1
|
Wu Z, Liu S, Zhang X, Qian X, Chen Z, Zhao H, Wan H, Yin N, Li J, Qu C, Du H. Genome-Wide Characterization of Alfin-like Genes in Brassica napus and Functional Analyses of BnaAL02 and BnaAL28 in Response to Nitrogen and Phosphorus Deficiency. PLANTS (BASEL, SWITZERLAND) 2024; 13:2493. [PMID: 39273978 PMCID: PMC11396871 DOI: 10.3390/plants13172493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Alfin-like proteins (ALs) form a plant-specific transcription factor (TF) gene family involved in the regulation of plant growth and development, and abiotic stress response. In this study, 30 ALs were identified in Brassica napus ecotype 'Zhongshuang 11' genome (BnaALs), and unevenly distributed on 15 chromosomes. Structural characteristic analysis showed that all of the BnaALs contained two highly conserved domains: the N terminal DUF3594 domain and the C-terminal PHD-finger domain. The BnaALs were classified into four groups (Group I-IV), supported by conserved intron-exon and protein motif structures in each group. The allopolyploid event between B. oleracea and B. rapa ancestors and the small-scale duplication events in B. napus both contributed to the large BnaALs expansion. The promoter regions of BnaALs contained multiple abiotic stress cis-elements. The BnaALs in I-IV groups were mainly expressed in cotyledon, petal, root, silique, and seed tissues, and the duplicated gene pairs shared highly similar expression patterns. RNA-seq and RT-qPCR analysis showed that BnaALs were obviously induced by low nitrogen (LN) and low phosphorus (LP) treatments in roots. Overexpressing BnaAL02 and BnaAL28 in Arabidopsis demonstrated their functions in response to LN and LP stresses. BnaAL28 enhanced primary roots' (PRs) length and lateral roots' (LRs) number under LP and LN conditions, where BnaAL02 can inhibit LR numbers under the two conditions. They can promote root hair (RH) elongation under LP conditions; however, they suppressed RH elongation under LN conditions. Our result provides new insight into the functional dissection of this family in response to nutrient stresses in plants.
Collapse
Affiliation(s)
- Zexuan Wu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Shiying Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Xinyun Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Xingzhi Qian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Zhuo Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Huiyan Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Huafang Wan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Nengwen Yin
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Jiana Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Cunmin Qu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Hai Du
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| |
Collapse
|
2
|
Rahman JF, Hoque H, Jubayer AA, Jewel NA, Hasan MN, Chowdhury AT, Prodhan SH. Alfin-like (AL) transcription factor family in Oryza sativa L.: Genome-wide analysis and expression profiling under different stresses. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 43:e00845. [PMID: 38962072 PMCID: PMC11217604 DOI: 10.1016/j.btre.2024.e00845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/24/2024] [Accepted: 05/29/2024] [Indexed: 07/05/2024]
Abstract
Oryza sativa L. is the world's most essential and economically important food crop. Climate change and ecological imbalances make rice plants vulnerable to abiotic and biotic stresses, threatening global food security. The Alfin-like (AL) transcription factor family plays a crucial role in plant development and stress responses. This study comprehensively analyzed this gene family and their expression profiles in rice, revealing nine AL genes, classifying them into three distinct groups based on phylogenetic analysis and identifying four segmental duplication events. RNA-seq data analysis revealed high expression levels of OsALs in different tissues, growth stages, and their responsiveness to stresses. RT-qPCR data showed significant expression of OsALs in different abiotic stresses. Identification of potential cis-regulatory elements in promoter regions has also unveiled their involvement. Tertiary structures of the proteins were predicted. These findings would lay the groundwork for future research to reveal their molecular mechanism in stress tolerance and plant development.
Collapse
Affiliation(s)
- Jeba Faizah Rahman
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Hammadul Hoque
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Abdullah -Al- Jubayer
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Nurnabi Azad Jewel
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Md. Nazmul Hasan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Aniqua Tasnim Chowdhury
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Shamsul H. Prodhan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| |
Collapse
|
3
|
Liu H, Liu W, Wang Z, Li N, Xie Y, Zhao Y. Comprehensive analysis of Alfin-like transcription factors associated with drought and salt stresses in wheat (Triticum aestivum L.). BMC Genomics 2024; 25:701. [PMID: 39020295 PMCID: PMC11256656 DOI: 10.1186/s12864-024-10557-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/24/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Alfin-like proteins are a kind of plant-specific transcription factors, and play vital roles in plant growth, development and stress responses. RESULTS In this study, a total of 27 Alfin-like transcription factors were identified in wheat. TaAL genes were unevenly distributed on chromosome. Phylogenetic analysis showed TaAL genes were divided into AL-B and AL-C subfamilies, and TaALs with closer evolutionary relationships generally shared more similar exon-intron structures and conserved motifs. The cis-acting element analysis showed MBS, ABRE and CGTCA-motif were the most common in TaAL promoters. The interacting proteins and downstream target genes of TaAL genes were also investigated in wheat. The transcriptome data and real-time PCR results indicated TaAL genes were differentially expressed under drought and salt stresses, and TaAL1-B was significantly up-regulated in response to drought stress. In addition, association analysis revealed that TaAL1-B-Hap-I allelic variation had significantly higher survival rate compared to TaAL1-B-Hap-II under drought stress. CONCLUSIONS These results will provide vital information to increase our understanding of the Alfin-like gene family in wheat, and help us in breeding better wheat varieties in the future.
Collapse
Affiliation(s)
- Hao Liu
- College of Agriculture, Ludong University, Yantai, 264000, China
| | - Wenyan Liu
- College of Agriculture, Ludong University, Yantai, 264000, China
| | - Ziyi Wang
- College of Agriculture, Ludong University, Yantai, 264000, China
| | - Na Li
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, China.
| | - Yongfeng Xie
- College of Environment and Life Sciences, Weinan Normal University, Weinan, 714099, China.
| | - Yanhong Zhao
- College of Agriculture, Ludong University, Yantai, 264000, China.
| |
Collapse
|
4
|
Liu J, Wang Z, Chen B, Wang G, Ke H, Zhang J, Jiao M, Wang Y, Xie M, Gu Q, Sun Z, Wu L, Wang X, Ma Z, Zhang Y. Genome-Wide Identification of the Alfin-like Gene Family in Cotton ( Gossypium hirsutum) and the GhAL19 Gene Negatively Regulated Drought and Salt Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:1831. [PMID: 38999670 PMCID: PMC11243875 DOI: 10.3390/plants13131831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/29/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024]
Abstract
Alfin-like (AL) is a small plant-specific gene family characterized by a PHD-finger-like structural domain at the C-terminus and a DUF3594 structural domain at the N-terminus, and these genes play prominent roles in plant development and abiotic stress response. In this study, we conducted genome-wide identification and analyzed the AL protein family in Gossypium hirsutum cv. NDM8 to assess their response to various abiotic stresses for the first time. A total of 26 AL genes were identified in NDM8 and classified into four groups based on a phylogenetic tree. Moreover, cis-acting element analysis revealed that multiple phytohormone response and abiotic stress response elements were highly prevalent in AL gene promoters. Further, we discovered that the GhAL19 gene could negatively regulate drought and salt stresses via physiological and biochemical changes, gene expression, and the VIGS assay. The study found there was a significant increase in POD and SOD activity, as well as a significant change in MDA in VIGS-NaCl and VIGS-PEG plants. Transcriptome analysis demonstrated that the expression levels of the ABA biosynthesis gene (GhNCED1), signaling genes (GhABI1, GhABI2, and GhABI5), responsive genes (GhCOR47, GhRD22, and GhERFs), and the stress-related marker gene GhLEA14 were regulated in VIGS lines under drought and NaCl treatment. In summary, GhAL19 as an AL TF may negatively regulate tolerance to drought and salt by regulating the antioxidant capacity and ABA-mediated pathway.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Zhicheng Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Bin Chen
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Guoning Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Huifeng Ke
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Jin Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Mengjia Jiao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Yan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Meixia Xie
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Qishen Gu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Zhengwen Sun
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Liqiang Wu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Yan Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
5
|
Wang Y, Cheng J, Guo Y, Li Z, Yang S, Wang Y, Gong Z. Phosphorylation of ZmAL14 by ZmSnRK2.2 regulates drought resistance through derepressing ZmROP8 expression. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1334-1350. [PMID: 38804844 DOI: 10.1111/jipb.13677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024]
Abstract
Drought stress has negative effects on crop growth and production. Characterization of transcription factors that regulate the expression of drought-responsive genes is critical for understanding the transcriptional regulatory networks in response to drought, which facilitates the improvement of crop drought tolerance. Here, we identified an Alfin-like (AL) family gene ZmAL14 that negatively regulates drought resistance. Overexpression of ZmAL14 exhibits susceptibility to drought while mutation of ZmAL14 enhances drought resistance. An abscisic acid (ABA)-activated protein kinase ZmSnRK2.2 interacts and phosphorylates ZmAL14 at T38 residue. Knockout of ZmSnRK2.2 gene decreases drought resistance of maize. A dehydration-induced Rho-like small guanosine triphosphatase gene ZmROP8 is directly targeted and repressed by ZmAL14. Phosphorylation of ZmAL14 by ZmSnRK2.2 prevents its binding to the ZmROP8 promoter, thereby releasing the repression of ZmROP8 transcription. Overexpression of ZmROP8 stimulates peroxidase activity and reduces hydrogen peroxide accumulation after drought treatment. Collectively, our study indicates that ZmAL14 is a negative regulator of drought resistance, which can be phosphorylated by ZmSnRK2.2 through the ABA signaling pathway, thus preventing its suppression on ZmROP8 transcription during drought stress response.
Collapse
Affiliation(s)
- Yalin Wang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jinkui Cheng
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yazhen Guo
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yu Wang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| |
Collapse
|
6
|
Jin R, Yang H, Muhammad T, Li X, Tuerdiyusufu D, Wang B, Wang J. Involvement of Alfin-Like Transcription Factors in Plant Development and Stress Response. Genes (Basel) 2024; 15:184. [PMID: 38397174 PMCID: PMC10887727 DOI: 10.3390/genes15020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Alfin-like (AL) proteins are an important class of transcription factor (TF) widely distributed in eukaryotes and play vital roles in many aspects of plant growth and development. AL proteins contain an Alfin-like domain and a specific PHD-finger structure domain at the N-terminus and C-terminus, respectively. The PHD domain can bind to a specific (C/A) CAC element in the promoter region and affect plant growth and development by regulating the expression of functional genes. This review describes a variety of AL transcription factors that have been isolated and characterized in Arabidopsis thaliana, Brassica rapa, Zea mays, Brassica oleracea, Solanum lycopersicum, Populus trichocarpa, Pyrus bretschenedri, Malus domestica, and other species. These studies have focused mainly on plant growth and development, different abiotic stress responses, different hormonal stress responses, and stress responses after exposure to pathogenic bacteria. However, studies on the molecular functional mechanisms of Alfin-like transcription factors and the interactions between different signaling pathways are rare. In this review, we performed phylogenetic analysis, cluster analysis, and motif analysis based on A. thaliana sequences. We summarize the structural characteristics of AL transcription factors in different plant species and the diverse functions of AL transcription factors in plant development and stress regulation responses. The aim of this study was to provide a reference for further application of the functions and mechanisms of action of the AL protein family in plants.
Collapse
Affiliation(s)
- Ruixin Jin
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (R.J.); (H.Y.); (T.M.); (X.L.); (D.T.)
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Haitao Yang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (R.J.); (H.Y.); (T.M.); (X.L.); (D.T.)
| | - Tayeb Muhammad
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (R.J.); (H.Y.); (T.M.); (X.L.); (D.T.)
| | - Xin Li
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (R.J.); (H.Y.); (T.M.); (X.L.); (D.T.)
- College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi 830052, China
| | - Diliaremu Tuerdiyusufu
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (R.J.); (H.Y.); (T.M.); (X.L.); (D.T.)
- College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi 830052, China
| | - Baike Wang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (R.J.); (H.Y.); (T.M.); (X.L.); (D.T.)
| | - Juan Wang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (R.J.); (H.Y.); (T.M.); (X.L.); (D.T.)
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
7
|
Quan W, Chan Z, Wei P, Mao Y, Bartels D, Liu X. PHD finger proteins function in plant development and abiotic stress responses: an overview. FRONTIERS IN PLANT SCIENCE 2023; 14:1297607. [PMID: 38046601 PMCID: PMC10693458 DOI: 10.3389/fpls.2023.1297607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023]
Abstract
The plant homeodomain (PHD) finger with a conserved Cys4-His-Cys3 motif is a common zinc-binding domain, which is widely present in all eukaryotic genomes. The PHD finger is the "reader" domain of methylation marks in histone H3 and plays a role in the regulation of gene expression patterns. Numerous proteins containing the PHD finger have been found in plants. In this review, we summarize the functional studies on PHD finger proteins in plant growth and development and responses to abiotic stresses in recent years. Some PHD finger proteins, such as VIN3, VILs, and Ehd3, are involved in the regulation of flowering time, while some PHD finger proteins participate in the pollen development, for example, MS, TIP3, and MMD1. Furthermore, other PHD finger proteins regulate the plant tolerance to abiotic stresses, including Alfin1, ALs, and AtSIZ1. Research suggests that PHD finger proteins, as an essential transcription regulator family, play critical roles in various plant biological processes, which is helpful in understanding the molecular mechanisms of novel PHD finger proteins to perform specific function.
Collapse
Affiliation(s)
- Wenli Quan
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn, Germany
| | - Zhulong Chan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Piwei Wei
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
| | - Yahui Mao
- College of Life Science and Technology, Hubei Engineering University, Xiaogan, China
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn, Germany
| | - Xun Liu
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
| |
Collapse
|
8
|
Feng P, Liang X, Yu H, Dong X, Liang Q, Dai C. The evolution of bitter taste receptor gene in primates: Gene duplication and selection. Ecol Evol 2023; 13:e10610. [PMID: 37841228 PMCID: PMC10571502 DOI: 10.1002/ece3.10610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 09/08/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023] Open
Abstract
Bitter taste perception plays an important role in preventing animals from digesting poisonous and harmful substances. In primates, especially the Cercopithecidae species, most species feed on plants; thus, it is reasonable to speculate that most of the bitter taste receptor genes (T2Rs) of primates are under purifying selection to maintain the functional stability of bitter taste perception. Gene duplication has happened in T2Rs frequently, and what will be the fate of T2Rs copies is another question we are concerned about. To answer these questions, we selected the T2Rs of primates reported in another study and conducted corresponding selective pressure analyses to determine what kind of selective pressure was acting on them. Further, we carried out selective pressure analyses on gene copies and their corresponding ancestors by considering several possible situations. The results showed that among the 25 gene groups examined here, 15 groups are subject to purifying selection and others are under relaxed selection, with many positively selected sites detected. Gene copies existed in several groups, but only some groups (clade1_a1-b2, clade1_c-c2, clade1_d1-d3, clade1_f1-f2, T2R10, T2R13, and T2R42) have positively selected sites, inferring that they may have some relation to functional divergence. Taken together, T2Rs in primates are under diverse selective pressures, and most gene copies are subject to the same selective pressures. In such cases, the copies may be just to keep the function conservative, and more copies can increase the quantity of the bitter taste receptor, raise the efficiency of bitter substance recognition, and finally enhance the fitness of feeding during the evolutionary course of primates. This study can improve our understanding of T2Rs evolution in primates.
Collapse
Affiliation(s)
- Ping Feng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education of the People's Republic of ChinaGuangxi Normal UniversityGuilinGuangxiChina
- Guangxi Key Laboratory of Rare and Endangered Animal EcologyGuangxi Normal UniversityGuilinGuangxiChina
| | - Xinyue Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education of the People's Republic of ChinaGuangxi Normal UniversityGuilinGuangxiChina
- Guangxi Key Laboratory of Rare and Endangered Animal EcologyGuangxi Normal UniversityGuilinGuangxiChina
| | - Hongling Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education of the People's Republic of ChinaGuangxi Normal UniversityGuilinGuangxiChina
- Guangxi Key Laboratory of Rare and Endangered Animal EcologyGuangxi Normal UniversityGuilinGuangxiChina
| | - Xiaoyan Dong
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education of the People's Republic of ChinaGuangxi Normal UniversityGuilinGuangxiChina
- Guangxi Key Laboratory of Rare and Endangered Animal EcologyGuangxi Normal UniversityGuilinGuangxiChina
| | - Qiufang Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education of the People's Republic of ChinaGuangxi Normal UniversityGuilinGuangxiChina
- Guangxi Key Laboratory of Rare and Endangered Animal EcologyGuangxi Normal UniversityGuilinGuangxiChina
| | - Chuanyin Dai
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education of the People's Republic of ChinaGuangxi Normal UniversityGuilinGuangxiChina
- Guangxi Key Laboratory of Rare and Endangered Animal EcologyGuangxi Normal UniversityGuilinGuangxiChina
| |
Collapse
|
9
|
Jin R, Wang J, Guo B, Yang T, Hu J, Wang B, Yu Q. Identification and Expression Analysis of the Alfin-like Gene Family in Tomato and the Role of SlAL3 in Salt and Drought Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:2829. [PMID: 37570984 PMCID: PMC10421131 DOI: 10.3390/plants12152829] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
Alfin-like (AL) transcription factors are a family of plant-specific genes with a PHD-finger-like structural domain at the C-terminus and a DUF3594 structural domain at the N-terminus that play important roles in plant development and stress response. In the present study, genome-wide identification and analysis were performed of the AL protein family in cultivated tomato (Solanum lycopersicum) and three wild relatives (S. pennellii, S. pimpinellifolium, and S. lycopersicoides) to evaluate their response to different abiotic stresses. A total of 39 ALs were identified and classified into four groups and based on phylogenetic tree and evolutionary analysis were shown to have formed prior to the differentiation of monocotyledons and dicots. Moreover, cis-acting element analysis revealed that various phytohormone response and abiotic stress response elements were highly existed in tomato. In addition, further analysis of the SlAL3 gene revealed that its expression was induced by drought and salt stresses and localized to the nucleus. In conclusion, our findings concerning AL genes provide useful information for further studies on their functions and regulatory mechanisms and provide theoretical references for studying AL gene response to abiotic stresses in plants.
Collapse
Affiliation(s)
- Ruixin Jin
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (R.J.); (J.W.)
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China; (T.Y.); (J.H.)
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China;
| | - Juan Wang
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (R.J.); (J.W.)
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China; (T.Y.); (J.H.)
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China;
| | - Bin Guo
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China;
- College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi 830052, China
| | - Tao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China; (T.Y.); (J.H.)
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China;
| | - Jiahui Hu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China; (T.Y.); (J.H.)
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China;
| | - Baike Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China; (T.Y.); (J.H.)
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China;
| | - Qinghui Yu
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (R.J.); (J.W.)
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China; (T.Y.); (J.H.)
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China;
| |
Collapse
|
10
|
Wang P, Lu S, Li W, Ma Z, Mao J, Chen B. Genome-wide characterization of Alfin-like (AL) genes in apple and functional identification of MdAL4 in response to drought stress. PLANT CELL REPORTS 2023; 42:395-408. [PMID: 36596886 DOI: 10.1007/s00299-022-02966-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Eleven Alfin-like (AL) genes were obtained from apple and MdAL4 was selected for improving drought stress tolerance of transgenic apple callus and Arabidopsis. Drought is an important environmental factor affecting plant growth all over the world. Alfin-like (AL) have well-documented functions in abiotic stress response, but their drought stress tolerance in apple (Malus domestica) are poorly understood. According to the transcriptome data, 11 MdAL genes containing conserved Alfin and PHD-finger domain were identified in apple and divided into three subgroups with a total of 35 members from different species. Subsequently, gene structures, conserved amino acid sequences, promoter cis-acting elements, and gene evolution events were analyzed. Based on differential expression of MdALs in response to abiotic stresses, MdAL4, which was highly expressed under drought, was further cloned and investigated. MdAL4 encoding nuclear-localized protein conferred enhanced drought tolerance in overexpressing transgenic calli of apple 'Orin'. Moreover, the ectopic expression of MdAL4 improved the drought tolerance of transgenic Arabidopsis, as judged from remarkably decreased malonaldehyde (MDA) content and electrolyte leakage in MdAL4 overexpressing plants relative to WT. Furthermore, MdAL4 possibly could bind to promoter regions of ROS-scavenging and stress-related genes to improve drought tolerance. Additionally, we found in silico evidence that three proteins containing the WD40 domain that interact with MdAL4. Based on these results, MdAL4 was identified as a positive regulator for improving drought stress of apple.
Collapse
Affiliation(s)
- Ping Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wenfang Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zonghuan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
11
|
Yang Y, Ma X, Xia H, Wang L, Chen S, Xu K, Yang F, Zou Y, Wang Y, Zhu J, Li T, Luo Z, Hu S, Liao Z, Luo L, Yu S. Natural variation of Alfin-like family affects seed size and drought tolerance in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1176-1193. [PMID: 36219491 DOI: 10.1111/tpj.16003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The Alfin-like (AL) family is a group of small plant-specific transcriptional factors involved in abiotic stresses in dicotyledon. In an early study, we found an AL gene in rice that was associated with grain yield under drought stress. However, little information is known about the AL family in rice. In this study, AL genes in the rice genome were identified, and the OsAL proteins were found to locate in the nucleus and have no transcriptional self-activation activity. The expression of the OsALs was regulated by different environmental stimulations and plant hormones. Association and domestication analysis revealed that natural variation of most OsALs was significantly associated with yield traits, drought resistance and divergence in grain size in indica and japonica rice varieties. Hap1 of OsAL7.1 and Hap7 of OsAL11 were favorable haplotypes of seed weight and germination under osmotic stress. Furthermore, osal7.1 and osal11 mutants have larger seeds and are more sensitive to abscisic acid and mannitol during germination stage. Overexpressing of OsAL7.1 and OsAL11 in rice weakened the tolerance to drought in the adult stage. Thus, our work provides informative knowledge for exploring and harnessing haplotype diversity of OsALs to improve yield stability under drought stress.
Collapse
Affiliation(s)
- Yunan Yang
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, 2901# Beidi Road, Minhang District, Shanghai, 201106, China
- The Research Center for Plant Functional Genes and Tissue Culture Technology of Jiangxi Agricultural University, 1101# Zhimin Avenue, Nanchang, Jiangxi, 330045, China
| | - Xiaosong Ma
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, 2901# Beidi Road, Minhang District, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, 2901# Beidi Road, Minghang District, Shanghai, 201106, China
| | - Hui Xia
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, 2901# Beidi Road, Minhang District, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, 2901# Beidi Road, Minghang District, Shanghai, 201106, China
| | - Lei Wang
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, 2901# Beidi Road, Minhang District, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, 2901# Beidi Road, Minghang District, Shanghai, 201106, China
| | - Shoujun Chen
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, 2901# Beidi Road, Minhang District, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, 2901# Beidi Road, Minghang District, Shanghai, 201106, China
| | - Kai Xu
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, 2901# Beidi Road, Minhang District, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, 2901# Beidi Road, Minghang District, Shanghai, 201106, China
| | - Fangwen Yang
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, 2901# Beidi Road, Minhang District, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, 2901# Beidi Road, Minghang District, Shanghai, 201106, China
| | - Yuqiao Zou
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, 2901# Beidi Road, Minhang District, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, 2901# Beidi Road, Minghang District, Shanghai, 201106, China
| | - Yulan Wang
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, 2901# Beidi Road, Minhang District, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, 2901# Beidi Road, Minghang District, Shanghai, 201106, China
| | - Jinmin Zhu
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, 2901# Beidi Road, Minhang District, Shanghai, 201106, China
- The Research Center for Plant Functional Genes and Tissue Culture Technology of Jiangxi Agricultural University, 1101# Zhimin Avenue, Nanchang, Jiangxi, 330045, China
| | - Tianfei Li
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, 2901# Beidi Road, Minhang District, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, 2901# Beidi Road, Minghang District, Shanghai, 201106, China
| | - Zhi Luo
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, 2901# Beidi Road, Minhang District, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, 2901# Beidi Road, Minghang District, Shanghai, 201106, China
| | - Songping Hu
- The Research Center for Plant Functional Genes and Tissue Culture Technology of Jiangxi Agricultural University, 1101# Zhimin Avenue, Nanchang, Jiangxi, 330045, China
| | - Zhigang Liao
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, 2901# Beidi Road, Minhang District, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, 2901# Beidi Road, Minghang District, Shanghai, 201106, China
| | - Lijun Luo
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, 2901# Beidi Road, Minhang District, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, 2901# Beidi Road, Minghang District, Shanghai, 201106, China
| | - Shunwu Yu
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, 2901# Beidi Road, Minhang District, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, 2901# Beidi Road, Minghang District, Shanghai, 201106, China
| |
Collapse
|
12
|
Quiroz-Iturra LF, Simpson K, Arias D, Silva C, González-Calquin C, Amaza L, Handford M, Stange C. Carrot DcALFIN4 and DcALFIN7 Transcription Factors Boost Carotenoid Levels and Participate Differentially in Salt Stress Tolerance When Expressed in Arabidopsis thaliana and Actinidia deliciosa. Int J Mol Sci 2022; 23:ijms232012157. [PMID: 36293018 PMCID: PMC9603649 DOI: 10.3390/ijms232012157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
ALFIN-like transcription factors (ALs) are involved in several physiological processes such as seed germination, root development and abiotic stress responses in plants. In carrot (Daucus carota), the expression of DcPSY2, a gene encoding phytoene synthase required for carotenoid biosynthesis, is induced after salt and abscisic acid (ABA) treatment. Interestingly, the DcPSY2 promoter contains multiple ALFIN response elements. By in silico analysis, we identified two putative genes with the molecular characteristics of ALs, DcAL4 and DcAL7, in the carrot transcriptome. These genes encode nuclear proteins that transactivate reporter genes and bind to the carrot DcPSY2 promoter in yeast. The expression of both genes is induced in carrot under salt stress, especially DcAL4 which also responds to ABA treatment. Transgenic homozygous T3 Arabidopsis thaliana lines that stably express DcAL4 and DcAL7 show a higher survival rate with respect to control plants after chronic salt stress. Of note is that DcAL4 lines present a better performance in salt treatments, correlating with the expression level of DcAL4, AtPSY and AtDXR and an increase in carotenoid and chlorophyll contents. Likewise, DcAL4 transgenic kiwi (Actinidia deliciosa) lines show increased carotenoid and chlorophyll content and higher survival rate compared to control plants after chronic salt treatment. Therefore, DcAL4 and DcAL7 encode functional transcription factors, while ectopic expression of DcAL4 provides increased tolerance to salinity in Arabidopsis and Kiwi plants.
Collapse
Affiliation(s)
- Luis Felipe Quiroz-Iturra
- Genetics & Biotechnology Lab, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Kevin Simpson
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 7750000, Chile
| | - Daniela Arias
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
| | - Cristóbal Silva
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
| | - Christian González-Calquin
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
| | - Leticia Amaza
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
| | - Michael Handford
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
| | - Claudia Stange
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
- Correspondence: ; Tel.: +56-22-2978-7361
| |
Collapse
|
13
|
Quan W, Liu X, Wang L, Yin M, Yang L, Chan Z. Ectopic expression of Medicago truncatula homeodomain finger protein, MtPHD6, enhances drought tolerance in Arabidopsis. BMC Genomics 2019; 20:982. [PMID: 31842738 PMCID: PMC6916436 DOI: 10.1186/s12864-019-6350-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/28/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The plant homeodomain (PHD) finger is a Cys4HisCys3-type zinc finger which promotes protein-protein interactions and binds to the cis-acting elements in the promoter regions of target genes. In Medicago truncatula, five PHD homologues with full-length sequence were identified. However, the detailed function of PHD genes was not fully addressed. RESULTS In this study, we characterized the function of MtPHD6 during plant responses to drought stress. MtPHD6 was highly induced by drought stress. Ectopic expression of MtPHD6 in Arabidopsis enhanced tolerance to osmotic and drought stresses. MtPHD6 transgenic plants exhibited decreased water loss rate, MDA and ROS contents, and increased leaf water content and antioxidant enzyme activities under drought condition. Global transcriptomic analysis revealed that MtPHD6 reprogramed transcriptional networks in transgenic plants. Expression levels of ABA receptor PYR/PYLs, ZINC FINGER, AP2/EREBP and WRKY transcription factors were mainly up-regulated after transformation of MtPHD6. Interaction network analysis showed that ZINC FINGER, AP2/EREBP and WRKY interacted with each other and downstream stress induced proteins. CONCLUSIONS We proposed that ZINC FINGER, AP2/EREBP and WRKY transcription factors were activated through ABA dependent and independent pathways to increase drought tolerance of MtPHD6 transgenic plants.
Collapse
Affiliation(s)
- Wenli Quan
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, Hubei China
| | - Xun Liu
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn, Germany
| | - Lihua Wang
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, Hubei China
| | - Mingzhu Yin
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei China
| | - Li Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei China
| | - Zhulong Chan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei China
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei China
| |
Collapse
|
14
|
Huang Y, Jiang L, Liu BY, Tan CF, Chen DH, Shen WH, Ruan Y. Evolution and conservation of polycomb repressive complex 1 core components and putative associated factors in the green lineage. BMC Genomics 2019; 20:533. [PMID: 31253095 PMCID: PMC6599366 DOI: 10.1186/s12864-019-5905-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 06/13/2019] [Indexed: 01/14/2023] Open
Abstract
Background Polycomb group (PcG) proteins play important roles in animal and plant development and stress response. Polycomb repressive complex 1 (PRC1) and PRC2 are the key epigenetic regulators of gene expression, and are involved in almost all developmental stages. PRC1 catalyzes H2A monoubiquitination resulting in transcriptional silencing or activation. The PRC1 components in the green lineage were identified and evolution and conservation was analyzed by bioinformatics techniques. RING Finger Protein 1 (RING1), B lymphoma Mo-MLV insertion region 1 homolog (BMI1), Like Heterochromatin Protein 1 (LHP1) and Embryonic Flower 1 (EMF1) are the PRC1 core components and Vernalization 1 (VRN1), VP1/ABI3-Like 1/2/3 (VAL1/2/3), Alfin-like 1–7 (AL1–7), Inhibitor of growth 1/2 (ING1/2), and Early Bolting in Short Days (EBS) / Short Life (SHL) are the associated factors. Results Each PRC1 subunit possesses special domain organizations, such as RING and the ring finger and WD40-associated ubiquitin-like (RAWUL) domains for RING1 and BMI1, chromatin organization modifier (CHROMO) and chromo shadow (ChSh) domains for LHP1, one or two B3 DNA binding domain(s) for VRN1, B3 and zf-CW domains for VAL1/2/3, Alfin and Plant HomeoDomain (PHD) domains for AL1–7, ING and PHD domains for ING1/2, Bromoadjacent homology (BAT) and PHD domains for EBS/SHL. Six new motifs are uncovered in EMF1. The PRC1 core components RING1 and BMI1, and the associated factors VAL1/2/3, AL1–7, ING1/2, and EBS/SHL exist from alga to higher plants, whereas LHP1 only occurs in higher plants. EMF1 and VRN1 are present only in eudicots. PRC1 components undergo duplication in the plant evolution. Most of plants carry the homologous core component LHP1, the associated factor EMF1, and several homologs in RING1, BMI1, VRN1, AL1–7, ING1/2/3, and EBS/SHL. Cabbage, cotton, poplar, orange and maize often exhibit more gene copies than other species. Domain organization analysis shows that duplicated gene functions may be of diverse. Conclusions The PRC1 core components RING1 and BMI1, and the associated factors VAL1/2/3, AL1–7, ING1/2, and EBS/SHL originate from algae. The core component LHP1 is from moss and the associated factors EMF1 and VRN1 are from dicotyledon. PRC1 components are of functional redundancy and diversity in evolution. Electronic supplementary material The online version of this article (10.1186/s12864-019-5905-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yong Huang
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha, 410128, China.,International Associated Laboratory of CNRS-FU-HAU on Plant Epigenome Research, Hunan Agricultural University, Changsha, 410128, China.,Key Laboratory of Plant Genetics and Molecular Biology of Education Department of Hunan Province, Hunan Agricultural University, Changsha, 410128, China
| | - Ling Jiang
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha, 410128, China.,International Associated Laboratory of CNRS-FU-HAU on Plant Epigenome Research, Hunan Agricultural University, Changsha, 410128, China.,Key Laboratory of Plant Genetics and Molecular Biology of Education Department of Hunan Province, Hunan Agricultural University, Changsha, 410128, China
| | - Bo-Yu Liu
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha, 410128, China.,International Associated Laboratory of CNRS-FU-HAU on Plant Epigenome Research, Hunan Agricultural University, Changsha, 410128, China.,Key Laboratory of Plant Genetics and Molecular Biology of Education Department of Hunan Province, Hunan Agricultural University, Changsha, 410128, China
| | - Cheng-Fang Tan
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha, 410128, China.,International Associated Laboratory of CNRS-FU-HAU on Plant Epigenome Research, Hunan Agricultural University, Changsha, 410128, China.,Key Laboratory of Plant Genetics and Molecular Biology of Education Department of Hunan Province, Hunan Agricultural University, Changsha, 410128, China
| | - Dong-Hong Chen
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, 311300, China
| | - Wen-Hui Shen
- International Associated Laboratory of CNRS-FU-HAU on Plant Epigenome Research, Hunan Agricultural University, Changsha, 410128, China.,Institut de Biologie Mole'culaire des Plantes du CNRS, Universite' de Strasbourg, 12 rue du Ge'ne'ralZimmer, 67084, Strasbourg Cedex, France
| | - Ying Ruan
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha, 410128, China. .,International Associated Laboratory of CNRS-FU-HAU on Plant Epigenome Research, Hunan Agricultural University, Changsha, 410128, China. .,Key Laboratory of Plant Genetics and Molecular Biology of Education Department of Hunan Province, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
15
|
Tao JJ, Wei W, Pan WJ, Lu L, Li QT, Ma JB, Zhang WK, Ma B, Chen SY, Zhang JS. An Alfin-like gene from Atriplex hortensis enhances salt and drought tolerance and abscisic acid response in transgenic Arabidopsis. Sci Rep 2018; 8:2707. [PMID: 29426828 PMCID: PMC5807399 DOI: 10.1038/s41598-018-21148-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 01/29/2018] [Indexed: 12/11/2022] Open
Abstract
Alfin-like (AL) is a small plant-specific gene family with prominent roles in root growth and abiotic stress response. Here, we aimed to identify novel stress tolerance AL genes from the stress-tolerant species Atriplex hortensis. Totally, we isolated four AhAL genes, all encoding nuclear-localized proteins with cis-element-binding and transrepression activities. Constitutive expression of AhAL1 in Arabidopsis facilitated plants to survive under saline condition, while expressing anyone of the other three AhAL genes led to salt-hypersensitive response, indicating functional divergence of AhAL family. AhAL1 also conferred enhanced drought tolerance, as judged from enhanced survival, improved growth, decreased malonaldehyde (MDA) content and reduced water loss in AhAL1-expressing plants compared to WT. In addition, abscisic acid (ABA)-mediated stomatal closure and inhibition of seed germination and primary root elongation were enhanced in AhAL1-transgenic plants. Further analysis demonstrated that AhAL1 could bind to promoter regions of GRF7, DREB1C and several group-A PP2C genes and repress their expression. Correspondingly, the expression levels of positive stress regulator genes DREB1A, DREB2A and three ABFs were all increased in AhAL1-expressing plants. Based on these results, AhAL1 was identified as a novel candidate gene for improving abiotic stress tolerance of crop plants.
Collapse
Affiliation(s)
- Jian-Jun Tao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Wei
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wen-Jia Pan
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Long Lu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qing-Tian Li
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin-Biao Ma
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Biao Ma
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
16
|
Wei W, Tao JJ, Chen HW, Li QT, Zhang WK, Ma B, Lin Q, Zhang JS, Chen SY. A Histone Code Reader and a Transcriptional Activator Interact to Regulate Genes for Salt Tolerance. PLANT PHYSIOLOGY 2017; 175:1304-1320. [PMID: 28874519 PMCID: PMC5664453 DOI: 10.1104/pp.16.01764] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 09/01/2017] [Indexed: 05/16/2023]
Abstract
Plant homeodomain (PHD) finger proteins are involved in various developmental processes and stress responses. They recognize and bind to epigenetically modified histone H3 tail and function as histone code readers. Here we report that GmPHD6 reads low methylated histone H3K4me0/1/2 but not H3K4me3 with its N-terminal domain instead of the PHD finger. GmPHD6 does not possess transcriptional regulatory ability but has DNA-binding ability. Through the PHD finger, GmPHD6 interacts with its coactivator, LHP1-1/2, to form a transcriptional activation complex. Using a transgenic hairy root system, we demonstrate that overexpression of GmPHD6 improves stress tolerance in soybean (Glycinemax) plants. Knocking down the LHP1 expression disrupts this role of GmPHD6, indicating that GmPHD6 requires LHP1 functions during stress response. GmPHD6 influences expression of dozens of stress-related genes. Among these, we identified three targets of GmPHD6, including ABA-stress-ripening-induced CYP75B1 and CYP82C4 Overexpression of each gene confers stress tolerance in soybean plants. GmPHD6 is recruited to H3K4me0/1/2 marks and recognizes the G-rich elements in target gene promoters, whereas LHP1 activates expression of these targets. Our study reveals a mechanism involving two partners in a complex. Manipulation of the genes in this pathway should improve stress tolerance in soybean or other legumes/crops.
Collapse
Affiliation(s)
- Wei Wei
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian-Jun Tao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hao-Wei Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qing-Tian Li
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Biao Ma
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qing Lin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
17
|
|
18
|
Zhou W, Wu J, Zheng Q, Jiang Y, Zhang M, Zhu S. Genome-wide identification and comparative analysis of Alfin-like transcription factors in maize. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0491-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Calderón CI, Yandell BS, Doebley JF. Fine Mapping of a QTL Associated with Kernel Row Number on Chromosome 1 of Maize. PLoS One 2016; 11:e0150276. [PMID: 26930509 PMCID: PMC4773258 DOI: 10.1371/journal.pone.0150276] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 02/11/2016] [Indexed: 12/27/2022] Open
Abstract
The genetic factors underlying changes in ear morphology, and particularly the inheritance of kernel row number (KRN), have been broadly investigated in diverse mapping populations in maize (Zea mays L.). In this study, we mapped a region on the long arm of chromosome 1 containing a QTL for KRN. This work was performed using a set of recombinant chromosome nearly isogenic lines (RCNILs) derived from a BC2S3 population produced using the inbred maize line W22 and teosinte (Zea mays ssp. parviglumis) as the parents. A set of 48 RCNILs was evaluated in the field during the summer of 2013 in order to perform the mapping. A QTL for KRN was found that explained approximately 51% of the phenotypic variance and had a 1.5-LOD confidence interval of 203 kb. Seven genes are described in this interval. One of these candidate genes may have been the target of domestication processes in maize and contributed to the shift from two kernel row ears in teosinte to a highly polystichous ear in maize.
Collapse
Affiliation(s)
- Claudia I. Calderón
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| | - Brian S. Yandell
- Department of Statistics and Department of Horticulture, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - John F. Doebley
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
20
|
Tao L, Wang XL, Guo MH, Zhang YW. Analysis of genomic DNA methylation and gene expression in Chinese cabbage (Brassica rapa L. ssp. pekinensis) after continuous seedling breeding. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415080116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Wei W, Zhang YQ, Tao JJ, Chen HW, Li QT, Zhang WK, Ma B, Lin Q, Zhang JS, Chen SY. The Alfin-like homeodomain finger protein AL5 suppresses multiple negative factors to confer abiotic stress tolerance in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:871-883. [PMID: 25619813 DOI: 10.1111/tpj.12773] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/07/2015] [Accepted: 01/09/2015] [Indexed: 06/04/2023]
Abstract
Plant homeodomain (PHD) finger proteins affect processes of growth and development by changing transcription and reading epigenetic histone modifications, but their functions in abiotic stress responses remain largely unclear. Here we characterized seven Arabidopsis thaliana Alfin1-like PHD finger proteins (ALs) in terms of the responses to abiotic stresses. ALs localized to the nucleus and repressed transcription. Except AL6, all the ALs bound to G-rich elements. Mutations of the amino acids at positions 34 and 35 in AL6 caused loss of ability to bind to G-rich elements. Expression of the AL genes responded differentially to osmotic stress, salt, cold and abscisic acid treatments. AL5-over-expressing plants showed higher tolerance to salt, drought and freezing stress than Col-0. Consistently, al5 mutants showed reduced stress tolerance. We used ChIP-Seq assays to identify eight direct targets of AL5, and found that AL5 binds to the promoter regions of these genes. Knockout mutants of five of these target genes exhibited varying tolerances to stresses. These results indicate that AL5 inhibits multiple signaling pathways to confer stress tolerance. Our study sheds light on mechanisms of AL5-mediated signaling in abiotic stress responses, and provides tools for improvement of stress tolerance in crop plants.
Collapse
Affiliation(s)
- Wei Wei
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beichen West Road, Chaoyang District, Beijing, 100101, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kayum MA, Park JI, Ahmed NU, Jung HJ, Saha G, Kang JG, Nou IS. Characterization and stress-induced expression analysis of Alfin-like transcription factors in Brassica rapa. Mol Genet Genomics 2015; 290:1299-311. [PMID: 25618423 DOI: 10.1007/s00438-015-0993-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 01/09/2015] [Indexed: 12/30/2022]
Abstract
The Alfin-like (AL) transcription factors (TFs) family is involved in many developmental processes, including the growth and development of roots, root hair elongation, meristem development, etc. However, stress resistance-related function and the regulatory mechanism of these TFs have yet to be elucidated. This study identified 15 Brassica rapa AL (BrAL) TFs from BRAD database, analyzed the sequences and profiled their expression first time in response to Fusarium oxysporum f. sp. conglutinans and Pectobacterium carotovorum subsp. carotovorum in fection, cold, salt and drought stresses in B. rapa. Structural and phylogenetic analyses of 15 BrAL TFs revealed four distinct groups (groups I-IV) with AL TFs of Arabidopsis thaliana. In the expression analyses, ten BrAL TFs showed responsive expression after F. oxysporum f. sp. conglutinans infection, while all BrAL TFs showed responses under cold, salt and drought stresses in B. rapa. Interestingly, ten BrAL TFs showed responses to both biotic and abiotic stress factors tested here. The differentially expressed BrAL TFs thus represent potential resources for molecular breeding of Brassica crops resistant against abiotic and biotic stresses. Our findings will also help to elucidate the complex regulatory mechanism of AL TFs in stress resistance and provide a foundation for further functional genomics studies and applications.
Collapse
Affiliation(s)
- Md Abdul Kayum
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam, 540-950, South Korea
| | | | | | | | | | | | | |
Collapse
|