of these chromosomes.
Collapse
Affiliation(s)
- Érica Alves Serrano
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Junior, s/n, 18618-970, Botucatu, São Paulo, Brazil
| | - Ricardo Utsunomia
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Junior, s/n, 18618-970, Botucatu, São Paulo, Brazil
| | - Patrícia Sobrinho Scudeller
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Junior, s/n, 18618-970, Botucatu, São Paulo, Brazil
| | - Claudio Oliveira
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Junior, s/n, 18618-970, Botucatu, São Paulo, Brazil
| | - Fausto Foresti
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Junior, s/n, 18618-970, Botucatu, São Paulo, Brazil
| |
Collapse
|
50
|
de Freitas Mourão AA, Natal Daniel S, Teruo Hashimoto D, Cristina Ferreira D, Porto-Foresti F. Organization and Distribution of Repetitive DNA Classes in the Cichla kelberi and Cichla piquiti Genome. CYTOLOGIA 2017. [DOI: 10.1508/cytologia.82.193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - Sandro Natal Daniel
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista (UNESP)
| | - Diogo Teruo Hashimoto
- Centro de Aquicultura de Jaboticabal (CAUNESP), Universidade Estadual Paulista (UNESP)
| | | | - Fábio Porto-Foresti
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista (UNESP)
| |
Collapse
|