1
|
Serum Metabolomic Analysis of Male Patients with Cannabis or Amphetamine Use Disorder. Metabolites 2022; 12:metabo12020179. [PMID: 35208253 PMCID: PMC8879674 DOI: 10.3390/metabo12020179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Studies have demonstrated that chronic consumption of abused drugs induces alterations in several proteins that regulate metabolism. For instance, methamphetamine exposure reduces glucose levels. Fatty and amino acid levels were altered in groups exposed to abused drugs. Therefore, in our study, we investigated the serum metabolomic profile of patients diagnosed with cannabis and/or amphetamine use disorders. Blood was obtained from subjects (control, amphetamine, and cannabis). Detection of serum metabolites was performed using gas chromatography. The ratio peak areas for metabolites were analyzed across the three groups. Both cannabis and amphetamine groups showed higher d-erythrotetrafuranose, octadecanoic acid, hexadecenoic acid, trans-9-octadecanoic acid, lactic acid and methyl thio hydantoin metabolites compared with the control group. Moreover, cannabis patients were found to possess higher glycine, 9,12 octadecanoic acid malonic acid, phosphoric acid and prostaglandin F1a than controls. Our analysis showed that the identified metabolic profile of cannabis or amphetamine use disorder patients was different than control group. Our data indicated that chronic exposure to cannabis or amphetamine dysregulated metabolites in the serum. Future studies are warranted to explore the effects of these abused drugs on the metabolic proteins.
Collapse
|
2
|
Kadota Y, Yano A, Kawakami T, Sato M, Suzuki S. Metabolomic profiling of plasma from middle-aged and advanced-age male mice reveals the metabolic abnormalities of carnitine biosynthesis in metallothionein gene knockout mice. Aging (Albany NY) 2021; 13:24963-24988. [PMID: 34851303 PMCID: PMC8714139 DOI: 10.18632/aging.203731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/22/2021] [Indexed: 12/30/2022]
Abstract
Metallothionein (MT) is a family of low molecular weight, cysteine-rich proteins that regulate zinc homeostasis and have potential protective effects against oxidative stress and toxic metals. MT1 and MT2 gene knockout (MTKO) mice show shorter lifespans than wild-type (WT) mice. In this study, we aimed to investigate how MT gene deficiency accelerates aging. We performed comparative metabolomic analyses of plasma between MTKO and WT male mice at middle age (50-week-old) and advanced age (100-week-old) using liquid chromatography with time-of-flight mass spectrometry (LC-TOF-MS). The concentration of N6,N6,N6-trimethyl-L-lysine (TML), which is a metabolic intermediate in carnitine biosynthesis, was consistently higher in the plasma of MTKO mice compared to that of WT mice at middle and advanced age. Quantitative reverse transcription PCR (RT-PCR) analysis revealed remarkably lower mRNA levels of Tmlhe, which encodes TML dioxygenase, in the liver and kidney of male MTKO mice compared to that of WT mice. L-carnitine is essential for β-oxidation of long-chain fatty acids in mitochondria, the activity of which is closely related to aging. Our results suggest that reduced carnitine biosynthesis capacity in MTKO mice compared to WT mice led to metabolic disorders of fatty acids in mitochondria in MTKO mice, which may have caused shortened lifespans.
Collapse
Affiliation(s)
- Yoshito Kadota
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Asuka Yano
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Takashige Kawakami
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Masao Sato
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Shinya Suzuki
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| |
Collapse
|
3
|
Pandit P, Galande S, Iris F. Maternal malnutrition and anaemia in India: dysregulations leading to the 'thin-fat' phenotype in newborns. J Nutr Sci 2021; 10:e91. [PMID: 34733503 PMCID: PMC8532069 DOI: 10.1017/jns.2021.83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 12/21/2022] Open
Abstract
Maternal and child malnutrition and anaemia remain the leading factors for health loss in India. Low birth weight (LBW) offspring of women suffering from chronic malnutrition and anaemia often exhibit insulin resistance and infantile stunting and wasting, together with increased risk of developing cardiometabolic disorders in adulthood. The resulting self-perpetuating and highly multifactorial disease burden cannot be remedied through uniform dietary recommendations alone. To inform approaches likely to alleviate this disease burden, we implemented a systems-analytical approach that had already proven its efficacy in multiple published studies. We utilised previously published qualitative and quantitative analytical results of rural and urban field studies addressing maternal and infantile metabolic and nutritional parameters to precisely define the range of pathological phenotypes encountered and their individual biological characteristics. These characteristics were then integrated, via extensive literature searches, into metabolic and physiological mechanisms to identify the maternal and foetal metabolic dysregulations most likely to underpin the 'thin-fat' phenotype in LBW infants and its associated pathological consequences. Our analyses reveal hitherto poorly understood maternal nutrition-dependent mechanisms most likely to promote and sustain the self-perpetuating high disease burden, especially in the Indian population. This work suggests that it most probably is the metabolic consequence of 'ill-nutrition' - the recent and rapid dietary shifts to high salt, high saturated fats and high sugar but low micronutrient diets - over an adaptation to 'thrifty metabolism' which must be addressed in interventions aiming to significantly alleviate the leading risk factors for health deterioration in India.
Collapse
Key Words
- 5-mTHF, 5-methyltetrahydrofolate
- Anaemia
- BAT, brown adipocyte tissue
- EAA, essential amino acids
- FA, fatty acid
- GSH, glutathione
- Hcy, homocysteine
- LBW, low birth weight
- Low birth weight
- Malnutrition
- PE, phosphatidylethanolamine
- Pathological mechanisms
- Physiological programming
- SAM, S-adenosyl methionine
- TG, triacylglycerol
- WAT, white adipocyte tissue
Collapse
Affiliation(s)
| | - Sanjeev Galande
- Arbuza Regenerate Private Limited, Pune, India
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune411008, India
- Department of Life Sciences, Shiv Nadar University, Delhi-NCR, India
| | - François Iris
- Arbuza Regenerate Private Limited, Pune, India
- BM-Systems Private Limited, Paris, France
| |
Collapse
|
4
|
Ganguly S, Finkelstein D, Shaw TI, Michalek RD, Zorn KM, Ekins S, Yasuda K, Fukuda Y, Schuetz JD, Mukherjee K, Schuetz EG. Metabolomic and transcriptomic analysis reveals endogenous substrates and metabolic adaptation in rats lacking Abcg2 and Abcb1a transporters. PLoS One 2021; 16:e0253852. [PMID: 34255797 PMCID: PMC8277073 DOI: 10.1371/journal.pone.0253852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/14/2021] [Indexed: 12/21/2022] Open
Abstract
Abcg2/Bcrp and Abcb1a/Pgp are xenobiotic efflux transporters limiting substrate permeability in the gastrointestinal system and brain, and increasing renal and hepatic drug clearance. The systemic impact of Bcrp and Pgp ablation on metabolic homeostasis of endogenous substrates is incompletely understood. We performed untargeted metabolomics of cerebrospinal fluid (CSF) and plasma, transcriptomics of brain, liver and kidney from male Sprague Dawley rats (WT) and Bcrp/Pgp double knock-out (dKO) rats, and integrated metabolomic/transcriptomic analysis to identify putative substrates and perturbations in canonical metabolic pathways. A predictive Bayesian machine learning model was used to predict in silico those metabolites with greater substrate-like features for either transporters. The CSF and plasma levels of 169 metabolites, nutrients, signaling molecules, antioxidants and lipids were significantly altered in dKO rats, compared to WT rats. These metabolite changes suggested alterations in histidine, branched chain amino acid, purine and pyrimidine metabolism in the dKO rats. Levels of methylated and sulfated metabolites and some primary bile acids were increased in dKO CSF or plasma. Elevated uric acid levels appeared to be a primary driver of changes in purine and pyrimidine biosynthesis. Alterations in Bcrp/Pgp dKO CSF levels of antioxidants, precursors of neurotransmitters, and uric acid suggests the transporters may contribute to the regulation of a healthy central nervous system in rats. Microbiome-generated metabolites were found to be elevated in dKO rat plasma and CSF. The altered dKO metabolome appeared to cause compensatory transcriptional change in urate biosynthesis and response to lipopolysaccharide in brain, oxidation-reduction processes and response to oxidative stress and porphyrin biosynthesis in kidney, and circadian rhythm genes in liver. These findings present insight into endogenous functions of Bcrp and Pgp, the impact that transporter substrates, inhibitors or polymorphisms may have on metabolism, how transporter inhibition could rewire drug sensitivity indirectly through metabolic changes, and identify functional Bcrp biomarkers.
Collapse
Affiliation(s)
- Samit Ganguly
- Cancer & Developmental Biology Track, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Timothy I. Shaw
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | | | - Kimberly M. Zorn
- Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina, United States of America
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina, United States of America
| | - Kazuto Yasuda
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Yu Fukuda
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - John D. Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Kamalika Mukherjee
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Erin G. Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
5
|
Bjune MS, Lindquist C, Hallvardsdotter Stafsnes M, Bjørndal B, Bruheim P, Aloysius TA, Nygård O, Skorve J, Madsen L, Dankel SN, Berge RK. Plasma 3-hydroxyisobutyrate (3-HIB) and methylmalonic acid (MMA) are markers of hepatic mitochondrial fatty acid oxidation in male Wistar rats. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158887. [PMID: 33454435 DOI: 10.1016/j.bbalip.2021.158887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Discovery of specific markers that reflect altered hepatic fatty acid oxidation could help to detect an individual's risk of fatty liver, type 2 diabetes and cardiovascular disease at an early stage. Lipid and protein metabolism are intimately linked, but our understanding of this crosstalk remains limited. METHODS In male Wistar rats, we used synthetic fatty acid analogues (3-thia fatty acids) as a tool to induce hepatic fatty acid oxidation and mitochondrial biogenesis, to gain new insight into the link between fatty acid oxidation, amino acid metabolism and TCA cycle-related intermediate metabolites in liver and plasma. RESULTS Rats treated with 3-thia fatty acids had 3-fold higher hepatic, but not adipose and skeletal muscle, expression of the thioesterase 3-hydroxyisobutyryl-CoA hydrolase (Hibch), which controls the formation of 3-hydroxyisobutyrate (3-HIB) in the valine degradation pathway. Consequently, 3-thia fatty acid-stimulated hepatic fatty acid oxidation and ketogenesis was accompanied by decreased plasma 3-HIB and increased methylmalonic acid (MMA) concentrations further downstream in BCAA catabolism. The higher plasma MMA corresponded to higher MMA-CoA hydrolase activity and hepatic expression of GTP-specific succinyl-CoA synthase (Suclg2) and succinate dehydrogenase (Sdhb), and lower MMA-CoA mutase activity. Plasma 3-HIB correlated positively to plasma and hepatic concentrations of TAG, plasma total fatty acids, plasma NEFA and insulin/glucose ratio, while the reverse correlations were seen for MMA. CONCLUSION Our study provides new insight into TCA cycle-related metabolic changes associated with altered hepatic fatty acid flux, and identifies 3-HIB and MMA as novel circulating markers reflective of mitochondrial β-oxidation in male Wistar rats.
Collapse
Affiliation(s)
| | - Carine Lindquist
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Marit Hallvardsdotter Stafsnes
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, NTNU Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Bodil Bjørndal
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Per Bruheim
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, NTNU Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Thomas A Aloysius
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ottar Nygård
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Jon Skorve
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lise Madsen
- Institute of Marine Research, NO-5817 Bergen, Norway
| | - Simon N Dankel
- Department of Clinical Science, University of Bergen, Bergen, Norway.
| | - Rolf Kristian Berge
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Heart Disease, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
6
|
Lysne V, Bjørndal B, Grinna ML, Midttun Ø, Ueland PM, Berge RK, Dierkes J, Nygård O, Strand E. Short-term treatment with a peroxisome proliferator-activated receptor α agonist influences plasma one-carbon metabolites and B-vitamin status in rats. PLoS One 2019; 14:e0226069. [PMID: 31805132 PMCID: PMC6894826 DOI: 10.1371/journal.pone.0226069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/18/2019] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Peroxisome proliferator-activated receptors (PPARs) have been suggested to be involved in the regulation of one-carbon metabolism. Previously we have reported effects on plasma concentrations of metabolites along these pathways as well as markers of B-vitamin status in rats following treatment with a pan-PPAR agonist. Here we aimed to investigate the effect on these metabolites after specific activation of the PPARα and PPARγ subtypes. METHODS For a period of 12 days, Male Wistar rats (n = 20) were randomly allocated to receive treatment with the PPARα agonist WY-14.643 (n = 6), the PPARγ agonist rosiglitazone (n = 6) or placebo (n = 8). The animals were sacrificed under fasting conditions, and plasma concentration of metabolites were determined. Group differences were assessed by one-way ANOVA, and planned comparisons were performed for both active treatment groups towards the control group. RESULTS Treatment with a PPARα agonist was associated with increased plasma concentrations of most biomarkers, with the most pronounced differences observed for betaine, dimethylglycine, glycine, nicotinamide, methylnicotinamide, pyridoxal and methylmalonic acid. Lower levels were observed for flavin mononucleotide. Fewer associations were observed after treatment with a PPARγ agonist, and the most notable was increased plasma serine. CONCLUSION Treatment with a PPARα agonist influenced plasma concentration of one-carbon metabolites and markers of B-vitamin status. This confirms previous findings, suggesting specific involvement of PPARα in the regulation of these metabolic pathways as well as the status of closely related B-vitamins.
Collapse
Affiliation(s)
- Vegard Lysne
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
- * E-mail:
| | - Bodil Bjørndal
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | | | - Per Magne Ueland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Bevital A/S, Bergen, Norway
| | - Rolf Kristian Berge
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Jutta Dierkes
- Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Mohn Nutrition Research Laboratory, Centre for Nutrition, University of Bergen, Bergen, Norway
- Laboratory Medicine and Pathology, Haukeland University Hospital, Bergen, Norway
| | - Ottar Nygård
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Centre for Nutrition, University of Bergen, Bergen, Norway
| | - Elin Strand
- Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
7
|
Bjørndal B, Alterås EK, Lindquist C, Svardal A, Skorve J, Berge RK. Associations between fatty acid oxidation, hepatic mitochondrial function, and plasma acylcarnitine levels in mice. Nutr Metab (Lond) 2018; 15:10. [PMID: 29422939 PMCID: PMC5789604 DOI: 10.1186/s12986-018-0241-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 01/10/2018] [Indexed: 02/07/2023] Open
Abstract
Background The 4-thia fatty acid tetradecylthiopropionic acid (TTP) is known to inhibit mitochondrial β-oxidation, and can be used as chemically induced hepatic steatosis-model in rodents, while 3-thia fatty acid tetradecylthioacetic acid (TTA) stimulates fatty acid oxidation through activation of peroxisome proliferator activated receptor alpha (PPARα). We wished to determine how these two compounds affected in vivo respiration and mitochondrial efficiency, with an additional goal to elucidate whether mitochondrial function is reflected in plasma acylcarnitine levels. Methods C57BL/6 mice were divided in 4 groups of 10 mice and fed a control low-fat diet, low-fat diets with 0.4% (w/w) TTP, 0.4% TTA or a combination of these two fatty acids for three weeks (n = 10). At sacrifice, β-oxidation and oxidative phosphorylation (OXPHOS) capacity was analysed in fresh liver samples. Hepatic mitochondria were studied using transmission electron microscopy. Lipid classes were measured in plasma, heart and liver, acylcarnitines were measured in plasma, and gene expression was measured in liver. Results The TTP diet resulted in hepatic lipid accumulation, plasma L-carnitine and acetylcarnitine depletion and elevated palmitoylcarnitine and non-esterified fatty acid levels. No significant lipid accumulation was observed in heart. The TTA supplement resulted in enhanced hepatic β-oxidation, accompanied by an increased level of acetylcarnitine and palmitoylcarnitine in plasma. Analysis of mitochondrial respiration showed that TTP reduced oxidative phosphorylation, while TTA increased the maximum respiratory capacity of the electron transport system. Combined treatment with TTP and TTA resulted in a profound stimulation of genes involved in the PPAR-response and L-carnitine metabolism, and partly prevented triacylglycerol accumulation in the liver concomitant with increased peroxisomal β-oxidation and depletion of plasma acetylcarnitines. Despite an increased number of mitochondria in the liver of TTA + TTP fed mice, the OXPHOS capacity was significantly reduced. Conclusion This study indicates that fatty acid β-oxidation directly affects mitochondrial respiratory capacity in liver. As plasma acylcarnitines reflected the reduced mitochondrial β-oxidation in TTP-fed mice, they could be useful tools to monitor mitochondrial function. As mitochondrial dysfunction is a major determinant of metabolic disease, this supports their use as plasma markers of cardiovascular risk in humans. Results however indicate that high PPAR activation obscures the interpretation of plasma acylcarnitine levels. Electronic supplementary material The online version of this article (10.1186/s12986-018-0241-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bodil Bjørndal
- 1Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway
| | - Eva Katrine Alterås
- 1Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway
| | - Carine Lindquist
- 1Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway.,2Department of Heart Disease, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Asbjørn Svardal
- 1Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway
| | - Jon Skorve
- 1Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway
| | - Rolf K Berge
- 1Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway.,2Department of Heart Disease, Haukeland University Hospital, N-5021 Bergen, Norway
| |
Collapse
|
8
|
Lysne V, Strand E, Svingen GFT, Bjørndal B, Pedersen ER, Midttun Ø, Olsen T, Ueland PM, Berge RK, Nygård O. Peroxisome Proliferator-Activated Receptor Activation is Associated with Altered Plasma One-Carbon Metabolites and B-Vitamin Status in Rats. Nutrients 2016; 8:nu8010026. [PMID: 26742069 PMCID: PMC4728640 DOI: 10.3390/nu8010026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/18/2015] [Accepted: 12/28/2015] [Indexed: 12/16/2022] Open
Abstract
Plasma concentrations of metabolites along the choline oxidation pathway have been linked to increased risk of major lifestyle diseases, and peroxisome proliferator-activated receptors (PPARs) have been suggested to be involved in the regulation of key enzymes along this pathway. In this study, we investigated the effect of PPAR activation on circulating and urinary one-carbon metabolites as well as markers of B-vitamin status. Male Wistar rats (n = 20) received for 50 weeks either a high-fat control diet or a high-fat diet with tetradecylthioacetic acid (TTA), a modified fatty acid and pan-PPAR agonist with high affinity towards PPARα. Hepatic gene expression of PPARα, PPARβ/δ and the enzymes involved in the choline oxidation pathway were analyzed and concentrations of metabolites were analyzed in plasma and urine. TTA treatment altered most biomarkers, and the largest effect sizes were observed for plasma concentrations of dimethylglycine, nicotinamide, methylnicotinamide, methylmalonic acid and pyridoxal, which were all higher in the TTA group (all p < 0.01). Hepatic Pparα mRNA was increased after TTA treatment, but genes of the choline oxidation pathway were not affected. Long-term TTA treatment was associated with pronounced alterations on the plasma and urinary concentrations of metabolites related to one-carbon metabolism and B-vitamin status in rats.
Collapse
Affiliation(s)
- Vegard Lysne
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Elin Strand
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Gard F T Svingen
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
- Department of Heart Disease, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Bodil Bjørndal
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Eva R Pedersen
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
- Department of Heart Disease, Haukeland University Hospital, 5021 Bergen, Norway.
| | | | - Thomas Olsen
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Per M Ueland
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
- Laboratory of Clinical Biochemistry, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Rolf K Berge
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
- Department of Heart Disease, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Ottar Nygård
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
- Department of Heart Disease, Haukeland University Hospital, 5021 Bergen, Norway.
- KG Jebsen Centre for Diabetes Research, University of Bergen, 5009 Bergen, Norway.
| |
Collapse
|
9
|
Krill oil reduces plasma triacylglycerol level and improves related lipoprotein particle concentration, fatty acid composition and redox status in healthy young adults - a pilot study. Lipids Health Dis 2015; 14:163. [PMID: 26666303 PMCID: PMC4678523 DOI: 10.1186/s12944-015-0162-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 11/28/2015] [Indexed: 02/02/2023] Open
Abstract
Background Lipid abnormalities, enhanced inflammation and oxidative stress seem to represent a vicious circle in atherogenesis, and therapeutic options directed against these processes seems like a reasonable approach in the management of atherosclerotic disorders. Krill oil (RIMFROST Sublime®) is a phospholipid-rich oil with eicosapentaenoic acid (EPA): docosahexaenoic acid (DHA) ratio of 1.8:1. In this pilot study we determined if krill oil could favourable affect plasma lipid parameters and parameters involved in the initiation and progression of atherosclerosis. Methods The study was conducted as a 28 days intervention study examining effect-parameters of dietary supplementation with krill oil (832.5 mg EPA and DHA per day). 17 healthy volunteers in the age group 18–36 (mean age 23 ± 4 years) participated. Plasma lipids, lipoprotein particle sizes, fatty acid composition in plasma and red blood cells (RBCs), plasma cytokines, antioxidant capacity, acylcarntines, carnitine, choline, betaine, and trimethylamine-N-oxide (TMAO) were measured before and after supplementation. Results Plasma triacylglycerol (TAG) and large very-low density lipoprotein (VLDL) & chylomicron particle concentrations decreased after 28 days of krill oil intake. A significant reduction in the TAG/HDL cholesterol resulted. Krill oil supplementation decreased n-6/n-3 polyunsaturated fatty acids (PUFA) ratio both in plasma and RBCs. This was due to increased EPA, DHA and docosapentaenoic acid (DPA) and reduced amount of arachidonic acid (AA). The increase of n-3 fatty acids and wt % of EPA and DHA in RBC was of smaller magnitude than found in plasma. Krill oil intake increased the antioxidant capacity, double bond index (DBI) and the fatty acid anti-inflammatory index. The plasma atherogenicity index remained constant whereas the thrombogenicity index decreased. Plasma choline, betaine and the carnitine precursor, γ-butyrobetaine were increased after krill oil supplementation whereas the TMAO and carnitine concentrations remained unchanged. Conclusion Krill oil consumption is considered health beneficial as it decreases cardiovascular disease risk parameters through effects on plasma TAGs, lipoprotein particles, fatty acid profile, redox status and possible inflammation. Noteworthy, no adverse effects on plasma levels of TMAO and carnitine were found.
Collapse
|
10
|
Ericsson A, Turner N, Hansson GI, Wallenius K, Oakes ND. Pharmacological PPARα activation markedly alters plasma turnover of the amino acids glycine, serine and arginine in the rat. PLoS One 2014; 9:e113328. [PMID: 25486018 PMCID: PMC4259322 DOI: 10.1371/journal.pone.0113328] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 10/27/2014] [Indexed: 11/18/2022] Open
Abstract
The current study extends previously reported PPARα agonist WY 14,643 (30 µmol/kg/day for 4 weeks) effects on circulating amino acid concentrations in rats fed a 48% saturated fat diet. Steady-state tracer experiments were used to examine in vivo kinetic mechanisms underlying altered plasma serine, glycine and arginine levels. Urinary urea and creatinine excretion were measured to assess whole-body amino acid catabolism. WY 14,643 treated animals demonstrated reduced efficiency to convert food consumed to body weight gain while liver weight was increased compared to controls. WY 14,643 raised total amino acid concentration (38%), largely explained by glycine, serine and threonine increases. 3H-glycine, 14C-serine and 14C-arginine tracer studies revealed elevated rates of appearance (Ra) for glycine (45.5 ± 5.8 versus 17.4 ± 2.7 µmol/kg/min) and serine (21.0 ± 1.4 versus 12.0 ± 1.0) in WY 14,643 versus control. Arginine was substantially decreased (-62%) in plasma with estimated Ra reduced from 3.1 ± 0.3 to 1.2 ± 0.2 µmol/kg/min in control versus WY 14,643. Nitrogen excretion over 24 hours was unaltered. Hepatic arginase activity was substantially decreased by WY 14,643 treatment. In conclusion, PPARα agonism potently alters metabolism of several specific amino acids in the rat. The changes in circulating levels of serine, glycine and arginine reflected altered fluxes into the plasma rather than changes in clearance or catabolism. This suggests that PPARα has an important role in modulating serine, glycine and arginine de novo synthesis.
Collapse
Affiliation(s)
- Anette Ericsson
- Department of Bioscience, AstraZeneca R&D Mölndal, Mölndal, Sweden
- * E-mail:
| | - Nigel Turner
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Department of Pharmacology, University of New South Wales, Sydney, Australia
| | - Göran I. Hansson
- Department of Bioscience, AstraZeneca R&D Mölndal, Mölndal, Sweden
| | | | | |
Collapse
|