1
|
Tan Q, Yang H, He Y, Shen X, Sun L, Du X, Lin G, Zhou N, Wang N, Zhou Q, Liu D, Xu X, Zhao L, Xie P. Borna disease virus 1 induces ferroptosis, contributing to lethal encephalitis. J Med Virol 2024; 96:e29945. [PMID: 39370874 DOI: 10.1002/jmv.29945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/03/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024]
Abstract
Borna disease virus 1 (BoDV-1) is a neurotropic RNA virus that has been linked to fatal BoDV-1 encephalitis (BVE) in humans. Ferroptosis represents a newly recognized kind of programmed cell death that marked by iron overload and lipid peroxidation. Various viral infections are closely related to ferroptosis. However, the link between BoDV-1 infection and ferroptosis, as well as its role in BVE pathogenesis, remains inadequately understood. Herein, we used primary rat cortical neurons, human microglial HMC3 cells, and Sprague‒Dawley rats as models. BoDV-1 infection induced ferroptosis, as ferroptosis characteristics were detected (iron overload, reactive oxygen species buildup, decreased antioxidant capacity, lipid peroxidation, and mitochondrial damage). Analysis via qRT-PCR and Western blot demonstrated that BoDV-1-induced ferroptosis was mediated through Nrf2/HO-1/SLC7a11/GPX4 antioxidant pathway suppression. Nrf2 downregulation was due to BoDV-1 infection promoting Nrf2 ubiquitination and degradation. Following BoDV-1-induced ferroptosis, the PTGS2/PGE2 signaling pathway was activated, and various intracellular lipid peroxidation products and damage-associated molecular patterns were released, contributing to BVE occurrence and progression. More importantly, inhibiting ferroptosis or the ubiquitin‒proteasome system effectively alleviated BVE. Collectively, these findings demonstrate the interaction between BoDV-1 infection and ferroptosis and reveal BoDV-1-induced ferroptosis as an underlying pathogenic mechanism of BVE.
Collapse
Affiliation(s)
- Qing Tan
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongli Yang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Emergency Medicine, The People's Hospital of Jianyang City, Chengdu, China
| | - Yong He
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xia Shen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Sun
- Department of Anaesthesia and Pain, The First People's Hospital of Chongqing Liangjiang New Area, Chongqing, China
| | - Xiaoyan Du
- Department of Neurology, The Yongchuan Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Cerebrovascular Disease Research, Chongqing, China
| | - Gangqiang Lin
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Na Zhou
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Nishi Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Zhou
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyan Xu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Libo Zhao
- Department of Neurology, The Yongchuan Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Cerebrovascular Disease Research, Chongqing, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Osei D, Baumgart-Vogt E, Ahlemeyer B, Herden C. Tumor Necrosis Factor-α Receptor 1 Mediates Borna Disease Virus 1-Induced Changes in Peroxisomal and Mitochondrial Dynamics in Neurons. Int J Mol Sci 2024; 25:1849. [PMID: 38339126 PMCID: PMC10855776 DOI: 10.3390/ijms25031849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Borna disease virus 1 (BoDV1) causes a persistent infection in the mammalian brain. Peroxisomes and mitochondria play essential roles in the cellular antiviral immune response, but the effect of BoDV1 infection on peroxisomal and mitochondrial dynamics and their respective antioxidant capacities is still not clear. Using different mouse lines-i.e., tumor necrosis factor-α transgenic (TNFTg; to pro-inflammatory status), TNF receptor-1 knockout (TNFR1ko), and TNFR2ko mice in comparison to wild-type (Wt) mice-we analyzed the abundances of both organelles and their main antioxidant enzymes, catalase and superoxide dismutase 2 (SOD2), in neurons of the hippocampal, cerebral, and cerebellar cortices. In TNFTg mice, a strong increase in mitochondrial (6.9-fold) and SOD2 (12.1-fold) abundances was detected; meanwhile, peroxisomal abundance increased slightly (1.5-fold), but that of catalase decreased (2.9-fold). After BoDV1 infection, a strong decrease in mitochondrial (2.1-6.5-fold), SOD2 (2.7-9.1-fold), and catalase (2.7-10.3-fold) abundances, but a slight increase in peroxisomes (1.3-1.6-fold), were detected in Wt and TNFR2ko mice, whereas no changes occurred in TNFR1ko mice. Our data suggest that the TNF system plays a crucial role in the biogenesis of both subcellular organelles. Moreover, TNFR1 signaling mediated the changes in peroxisomal and mitochondrial dynamics after BoDV1 infection, highlighting new mechanisms by which BoDV1 may achieve immune evasion and viral persistence.
Collapse
Affiliation(s)
- Dominic Osei
- Institute for Anatomy and Cell Biology, Justus Liebig University Giessen, 35392 Giessen, Germany; (D.O.); (E.B.-V.)
- Institute of Veterinary Pathology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Eveline Baumgart-Vogt
- Institute for Anatomy and Cell Biology, Justus Liebig University Giessen, 35392 Giessen, Germany; (D.O.); (E.B.-V.)
| | - Barbara Ahlemeyer
- Institute for Anatomy and Cell Biology, Justus Liebig University Giessen, 35392 Giessen, Germany; (D.O.); (E.B.-V.)
| | - Christiane Herden
- Institute of Veterinary Pathology, Justus Liebig University Giessen, 35392 Giessen, Germany
- Center for Mind, Brain and Behavior, Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
3
|
Riccò M, Zanella I, Satta E, Ranzieri S, Corrado S, Marchesi F, Peruzzi S. BoDV-1 Infection in Children and Adolescents: A Systematic Review and Meta-Analysis. Pediatr Rep 2023; 15:512-531. [PMID: 37755407 PMCID: PMC10534910 DOI: 10.3390/pediatric15030047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/12/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Borna disease virus 1 (BoDV-1) can cause a severe human syndrome characterized by meningo-myeloencephalitis. The actual epidemiology of BoDV-1 remains disputed, and our study summarized prevalence data among children and adolescents (<18-year-old). Through systematic research on three databases (PubMed, EMBASE, MedRxiv), all studies, including seroprevalence rates for BoDV-1 antigens and specific antibodies, were retrieved, and their results were summarized. We identified a total of six studies for a total of 2692 subjects aged less than 18 years (351 subjects sampled for BoDV-1 antibodies and 2557 for antigens). A pooled seroprevalence of 6.09% (95% Confidence Interval [95% CI] 2.14 to 16.17) was eventually calculated for BoDV-1 targeting antibodies and 0.76% (95% CI 0.26 to 2.19) for BoDV-1 antigens. Both estimates were affected by substantial heterogeneity. Seroprevalence rates for BoDV-1 in children and adolescents suggested that a substantial circulation of the pathogen does occur, and as infants and adolescents have relatively scarce opportunities for being exposed to hosts and animal reservoirs, the potential role of unknown vectors cannot be ruled out.
Collapse
Affiliation(s)
- Matteo Riccò
- Occupational Health and Safety Service on the Workplace/Servizio di Prevenzione e Sicurezza Ambienti di Lavoro (SPSAL), Department of Public Health, AUSL–IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Ilaria Zanella
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (I.Z.); (E.S.); (S.R.); (F.M.)
| | - Elia Satta
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (I.Z.); (E.S.); (S.R.); (F.M.)
| | - Silvia Ranzieri
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (I.Z.); (E.S.); (S.R.); (F.M.)
| | - Silvia Corrado
- ASST Rhodense, Dipartimento Della Donna e Area Materno-Infantile, UOC Pediatria, 20024 Garbagnate Milanese, Italy;
| | - Federico Marchesi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (I.Z.); (E.S.); (S.R.); (F.M.)
| | - Simona Peruzzi
- Laboratorio Analisi Chimico Cliniche e Microbiologiche, Ospedale Civile di Guastalla, AUSL—IRCCS di Reggio Emilia, 42016 Guastalla, Italy;
| |
Collapse
|
4
|
Yu X, Wang S, Wu W, Chang H, Shan P, Yang L, Zhang W, Wang X. Exploring New Mechanism of Depression from the Effects of Virus on Nerve Cells. Cells 2023; 12:1767. [PMID: 37443801 PMCID: PMC10340315 DOI: 10.3390/cells12131767] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Depression is a common neuropsychiatric disorder with long-term recurrent depressed mood, pain and despair, pessimism and anxiety, and even suicidal tendencies as the main symptoms. Depression usually induces or aggravates the development of other related diseases, such as sleep disorders and endocrine disorders. In today's society, the incidence of depression is increasing worldwide, and its pathogenesis is complex and generally believed to be related to genetic, psychological, environmental, and biological factors. Current studies have shown the key role of glial cells in the development of depression, and it is noteworthy that some recent evidence suggests that the development of depression may be closely related to viral infections, such as SARS-CoV-2, BoDV-1, ZIKV, HIV, and HHV6, which infect the organism and cause some degree of glial cells, such as astrocytes, oligodendrocytes, and microglia. This can affect the transmission of related proteins, neurotransmitters, and cytokines, which in turn leads to neuroinflammation and depression. Based on the close relationship between viruses and depression, this paper provides an in-depth analysis of the new mechanism of virus-induced depression, which is expected to provide a new perspective on the mechanism of depression and a new idea for the diagnosis of depression in the future.
Collapse
Affiliation(s)
- Xinxin Yu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (X.Y.); (W.W.)
| | - Shihao Wang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (S.W.); (H.C.); (W.Z.)
| | - Wenzheng Wu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (X.Y.); (W.W.)
| | - Hongyuan Chang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (S.W.); (H.C.); (W.Z.)
| | - Pufan Shan
- College of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Lin Yang
- College of Nursing, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Wenjie Zhang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (S.W.); (H.C.); (W.Z.)
| | - Xiaoyu Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (X.Y.); (W.W.)
| |
Collapse
|
5
|
Abstract
Borna disease virus 1 (BoDV-1) strains attracted public interest by recently reported rare fatal encephalitis cases in Germany. Previously, human BoDV-1 infection was suggested to contribute to psychiatric diseases. Clinical outcomes (encephalitis vs. psychiatric disease) and epidemiology (zoonotic vs. human-to-human transmission) are still controversial. Here, phylogenetic analyses of 18 human and 4 laboratory strains revealed close genomic homologies both in distant geographical regions, and different clinical entities. Single unique amino acid mutations substantiated the authenticity of human strains. No matching was found with those of shrew strains in the same cluster 4, arguing against zoonosis. Opposite epidemiology concepts should be equally considered.
Collapse
Affiliation(s)
- Liv Bode
- Freelance Bornavirus Workgroup, Joint Senior Scientists, Berlin, Germany
| | - Yujie Guo
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
6
|
Li Q, Ru X, Yang Y, Zhao H, Qu J, Chen W, Pan P, Ruan H, Li C, Chen Y, Feng H. Lipocalin-2-Mediated Insufficient Oligodendrocyte Progenitor Cell Remyelination for White Matter Injury After Subarachnoid Hemorrhage via SCL22A17 Receptor/Early Growth Response Protein 1 Signaling. Neurosci Bull 2022; 38:1457-1475. [PMID: 35817941 DOI: 10.1007/s12264-022-00906-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/26/2022] [Indexed: 10/17/2022] Open
Abstract
Insufficient remyelination due to impaired oligodendrocyte precursor cell (OPC) differentiation and maturation is strongly associated with irreversible white matter injury (WMI) and neurological deficits. We analyzed whole transcriptome expression to elucidate the potential role and underlying mechanism of action of lipocalin-2 (LCN2) in OPC differentiation and WMI and identified the receptor SCL22A17 and downstream transcription factor early growth response protein 1 (EGR1) as the key signals contributing to LCN2-mediated insufficient OPC remyelination. In LCN-knockdown and OPC EGR1 conditional-knockout mice, we discovered enhanced OPC differentiation in developing and injured white matter (WM); consistent with this, the specific inactivation of LCN2/SCl22A17/EGR1 signaling promoted remyelination and neurological recovery in both atypical, acute WMI due to subarachnoid hemorrhage and typical, chronic WMI due to multiple sclerosis. This potentially represents a novel strategy to enhance differentiation and remyelination in patients with white matter injury.
Collapse
Affiliation(s)
- Qiang Li
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Department of Neurobiology, College of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xufang Ru
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yang Yang
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hengli Zhao
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jie Qu
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Weixiang Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Pengyu Pan
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Huaizhen Ruan
- Department of Neurobiology, College of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Chaojun Li
- Model Animal Research Center, Nanjing University, Nanjing, 210032, China.
| | - Yujie Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. .,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. .,Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Hua Feng
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
7
|
Guo Y, He P, Sun L, Zhang X, Xu X, Tang T, Zhou W, Li Q, Zou D, Bode L, Xie P. Full-length genomic sequencing and characterization of Borna disease virus 1 isolates: Lessons in epidemiology. J Med Virol 2020; 92:3125-3137. [PMID: 32343416 DOI: 10.1002/jmv.25951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/17/2020] [Indexed: 12/16/2022]
Abstract
Borna disease virus 1 (BoDV-1) is a nonsegmented, negative-strand RNA virus that infects mammals including humans. BoDV-1 strains occur globally, dominate the species Mammalian 1 bornavirus, and display highly conserved genomes and persistent infection (brain, blood). Subclinical infections prevail but the rare fatal outcomes even in people need awareness and risk assessment. Although BoDV-1 strains were successfully isolated, only limited full genomic sequences are available. In this study, the entire genomes of two natural BoDV-1 isolates (Hu-H2, Equ-Cres) and one vaccine strain (DessVac) were sequenced. They were compared with 20 genomes and 20 single-gene sequences (N and P) of worldwide human strains from psychiatric and neurologic patients and animal strains from horses with Borna disease available at GenBank. Phylogenetic analyses confirmed a low divergence not exceeding 5.55%, 5.34%, and 4.94% at the genome, P-gene, and N-gene level, respectively, characteristic of BoDV-1. Human viruses tended to cluster at the country level but appeared to be independent of hosts' diseases and/or time of isolation. Notably, our data also indicated that human viruses provided individual genetic signatures but exhibited no distinct genotypes that separated them from animal strains. Sequence similarities thus occurred between different host species and distant geographic regions, supporting global BoDV-1 prevalence. Overall low genetic divergence among BoDV-1 viruses shown here also argued against zoonotic concepts, requiring further clarification beyond sequence similarities. Finally, unlike shared sequence conservation, phenotyping of natural and laboratory variants revealed that they manipulated host cells differently, underpinning the authenticity of the human BoDV-1 strains.
Collapse
Affiliation(s)
- Yujie Guo
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Laboratory medicine, Chongqing Medical University, Chongqing, China
| | - Peng He
- Department of Clinical Laboratory, The First Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lin Sun
- Department of Pain, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiong Zhang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyan Xu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tian Tang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Zhou
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qi Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dezhi Zou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liv Bode
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Freelance Bornavirus Workgroup, Joint Senior Scientists, Berlin, Germany
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Nobach D, Müller J, Tappe D, Herden C. Update on immunopathology of bornavirus infections in humans and animals. Adv Virus Res 2020; 107:159-222. [PMID: 32711729 DOI: 10.1016/bs.aivir.2020.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Knowledge on bornaviruses has expanded tremendously during the last decade through detection of novel bornaviruses and endogenous bornavirus-like elements in many eukaryote genomes, as well as by confirmation of insectivores as reservoir species for classical Borna disease virus 1 (BoDV-1). The most intriguing finding was the demonstration of the zoonotic potential of lethal human bornavirus infections caused by a novel bornavirus of different squirrel species (variegated squirrel 1 bornavirus, VSBV-1) and by BoDV-1 known as the causative agent for the classical Borna disease in horses and sheep. Whereas a T cell-mediated immunopathology has already been confirmed as key disease mechanism for infection with BoDV-1 by experimental studies in rodents, the underlying pathomechanisms remain less clear for human bornavirus infections, infection with other bornaviruses or infection of reservoir species. Thus, an overview of current knowledge on the pathogenesis of bornavirus infections focusing on immunopathology is given.
Collapse
Affiliation(s)
- Daniel Nobach
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Jana Müller
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Dennis Tappe
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christiane Herden
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Giessen, Germany; Center for Brain, Mind and Behavior, Justus-Liebig-University Giessen, Giessen, Germany.
| |
Collapse
|
9
|
Dietrich DE, Bode L, Spannhuth CW, Hecker H, Ludwig H, Emrich HM. Antiviral treatment perspective against Borna disease virus 1 infection in major depression: a double-blind placebo-controlled randomized clinical trial. BMC Pharmacol Toxicol 2020; 21:12. [PMID: 32066504 PMCID: PMC7027224 DOI: 10.1186/s40360-020-0391-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 02/05/2020] [Indexed: 12/19/2022] Open
Abstract
Background Whether Borna disease virus (BDV-1) is a human pathogen remained controversial until recent encephalitis cases showed BDV-1 infection could even be deadly. This called to mind previous evidence for an infectious contribution of BDV-1 to mental disorders. Pilot open trials suggested that BDV-1 infected depressed patients benefitted from antiviral therapy with a licensed drug (amantadine) which also tested sensitive in vitro. Here, we designed a double-blind placebo-controlled randomized clinical trial (RCT) which cross-linked depression and BDV-1 infection, addressing both the antidepressant and antiviral efficacy of amantadine. Methods The interventional phase II RCT (two 7-weeks-treatment periods and a 12-months follow-up) at the Hannover Medical School (MHH), Germany, assigned currently depressed BDV-1 infected patients with either major depression (MD; N = 23) or bipolar disorder (BD; N = 13) to amantadine sulphate (PK-Merz®; twice 100 mg orally daily) or placebo treatment, and contrariwise, respectively. Clinical changes were assessed every 2–3 weeks by the 21-item Hamilton rating scale for depression (HAMD) (total, single, and combined scores). BDV-1 activity was determined accordingly in blood plasma by enzyme immune assays for antigens (PAG), antibodies (AB) and circulating immune complexes (CIC). Results Primary outcomes (≥25% HAMD reduction, week 7) were 81.3% amantadine vs. 35.3% placebo responder (p = 0.003), a large clinical effect size (ES; Cohen’s d) of 1.046, and excellent drug tolerance. Amantadine was safe reducing suicidal behaviour in the first 2 weeks. Pre-treatment maximum infection levels were predictive of clinical improvement (AB, p = 0.001; PAG, p = 0.026; HAMD week 7). Respective PAG and CIC levels correlated with AB reduction (p = 0,001 and p = 0.034, respectively). Follow-up benefits (12 months) correlated with dropped cumulative infection measures over time (p < 0.001). In vitro, amantadine concentrations as low as 2.4–10 ng/mL (50% infection-inhibitory dose) prevented infection with human BDV Hu-H1, while closely related memantine failed up to 100,000-fold higher concentration (200 μg/mL). Conclusions Our findings indicate profound antidepressant efficacy of safe oral amantadine treatment, paralleling antiviral effects at various infection levels. This not only supports the paradigm of a link of BDV-1 infection and depression. It provides a novel possibly practice-changing low cost mental health care perspective for depressed BDV-1-infected patients addressing global needs. Trial registration The trial was retrospectively registered in the German Clinical Trials Registry on 04th of March 2015. The trial ID is DRKS00007649; https://www.drks.de/drks_web/setLocale_EN.do
Collapse
Affiliation(s)
- Detlef E Dietrich
- Department of Psychiatry, Burghof-Clinic, Ritterstr. 19, 31737, Rinteln, Germany. .,Center for Systems Neuroscience, Bünteweg 2, 30559, Hanover, Germany. .,Department of Mental Health, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hanover, Germany.
| | - Liv Bode
- Joint Senior Scientists, Freelance Bornavirus Workgroup, Beerenstr. 41, 14163, Berlin, Germany.
| | - Carsten W Spannhuth
- Department of Mental Health, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hanover, Germany
| | - Hartmut Hecker
- Department of Biometrics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hanover, Germany
| | - Hanns Ludwig
- Joint Senior Scientists, Freelance Bornavirus Workgroup, Beerenstr. 41, 14163, Berlin, Germany
| | - Hinderk M Emrich
- Department of Mental Health, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hanover, Germany
| |
Collapse
|
10
|
Genome-wide profiling of long noncoding RNA expression patterns and CeRNA analysis in mouse cortical neurons infected with different strains of borna disease virus. Genes Dis 2019; 6:147-158. [PMID: 31193942 PMCID: PMC6545444 DOI: 10.1016/j.gendis.2019.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/09/2019] [Indexed: 12/05/2022] Open
Abstract
Borna disease virus 1 (BoDV-1) is neurotropic prototype of Bornaviruses causing neurological diseases and maintaining persistent infection in brain cells of mammalian species. Long non-coding RNA (lncRNA) is transcript of more than 200 nucleotides without protein-coding function regulating various biological processes as proliferation, apoptosis, cell migration and viral infection. However, regulatory of lncRNAs in BoDV-1 infection remains unknown. To identify differential expression profiles and predict functions of lncRNA in BoDV-1 infection, microarray data showed that 3528 lncRNAs and 2661 lncRNAs were differentially expressed in Strain V and Hu-H1 BoDV-infected groups compared with control groups, respectively. Gene Ontology (GO) and pathway analysis suggested that differential lncRNAs may be involved in regulation of metabolic, biological regulation, cellular process, endocytosis, viral infections and cell adhesion processes, cancer in both BoDV-infected strains. ENSMUST00000128469 was found down-regulated in both BoDV-infected groups compared with control groups consistent with microarray (p < 0.05). ceRNA analysis indicated possible interaction networks as ENSMUST00000128469/miR-22-5p, miR-206-3p, miR-302b-5p, miR-302c-3p, miR-1a-3p/Igf1. Igf1 was found up-regulated in both BoDV-infected groups compared with control groups (p < 0.05). Possible functions of predicted target mRNAs and miRNAs of ENSMUST00000128469 were involved in cell proliferation, transcriptional misregulation and proteoglycan pathways enriched in cancer. lncRNA may be involved in regulation of Hu-H1 inhibited cell proliferation and promoted apoptosis through NF-kB, JNK/MAPK signaling, BCL2 and CDK6/E2F1 pathways different from Strain V. Possible interaction networks as ENSMUST00000128469/miR-22-5p, miR-206-3p, miR-302b-5p, miR-302c-3p, miR-1a-3p/Igf1 may involve in regulation of cell proliferation, apoptosis, and cancer.
Collapse
|
11
|
Li C, Xu X, Zhang X, Cheng K, Guo Y, Jie J, Guo H, He Y, Zhou C, Gui S, Zhong X, Wang H, Xie P. Activation of ERK/CREB/BDNF pathway involved in abnormal behavior of neonatally Borna virus-infected rats. Neuropsychiatr Dis Treat 2018; 14:3121-3132. [PMID: 30532543 PMCID: PMC6247968 DOI: 10.2147/ndt.s176399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Neuropsychiatric disorders are devastating illnesses worldwide; however, the potential involvement of viruses in the pathophysiological mechanisms of psychiatric diseases have not been clearly elucidated. Borna disease virus (BDV) is a neurotropic, noncytopathic RNA virus. MATERIALS AND METHODS In this study, we infected neonatal rats intracranially with BDV Hu-H1 and Strain V within 24 hours of birth. Psychological phenotypes were assessed using sucrose preference test, open field test, elevated plus maze test, and forced swim test. The protein expression of ERK/CREB/BDNF pathway was assessed by Western blotting of in vitro and in vivo samples. RESULTS Hu-H1-infected rats showed anxiety-like behavior 8 weeks postinfection while Strain V-infected rats demonstrated a certain abnormal behavior. Phosphorylated ERK1/2 was significantly upregulated in the hippocampi of Strain V- and Hu-H1-infected rats compared with control rats, indicating that Raf/MEK/ERK signaling was activated. CONCLUSION The data suggested that infection of neonatal rats with BDV Hu-H1 and Strain V caused behavioral abnormalities that shared common molecular pathways, providing preliminary evidences to investigate the underlying mechanisms of psychiatric disorders caused by BDV.
Collapse
Affiliation(s)
- Chenmeng Li
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402460, China, .,Department of Neurology Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China, .,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China,
| | - Xiaoyan Xu
- Department of Neurology Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China, .,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China, .,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China,
| | - Xiong Zhang
- Department of Neurology Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China, .,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China, .,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China,
| | - Ke Cheng
- Department of Neurology Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China, .,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China,
| | - Yujie Guo
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402460, China, .,Department of Neurology Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China, .,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China,
| | - Jie Jie
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402460, China, .,Department of Neurology Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China, .,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China,
| | - Hua Guo
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402460, China, .,Department of Neurology Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China, .,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China,
| | - Yong He
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402460, China, .,Department of Neurology Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China, .,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China,
| | - Chanjuan Zhou
- Department of Neurology Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China, .,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China,
| | - Siwen Gui
- Department of Neurology Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China, .,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China,
| | - Xiaogang Zhong
- Department of Neurology Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China, .,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China,
| | - Haiyang Wang
- Department of Neurology Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China, .,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China, .,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China,
| | - Peng Xie
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402460, China, .,Department of Neurology Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China, .,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China, .,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China,
| |
Collapse
|
12
|
Huang H, Zhang H, Li D, Chen S, Zhou C, Li Q, He P, Fang L, Zhang Y, Li X, Zhou J, Sun L, Liu S, Guo Y, Huang Y, Xie P. Different inhibitory effects on the proliferation and apoptosis of human and laboratory Borna disease virus‑infected human neuroblastoma SH‑SY5Y cells in vitro. Mol Med Rep 2017; 17:925-931. [PMID: 29115502 PMCID: PMC5780172 DOI: 10.3892/mmr.2017.8011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 09/20/2017] [Indexed: 11/05/2022] Open
Abstract
Borna disease virus (BDV) is a neurotropic and non‑cytolytic virus, which causes behavioral disorders in a wide range of warm‑blooded species. It is well established that BDV induces neurodegeneration by impairing neurogenesis and interfering with neuronal functioning in the limbic system. In the present study, the potential role of BDV infection in SH‑SY5Y cells was identified, and comparisons of two original BDV strains (the human Hu‑H1 and the laboratory Strain V) were performed to further elucidate the phenotypes of BDV pathogenesis with strain differences. Cell Counting Kit‑8 and flow cytometric analyses revealed that the two BDV strain‑infected groups exhibited marked anti‑proliferation and cell cycle arrest compared with the control group, and the Hu‑H1 strain caused more evident effects. However, the Hu‑H1 strain did not exert effects on the apoptosis of SH‑SH5Y cells, while Strain V led to a marked increase in apoptosis upon initial infection. Western blot analysis confirmed the upregulation of apoptosis regulator BAX protein and the downregulation of apoptosis regulator Bcl‑2 protein caused by the two BDV strains. The results of the present study provided evidence that infection with BDV suppressed SH‑SY5Y cellular functioning and exhibited divergent antiproliferative and apoptotic roles in cells between the two strains. The present study provided an insight for future investigation of strain differences and underlying pathomechanisms.
Collapse
Affiliation(s)
- Hua Huang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Hong Zhang
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, P.R. China
| | - Dan Li
- Institute of Neuroscience and The Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shigang Chen
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, P.R. China
| | - Chanjuan Zhou
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, P.R. China
| | - Qi Li
- Institute of Neuroscience and The Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Peng He
- Institute of Neuroscience and The Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Liang Fang
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, P.R. China
| | - Yong Zhang
- Institute of Neuroscience and The Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiaomei Li
- Institute of Neuroscience and The Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jingjing Zhou
- Institute of Neuroscience and The Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Lin Sun
- Institute of Neuroscience and The Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Siwen Liu
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, P.R. China
| | - Yujie Guo
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, P.R. China
| | - Ying Huang
- Institute of Neuroscience and The Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Peng Xie
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, P.R. China
| |
Collapse
|
13
|
Sun L, Fang L, Lian B, Xia JJ, Zhou CJ, Wang L, Mao Q, Wang XF, Gong X, Liang ZH, Bai SJ, Liao L, Wu Y, Xie P. Biochemical effects of venlafaxine on astrocytes as revealed by 1H NMR-based metabolic profiling. MOLECULAR BIOSYSTEMS 2017; 13:338-349. [PMID: 28045162 DOI: 10.1039/c6mb00651e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As a serotonin–norepinephrine reuptake inhibitor [SNRI], venlafaxine is one of the most commonly prescribed clinical antidepressants, with a broad range of antidepressant effects.
Collapse
|
14
|
Mao Q, Zhang L, Guo Y, Sun L, Liu S, He P, Huang R, Sun L, Chen S, Zhang H, Xie P. Identification of suitable reference genes for BDV-infected primary rat hippocampal neurons. Mol Med Rep 2016; 14:5587-5594. [PMID: 27878262 DOI: 10.3892/mmr.2016.5959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 09/26/2016] [Indexed: 11/06/2022] Open
Abstract
Borna disease virus (BDV) is a neurotropic RNA virus that infects the limbic system of mammals and results in behavioral disorders. The hippocampus is a core region in the limbic system, which contributes to memory and learning and is important in the regulation of emotion. However, no validated microRNA housekeeping genes have yet been identified in BDV‑infected rat primary hippocampal neurons. Proper normalization is key in accurate miRNA expression analysis. The present study used reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) to evaluate the expression stability of 10 commonly used reference genes [miR‑92a, 5S, U6, miR‑103, miR‑101a, miR-let-7a, miR‑16, E2 small nucleolar RNA (snoRNA), U87 and miR‑191] in BDV‑infected rat hippocampal neurons and non‑infected controls across 12 days post‑infection. The data was analyzed by four statistical algorithms: geNorm, NormFinder, BestKeeper, and the comparative Δ‑Ct method. Subsequently, the most suitable reference genes (miR‑101a and U87) and the least suitable (snoRNA) were determined by the RankAggreg package. miR‑155 was selected as a standard by which to evaluate the most and least suitable reference genes. When normalized to the most stable reference gene there were significant differences between the two groups. However, when the data were normalized to the less stably expressed gene, the results were not significant. miR‑101a was recommended as a suitable reference gene for BDV-infected rat primary hippocampal neurons.
Collapse
Affiliation(s)
- Qiang Mao
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, P.R. China
| | - Lujun Zhang
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, P.R. China
| | - Yujie Guo
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, P.R. China
| | - Lu Sun
- Institute of Neuroscience and The Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Siwen Liu
- Institute of Neuroscience and The Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Peng He
- Institute of Neuroscience and The Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Rongzhong Huang
- Department of Rehabilitation, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Lin Sun
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shigang Chen
- Institute of Neuroscience and The Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hong Zhang
- Institute of Neuroscience and The Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Peng Xie
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, P.R. China
| |
Collapse
|
15
|
Zhang H, He P, Huang R, Sun L, Liu S, Zhou J, Guo Y, Yang D, Xie P. Identification and bioinformatic analysis of dysregulated microRNAs in human oligodendroglial cells infected with borna disease virus. Mol Med Rep 2016; 14:4715-4722. [PMID: 27748825 DOI: 10.3892/mmr.2016.5842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 05/24/2016] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) are recognized as important regulators of gene expression via translational depression or mRNA degradation. Previously, dysregulated miRNAs have been found in neurodegenerative and neuropsychiatric disorders. Borna disease virus (BDV) is a neurotropic, negative single‑stranded RNA virus, which may be a cause of human neuropsychiatric disease. BDV is regarded as an ideal model to analyze the molecular mechanisms of mental disorders caused by viral infection. In the present study, 10 miRNAs were dysregulated in human oligodendrocytes (OL cells) infected with the BDV strain, Hu‑H1 (OL/BDV). The predicted target genes of those different miRNAs were closely associated with DNA binding, receptor activity, cytoplasm and membrane, biopolymer metabolic process and signal transduction, which were ranked highest using Gene Ontology (GO) analysis, and were predominantly involved in 'Immune system and adaptive Immune system pathways' on pathway analysis. Reverse transcription‑quantitative polymerase chain reaction analysis confirmed that seven miRNAs (miR‑1290, miR‑1908, miR‑146a‑5p, miR‑424‑5p, miR‑3676‑3p, miR‑296‑3p and miR‑7‑5p) were significantly downregulated in the OL/BDV cells, whereas two miRNAs (miR‑1244 and miR‑4521) showed no significant differences between the two groups. The present study revealed for the first time, to the best of our knowledge, the miRNA profile of BDV Hu‑H1‑infected human OL cells. Based on GO and pathway analyses, further investigation of the signaling processes in BDV‑infected oligodendrocytes may offer particular promise in improving understanding of the neuropathogenesis of BDV.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, P.R. China
| | - Peng He
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, P.R. China
| | - Rongzhong Huang
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Lin Sun
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Siwen Liu
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jingjing Zhou
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yujie Guo
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Deyu Yang
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, P.R. China
| | - Peng Xie
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, P.R. China
| |
Collapse
|
16
|
Knock-Down of Endogenous Bornavirus-Like Nucleoprotein 1 Inhibits Cell Growth and Induces Apoptosis in Human Oligodendroglia Cells. Int J Mol Sci 2016; 17:435. [PMID: 27023521 PMCID: PMC4848891 DOI: 10.3390/ijms17040435] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 12/31/2022] Open
Abstract
Endogenous bornavirus-like nucleoprotein elements (EBLNs) have been discovered in the genomes of various animals including humans, whose functions have been seldom studied. To explore the biological functions of human EBLNs, we constructed a lentiviral vector expressing a short-hairpin RNA against human EBLN1, which successfully inhibited EBLN1 expression by above 80% in infected human oligodendroglia cells (OL cells). We found that EBLN1 silencing suppressed cell proliferation, induced G2/M phase arrest, and promoted apoptosis in OL cells. Gene expression profiling demonstrated that 1067 genes were up-regulated, and 2004 were down-regulated after EBLN1 silencing. The top 10 most upregulated genes were PI3, RND3, BLZF1, SOD2, EPGN, SBSN, INSIG1, OSMR, CREB3L2, and MSMO1, and the top 10 most-downregulated genes were KRTAP2-4, FLRT2, DIDO1, FAT4, ESCO2, ZNF804A, SUV420H1, ZC3H4, YAE1D1, and NCOA5. Pathway analysis revealed that these differentially expressed genes were mainly involved in pathways related to the cell cycle, the mitogen-activated protein kinase pathway, p53 signaling, and apoptosis. The gene expression profiles were validated by using quantitative reverse transcription polymerase chain reaction (RT-PCR) for detecting these 20 most-changed genes. Three genes closely related to glioma, RND3, OSMR, and CREB3L2, were significantly upregulated and might be the key factors in EBLN1 regulating the proliferation and apoptosis of OL cells. This study provides evidence that EBLN1 plays a key role in regulating cell life and death, thereby opening several avenues of investigation regarding EBLN1 in the future.
Collapse
|
17
|
Persistent human Borna disease virus infection modifies the acetylome of human oligodendroglia cells towards higher energy and transporter levels. Virology 2015. [DOI: 10.1016/j.virol.2015.06.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
18
|
GC-MS-Based Metabonomic Profiling Displayed Differing Effects of Borna Disease Virus Natural Strain Hu-H1 and Laboratory Strain V Infection in Rat Cortical Neurons. Int J Mol Sci 2015; 16:19347-68. [PMID: 26287181 PMCID: PMC4581300 DOI: 10.3390/ijms160819347] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/25/2015] [Accepted: 08/03/2015] [Indexed: 11/23/2022] Open
Abstract
Borna disease virus (BDV) persists in the central nervous systems of a wide variety of vertebrates and causes behavioral disorders. Previous studies have revealed that metabolic perturbations are associated with BDV infection. However, the pathophysiological effects of different viral strains remain largely unknown. Rat cortical neurons infected with human strain BDV Hu-H1, laboratory BDV Strain V, and non-infected control (CON) cells were cultured in vitro. At day 12 post-infection, a gas chromatography coupled with mass spectrometry (GC–MS) metabonomic approach was used to differentiate the metabonomic profiles of 35 independent intracellular samples from Hu-H1-infected cells (n = 12), Strain V-infected cells (n = 12), and CON cells (n = 11). Partial least squares discriminant analysis (PLS-DA) was performed to demonstrate discrimination between the three groups. Further statistical testing determined which individual metabolites displayed significant differences between groups. PLS-DA demonstrated that the whole metabolic pattern enabled statistical discrimination between groups. We identified 31 differential metabolites in the Hu-H1 and CON groups (21 decreased and 10 increased in Hu-H1 relative to CON), 35 differential metabolites in the Strain V and CON groups (30 decreased and 5 increased in Strain V relative to CON), and 21 differential metabolites in the Hu-H1 and Strain V groups (8 decreased and 13 increased in Hu-H1 relative to Strain V). Comparative metabonomic profiling revealed divergent perturbations in key energy and amino acid metabolites between natural strain Hu-H1 and laboratory Strain V of BDV. The two BDV strains differentially alter metabolic pathways of rat cortical neurons in vitro. Their systematic classification provides a valuable template for improved BDV strain definition in future studies.
Collapse
|
19
|
Zhao M, Sun L, Chen S, Li D, Zhang L, He P, Liu X, Zhang L, Zhang H, Yang D, Huang R, Xie P. Borna disease virus infection impacts microRNAs associated with nervous system development, cell differentiation, proliferation and apoptosis in the hippocampi of neonatal rats. Mol Med Rep 2015; 12:3697-3703. [PMID: 26004383 DOI: 10.3892/mmr.2015.3828] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 04/22/2015] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression by inhibiting transcription or translation and are involved in diverse biological processes, including development, cellular differentiation and tumor generation. miRNA microarray technology is a high‑throughput global analysis tool for miRNA expression profiling. Here, the hippocampi of four borna disease virus (BDV)‑infected and four non‑infected control neonatal rats were selected for miRNA microarray and bioinformatic analysis. Reverse transcription quantitative polymerase chain reaction (RT‑qPCR) analysis was subsequently performed to validate the dysregulated miRNAs. Seven miRNAs (miR‑145*, miR‑146a*, miR‑192*, miR‑200b, miR‑223*, miR‑449a and miR‑505), showed increased expression, whereas two miRNAs (miR‑126 and miR‑374) showed decreased expression in the BDV‑infected group. By RT‑qPCR validation, five miRNAs (miR‑126, miR‑200b, miR‑374, miR‑449a and miR‑505) showed significantly decreased expression (P<0.05) in response to BDV infection. Biocarta pathway analysis predicted target genes associated with 'RNA', 'IGF1mTOR', 'EIF2', 'VEGF', 'EIF', 'NTHI', 'extrinsic', 'RB', 'IL1R' and 'IGF1' pathways. Gene Ontology analysis predicted target genes associated with 'peripheral nervous system development', 'regulation of small GTPase-mediated signal transduction', 'regulation of Ras protein signal transduction', 'aerobic respiration', 'membrane fusion', 'positive regulation of cell cycle', 'cellular respiration', 'heterocycle metabolic process', 'protein tetramerization' and 'regulation of Rho protein signal transduction' processes. Among the five dysregulated miRNAs identified by RT‑qPCR, miR‑126, miR‑200b and miR‑449a showed a strong association with nervous system development, cell differentiation, proliferation and apoptosis.
Collapse
Affiliation(s)
- Mingjun Zhao
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, P.R. China
| | - Lin Sun
- Institute of Neuroscience and the Collaborative Innovation Centre for Brain Science, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shigang Chen
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, P.R. China
| | - Dan Li
- Institute of Neuroscience and the Collaborative Innovation Centre for Brain Science, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Liang Zhang
- Institute of Neuroscience and the Collaborative Innovation Centre for Brain Science, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Peng He
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, P.R. China
| | - Xia Liu
- Institute of Neuroscience and the Collaborative Innovation Centre for Brain Science, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Lujun Zhang
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, P.R. China
| | - Hong Zhang
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, P.R. China
| | - Deyu Yang
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, P.R. China
| | - Rongzhong Huang
- Institute of Neuroscience and the Collaborative Innovation Centre for Brain Science, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Peng Xie
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, P.R. China
| |
Collapse
|
20
|
Liu X, Bode L, Zhang L, Wang X, Liu S, Zhang L, Huang R, Wang M, Yang L, Chen S, Li Q, Zhu D, Ludwig H, Xie P. Health care professionals at risk of infection with Borna disease virus - evidence from a large hospital in China (Chongqing). Virol J 2015; 12:39. [PMID: 25888756 PMCID: PMC4357222 DOI: 10.1186/s12985-015-0239-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 01/06/2015] [Indexed: 11/10/2022] Open
Abstract
Background Human Borna disease virus (BDV) infections have recently been reported in China. BDV causes cognitive and behavioural disturbances in animals. The impact on human mental disorders is subject to debate, but previous studies worldwide have found neuropsychiatric patients more frequently infected than healthy controls. A few isolates were recovered from severely depressed patients, but contagiousness of BDV strain remains unknown. Method We addressed the risk of infection in health care settings at the first affiliated hospital of Chongqing Medical University (CQMU), located in downtown Chongqing, a megacity in Southwest China. Between February 2012 and March 2013, we enrolled 1529 participants, of whom 534 were outpatients with major depressive disorder (MDD), 615 were hospital personnel, and 380 were healthy controls who underwent a health check. Infection was determined through BDV-specific circulating immune complexes (CIC), RNA, and selective antibodies (blood). Results One-fifth of the hospital staff (21.8%) were found to be infected (CIC positive), with the highest prevalence among psychiatry and oncology personnel, which is twice as many as were detected in the healthy control group (11.1%), and exceeds the prevalence detected in MDD patients (18.2%). Conclusion BDV circulates unnoticed in hospital settings in China, putting medical staff at risk and warranting clarification of infection modes and introduction of prevention measures.
Collapse
Affiliation(s)
- Xia Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China. .,Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Science, Ministry of Justice, P.R. China, Shanghai, 200063, China.
| | - Liv Bode
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China.
| | - Liang Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China. .,Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China. .,Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China.
| | - Xiao Wang
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China. .,Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China.
| | - Siwen Liu
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China. .,Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China.
| | - Lujun Zhang
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China. .,Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China.
| | - Rongzhong Huang
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Mingju Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China. .,Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China. .,Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China.
| | - Liu Yang
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China. .,Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China.
| | - Shigang Chen
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China. .,Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China.
| | - Qi Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| | - Dan Zhu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| | - Hanns Ludwig
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China.
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China. .,Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China. .,Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China.
| |
Collapse
|
21
|
USP7 overexpression predicts a poor prognosis in lung squamous cell carcinoma and large cell carcinoma. Tumour Biol 2014; 36:1721-9. [PMID: 25519684 PMCID: PMC4375295 DOI: 10.1007/s13277-014-2773-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/23/2014] [Indexed: 01/12/2023] Open
Abstract
In non-small cell lung cancer (NSCLC), both USP7 expression and p53 gene status were reported to be an indicator of poor prognosis in adenocarcinoma patients; however, its roles and mechanisms in lung squamous cell carcinoma and large cell carcinoma need to be clarified. The USP7 expression was examined in NSCLC tumors (excluding adenocarcinoma), their corresponding non-tumorous tissues, and NSCLC cells. Then, the prognostic role of USP7 was analyzed in 110 NSCLC samples (excluding the adenocarcinoma). Finally, the roles and mechanisms of USP7 in the proliferation, metastasis, and invasion of a NSCLC cell were assessed using a specific vshRNA. The USP7 expression was higher in NSCLC tissues compared to non-tumorous samples, accordingly, the high level of USP7 was detected in NSCLC cell lines compared with HBE cell. After the USP7 downregulation, the H460 cells exhibited decreased metastasis/invasion in vitro and in vivo. The preliminary mechanism study indicated overexpression of USP7 might regulate the p53-MDM2 pathway by inducing the MDM2 de-ubiquitination and subsequent stabilization, which resulted in the upregulation of the Bad phosphorylation. Additionally, we also found that USP7 might induce cell epithelial-mesenchymal transition to enhance the cell invasive ability. Clinically, USP7 overexpression significantly correlated with malignant phenotype. Furthermore, the 5-year overall survival in patients with USP7(low) was higher than that of USP7(high). Multivariate analysis showed USP7 overexpression was an independent prognostic marker for these cancers. USP7 overexpression may regulate the survival and invasive properties of squamous cell carcinoma and large cell carcinoma cells, and may serve as a molecular target.
Collapse
|
22
|
Tan AW, Tay L, Chua KH, Ahmad R, Akbar SA, Pingguan-Murphy B. Proliferation and stemness preservation of human adipose-derived stem cells by surface-modified in situ TiO₂ nanofibrous surfaces. Int J Nanomedicine 2014; 9:5389-401. [PMID: 25473278 PMCID: PMC4247135 DOI: 10.2147/ijn.s72659] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Two important criteria of an ideal biomaterial in the field of stem cells research are to regulate the cell proliferation without the loss of its pluripotency and to direct the differentiation into a specific cell lineage when desired. The present study describes the influence of TiO2 nanofibrous surface structures on the regulation of proliferation and stemness preservation of adipose-derived stem cells (ADSCs). TiO2 nanofiber arrays were produced in situ onto Ti-6Al-4V substrate via a thermal oxidation process and the successful fabrication of these nanostructures was confirmed by field emission scanning electron microscopy (FESEM), energy dispersive spectrometer (EDS), X-ray diffractometer (XRD), and contact angle measurement. ADSCs were seeded on two types of Ti-6Al-4V surfaces (TiO2 nanofibers and flat control), and their morphology, proliferation, and stemness expression were analyzed using FESEM, AlamarBlue assay, flow cytometry, and quantitative real-time polymerase chain reaction (qRT-PCR) after 2 weeks of incubation, respectively. The results show that ADSCs exhibit better adhesion and significantly enhanced proliferation on the TiO2 nanofibrous surfaces compared to the flat control surfaces. The greater proliferation ability of TiO2 nanofibrous surfaces was further confirmed by the results of cell cycle assay. More importantly, TiO2 nanofibrous surfaces significantly upregulate the expressions of stemness markers Sox-2, Nanog3, Rex-1, and Nestin. These results demonstrate that TiO2 nanofibrous surfaces can be used to enhance cell adhesion and proliferation while simultaneously maintaining the stemness of ADSCs, thereby representing a promising approach for their potential application in the field of bone tissue engineering as well as regenerative therapies.
Collapse
Affiliation(s)
- Ai Wen Tan
- Department of Biomedical Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Lelia Tay
- Department of Physiology, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Kien Hui Chua
- Department of Physiology, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Roslina Ahmad
- Department of Mechanical Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Sheikh Ali Akbar
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
23
|
Mazaheri-Tehrani E, Maghsoudi N, Shams J, Soori H, Atashi H, Motamedi F, Bode L, Ludwig H. Borna disease virus (BDV) infection in psychiatric patients and healthy controls in Iran. Virol J 2014; 11:161. [PMID: 25186971 PMCID: PMC4167498 DOI: 10.1186/1743-422x-11-161] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 08/20/2014] [Indexed: 12/01/2022] Open
Abstract
Background Borna disease virus (BDV) is an evolutionary old RNA virus, which infects brain and blood cells of humans, their primate ancestors, and other mammals. Human infection has been correlated to mood disorders and schizophrenia, but the impact of BDV on mental-health still remains controversial due to poor methodological and cross-national comparability. Method This first report from the Middle East aimed to determine BDV infection prevalence in Iranian acute psychiatric disorder patients and healthy controls through circulating immune complexes (CIC), antibodies (Ab) and antigen (pAg) in blood plasma using a standardized triple enzyme immune assay (EIA). Samples of 314 subjects (114 psychiatric cases, 69 blood donors, and 131 healthy controls) were assayed and data analyzed quantitatively and qualitatively. Results CICs revealed a BDV prevalence of one third (29.5%) in healthy Iranian controls (27.5% controls; 33.3% blood donors). In psychiatric patients CIC prevalence was higher than in controls (40.4%) and significantly correlating with bipolar patients exhibiting overt clinical symptoms (p = 0.005, OR = 1.65). CIC values were significantly elevated in bipolar (p = 0.001) and major depressive disorder (p = 0.029) patients as compared to controls, and in females compared to males (p = 0.031). Conclusion This study supports a similarly high prevalence of subclinical human BDV infections in Iran as reported for central Europe, and provides again an indication for the correlation of BDV infection and mood disorders. Further studies should address the morbidity risk for healthy carriers and those with elevated CIC levels, along with gender disparities.
Collapse
Affiliation(s)
- Elham Mazaheri-Tehrani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, P,O, Box 19615-1178, Tehran, Iran.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Liu X, Zhao L, Yang Y, Bode L, Huang H, Liu C, Huang R, Zhang L, Wang X, Zhang L, Liu S, Zhou J, Li X, He T, Cheng Z, Xie P. Human borna disease virus infection impacts host proteome and histone lysine acetylation in human oligodendroglia cells. Virology 2014; 464-465:196-205. [PMID: 25086498 PMCID: PMC7112117 DOI: 10.1016/j.virol.2014.06.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/23/2014] [Accepted: 06/30/2014] [Indexed: 12/18/2022]
Abstract
Background Borna disease virus (BDV) replicates in the nucleus and establishes persistent infections in mammalian hosts. A human BDV strain was used to address the first time, how BDV infection impacts the proteome and histone lysine acetylation (Kac) of human oligodendroglial (OL) cells, thus allowing a better understanding of infection-driven pathophysiology in vitro. Methods Proteome and histone lysine acetylation were profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. The quantifiable proteome was annotated using bioinformatics. Histone acetylation changes were validated by biochemistry assays. Results Post BDV infection, 4383 quantifiable differential proteins were identified and functionally annotated to metabolism pathways, immune response, DNA replication, DNA repair, and transcriptional regulation. Sixteen of the thirty identified Kac sites in core histones presented altered acetylation levels post infection. Conclusions BDV infection using a human strain impacted the whole proteome and histone lysine acetylation in OL cells. A human strain of BDV (BDV Hu-H1) was used to infect human oligodendroglial cells (OL cells). This study is the first to reveal the host proteomic and histone Kac profiles in BDV-infected OL cells. BDV infection affected the expression of many transcription factors and several HATs and HDACs.
Collapse
Affiliation(s)
- Xia Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The Fifth People's Hospital of Shanghai, School of Medicine, Fudan University, Shanghai, 200240, China
| | - Libo Zhao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The Third People's Hospital of Chongqing, 400014, China
| | - Yongtao Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Liv Bode
- Bornavirus Research Group affiliated to the Free University of Berlin, Berlin, Germany
| | - Hua Huang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Chengyu Liu
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Rongzhong Huang
- Department of Rehabilitative Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Liang Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Xiao Wang
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Lujun Zhang
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Siwen Liu
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Jingjing Zhou
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Xin Li
- Jingjie PTM BioLab (Hangzhou) Co. Ltd, Hangzhou, 310018, China
| | - Tieming He
- Jingjie PTM BioLab (Hangzhou) Co. Ltd, Hangzhou, 310018, China
| | - Zhongyi Cheng
- Advanced Institute of Translational Medicine, Tongji University, Shanghai, 200092, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
25
|
Liu X, Yang Y, Zhao M, Bode L, Zhang L, Pan J, Lv L, Zhan Y, Liu S, Zhang L, Wang X, Huang R, Zhou J, Xie P. Proteomics reveal energy metabolism and mitogen-activated protein kinase signal transduction perturbation in human Borna disease virus Hu-H1-infected oligodendroglial cells. Neuroscience 2014; 268:284-96. [PMID: 24637096 PMCID: PMC7116963 DOI: 10.1016/j.neuroscience.2014.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/01/2014] [Accepted: 03/06/2014] [Indexed: 12/19/2022]
Abstract
A human strain of BDV (BDV Hu-H1) was used to infect human oligodendroglial cells (OL cells). Energy metabolism was the most significantly altered pathway in BDV Hu-H1-infected OL cells. The Raf/MEK/ERK signaling cascade was significantly perturbed in BDV Hu-H1-infected OL cells. BDV Hu-H1caused constitutive activation of the ERK1/2 pathway, but cell proliferation was down-regulated at the same time. BDV Hu-H1 manages to down-regulate cell proliferation, in the presence of activated but not translocated ERK–RSK complex.
Borna disease virus (BDV) is a neurotropic, non-cytolytic RNA virus which replicates in the cell nucleus targeting mainly hippocampal neurons, but also astroglial and oligodendroglial cells in the brain. BDV is associated with a large spectrum of neuropsychiatric pathologies in animals. Its relationship to human neuropsychiatric illness still remains controversial. We could recently demonstrate that human BDV strain Hu-H1 promoted apoptosis and inhibited cell proliferation in a human oligodendroglial cell line (OL cells) whereas laboratory BDV strain V acted contrariwise. Here, differential protein expression between BDV Hu-H1-infected OL cells and non-infected OL cells was assessed through a proteomics approach, using two-dimensional electrophoresis followed by matrix-assisted laser desorption ionization-time of flight tandem mass spectrometry. A total of 63 differential host proteins were identified in BDV Hu-H1-infected OL cells compared to non-infected OL cells. We found that most changes referred to alterations related to the pentose phosphate pathway, glyoxylate and dicarboxylate metabolism, the tricarboxylic acid (TCA) cycle, and glycolysis /gluconeogenesis. By manual querying, two differential proteins were found to be associated with mitogen-activated protein kinase (MAPK) signal transduction. Five key signaling proteins of this pathway (i.e., p-Raf, p-MEK, p-ERK1/2, p-RSK, and p-MSK) were selected for Western blotting validation. p-ERK1/2 and p-RSK were found to be significantly up-regulated, and p-MSK was found to be significantly down-regulated in BDV Hu-H1-infected OL cells compared to non-infected OL cell. Although BDV Hu-H1 constitutively activated the ERK–RSK pathway, host cell proliferation and nuclear translocation of activated pERK in BDV Hu-H1-infected OL cells were impaired. These findings indicate that BDV Hu-H1 infection of human oligodendroglial cells significantly perturbs host energy metabolism, activates the downstream ERK–RSK complex of the Raf/MEK/ERK signaling cascade, and disturbs host cell proliferation possibly through impaired nuclear translocation of pERK, a finding which warrants further research.
Collapse
Affiliation(s)
- X Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Y Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - M Zhao
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - L Bode
- Bornavirus Research Group affiliated to the Free University of Berlin, Berlin, Germany
| | - L Zhang
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - J Pan
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - L Lv
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Y Zhan
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - S Liu
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - L Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - X Wang
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - R Huang
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China; Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - J Zhou
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - P Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
26
|
Borna disease virus infection in cats. Vet J 2013; 201:142-9. [PMID: 24480411 DOI: 10.1016/j.tvjl.2013.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/05/2013] [Accepted: 12/05/2013] [Indexed: 01/13/2023]
Abstract
Bornaviruses are known to cause neurological disorders in a number of animal species. Avian Bornavirus (ABV) causes proventricular dilatation disease (PDD) in birds and Borna disease virus (BDV) causes Borna disease in horses and sheep. BDV also causes staggering disease in cats, characterised by ataxia, behavioural changes and loss of postural reactions. BDV-infection markers in cats have been reported throughout the world. This review summarizes the current knowledge of Borna disease viruses in cats, including etiological agent, clinical signs, pathogenesis, epidemiology and diagnostics, with comparisons to Bornavirus infections in other species.
Collapse
|