1
|
Montoya-Buelna M, Ramirez-Lopez IG, San Juan-Garcia CA, Garcia-Regalado JJ, Millan-Sanchez MS, de la Cruz-Mosso U, Haramati J, Pereira-Suarez AL, Macias-Barragan J. Contribution of extracellular vesicles to steatosis-related liver disease and their therapeutic potential. World J Hepatol 2024; 16:1211-1228. [PMID: 39351515 PMCID: PMC11438597 DOI: 10.4254/wjh.v16.i9.1211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 09/23/2024] Open
Abstract
Extracellular vesicles (EVs) are small particles released by many cell types in different tissues, including the liver, and transfer specific cargo molecules from originating cells to receptor cells. This process generally culminates in activation of distant cells and inflammation and progression of certain diseases. The global chronic liver disease (CLD) epidemic is estimated at 1.5 billion patients worldwide. Cirrhosis and liver cancer are the most common risk factors for CLD. However, hepatitis C and B virus infection and obesity are also highly associated with CLD. Nonetheless, the etiology of many CLD pathophysiological, cellular, and molecular events are unclear. Changes in hepatic lipid metabolism can lead to lipotoxicity events that induce EV release. Here, we aimed to present an overview of EV features, from definition to types and biogenesis, with particular focus on the molecules related to steatosis-related liver disease, diagnosis, and therapy.
Collapse
Affiliation(s)
- Margarita Montoya-Buelna
- Laboratorio de Inmunología, Departamento de Fisiología, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Inocencia G Ramirez-Lopez
- Departamento de Ciencias de la Salud, Centro Universitario de los Valles, Universidad de Guadalajara, Ameca 46600, Jalisco, Mexico
| | - Cesar A San Juan-Garcia
- Doctorado en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Jose J Garcia-Regalado
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Mariana S Millan-Sanchez
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Ulises de la Cruz-Mosso
- Red de Inmunonutrición y Genómica Nutricional en las Enfermedades Autoinmunes, Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Jesse Haramati
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan 45200, Jalisco, Mexico
| | - Ana L Pereira-Suarez
- Instituto de Investigación en Ciencias Biomédicas, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Jose Macias-Barragan
- Departamento de Ciencias de la Salud, Centro Universitario de los Valles, Universidad de Guadalajara, Ameca 46600, Jalisco, Mexico.
| |
Collapse
|
2
|
Jain V, Sakhuja P, Agarwal AK, Sirdeshmukh R, Siraj F, Gautam P. Lymph Node Metastasis in Gastrointestinal Carcinomas: A View from a Proteomics Perspective. Curr Oncol 2024; 31:4455-4475. [PMID: 39195316 DOI: 10.3390/curroncol31080333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 08/29/2024] Open
Abstract
Lymph node metastasis (LNM) is one of the major prognostic factors in human gastrointestinal carcinomas (GICs). The lymph node-positive patients have poorer survival than node-negative patients. LNM is directly associated with the recurrence and poor survival of patients with GICs. The early detection of LNM in patients and designing effective therapies to suppress LNM may significantly impact the survival of these patients. The rapid progress made in proteomic technologies could be successfully applied to identify molecular targets for cancers at high-throughput levels. LC-MS/MS analysis enables the identification of proteins involved in LN metastasis, which can be utilized for diagnostic and therapeutic applications. This review summarizes the studies on LN metastasis in GICs using proteomic approaches to date.
Collapse
Affiliation(s)
- Vaishali Jain
- Indian Council of Medical Research, National Institute of Pathology, New Delhi 110029, India
- Faculty of Health Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Puja Sakhuja
- Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi 110002, India
| | - Anil Kumar Agarwal
- Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi 110002, India
| | - Ravi Sirdeshmukh
- Faculty of Health Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India
| | - Fouzia Siraj
- Indian Council of Medical Research, National Institute of Pathology, New Delhi 110029, India
| | - Poonam Gautam
- Indian Council of Medical Research, National Institute of Pathology, New Delhi 110029, India
| |
Collapse
|
3
|
Park IW, Fiadjoe HK, Chaudhary P. Impact of Annexin A2 on virus life cycles. Virus Res 2024; 345:199384. [PMID: 38702018 PMCID: PMC11091703 DOI: 10.1016/j.virusres.2024.199384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Due to the limited size of viral genomes, hijacking host machinery by the viruses taking place throughout the virus life cycle is inevitable for the survival and proliferation of the virus in the infected hosts. Recent reports indicated that Annexin A2 (AnxA2), a calcium- and lipid-binding cellular protein, plays an important role as a critical regulator in various steps of the virus life cycle. The multifarious AnxA2 functions in cells, such as adhesion, adsorption, endocytosis, exocytosis, cell proliferation and division, inflammation, cancer metastasis, angiogenesis, etc., are intimately related to the various clinical courses of viral infection. Ubiquitous expression of AnxA2 across multiple cell types indicates the broad range of susceptibility of diverse species of the virus to induce disparate viral disease in various tissues, and intracellular expression of AnxA2 in the cytoplasmic membrane, cytosol, and nucleus suggests the involvement of AnxA2 in the regulation of the different stages of various virus life cycles within host cells. However, it is yet unclear as to the molecular processes on how AnxA2 and the infected virus interplay to regulate virus life cycles and thereby the virus-associated disease courses, and hence elucidation of the molecular mechanisms on AnxA2-mediated virus life cycle will provide essential clues to develop therapeutics deterring viral disease.
Collapse
Affiliation(s)
- In-Woo Park
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, United States.
| | - Hope K Fiadjoe
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Pankaj Chaudhary
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, United States.
| |
Collapse
|
4
|
Quesnel A, Broughton A, Karagiannis GS, Filippou PS. Message in the bottle: regulation of the tumor microenvironment via exosome-driven proteolysis. Cancer Metastasis Rev 2022; 41:789-801. [PMID: 35394580 DOI: 10.1007/s10555-022-10030-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/29/2022] [Indexed: 01/25/2023]
Abstract
Exosomes comprise a subtype of extracellular vesicles involved in cell-to-cell communication, specifically by transporting biological molecules, such as proteins and nucleic acids, to either local or more distant recipient cells, thus triggering distinct biological behaviors. Included in the exosome cargo is frequently a wide range of proteolytic enzymes, such as the matrix metalloproteinases (MMPs), the disintegrin and metalloproteinases (ADAMs), and the ADAM with thrombospondin-like motifs (ADAMTSs), whose functions contribute to the development and progression of cancer. In recent years, extensive research on the potential use of exosomes in diagnostic and therapeutic applications for personalized medicine has emerged, but the targeting of the proteolytic cargo of exosomes has not been fully exploited in this direction. In this review, we aim to explore both the mechanistic and the translational importance of proteolytic enzymes carried by the tumor cell-derived exosomes, as well as their role in the acquisition and support of certain hallmarks of cancer.
Collapse
Affiliation(s)
- Agathe Quesnel
- School of Health & Life Sciences, Teesside University, Middlesbrough, TS1 3BX, UK.,National Horizons Centre, Teesside University, Darlington, DL1 1HG, UK
| | - Amy Broughton
- School of Health & Life Sciences, Teesside University, Middlesbrough, TS1 3BX, UK
| | - George S Karagiannis
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.,Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.,Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY, USA.,Albert Einstein Cancer Center, Tumor Microenvironment and Metastasis Program, Bronx, NY, USA
| | - Panagiota S Filippou
- School of Health & Life Sciences, Teesside University, Middlesbrough, TS1 3BX, UK. .,National Horizons Centre, Teesside University, Darlington, DL1 1HG, UK.
| |
Collapse
|
5
|
Chuliá-Peris L, Carreres-Rey C, Gabasa M, Alcaraz J, Carretero J, Pereda J. Matrix Metalloproteinases and Their Inhibitors in Pulmonary Fibrosis: EMMPRIN/CD147 Comes into Play. Int J Mol Sci 2022; 23:ijms23136894. [PMID: 35805895 PMCID: PMC9267107 DOI: 10.3390/ijms23136894] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 02/06/2023] Open
Abstract
Pulmonary fibrosis (PF) is characterized by aberrant extracellular matrix (ECM) deposition, activation of fibroblasts to myofibroblasts and parenchymal disorganization, which have an impact on the biomechanical traits of the lung. In this context, the balance between matrix metalloproteinases (MMPs) and their tissue inhibitors of metalloproteinases (TIMPs) is lost. Interestingly, several MMPs are overexpressed during PF and exhibit a clear profibrotic role (MMP-2, -3, -8, -11, -12 and -28), but a few are antifibrotic (MMP-19), have both profibrotic and antifibrotic capacity (MMP7), or execute an unclear (MMP-1, -9, -10, -13, -14) or unknown function. TIMPs are also overexpressed in PF; hence, the modulation and function of MMPs and TIMP are more complex than expected. EMMPRIN/CD147 (also known as basigin) is a transmembrane glycoprotein from the immunoglobulin superfamily (IgSF) that was first described to induce MMP activity in fibroblasts. It also interacts with other molecules to execute non-related MMP aactions well-described in cancer progression, migration, and invasion. Emerging evidence strongly suggests that CD147 plays a key role in PF not only by MMP induction but also by stimulating fibroblast myofibroblast transition. In this review, we study the structure and function of MMPs, TIMPs and CD147 in PF and their complex crosstalk between them.
Collapse
Affiliation(s)
- Lourdes Chuliá-Peris
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
| | - Cristina Carreres-Rey
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
| | - Marta Gabasa
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (M.G.); (J.A.)
| | - Jordi Alcaraz
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (M.G.); (J.A.)
- Thoracic Oncology Unit, Hospital Clinic Barcelona, 08036 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028 Barcelona, Spain
| | - Julián Carretero
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
| | - Javier Pereda
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
- Correspondence:
| |
Collapse
|
6
|
Wang J, Wang X, Zhang X, Shao T, Luo Y, Wang W, Han Y. Extracellular Vesicles and Hepatocellular Carcinoma: Opportunities and Challenges. Front Oncol 2022; 12:884369. [PMID: 35692794 PMCID: PMC9175035 DOI: 10.3389/fonc.2022.884369] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/25/2022] [Indexed: 12/05/2022] Open
Abstract
The incidence of hepatocellular carcinoma (HCC) is increasing worldwide. Extracellular vesicles (EVs) contain sufficient bioactive substances and are carriers of intercellular information exchange, as well as delivery vehicles for nucleic acids, proteins and drugs. Although EVs show great potential for the treatment of HCC and their role in HCC progression has been extensively studied, there are still many challenges such as time-consuming extraction, difficult storage, easy contamination, and low drug loading rate. We focus on the biogenesis, morphological characteristics, isolation and extraction of EVs and their significance in the progression of HCC, tumor invasion, immune escape and cancer therapy for a review. EVs may be effective biomarkers for molecular diagnosis of HCC and new targets for tumor-targeted therapy.
Collapse
Affiliation(s)
- Juan Wang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoya Wang
- Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Xintong Zhang
- Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Tingting Shao
- Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yanmei Luo
- Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Wei Wang
- Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yunwei Han
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Oncology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Academician (Expert) Workstation of Sichuan Province, Luzhou, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China.,School of Basic Medical Sciences, Shandong University, Jinan, China
| |
Collapse
|
7
|
Huang SW, Chen YC, Lin YH, Yeh CT. Clinical Limitations of Tissue Annexin A2 Level as a Predictor of Postoperative Overall Survival in Patients with Hepatocellular Carcinoma. J Clin Med 2021; 10:jcm10184158. [PMID: 34575275 PMCID: PMC8465313 DOI: 10.3390/jcm10184158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 11/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the second common cause of cancer-related death in Taiwan. Tumor recurrence is frequently observed in HCC patients receiving surgical resection, resulting in unsatisfactory overall survival (OS). Therefore, it is pivotal to identify effective prognostic makers, so that intensive surveillance or adjuvant treatments can be applied to predictively unfavorable patients. Previous studies indicated that Annexin A2 (ANXA2) was an effective prognostic marker in several cancers, including HCC. However, the prognostic value of ANXA2 in Taiwanese HCC patients remains unclear, where a great proportion of patients had chronic hepatitis B with liver cirrhosis. Here, ANXA2 was highly expressed in HCC tissues compared with para-neoplastic noncancerous tissues. Furthermore, high ANXA2 expression in HCC tissues independently predicted shorter OS. In subgroup analysis, however, ANXA2 expression could not effectively predict OS in the following subgroups: female, age > 65 years old, Child–Pugh classification B, hepatitis B virus surface antigen negative or anti-hepatitis C antibody positive, alcoholism, tumor number >1, presence of micro- or macrovascular invasion, absence of capsule, non-cirrhosis and high alpha-fetoprotein. In conclusion, ANXA2 expression in HCC tissues could predict postoperative OS. However, the predictive value was limited in patients with specific clinical conditions.
Collapse
Affiliation(s)
- Shu-Wei Huang
- Department of Gastroenterology and Hepatology, New Taipei Municipal Tucheng Hospital, New Taipei 236, Taiwan;
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
| | - Yen-Chin Chen
- Graduate Institute of Clinical Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Yang-Hsiang Lin
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
- Correspondence: (Y.-H.L.); (C.-T.Y.); Tel.: +886-3328-1200 (ext. 7785) (Y.-H.L.); +886-3328-1200 (ext. 8129) (C.-T.Y.); Fax: +886-3328-2824 (C.-T.Y.)
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
- Correspondence: (Y.-H.L.); (C.-T.Y.); Tel.: +886-3328-1200 (ext. 7785) (Y.-H.L.); +886-3328-1200 (ext. 8129) (C.-T.Y.); Fax: +886-3328-2824 (C.-T.Y.)
| |
Collapse
|
8
|
Catoni C, Di Paolo V, Rossi E, Quintieri L, Zamarchi R. Cell-Secreted Vesicles: Novel Opportunities in Cancer Diagnosis, Monitoring and Treatment. Diagnostics (Basel) 2021; 11:1118. [PMID: 34205256 PMCID: PMC8233857 DOI: 10.3390/diagnostics11061118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are important mediators of intercellular communication playing a pivotal role in the regulation of physiological and pathological processes, including cancer. In particular, there is significant evidence suggesting that tumor-derived EVs exert an immunosuppressive activity during cancer progression, as well as stimulate tumor cell migration, angiogenesis, invasion and metastasis. The use of EVs as a liquid biopsy is currently a fast-growing area of research in medicine, with the potential to provide a step-change in the diagnosis and treatment of cancer, allowing the prediction of both therapy response and prognosis. EVs could be useful not only as biomarkers but also as drug delivery systems, and may represent a target for anticancer therapy. In this review, we attempted to summarize the current knowledge about the techniques used for the isolation of EVs and their roles in cancer biology, as liquid biopsy biomarkers and as therapeutic tools and targets.
Collapse
Affiliation(s)
- Cristina Catoni
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy; (C.C.); (R.Z.)
| | - Veronica Di Paolo
- Laboratory of Drug Metabolism, Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy;
| | - Elisabetta Rossi
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy; (C.C.); (R.Z.)
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Luigi Quintieri
- Laboratory of Drug Metabolism, Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy;
| | - Rita Zamarchi
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy; (C.C.); (R.Z.)
| |
Collapse
|
9
|
Słomka A, Mocan T, Wang B, Nenu I, Urban SK, Gonzalez-Carmona MA, Schmidt-Wolf IGH, Lukacs-Kornek V, Strassburg CP, Spârchez Z, Kornek M. EVs as Potential New Therapeutic Tool/Target in Gastrointestinal Cancer and HCC. Cancers (Basel) 2020; 12:E3019. [PMID: 33080904 PMCID: PMC7603109 DOI: 10.3390/cancers12103019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/04/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
For more than a decade, extracellular vesicles (EVs) have been in focus of science. Once thought to be an efficient way to eliminate undesirable cell content, EVs are now well-accepted as being an important alternative to cytokines and chemokines in cell-to-cell communication route. With their cargos, mainly consisting of functional proteins, lipids and nucleic acids, they can activate signalling cascades and thus change the phenotype of recipient cells at local and systemic levels. Their substantial role as modulators of various physiological and pathological processes is acknowledged. Importantly, more and more evidence arises that EVs play a pivotal role in many stages of carcinogenesis. Via EV-mediated communication, tumour cells can manipulate cells from host immune system or from the tumour microenvironment, and, ultimately, they promote tumour progression and modulate host immunity towards tumour's favour. Additionally, the role of EVs in modulating resistance to pharmacological and radiological therapy of many cancer types has become evident lately. Our understanding of EV biology and their role in cancer promotion and drug resistance has evolved considerably in recent years. In this review, we specifically discuss the current knowledge on the association between EVs and gastrointestinal (GI) and liver cancers, including their potential for diagnosis and treatment.
Collapse
Affiliation(s)
- Artur Słomka
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-067 Bydgoszcz, Poland;
| | - Tudor Mocan
- Octavian Fodor Institute for Gastroenterology and Hepatology, Iuliu Haţieganu, University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania; (T.M.); (I.N.); (Z.S.)
| | - Bingduo Wang
- Department of Internal Medicine I, University Hospital of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany; (B.W.); (S.K.U.); (M.G.-C.); (C.P.S.)
| | - Iuliana Nenu
- Octavian Fodor Institute for Gastroenterology and Hepatology, Iuliu Haţieganu, University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania; (T.M.); (I.N.); (Z.S.)
| | - Sabine K. Urban
- Department of Internal Medicine I, University Hospital of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany; (B.W.); (S.K.U.); (M.G.-C.); (C.P.S.)
| | - Maria A. Gonzalez-Carmona
- Department of Internal Medicine I, University Hospital of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany; (B.W.); (S.K.U.); (M.G.-C.); (C.P.S.)
| | - Ingo G. H. Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany;
| | - Veronika Lukacs-Kornek
- Institute of Experimental Immunology, University Hospital of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany;
| | - Christian P. Strassburg
- Department of Internal Medicine I, University Hospital of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany; (B.W.); (S.K.U.); (M.G.-C.); (C.P.S.)
| | - Zeno Spârchez
- Octavian Fodor Institute for Gastroenterology and Hepatology, Iuliu Haţieganu, University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania; (T.M.); (I.N.); (Z.S.)
| | - Miroslaw Kornek
- Department of Internal Medicine I, University Hospital of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany; (B.W.); (S.K.U.); (M.G.-C.); (C.P.S.)
| |
Collapse
|
10
|
Shoucair I, Weber Mello F, Jabalee J, Maleki S, Garnis C. The Role of Cancer-Associated Fibroblasts and Extracellular Vesicles in Tumorigenesis. Int J Mol Sci 2020; 21:ijms21186837. [PMID: 32957712 PMCID: PMC7555043 DOI: 10.3390/ijms21186837] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) play a key role in the communication between cancer cells and stromal components of the tumor microenvironment (TME). In this context, cancer cell-derived EVs can regulate the activation of a CAF phenotype in TME cells, which can be mediated by several EV cargos (e.g., miRNA, proteins, mRNA and lncRNAs). On the other hand, CAF-derived EVs can mediate several processes during tumorigenesis, including tumor growth, invasion, metastasis, and therapy resistance. This review aimed to discuss the molecular aspects of EV-based cross-talk between CAFs and cancer cells during tumorigenesis, in addition to assessing the roles of EV cargo in therapy resistance and pre-metastatic niche formation.
Collapse
Affiliation(s)
- Issraa Shoucair
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (I.S.); (F.W.M.); (J.J.); (S.M.)
| | - Fernanda Weber Mello
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (I.S.); (F.W.M.); (J.J.); (S.M.)
- Postgraduate Program in Dentistry, Federal University of Santa Catarina, Florianópolis 88.040-370, Brazil
| | - James Jabalee
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (I.S.); (F.W.M.); (J.J.); (S.M.)
| | - Saeideh Maleki
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (I.S.); (F.W.M.); (J.J.); (S.M.)
| | - Cathie Garnis
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Correspondence:
| |
Collapse
|
11
|
Zhuang C, Wang P, Sun T, Zheng L, Ming L. Expression levels and prognostic values of annexins in liver cancer. Oncol Lett 2019; 18:6657-6669. [PMID: 31807177 PMCID: PMC6876331 DOI: 10.3892/ol.2019.11025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 09/10/2019] [Indexed: 02/07/2023] Open
Abstract
Annexins are a superfamily of calcium-dependent phospholipid-binding proteins that are implicated in a wide range of biological processes. The annexin superfamily comprises 13 members in humans (ANXAs), the majority of which are frequently dysregulated in cancer. However, the expression patterns and prognostic values of ANXAs in liver cancer are currently largely unknown. The present study aimed to analyze the expression levels of ANXAs and survival data in patients with liver cancer from the Oncomine, GEPIA, Kaplan-Meier plotter and cBioPortal for Cancer Genomics databases. The results demonstrated that ANXA1, A2, A3, A4 and A5 were upregulated, whereas ANXA10 was downregulated in liver cancer compared with normal liver tissues. The expression of ANXA10 was associated with pathological stage. High expression levels of ANXA2 and A5 were significantly associated with poor overall survival (OS) rate whereas ANXA7 and A10 were associated with increased OS. The prognostic values of ANXAs in liver cancer were determined based on sex and clinical stage, which revealed that ANXA2, A5, A7 and A10 were associated with OS in male, but not in female patients. In addition, the potential biological functions of ANXAs were identified by Gene Ontology functional annotation and Kyoto Encyclopedia of Genes Genomes pathway analysis; the results demonstrated that ANXAs may serve a role in liver cancer through the neuroactive ligand-receptor interaction pathway. In conclusion, the results of the present study suggested that ANXA1, A2, A3, A4, A5 and A10 may be potential therapeutic targets for liver cancer treatment, and that ANXA2, A5, A7 and A10 may be potential prognostic biomarkers of liver cancer.
Collapse
Affiliation(s)
- Chunbo Zhuang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Pei Wang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ting Sun
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Lei Zheng
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Liang Ming
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
12
|
Wang J, Deng L, Zhuang H, Liu J, Liu D, Li X, Jin S, Zhu L, Wang H, Lin B. Interaction of HE4 and ANXA2 exists in various malignant cells-HE4-ANXA2-MMP2 protein complex promotes cell migration. Cancer Cell Int 2019; 19:161. [PMID: 31210752 PMCID: PMC6567406 DOI: 10.1186/s12935-019-0864-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 05/27/2019] [Indexed: 02/06/2023] Open
Abstract
Background The interaction between human epididymis protein 4 (HE4) and annexin A2 (Annexin A2) has been found in ovarian cancer. However, it is dimness whether
the interaction exists in other malignant tumors. Methods Real-time PCR, western blotting and immunocytochemistry were used to detect mRNA and proteins expression. Co-immunoprecipitation and double-labeling immunofluorescence were used to detect the interaction among HE4, ANXA2 and MMP2. MTS assay was used to test cell proliferation. Adhesion test was used to test cell adhesion. Flow cytometry was applied to examine cell cycle. The scratch test and Transwell assay was performed to detect the migration and invasion of various malignant cell lines. Results Here we show that the overexpression of HE4 and ANXA2 in various malignant cells is a common phenomenon. HE4 and ANXA2 are co-localized in the cytoplasm and membrane of various tumor cells. ES-2 cells which had both high expression of HE4 and ANXA2 were much stronger in proliferation, adhesion, invasion, and migration than other tumor cells. HE4–ANXA2–MMP2 could form a triple protein complex. HE4 could mediate the expression of MMP2 via ANXA2 to promote cell migration progress. Conclusions The interaction of HE4 and ANXA2 exists in various types of cancer cells. HE4 and ANXA2 can promote the proliferation, adhesion, invasion, and migration of cancer cells. HE4–ANXA2–MMP2 form a protein complex and ANXA2 plays the role of “bridge”. They performed together to promote cell migration.
Collapse
Affiliation(s)
- Jing Wang
- 1Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated To China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, No. 7 Mulan Road, Xihu District, Benxi, 117000 Liaoning China
| | - Lu Deng
- 1Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated To China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, No. 7 Mulan Road, Xihu District, Benxi, 117000 Liaoning China.,3Obstetrics and Gynaecology Hospital of Fudan University, Shanghai, China
| | - Huiyu Zhuang
- 1Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated To China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, No. 7 Mulan Road, Xihu District, Benxi, 117000 Liaoning China.,4Department of Gynecology and Obstetrics, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Workers' Stadium South Road, Chaoyang District, Beijing, 100020 China
| | - Juanjuan Liu
- 1Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated To China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, No. 7 Mulan Road, Xihu District, Benxi, 117000 Liaoning China
| | - Dawo Liu
- 1Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated To China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, No. 7 Mulan Road, Xihu District, Benxi, 117000 Liaoning China
| | - Xiao Li
- 1Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated To China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, No. 7 Mulan Road, Xihu District, Benxi, 117000 Liaoning China
| | - Shan Jin
- 1Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated To China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, No. 7 Mulan Road, Xihu District, Benxi, 117000 Liaoning China
| | - Liancheng Zhu
- 1Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated To China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, No. 7 Mulan Road, Xihu District, Benxi, 117000 Liaoning China
| | - Huimin Wang
- 1Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated To China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, No. 7 Mulan Road, Xihu District, Benxi, 117000 Liaoning China.,5Department of Gynecology, Liaoning Cancer Hospital & Institute China Medical University, No. 44 Xiaoheyan Road, Dadong District, Shenyang, 110000 Liaoning China
| | - Bei Lin
- 1Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated To China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, No. 7 Mulan Road, Xihu District, Benxi, 117000 Liaoning China
| |
Collapse
|
13
|
YIPF2 is a novel Rab-GDF that enhances HCC malignant phenotypes by facilitating CD147 endocytic recycle. Cell Death Dis 2019; 10:462. [PMID: 31189879 PMCID: PMC6561952 DOI: 10.1038/s41419-019-1709-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/24/2019] [Accepted: 05/27/2019] [Indexed: 02/05/2023]
Abstract
An increased surface level of CIE (clathrin-independent endocytosis) proteins is a new feature of malignant neoplasms. CD147 is a CIE glycoprotein highly up-regulated in hepatocellular carcinoma (HCC). The ability to sort out the early endosome and directly target the recycling pathway confers on CD147 a prolonged surface half-life. However, current knowledge on CD147 trafficking to and from the cell-surface is limited. In this study, an MSP (membrane and secreted protein)-cDNA library was screened against EpoR/LR-F3/CD147EP-expressed cells by MAPPIT (mammalian protein–protein interaction trap). CD147 co-expressing with the new binder was investigated by GEPIA (gene expression profiling interactive analysis). The endocytosis, ER-Golgi trafficking and recycling of CD147 were measured by confocal imaging, flow cytometry, and biotin-labeled chase assays, respectively. Rab GTPase activation was checked by GST-RBD pull-down and MMP activity was measured by gelatin zymography. HCC malignant phenotypes were determined by cell adhesion, proliferation, migration, Transwell motility, and invasion assays. An ER-Golgi-resident transmembrane protein YIPF2 was identified as an intracellular binder to CD147. YIPF2 correlated and co-expressed with CD147, which is a survival predictor for HCC patients. YIPF2 is critical for CD147 glycosylation and trafficking functions in HCC cells. YIPF2 acts as a Rab-GDF (GDI-displacement factor) regulating three independent trafficking steps. First, YIPF2 recruits and activates Rab5 and Rab22a GTPases to the endomembrane structures. Second, YIPF2 modulates the endocytic recycling of CD147 through distinctive regulation on Rab5 and Rab22a. Third, YIPF2 mediates the mature processing of CD147 via the ER-Golgi trafficking route. Decreased YIPF2 expression induced a CD147 efficient delivery to the cell-surface, promoted MMP secretion, and enhanced the adhesion, motility, migration, and invasion behaviors of HCC cells. Thus, YIPF2 is a new trafficking determinant essential for CD147 glycosylation and transport. Our findings revealed a novel YIPF2-controlled ER-Golgi trafficking signature that promotes CD147-medated malignant phenotypes in HCC.
Collapse
|
14
|
Fan Y, Si W, Ji W, Wang Z, Gao Z, Tian R, Song W, Zhang H, Niu R, Zhang F. Rack1 mediates tyrosine phosphorylation of Anxa2 by Src and promotes invasion and metastasis in drug-resistant breast cancer cells. Breast Cancer Res 2019; 21:66. [PMID: 31113450 PMCID: PMC6530024 DOI: 10.1186/s13058-019-1147-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/29/2019] [Indexed: 12/20/2022] Open
Abstract
Background Acquirement of resistance is always associated with a highly aggressive phenotype of tumor cells. Recent studies have revealed that Annexin A2 (Anxa2) is a key protein that links drug resistance and cancer metastasis. A high level of Anxa2 in cancer tissues is correlated to a highly aggressive phenotype. Increased Anxa2 expression appears to be specific in many drug-resistant cancer cells. The functional activity of Anxa2 is regulated by tyrosine phosphorylation at the Tyr23 site. Nevertheless, the accurate molecular mechanisms underlying the regulation of Anxa2 tyrosine phosphorylation and whether phosphorylation is necessary for the enhanced invasive phenotype of drug-resistant cells remain unknown. Methods Small interfering RNAs, small molecule inhibitors, overexpression, loss of function or gain of function, rescue experiments, Western blot, wound healing assays, transwell assays, and in vivo metastasis mice models were used to investigate the functional effects of Rack1 and Src on the tyrosine phosphorylation of Anxa2 and the invasion and metastatic potential of drug-resistant breast cancer cells. The interaction among Rack1, Src, and Anxa2 in drug-resistant cells was verified by co-immunoprecipitation assay. Results We demonstrated that Anxa2 Tyr23 phosphorylation is necessary for multidrug-resistant breast cancer invasion and metastasis. Rack1 is required for the invasive and metastatic potential of drug-resistant breast cancer cells through modulating Anxa2 phosphorylation. We provided evidence that Rack1 acts as a signal hub and mediates the interaction between Src and Anxa2, thereby facilitating Anxa2 phosphorylation by Src kinase. Conclusions Our findings suggest a convergence point role of Rack1/Src/Anxa2 complex in the crosstalk between drug resistance and cancer aggressiveness. The interaction between Anxa2 and Rack1/Src is responsible for the association between drug resistance and invasive/metastatic potential in breast cancer cells. Thus, our findings provide novel insights on the mechanism underlying the functional linkage between drug resistance and cancer aggressiveness. Electronic supplementary material The online version of this article (10.1186/s13058-019-1147-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanling Fan
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, China
| | - Weiyao Si
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, China
| | - Wei Ji
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, China
| | - Zhiyong Wang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, China
| | - Zicong Gao
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, China
| | - Ran Tian
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, China
| | - Weijie Song
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, China
| | - He Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, China
| | - Ruifang Niu
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China. .,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China. .,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China. .,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, China.
| | - Fei Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China. .,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China. .,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China. .,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, China.
| |
Collapse
|
15
|
Hlady RA, Sathyanarayan A, Thompson JJ, Zhou D, Wu Q, Pham K, Lee JH, Liu C, Robertson KD. Integrating the Epigenome to Identify Drivers of Hepatocellular Carcinoma. Hepatology 2019; 69:639-652. [PMID: 30136421 PMCID: PMC6351162 DOI: 10.1002/hep.30211] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/03/2018] [Indexed: 12/20/2022]
Abstract
Disruption of epigenetic mechanisms has been intimately linked to the etiology of human cancer. Understanding how these epigenetic mechanisms (including DNA methylation [5mC], hydroxymethylation [5hmC], and histone post-translational modifications) work in concert to drive cancer initiation and progression remains unknown. Hepatocellular carcinoma (HCC) is increasing in frequency in Western countries but lacks efficacious treatments. The epigenome of HCC remains understudied. To better understand the epigenetic underpinnings of HCC, we performed a genome-wide assessment of 5mC, 5hmC, four histone modifications linked to promoter/enhancer function (H3K4me1, H3K27ac, H3K4me3, and H3K27me3), and transcription across normal, cirrhotic, and HCC liver tissue. Implementation of bioinformatic strategies integrated these epigenetic marks with each other and with transcription to provide a comprehensive epigenetic profile of how and when the liver epigenome is perturbed during progression to HCC. Our data demonstrate significant deregulation of epigenetic regulators combined with disruptions in the epigenome hallmarked by profound loss of 5hmC, locus-specific gains in 5mC and 5hmC, and markedly altered histone modification profiles, particularly remodeling of enhancers. Data integration demonstrates that these marks collaborate to influence transcription (e.g., hyper-5hmC in HCC-gained active enhancers is linked to elevated expression) of genes regulating HCC proliferation. Two such putative epigenetic driver loci identified through our integrative approach, COMT and FMO3, increase apoptosis and decrease cell viability in liver-derived cancer cell lines when ectopically re-expressed. Conclusion: Altogether, integration of multiple epigenetic parameters is a powerful tool for identifying epigenetically regulated drivers of HCC and elucidating how epigenome deregulation contributes to liver disease and HCC.
Collapse
Affiliation(s)
- RA Hlady
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - A Sathyanarayan
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - JJ Thompson
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - D Zhou
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Q Wu
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - K Pham
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - JH Lee
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905 Mayo Clinic, Rochester, MN 55905, USA
| | - C Liu
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - KD Robertson
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
16
|
Taylor JR, Skeate JG, Kast WM. Annexin A2 in Virus Infection. Front Microbiol 2018; 9:2954. [PMID: 30568638 PMCID: PMC6290281 DOI: 10.3389/fmicb.2018.02954] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 11/16/2018] [Indexed: 12/17/2022] Open
Abstract
Viral life cycles consist of three main phases: (1) attachment and entry, (2) genome replication and expression, and (3) assembly, maturation, and egress. Each of these steps is intrinsically reliant on host cell factors and processes including cellular receptors, genetic replication machinery, endocytosis and exocytosis, and protein expression. Annexin A2 (AnxA2) is a membrane-associated protein with a wide range of intracellular functions and a recurrent host factor in a variety of viral infections. Spatially, AnxA2 is found in the nucleus and cytoplasm, vesicle-bound, and on the inner and outer leaflet of the plasma membrane. Structurally, AnxA2 exists as a monomer or in complex with S100A10 to form the AnxA2/S100A10 heterotetramer (A2t). Both AnxA2 and A2t have been implicated in a vast array of cellular functions such as endocytosis, exocytosis, membrane domain organization, and translational regulation through RNA binding. Accordingly, many discoveries have been made involving AnxA2 in viral pathogenesis, however, the reported work addressing AnxA2 in virology is highly compartmentalized. Therefore, the purpose of this mini review is to provide information regarding the role of AnxA2 in the lifecycle of multiple epithelial cell-targeting viruses to highlight recurrent themes, identify discrepancies, and reveal potential avenues for future research.
Collapse
Affiliation(s)
- Julia R Taylor
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, United States
| | - Joseph G Skeate
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, United States
| | - W Martin Kast
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, United States.,Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA, United States.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
17
|
Extracellular Vesicles and Matrix Remodeling Enzymes: The Emerging Roles in Extracellular Matrix Remodeling, Progression of Diseases and Tissue Repair. Cells 2018; 7:cells7100167. [PMID: 30322133 PMCID: PMC6210724 DOI: 10.3390/cells7100167] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/17/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane enclosed micro- and nano-sized vesicles that are secreted from almost every species, ranging from prokaryotes to eukaryotes, and from almost every cell type studied so far. EVs contain repertoire of bioactive molecules such as proteins (including enzymes and transcriptional factors), lipids, carbohydrates and nucleic acids including DNA, coding and non-coding RNAs. The secreted EVs are taken up by neighboring cells where they release their content in recipient cells, or can sail through body fluids to reach distant organs. Since EVs transport bioactive cargo between cells, they have emerged as novel mediators of extra- and intercellular activities in local microenvironment and inter-organ communications distantly. Herein, we review the activities of EV-associated matrix-remodeling enzymes such as matrix metalloproteinases, heparanases, hyaluronidases, aggrecanases, and their regulators such as extracellular matrix metalloproteinase inducers and tissue inhibitors of metalloproteinases as novel means of matrix remodeling in physiological and pathological conditions. We discuss how such EVs act as novel mediators of extracellular matrix degradation to prepare a permissive environment for various pathological conditions such as cancer, cardiovascular diseases, arthritis and metabolic diseases. Additionally, the roles of EV-mediated matrix remodeling in tissue repair and their potential applications as organ therapies have been reviewed. Collectively, this knowledge could benefit the development of new approaches for tissue engineering.
Collapse
|
18
|
Cesselli D, Parisse P, Aleksova A, Veneziano C, Cervellin C, Zanello A, Beltrami AP. Extracellular Vesicles: How Drug and Pathology Interfere With Their Biogenesis and Function. Front Physiol 2018; 9:1394. [PMID: 30327618 PMCID: PMC6174233 DOI: 10.3389/fphys.2018.01394] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EV) are at the center of an intense activity of investigation, both for their possible employment as biomarkers of ongoing pathologic processes and for their broad range of biological activities. EV can promote tissue repair in very different pathologic settings, including hindlimb and myocardial ischemia. Importantly, the exact mode of action of EV is still partly understood, since they may act by modulating growth factors and cytokines, signaling pathways, and by transferring non-coding RNAs to target cells. However, the term EV identifies cell derived, enveloped particles very heterogeneous in size, composition, and biogenesis. Therefore, part of the controversies on the biological effects exerted by EV is a consequence of differences in methods of separation that result in the enrichment of different entities. Since technical challenges still hamper the highly specific sorting of different EV subpopulations, up to now only few investigators have tried to verify differences in the biological effects of specific EV subtypes. This review summarizes the current state of the art on the comprehension of mechanisms involved in EV biogenesis and release, which is a prerequisite for understanding and investigating the impact that pathology and drug therapy may exert on the secretion and composition of EV. Finally, we described both the mechanism involved in the modulation of EV secretion by drugs commonly used in patients affected by heart failure, and how pathophysiological mechanisms involved in heart disease modify EV secretion.
Collapse
Affiliation(s)
| | | | - Aneta Aleksova
- Cardiovascular Department, Azienda Sanitaria Universitaria Integrata di Trieste - University of Trieste, Trieste, Italy
| | | | | | - Andrea Zanello
- Department of Medicine, University of Udine, Udine, Italy
| | | |
Collapse
|
19
|
Taylor JR, Fernandez DJ, Thornton SM, Skeate JG, Lühen KP, Da Silva DM, Langen R, Kast WM. Heterotetrameric annexin A2/S100A10 (A2t) is essential for oncogenic human papillomavirus trafficking and capsid disassembly, and protects virions from lysosomal degradation. Sci Rep 2018; 8:11642. [PMID: 30076379 PMCID: PMC6076308 DOI: 10.1038/s41598-018-30051-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/23/2018] [Indexed: 02/07/2023] Open
Abstract
Human papillomavirus (HPV) entry into epithelial cells is independent of canonical endocytic pathways. Upon interaction with host cells, HPV establishes infection by traversing through an endocytic pathway that is clathrin- and caveolin-independent, but dependent on the annexin A2/S100A10 heterotetramer (A2t). We examined the contribution of monomeric annexin A2 (AnxA2) vs. A2t in HPV infection and endocytosis, and further characterized the role of these molecules in protein trafficking. We specifically show that cell surface A2t is not required for HPV attachment, and in the absence of A2t virion internalization remains clathrin-independent. Without A2t, viral progression from early endosomes to multivesicular endosomes is significantly inhibited, capsid uncoating is dramatically reduced, and lysosomal degradation of HPV is accelerated. Furthermore, we present evidence that AnxA2 forms a complex with CD63, a known mediator of HPV trafficking. Overall, the observed reduction in infection is less significant in the absence of S100A10 alone compared to full A2t, supporting an independent role for monomeric AnxA2. More broadly, we show that successful infection by multiple oncogenic HPV types is dependent on A2t. These findings suggest that A2t is a central mediator of high-risk HPV intracellular trafficking post-entry and pre-viral uncoating.
Collapse
Affiliation(s)
- Julia R Taylor
- Department of Molecular Microbiology & Immunology, University of Southern California, Los Angeles, CA, USA
| | - Daniel J Fernandez
- Department of Molecular Microbiology & Immunology, University of Southern California, Los Angeles, CA, USA
| | - Shantaé M Thornton
- Department of Molecular Microbiology & Immunology, University of Southern California, Los Angeles, CA, USA
| | - Joseph G Skeate
- Department of Molecular Microbiology & Immunology, University of Southern California, Los Angeles, CA, USA
| | - Kim P Lühen
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Diane M Da Silva
- Department of Obstetrics & Gynecology, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Ralf Langen
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | - W Martin Kast
- Department of Molecular Microbiology & Immunology, University of Southern California, Los Angeles, CA, USA.
- Department of Obstetrics & Gynecology, University of Southern California, Los Angeles, CA, USA.
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
20
|
Yang N, Wang L, Liu J, Liu L, Huang J, Chen X, Luo Z. MicroRNA-206 regulates the epithelial-mesenchymal transition and inhibits the invasion and metastasis of prostate cancer cells by targeting Annexin A2. Oncol Lett 2018; 15:8295-8302. [PMID: 29805562 PMCID: PMC5950137 DOI: 10.3892/ol.2018.8395] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 02/19/2018] [Indexed: 12/11/2022] Open
Abstract
The present study investigated the molecular mechanism by which microRNA-206 (miR-206) targets Annexin A2 (ANXA2) expression and inhibits the invasion and metastasis of prostatic cancer cells through regulation of the epithelial-mesenchymal transition (EMT). Using bioinformatics analysis, miR-206 was identified as the most promising candidate miRNA that targeted ANXA2. Prostate tissue specimens from 60 patients with prostate cancer, 30 patients with metastatic prostate cancer and 20 patients with benign prostatic hyperplasia (BPH) were examined for ANXA2 protein expression by immunohistochemistry and western blotting and for miR-206 expression by reverse transcription-quantitative polymerase chain reaction. Additionally, human prostate cancer PC-3 cells were transfected with miR-206 mimics, miR-206 inhibitors or a negative control sequence, and expression of ANXA2, E-cadherin and N-cadherin was detected by western blotting. Transwell assays were performed to determine the effect of altered miR-206 expression on the invasive behavior of PC-3 cells. Bioinformatics analysis predicted complementary binding between miR-206 and ANXA2 mRNA. ANXA2 protein expression was detected in a significantly higher proportion of BPH tissues (95%, 19/20) when compared with prostate cancer tissues (51.7%, 31/60; P<0.05). Similarly, ANXA2 was expressed in a significantly higher proportion of metastatic prostate cancer samples than that of prostate cancer samples (P<0.05). Expression of miR-206 was higher than that of ANXA2 in prostate cancer samples, but lower in BPH samples. Inhibition of miR-206 expression in PC-3 cells upregulated ANXA2 and E-cadherin protein expression levels, downregulated N-cadherin and vimentin, and promoted cell invasion in vitro. These data suggested that binding between miRNA-206 and ANXA2 mRNA may regulate EMT signaling, thereby suppressing the invasion and metastasis of prostatic cancer cells.
Collapse
Affiliation(s)
- Ning Yang
- Department of Urology, The Second Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Ling Wang
- Department of Pharmacology, The Medical School of Hunan University of Environment and Biology, Hengyang, Hunan 421001, P.R. China
| | - Jun Liu
- Department of Urology, The Second Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Li Liu
- Department of Urology, The Second Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jiangbo Huang
- Department of Urology, The Second Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xian Chen
- Department of Urology, The Second Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zhigang Luo
- Department of Urology, The Second Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
21
|
Annexin A2-mediated cancer progression and therapeutic resistance in nasopharyngeal carcinoma. J Biomed Sci 2018; 25:30. [PMID: 29598816 PMCID: PMC5877395 DOI: 10.1186/s12929-018-0430-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/20/2018] [Indexed: 02/07/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a head and neck cancer with poor clinical outcomes and insufficient treatments in Southeast Asian populations. Although concurrent chemoradiotherapy has improved recovery rates of patients, poor overall survival and low efficacy are still critical problems. To improve the therapeutic efficacy, we focused on a tumor-associated protein called Annexin A2 (ANXA2). This review summarizes the mechanisms by which ANXA2 promotes cancer progression (e.g., proliferation, migration, the epithelial-mesenchymal transition, invasion, and cancer stem cell formation) and therapeutic resistance (e.g., radiotherapy, chemotherapy, and immunotherapy). These mechanisms gave us a deeper understanding of the molecular aspects of cancer progression, and further provided us with a great opportunity to overcome therapeutic resistance of NPC and other cancers with high ANXA2 expression by developing this prospective ANXA2-targeted therapy.
Collapse
|
22
|
Yang N, Li S, Li G, Zhang S, Tang X, Ni S, Jian X, Xu C, Zhu J, Lu M. The role of extracellular vesicles in mediating progression, metastasis and potential treatment of hepatocellular carcinoma. Oncotarget 2018; 8:3683-3695. [PMID: 27713136 PMCID: PMC5356911 DOI: 10.18632/oncotarget.12465] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/28/2016] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a major cause of cancer-related death worldwide. As vectors for intercellular information exchange, the potential role of extracellular vesicles (EVs) in HCC formation, progression and therapy has been widely investigated. In this review, we explore the current status of the researches in this field. Altogether there is undeniable evidence that EVs play a crucial role in HCC development, metastasis. Moreover, EVs have shown great potential as drug delivery systems (DDSs) for the treatment of HCC. Exosomal miRNAs derived from HCC cells can enhance transformed cell growth in recipient cells by modulating the expression of transforming growth factor-β activated kinase-1(TAK1) and downstream signaling molecules. Furthermore, vacuolar protein sortin 4 homolog A(VPS4A) and insulin-like growth factor(IGF)-1 regulate exosome-mediated miRNAs transfer. Immune cells- derived EVs containing integrin αMβ2 or CD147 may facilitate HCC metastasis. In addition, EVs-mediated shuttle of long non-coding RNAs (lncRNAs), specifically linc- VLDLR and linc-ROR promote chemoresistance of malignant cells. Heat shock proteins (HSPs)-harboring exosomes derived from HCC tumor cells increase the antitumor effect of natural killer (NK) cells, thus enhancing HCC immunotherapy. Indeed, inhibition of HCC tumor growth has been associated with tumor cell-derived exosomes (TEX)-pulsed dentritic cells (DCs). Exosomes are also essential in liver metastasis during colorectal carcinoma (CRC) and pancreatic ductal adenocarcinomas (PDAC). Therefore, as nucleic acid and drug delivery vehicles, EVs show a tremendous potential for effective treatment against HCC.
Collapse
Affiliation(s)
- Naibin Yang
- Department of Infection and Liver Diseases, Ningbo First Hospital, Ningbo, China
| | - Shanshan Li
- Department of Infection and Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Institute of Liver Research, Wenzhou Medical University, Wenzhou, China
| | - Guoxiang Li
- Department of Infection and Liver Diseases, Ningbo First Hospital, Ningbo, China
| | - Shengguo Zhang
- Department of Infection and Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Institute of Liver Research, Wenzhou Medical University, Wenzhou, China
| | - Xinyue Tang
- Department of Infection and Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Institute of Liver Research, Wenzhou Medical University, Wenzhou, China
| | - Shunlan Ni
- Department of Infection and Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Institute of Liver Research, Wenzhou Medical University, Wenzhou, China
| | - Xiaomin Jian
- Department of The First Clinical Medical, Wenzhou Medical University, Wenzhou, China
| | - Cunlai Xu
- Department of Respiration, Lishui People's Hospital of Wenzhou Medical University, Lishui, China
| | - Jiayin Zhu
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou, China
| | - Mingqin Lu
- Department of Infection and Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Institute of Liver Research, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
23
|
UBAP2 negatively regulates the invasion of hepatocellular carcinoma cell by ubiquitinating and degradating Annexin A2. Oncotarget 2018; 7:32946-55. [PMID: 27121050 PMCID: PMC5078065 DOI: 10.18632/oncotarget.8783] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 03/28/2016] [Indexed: 12/13/2022] Open
Abstract
The ubiquitin-dependent proteasomal degradation of proteins controls signaling and cellular survival. In this study, we found that ubiquitin associated protein 2 (UBAP2) was significantly downregulated in hepatocellular carcinoma (HCC) tissues compared with adjacent normal tissues. Furthermore, higher expression of UBAP2 in cancer tissues was correlated with good prognosis in HCC patients. Knockdown of UBAP2 significantly enhanced the invasion and proliferation of HCC cells in vitro and promoted tumor growth in vivo, while enforced expression of UBAP2 impaired the aggressive ability and tumor growth of HCC cells. Mechanistically, UBAP2 formed a complex with Annexin A2 and promoted the degradation of Annexin A2 protein by ubiquitination, and then inhibited HCC progression. Collectively, UBAP2 appears as a novel marker for predicting prognosis and a therapeutic target for HCC.
Collapse
|
24
|
Extracellular Matrix Metalloproteinase Inducer EMMPRIN (CD147) in Cardiovascular Disease. Int J Mol Sci 2018; 19:ijms19020507. [PMID: 29419744 PMCID: PMC5855729 DOI: 10.3390/ijms19020507] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 12/22/2022] Open
Abstract
The receptor EMMPRIN is involved in the development and progression of cardiovascular diseases and in the pathogenesis of myocardial infarction. There are several binding partners of EMMPRIN mediating the effects of EMMPRIN in cardiovascular diseases. EMMPRIN interaction with most binding partners leads to disease progression by mediating cytokine or chemokine release, the activation of platelets and monocytes, as well as the formation of monocyte-platelet aggregates (MPAs). EMMPRIN is also involved in atherosclerosis by mediating the infiltration of pro-inflammatory cells. There is also evidence that EMMPRIN controls energy metabolism of cells and that EMMPRIN binding partners modulate intracellular glycosylation and trafficking of EMMPRIN towards the cell membrane. In this review, we systematically discuss these multifaceted roles of EMMPRIN and its interaction partners, such as Cyclophilins, in cardiovascular disease.
Collapse
|
25
|
Cua S, Tan HL, Fong WJ, Chin A, Lau A, Ding V, Song Z, Yang Y, Choo A. Targeting of embryonic annexin A2 expressed on ovarian and breast cancer by the novel monoclonal antibody 2448. Oncotarget 2018; 9:13206-13221. [PMID: 29568351 PMCID: PMC5862572 DOI: 10.18632/oncotarget.24152] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/04/2018] [Indexed: 12/21/2022] Open
Abstract
Monoclonal antibodies (mAbs) play an increasingly important role in cancer therapy. To address the wide heterogeneity of the disease, the identification of novel antigen targets and the development of mAbs against them are needed. Our lab previously generated a panel of mAbs against human embryonic stem cells (hESC) using a whole cell immunization approach in mice. These mAbs can potentially target oncofetal antigens and be repurposed for antibody or antibody drug conjugate (ADC) therapy. From this panel, the novel IgG1 2448 was found to bind surface antigens on hESC and multiple cancer cell lines. Here, we show 2448 targets a unique glycan epitope on annexin A2 (ANXA2) and can potentially monitor the Epithelial-Mesenchymal Transition (EMT) in ovarian and breast cancer. To evaluate 2448 as a potential drug, 2448 was engineered and expressed as a chimeric IgG1. Chimeric 2448 (ch2448) demonstrated efficient and specific killing when conjugated to cytotoxic payloads as an ADC. In addition, ch2448 elicited potent antibody-dependent cell-mediated cytotoxicity (ADCC) activity in vitro and in vivo. Further engineering of ch2448 to remove fucose in the Fc domain enhanced ADCC. Overall, these findings indicate that embryonic ANXA2 is an attractive target and suggest that ch2448 is a promising candidate for further therapeutic development.
Collapse
Affiliation(s)
- Simeon Cua
- Stem Cells 1 Group, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (ASTAR), Singapore 138668, Singapore
| | - Heng Liang Tan
- Stem Cells 1 Group, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (ASTAR), Singapore 138668, Singapore
| | - Wey Jia Fong
- Stem Cells 1 Group, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (ASTAR), Singapore 138668, Singapore
| | - Angela Chin
- Stem Cells 1 Group, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (ASTAR), Singapore 138668, Singapore
| | - Ally Lau
- Proteomics Group, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (ASTAR), Singapore 138668, Singapore
| | - Vanessa Ding
- Stem Cells 1 Group, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (ASTAR), Singapore 138668, Singapore
| | - Zhiwei Song
- Expression Engineering 1 Group, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (ASTAR), Singapore 138668, Singapore
| | - Yuansheng Yang
- Animal Cell Technology 1 Group, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (ASTAR), Singapore 138668, Singapore
| | - Andre Choo
- Stem Cells 1 Group, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (ASTAR), Singapore 138668, Singapore.,Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore (NUS), Singapore 117575, Singapore
| |
Collapse
|
26
|
The Transcriptomic Signature Of Disease Development And Progression Of Nonalcoholic Fatty Liver Disease. Sci Rep 2017; 7:17193. [PMID: 29222421 PMCID: PMC5722878 DOI: 10.1038/s41598-017-17370-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 11/24/2017] [Indexed: 02/06/2023] Open
Abstract
A longitudinal molecular model of the development and progression of nonalcoholic fatty liver disease (NAFLD) over time is lacking. We have recently validated a high fat/sugar water-induced animal (an isogenic strain of C57BL/6 J:129S1/SvImJ mice) model of NAFLD that closely mimics most aspects of human disease. The hepatic transcriptome of such mice with fatty liver (8 weeks), steatohepatitis with early fibrosis (16–24 weeks) and advanced fibrosis (52 weeks) after initiation of the diet was evaluated and compared to mice on chow diet. Fatty liver development was associated with transcriptional activation of lipogenesis, FXR-RXR, PPAR-α mediated lipid oxidation and oxidative stress pathways. With progression to steatohepatitis, metabolic pathway activation persisted with additional activation of IL-1/inhibition of RXR, granulocyte diapedesis/adhesion, Fc macrophage activation, prothrombin activation and hepatic stellate cell activation. Progression to advanced fibrosis was associated with dampening of metabolic, oxidative stress and cell stress related pathway activation but with further Fc macrophage activation, cell death and turnover and activation of cancer-related networks. The molecular progression of NAFLD involves a metabolic perturbation which triggers subsequent cell stress and inflammation driving cell death and turnover. Over time, inflammation and fibrogenic pathways become dominant while in advanced disease an inflammatory-oncogenic profile dominates.
Collapse
|
27
|
Liu Y, Li H, Ban Z, Nai M, Yang L, Chen Y, Xu Y. Annexin A2 inhibition suppresses ovarian cancer progression via regulating β-catenin/EMT. Oncol Rep 2017; 37:3643-3650. [PMID: 28440436 DOI: 10.3892/or.2017.5578] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/16/2017] [Indexed: 01/23/2023] Open
Abstract
Annexin A2 is a member of the Annexin family that acts as a Ca2+-dependent phospholipid and membrane binding protein, which is associated with the survival and spread of multiple neoplasms. However, the function of Annexin A2 in ovarian cancer progression remains unclear. In this study, we aimed to investigate the role and underlying molecular mechanism of Annexin A2 in cell proliferation and invasion in ovarian cancer. We found that the mRNA expression of Annexin A2 was upregulated in ovarian cancer tissues and cell lines. In the loss-of-function of Annexin A2, β-catenin was indicated to be significantly suppressed and EMT constrained. Moreover, cell proliferation and invasion were both markedly inhibited by the downregulation of Annexin A2. Additionally, the overexpression of β-catenin obviously reversed the effect of Annexin A2 on EMT, and cell proliferation and invasion, indicating that Annexin A2 suppression regulated EMT through controlling β-catenin. Taken together, this study showed that Annexin A2 inhibition suppresses proliferation and invasion in ovarian cancer via β-catenin/EMT, proposing the potential role of Annexin A2 in the prevention and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yan Liu
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Hongyu Li
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Zhenying Ban
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Manman Nai
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Li Yang
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Yannan Chen
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Yiming Xu
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
28
|
Xu Y, Zhang Y, Wang L, Zhao R, Qiao Y, Han D, Sun Q, Dong N, Liu Y, Wu D, Zhang X, Huang N, Ma N, Zhao W, Liu Y, Gao X. miR-200a targets Gelsolin: A novel mechanism regulating secretion of microvesicles in hepatocellular carcinoma cells. Oncol Rep 2017; 37:2711-2719. [PMID: 28440466 PMCID: PMC5428402 DOI: 10.3892/or.2017.5506] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 03/09/2017] [Indexed: 01/04/2023] Open
Abstract
Microvesicle biogenesis is a highly regulated process. Aberrant release of microvesicles from cancer cells have been associated with their invasiveness and prognosis. However, the mechanism of aberrant release remains poorly understood. Herein, we found that hepatocellular carcinoma cells shed more microvesicles than normal hepatocytes and miR-200a were shown to inhibit the release of microvesicles in hepatocellular carcinoma cells. Then, we confirmed that miR-200a might target Gelsolin and change cytoskeleton to regulate microvesicles secretion. Further miR-200a may inhibit the proliferation of adjacent cells by inhibiting the release of microvesicles. Collectively, our findings indicate that miR-200a regulated the microvesicle biogenesis involved in the hepatocellular carcinoma progression.
Collapse
Affiliation(s)
- Ya Xu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Yanfen Zhang
- Department of Laboratory Diagnosis, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Lujing Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Ruiqi Zhao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Yu Qiao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Dong Han
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Qian Sun
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Nazhen Dong
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Yicong Liu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Dantong Wu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Xuemei Zhang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Ning Huang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Ning Ma
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Weiming Zhao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Yanhong Liu
- Department of Laboratory Diagnosis, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| |
Collapse
|
29
|
Shen L, Dong X, Yu M, Luo Z, Wu S. β3GnT8 Promotes Gastric Cancer Invasion by Regulating the Glycosylation of CD147. J Cancer 2017; 8:314-322. [PMID: 28243336 PMCID: PMC5327381 DOI: 10.7150/jca.16526] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 10/17/2016] [Indexed: 12/17/2022] Open
Abstract
β1, 3-N-acetylglucosminyltransferase 8(β3GnT8) synthesizes a unique cabohydrate structure known as polylactosamine, and plays a vital role in progression of various human cancer types. However, its involvement in gastric cancer remains unclear. In this study, we analyzed the expression and clinical significance of β3GnT8 by Western blot in 6 paired fresh gastric cancer tissues, noncancerous tissues and immunohistochemistry on 110 paraffin-embedded slices. β3GnT8 was found to be over-expressed in gastric cancer tissues, which correlated with lymph node metastasis and TNM stage. Forced the expression of β3GnT8 promoted migration and invasion of gastric cancer cells, whereas β3GnT8 knockdown led to the opposite results. Further studies showed that the regulated β3GnT8 could convert the heterogeneous N-glycosylated forms of CD147 and change the polylactosamine structures carried on CD147. In addition, our data suggested the annexin A2 (ANXA2) to be an essential interaction partner of β3GnT8 during the process of CD147 glycosylation. Collectively, these results provide a novel molecular mechanism for β3GnT8 in promotion of gastric cancer invasion and metastasis. Targeting β3GnT8 could serve as a new strategy for future gastric cancer therapy.
Collapse
Affiliation(s)
- Li Shen
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; Department of Biochemistry and Molecular Biology, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xiaoxia Dong
- Department of pharmacology, School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Meiyun Yu
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou 215123, Jiangsu, China
| | - Zhiguo Luo
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; Institute of Cancer Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Shiliang Wu
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
30
|
Wang D, Cao Y, Zheng L, Lv D, Chen L, Xing X, Zhu Z, Li X, Chai Y. Identification of Annexin A2 as a target protein for plant alkaloid matrine. Chem Commun (Camb) 2017; 53:5020-5023. [DOI: 10.1039/c7cc02227a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cellular target of matrine is identified.
Collapse
Affiliation(s)
- Dongyao Wang
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| | - Yan Cao
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| | - Leyi Zheng
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| | - Diya Lv
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| | - Langdong Chen
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| | - Xinrui Xing
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| | - Zhenyu Zhu
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| | - Xiaoyu Li
- Department of Chemistry
- The University of Hong Kong
- Hong Kong SAR
- China
| | - Yifeng Chai
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| |
Collapse
|
31
|
Zhang J, Cheng J, Zeng Z, Wang Y, Li X, Xie Q, Jia J, Yan Y, Guo Z, Gao J, Yao M, Chen X, Lu F. Comprehensive profiling of novel microRNA-9 targets and a tumor suppressor role of microRNA-9 via targeting IGF2BP1 in hepatocellular carcinoma. Oncotarget 2016; 6:42040-52. [PMID: 26547929 PMCID: PMC4747208 DOI: 10.18632/oncotarget.5969] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 10/09/2015] [Indexed: 01/01/2023] Open
Abstract
MicroRNA-9 (miR-9) dysregulation is implicated in a variety of human malignancies including hepatocellular carcinoma (HCC), but its role remains contradictory. In this study, we explored the expression and methylation status of miR-9 in HCC samples, as well as the tumor-related functions of miR-9 in vitro. Bioinformatics analysis, array-based RNA expression profile, and literature retrieval were used to identify miR-9 targets in HCC. The potential downstream candidates were then validated by luciferase reporter assay, real-time quantitative PCR, and western blot or enzyme linked immunosorbent assay (ELISA). The expression status and clinicopathologic significances of miR-9 target genes in clinical samples were further explored. The results showed that miR-9 was frequently downregulated in primary HCC. Its silencing was largely contributed by a high frequency (42.5%) of mir-9-1 hypermethylation, which was correlated with bigger tumor size (P = 0.0234). In vitro functional studies revealed that miR-9 restoration retarded HCC cell proliferation and migration. IL-6, AP3B1, TC10, ONECUT2, IGF2BP1, MYO1D, and ANXA2 were confirmed to be miR-9 targets in HCC. Among them, ONECUT2, IGF2BP1, and ANXA2 were confirmed to be aberrantly upregulated in HCC. Moreover, upregulation of ONECUT2, IGF2BP1, and IL-6 were significantly associated with poor post-surgery prognosis (P = 0.0458, P = 0.0037 and P = 0.0461, respectively). Mechanically, miR-9 plays a tumor suppressive role partially through a functional miR-9/IGF2BP1/AKT&ERK axis. Our study suggests that miR-9 functions as a tumor suppressor in HCC progression by inhibiting a series of target genes, including the newly validated miR-9/IGF2BP1/AKT&ERK axis, thus providing potential therapeutic targets and novel prognostic biomarkers for HCC patients.
Collapse
Affiliation(s)
- Jiangbo Zhang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Jin Cheng
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, China
| | - Zhenzhen Zeng
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yongfeng Wang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xiaojun Li
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Qing Xie
- Department of Clinical Laboratory, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Junqiao Jia
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ying Yan
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zhengyang Guo
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jian Gao
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Mingjie Yao
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xiangmei Chen
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Fengmin Lu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
32
|
High Podocalyxin levels promote cell viability partially through up-regulation of Annexin A2. Biochem Biophys Res Commun 2016; 478:573-9. [DOI: 10.1016/j.bbrc.2016.07.102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 07/20/2016] [Accepted: 07/23/2016] [Indexed: 12/15/2022]
|
33
|
Extracellular Vesicles: A New Frontier in Biomarker Discovery for Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2016; 17:376. [PMID: 26985892 PMCID: PMC4813235 DOI: 10.3390/ijms17030376] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 12/14/2022] Open
Abstract
In recent years, the global burden of obesity and diabetes has seen a parallel rise in other metabolic complications, such as non-alcoholic fatty liver disease (NAFLD). This condition, once thought to be a benign accumulation of hepatic fat, is now recognized as a serious and prevalent disorder that is conducive to inflammation and fibrosis. Despite the rising incidence of NAFLD, there is currently no reliable method for its diagnosis or staging besides the highly invasive tissue biopsy. This limitation has resulted in the study of novel circulating markers as potential candidates, one of the most popular being extracellular vesicles (EVs). These submicron membrane-bound structures are secreted from stressed and activated cells, or are formed during apoptosis, and are known to be involved in intercellular communication. The cargo of EVs depends upon the parent cell and has been shown to be changed in disease, as is their abundance in the circulation. The role of EVs in immunity and epigenetic regulation is widely attested, and studies showing a correlation with disease severity have made these structures a favorable target for diagnostic as well as therapeutic purposes. This review will highlight the research that is available on EVs in the context of NAFLD, the current limitations, and projections for their future utility in a clinical setting.
Collapse
|
34
|
The Annexin a2 Promotes Development in Arthritis through Neovascularization by Amplification Hedgehog Pathway. PLoS One 2016; 11:e0150363. [PMID: 26963384 PMCID: PMC4786284 DOI: 10.1371/journal.pone.0150363] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/12/2016] [Indexed: 02/08/2023] Open
Abstract
The neovascularization network of pannus formation plays a crucial role in the development of rheumatoid arthritis (RA). Annexin a2 (Axna2) is an important mediating agent that induces angiogenesis in vascular diseases. The correlation between Axna2 and pannus formation has not been studied. Here, we provided evidence that compared to osteoarthritis (OA) patients and healthy people, the expression of Axna2 and Axna2 receptor (Axna2R) were up-regulated in patients with RA. Joint swelling, inflammation and neovascularization were increased significantly in mice with collagen-induced arthritis (CIA) that were exogenously added Axna2. Cell experiments showed that Axna2 promoted HUVEC proliferation by binding Axna2R, and could activate Hedgehog (HH) signaling and up-regulate the expression of Ihh and Gli. Besides, expression of Ihh, Patched (Ptc), Smoothened (Smo) and Gli and matrix metalloproteinase-2 (MMP-2), vascular endothelial growth factor (VEGF) and angiopoietin-2 (Ang-2), angiogenic growth factor of HH signaling downstream, were down-regulated after inhibition of expression Axna2R on HUVEC. Together, our research definitely observed that over-expression of Axna2 could promote the development of CIA, especially during the process of pannus formation for the first time. Meanwhile, Axna2 depended on combining Axna2R to activate and enlarge HH signaling and the expression of its downstream VEGF, Ang-2 and MMP-2 to promote HUVEC proliferation, and eventually caused to angiogenesis. Therefore, the role of Axna2 is instructive for understanding the development of RA, suppress the effect of Axna2 might provide a new potential measure for treatment of RA.
Collapse
|
35
|
Biological characteristics of a novel giant cell tumor cell line derived from spine. Tumour Biol 2016; 37:9681-9. [PMID: 26801673 DOI: 10.1007/s13277-016-4867-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/14/2016] [Indexed: 02/06/2023] Open
Abstract
Giant cell tumor of bone(GCTB) is a special bone tumor for it consists of various cell types, and its biological characteristics is different from common benign or malignant neoplasm. In the present study, we report the biological features of a primary Asian GCTB cell line named GCTB28. We analyzed extensive properties of the GCTB28 cells including morphological observations, growth, cell cycle, karyotype, proliferation, proteins expression, surface biomarker verification, and tumorigenicity in nude mice. We found that the stromal cells of GCTB were endowed with self-renewal capacity and played dominant roles in GCTB development. Moreover, we confirmed that GCTB cells can be CD33(-)CD14(-) phenotype which was not in accord with previous study. This study provides an in vitro model system to investigate pathogenic mechanisms and molecular characteristics of GCTB and also provides a useful tool for researching the therapeutic targeting of GCTB.
Collapse
|
36
|
How, with whom and when: an overview of CD147-mediated regulatory networks influencing matrix metalloproteinase activity. Biosci Rep 2015; 36:e00283. [PMID: 26604323 PMCID: PMC4718507 DOI: 10.1042/bsr20150256] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/24/2015] [Indexed: 12/11/2022] Open
Abstract
Matrix metalloproteinases (MMPs) comprise a family of 23 zinc-dependent enzymes involved in various pathologic and physiologic processes. In cancer, MMPs contribute to processes from tumour initiation to establishment of distant metastases. Complex signalling and protein transport networks regulate MMP synthesis, cell surface presentation and release. Earlier attempts to disrupt MMP activity in patients have proven to be intolerable and with underwhelming clinical efficacy; thus targeting ancillary proteins that regulate MMP activity may be a useful therapeutic approach. Extracellular matrix metalloproteinase inducer (EMMPRIN) was originally characterized as a factor present on lung cancer cells, which stimulated collagenase (MMP-1) production in fibroblasts. Subsequent studies demonstrated that EMMPRIN was identical with several other protein factors, including basigin (Bsg), all of which are now commonly termed CD147. CD147 modulates the synthesis and activity of soluble and membrane-bound [membrane-type MMPs (MT-MMPs)] in various contexts via homophilic/heterophilic cell interactions, vesicular shedding or cell-autonomous processes. CD147 also participates in inflammation, nutrient and drug transporter activity, microbial pathology and developmental processes. Despite the hundreds of manuscripts demonstrating CD147-mediated MMP regulation, the molecular underpinnings governing this process have not been fully elucidated. The present review summarizes our present knowledge of the complex regulatory systems influencing CD147 biology and provides a framework to understand how CD147 may influence MMP activity.
Collapse
|
37
|
Clancy JW, Tricarico CJ, D'Souza-Schorey C. Tumor-derived microvesicles in the tumor microenvironment: How vesicle heterogeneity can shape the future of a rapidly expanding field. Bioessays 2015; 37:1309-16. [DOI: 10.1002/bies.201500068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- James W. Clancy
- Department of Biological Sciences; University of Notre Dame; Notre Dame IN USA
| | | | | |
Collapse
|
38
|
Kong F, Zhang L, Wang H, Yuan G, Guo A, Li Q, Chen Z. Impact of collection, isolation and storage methodology of circulating microvesicles on flow cytometric analysis. Exp Ther Med 2015; 10:2093-2101. [PMID: 26668601 PMCID: PMC4665840 DOI: 10.3892/etm.2015.2780] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 07/28/2015] [Indexed: 12/17/2022] Open
Abstract
Microvesicles (MVs) in body fluids participate in a variety of physical and pathological processes, and are regarded as potential biomarkers for numerous diseases. Flow cytometry (FCM) is among the most frequently used techniques for MV detection. However, different handling methods unavoidably cause pre-analytical variations in the counts and sizes of MVs determined by FCM. The aim of the present study was to investigate the effect of centrifugation, storage conditions and anticoagulant on MV measurements. Blood samples were obtained from 13 healthy donors, including 4 women and 9 men. Calcein-AM staining was used to label MVs and assess the impact of pre-analytical preparation, including centrifugation, and storage conditions on MV measurements obtained using FCM. The range of factors investigated for comparison included: Platelet-free plasma (PFP) stored at −80°C for 1 or 4 weeks; MVs stored at 4°C for 3–4 days or 1 week; MVs frozen at −80°C for 1 or 4 weeks; and anticoagulants, either heparin or ethylenediaminetetraacetic acid (EDTA). No statistically significant differences in MV counts were detected between the two centrifugation speeds (16,000 and 20,500 × g) or among the three centrifugation times (15, 30 and 60 min) investigated. Similarly, no significant differences were noted in MV counts between the two anticoagulants tested (heparin and EDTA). However, the storage of PFP or MVs in heparin-anticoagulated plasma for different periods markedly affected the detected MV counts and size distribution. The counts and sizes of MVs from EDTA-anticoagulated plasma were only affected when the MVs were frozen at −80°C for 4 weeks. In conclusion, calcein-AM is able to efficiently identify MVs from plasma and may be an alternative to Annexin V for MV staining. EDTA preserves the MV counts and size more accurately compared with heparin under calcein-AM staining. PFP centrifuged at 16,000 × g for 15 min is sufficient to isolate MVs, which enables the batch processing of samples. PFP, rather than MVs alone, appears to be the preferable mode of sample storage, as MVs stored in PFP were less affected by storage temperature and duration. The present study provides a methodology for MV collection, storage and isolation, to facilitate further investigation of MVs as biomarkers in disease.
Collapse
Affiliation(s)
- Fancong Kong
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Liming Zhang
- Department of Hematology, Jingzhou Central Hospital, Jingzhou, Hubei 434020, P.R. China
| | - Hongxiang Wang
- Department of Hematology, Wuhan Central Hospital, Wuhan, Hubei 430012, P.R. China
| | - Guolin Yuan
- Department of Hematology, Xiangyang Central Hospital, The Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| | - Anyuan Guo
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Qiubai Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zhichao Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
39
|
Proteins from formalin-fixed paraffin-embedded prostate cancer sections that predict the risk of metastatic disease. Clin Proteomics 2015; 12:24. [PMID: 26388710 PMCID: PMC4574128 DOI: 10.1186/s12014-015-9096-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/09/2015] [Indexed: 02/02/2023] Open
Abstract
Background Prostate cancer is the most frequently diagnosed cancer in men and the third leading cause of cancer related deaths among men living in developed countries. Biomarkers that predict disease outcome at the time of initial diagnosis would substantially aid disease management. Results Proteins extracted from formalin-fixed paraffin-embedded tissue were identified using nanoflow liquid chromatography-MALDI MS/MS or after separation by one- or two-dimensional electrophoresis. The proteomics data have been deposited to the ProteomeXchange with identifier PXD000963. A list of potential biomarker candidates, based on proposed associations with prostate cancer, was derived from the 320 identified proteins. Candidate biomarkers were then examined by multiplexed Western blotting of archival specimens from men with premetastatic disease and subsequent disease outcome data. Annexin A2 provided the best prediction of risk of metastatic disease (log-rank Chi squared p = 0. 025). A tumor/control tissue >2-fold relative abundance increase predicted early biochemical failure, while <2-fold change predicted late or no biochemical failure. Conclusions This study confirms the potential for use of archival FFPE specimens in the search for prognostic biomarkers for prostate cancer and suggests that annexin A2 abundance in diagnostic biopsies is predictive for metastatic potential. Protein profiling each cancer may lead to an overall reduction in mortality from metastatic prostate cancer as well as reduced treatment associated morbidity. Electronic supplementary material The online version of this article (doi:10.1186/s12014-015-9096-3) contains supplementary material, which is available to authorized users.
Collapse
|
40
|
RNAi-mediated silencing of Anxa2 inhibits breast cancer cell proliferation by downregulating cyclin D1 in STAT3-dependent pathway. Breast Cancer Res Treat 2015; 153:263-75. [PMID: 26253946 DOI: 10.1007/s10549-015-3529-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/05/2015] [Indexed: 12/22/2022]
Abstract
Although the upregulated expression of Anxa2 has been implicated in carcinogenesis, cancer progression, and poor prognosis of cancer patients, the detailed molecular mechanisms involved in these processes remain unclear. In this study, we investigated the effect of Anxa2 downregulation with small interference RNA on breast cancer proliferation. To explore molecular mechanisms underlying Anxa2-mediated cancer cell proliferation. We analyzed cell cycle distribution and signaling pathways using semi-quantitative real-time PCR and Western blotting. Anxa2 depletion in breast cancer cells significantly inhibited cell proliferation by decelerating cell cycle progression. The retarded G1-to-S phase transition in Anxa2-silenced cells was attributed to the decreased levels of cyclin D1, which is a crucial promoting factor for cell proliferation because it regulates G1-to-S phase transition during cell cycle progression. We provided evidence that Anxa2 regulates epidermal growth factor-induced phosphorylation of STAT3. The reduced expression of phosphorylated STAT3 is the main factor responsible for decreased cyclin D1 levels in Anxa2-silenced breast cancer cells. Our results revealed the direct relationship between Anxa2 and activation of STAT3, a key transcription factor that plays a pivotal role in regulating breast cancer proliferation and survival. This study provides novel insights into the functions of Anxa2 as a critical molecule in cellular signal transduction and significantly improves our understanding of the mechanism through which Anxa2 regulates cell cycle and cancer cell proliferation.
Collapse
|
41
|
Zhang H, Yao M, Wu W, Qiu L, Sai W, Yang J, Zheng W, Huang J, Yao D. Up-regulation of annexin A2 expression predicates advanced clinicopathological features and poor prognosis in hepatocellular carcinoma. Tumour Biol 2015; 36:9373-83. [PMID: 26109000 DOI: 10.1007/s13277-015-3678-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/15/2015] [Indexed: 12/15/2022] Open
Abstract
Hepatic annexin A2 (ANXA2) orchestrates multiple biologic processes and clinical symptoms and plays a key role in development, metastasis, and drug resistance of lethal hepatocellular carcinoma (HCC). However, the prognostic significance of ANXA2 for HCC has not been elucidated up to now. In this study, ANXA2 was frequently found to be up-regulated in HCC tissues compared with benign liver disease (BLD) tissues, which was consistent with the results in serum samples and tissue specimens of patients with HCC. Furthermore, ANXA2 expression was significantly correlated with differentiated degree, intrahepatic metastasis, portal vein thrombus, and tumor node metastasis (TNM) staging. More importantly, increased ANXA2 level was first confirmed to be closely associated with shortened overall survival of HCC (χ (2) = 12.872, P = 0.005) and identified as an independent prognostic factor (hazard ratio 1.338, 95 % confidence interval (CI) 1.013 ~ 1.766, P = 0.040), suggesting that ANXA2 up-regulation might represent an acquired metastasis phenotype of HCC, help to screen out high-risk population for HCC, or more effectively treat a subset of postsurgical HCC patients positive for ANXA2.
Collapse
Affiliation(s)
- Haijian Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 West Temple Road, Jiangsu, 226001, China
| | - Min Yao
- Department of Immunology, Medical School of Nantong University, Nantong, China
| | - Wei Wu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 West Temple Road, Jiangsu, 226001, China
| | - Liwei Qiu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 West Temple Road, Jiangsu, 226001, China
| | - Wenli Sai
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 West Temple Road, Jiangsu, 226001, China
| | - Junling Yang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 West Temple Road, Jiangsu, 226001, China
| | - Wenjie Zheng
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 West Temple Road, Jiangsu, 226001, China
| | - Jianfei Huang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| | - Dengfu Yao
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 West Temple Road, Jiangsu, 226001, China.
| |
Collapse
|
42
|
Hahn JN, Kaushik DK, Yong VW. The role of EMMPRIN in T cell biology and immunological diseases. J Leukoc Biol 2015; 98:33-48. [PMID: 25977287 PMCID: PMC7166407 DOI: 10.1189/jlb.3ru0215-045r] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/03/2015] [Indexed: 12/30/2022] Open
Abstract
Review on EMMPRIN in numerous immunological/inflammatory disease conditions and its complex roles in T cell biology. EMMPRIN (CD147), originally described as an inducer of the expression of MMPs, has gained attention in its involvement in various immunologic diseases, such that anti‐EMMPRIN antibodies are considered as potential therapeutic medications. Given that MMPs are involved in the pathogenesis of various disease states, it is relevant that targeting an upstream inducer would make for an effective therapeutic strategy. Additionally, EMMPRIN is now appreciated to have multiple roles apart from MMP induction, including in cellular functions, such as migration, adhesion, invasion, energy metabolism, as well as T cell activation and proliferation. Here, we review what is known about EMMPRIN in numerous immunologic/inflammatory disease conditions with a particular focus on its complex roles in T cell biology.
Collapse
Affiliation(s)
| | | | - V Wee Yong
- Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| |
Collapse
|
43
|
Xu XH, Pan W, Kang LH, Feng H, Song YQ. Association of annexin A2 with cancer development (Review). Oncol Rep 2015; 33:2121-8. [PMID: 25760910 DOI: 10.3892/or.2015.3837] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/20/2015] [Indexed: 01/11/2023] Open
Abstract
Annexin A2 (ANXA2) is a well-known calcium-dependent phospholipid binding protein widely distributed in the nucleus, cytoplasm and extracellular surface of various eukaryotic cells. It has been recognized as a pleiotropic protein affecting a wide range of molecular and cellular processes. Dysregulation and abnormal expression of ANXA2 are linked to a large number of prevalent diseases, including autoimmune and neurodegenerative disease, antiphospholipid syndrome, inflammation, diabetes mellitus and a series of cancers. Accumulating data suggest that ANXA2 is aberrantly expressed in a wide spectrum of cancers, and exerts profound effects on tumor cell adhesion, proliferation, apoptosis, invasion and metastasis as well as tumor neovascularization via different modes of action. However, despite significant research, our knowledge of the mechanism by which ANXA2 participates in cancer development remains fragmented. The present review systematically summarizes the effects of ANXA2 on tumor progression, in an attempt to gain an improved understanding of the underlying mechanisms and to provide a potential effective target for cancer therapy.
Collapse
Affiliation(s)
- Xiao-Heng Xu
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Wei Pan
- Department of Pediatrics, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Li-Hua Kang
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Hui Feng
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Yan-Qiu Song
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| |
Collapse
|
44
|
Cocucci E, Meldolesi J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol 2015; 25:364-72. [PMID: 25683921 DOI: 10.1016/j.tcb.2015.01.004] [Citation(s) in RCA: 996] [Impact Index Per Article: 110.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/29/2014] [Accepted: 01/20/2015] [Indexed: 12/11/2022]
Abstract
Long- and short-distance communication can take multiple forms. Among them are exosomes and ectosomes, extracellular vesicles (EVs) released from the cell to deliver signals to target cells. While most of our understanding of how these vesicles are assembled and work comes from mechanistic studies performed on exosomes, recent studies have begun to shift their focus to ectosomes. Unlike exosomes, which are released on the exocytosis of multivesicular bodies (MVBs), ectosomes are ubiquitous vesicles assembled at and released from the plasma membrane. Here we review the similarities and differences between these two classes of vesicle, suggesting that, despite their considerable differences, the functions of ectosomes may be largely analogous to those of exosomes. Both vesicles appear to be promising targets in the diagnosis and therapy of diseases, especially cancer.
Collapse
Affiliation(s)
- Emanuele Cocucci
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
| | - Jacopo Meldolesi
- Vita-Salute San Raffaele University, 20132 Milan, Italy; San Raffaele Scientific Institute, 20132 Milan, Italy.
| |
Collapse
|
45
|
Vella LJ. The emerging role of exosomes in epithelial-mesenchymal-transition in cancer. Front Oncol 2014; 4:361. [PMID: 25566500 PMCID: PMC4271613 DOI: 10.3389/fonc.2014.00361] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/27/2014] [Indexed: 12/21/2022] Open
Abstract
Metastasis in cancer consists of multiple steps, including epithelial–mesenchymal-transition (EMT), which is characterized by the loss of epithelial-like characteristics and the gain of mesenchymal-like attributes including cell migration and invasion. It is clear that the tumor microenvironment can promote the metastatic cascade and that intercellular communication is necessary for this to occur. Exosomes are small membranous vesicles secreted by most cell types into the extracellular environment and they are important communicators in the tumor microenvironment. They promote angiogenesis, invasion, and proliferation in recipient cells to support tumor growth and a prometastatic phenotype. Although it is clear that exosomes contribute to cancer cell plasticity, experimental evidence to define exosome induced plasticity as EMT is only just coming to light. This review will discuss recent research on exosomal regulation of the EMT process in the tumor microenvironment.
Collapse
Affiliation(s)
- Laura Jayne Vella
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Cancer Immunobiology Laboratory, Olivia Newton-John Cancer and Wellness Centre , Heidelberg, VIC , Australia ; The Florey Institute for Neuroscience and Mental Health , Parkville, VIC , Australia
| |
Collapse
|
46
|
Annexin A2 knockdown inhibits hepatoma cell growth and sensitizes hepatoma cells to 5-fluorouracil by regulating β-catenin and cyclin D1 expression. Mol Med Rep 2014; 11:2147-52. [PMID: 25385370 DOI: 10.3892/mmr.2014.2906] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 07/22/2014] [Indexed: 11/05/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancer types, and chemotherapy plays an important role in treatment of HCC. However, long‑term treatment with chemotherapeutic drugs such as 5‑fluorouracil (5‑FU) often results in chemoresistance, and the underlying mechanisms remain unclear. In this study, we showed that the annexin A2 (ANXA2) protein is highly expressed in hepatoma cells compared to healthy cells. Knockdown of the ANXA2 gene inhibited hepatoma cell growth, and the underlying mechanism may involve cell cycle inhibition through downregulation of β‑catenin and cyclin D1. We also investigated the role of ANXA2 in chemotherapeutic treatment with 5‑FU. 5‑FU inhibited hepatoma cell growth, while ANXA2 overexpression reduced, and knockdown enhanced, the effects of 5‑FU on hepatoma cell growth. Furthermore, β‑catenin and cyclin D1 were asscociated with the ANXA2‑induced resistance. Taken together, our data suggest that the ANXA2 protein is a critical factor in HCC and that its downregulation can enhance chemotherapeutic treatment with 5‑FU. ANXA2 may thus constitute a new therapeutic target for HCC.
Collapse
|
47
|
Xiong L, Edwards CK, Zhou L. The biological function and clinical utilization of CD147 in human diseases: a review of the current scientific literature. Int J Mol Sci 2014; 15:17411-41. [PMID: 25268615 PMCID: PMC4227170 DOI: 10.3390/ijms151017411] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/08/2014] [Accepted: 09/16/2014] [Indexed: 02/05/2023] Open
Abstract
CD147 or EMMPRIN is a member of the immunoglobulin superfamily in humans. It is widely expressed in human tumors and plays a central role in the progression of many cancers by stimulating the secretion of matrix metalloproteinases (MMPs) and cytokines. CD147 regulates cell proliferation, apoptosis, and tumor cell migration, metastasis and differentiation, especially under hypoxic conditions. CD147 is also important to many organ systems. This review will provide a detailed overview of the discovery, characterization, molecular structure, diverse biological functions and regulatory mechanisms of CD147 in human physiological and pathological processes. In particular, recent studies have demonstrated the potential application of CD147 not only as a phenotypic marker of activated regulatory T cells but also as a potential diagnostic marker for early-stage disease. Moreover, CD147 is recognized as an effective therapeutic target for hepatocellular carcinoma (HCC) and other cancers, and exciting clinical progress has been made in HCC treatment using CD147-directed monoclonal antibodies.
Collapse
Affiliation(s)
- Lijuan Xiong
- Central Laboratory, Navy General Hospital, Beijing 100048, China.
| | - Carl K Edwards
- National Key Laboratory of Biotherapy and Cancer Research (NKLB), West China Hospital and Medical School, Sichuan University, Chengdu 610041, China.
| | - Lijun Zhou
- Central Laboratory, Navy General Hospital, Beijing 100048, China.
| |
Collapse
|
48
|
High-glucose inhibits human fibroblast cell migration in wound healing via repression of bFGF-regulating JNK phosphorylation. PLoS One 2014; 9:e108182. [PMID: 25244316 PMCID: PMC4171528 DOI: 10.1371/journal.pone.0108182] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 08/26/2014] [Indexed: 01/03/2023] Open
Abstract
One of the major symptoms of diabetes mellitus (DM) is delayed wound healing, which affects large populations of patients worldwide. However, the underlying mechanism behind this illness remains elusive. Skin wound healing requires a series of coordinated processes, including fibroblast cell proliferation and migration. Here, we simulate DM by application of high glucose (HG) in human foreskin primary fibroblast cells to analyze the molecular mechanism of DM effects on wound healing. The results indicate that HG, at a concentration of 30 mM, delay cell migration, but not cell proliferation. bFGF is known to promote cell migration that partially rescues HG effects on cell migration. Molecular and cell biology studies demonstrated that HG enhanced ROS production and repressed JNK phosphorylation, but did not affect Rac1 activity. JNK and Rac1 activation were known to be important for bFGF regulated cell migration. To further confirm DM effects on skin repair, a type 1 diabetic rat model was established, and we observed the efficacy of bFGF on both normal and diabetic rat skin repair. Furthermore, proteomic studies identified an increase of Annexin A2 protein nitration in HG-stressed fibroblasts and the nitration was protected by activation of bFGF signaling. Treatment with FGFR1 and JNK inhibitors delayed cell migration and increased Annexin A2 nitration levels, indicating that Annexin A2 nitration is modulated by bFGF signaling via activation of JNK. Together with these results, our data suggests that the HG-mediated delay of cell migration is linked to the inhibition of bFGF signaling, specifically through JNK suppression.
Collapse
|
49
|
Tu T, Budzinska MA, Maczurek AE, Cheng R, Di Bartolomeo A, Warner FJ, McCaughan GW, McLennan SV, Shackel NA. Novel aspects of the liver microenvironment in hepatocellular carcinoma pathogenesis and development. Int J Mol Sci 2014; 15:9422-58. [PMID: 24871369 PMCID: PMC4100103 DOI: 10.3390/ijms15069422] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/13/2014] [Accepted: 05/14/2014] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent primary liver cancer that is derived from hepatocytes and is characterised by high mortality rate and poor prognosis. While HCC is driven by cumulative changes in the hepatocyte genome, it is increasingly recognised that the liver microenvironment plays a pivotal role in HCC propensity, progression and treatment response. The microenvironmental stimuli that have been recognised as being involved in HCC pathogenesis are diverse and include intrahepatic cell subpopulations, such as immune and stellate cells, pathogens, such as hepatitis viruses, and non-cellular factors, such as abnormal extracellular matrix (ECM) and tissue hypoxia. Recently, a number of novel environmental influences have been shown to have an equally dramatic, but previously unrecognized, role in HCC progression. Novel aspects, including diet, gastrointestinal tract (GIT) microflora and circulating microvesicles, are now being recognized as increasingly important in HCC pathogenesis. This review will outline aspects of the HCC microenvironment, including the potential role of GIT microflora and microvesicles, in providing new insights into tumourigenesis and identifying potential novel targets in the treatment of HCC.
Collapse
Affiliation(s)
- Thomas Tu
- Liver Cell Biology, Centenary Institute, Sydney, NSW 2050, Australia.
| | | | | | - Robert Cheng
- Liver Cell Biology, Centenary Institute, Sydney, NSW 2050, Australia.
| | - Anna Di Bartolomeo
- School of Medicine, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Fiona J Warner
- Liver Cell Biology, Centenary Institute, Sydney, NSW 2050, Australia.
| | | | - Susan V McLennan
- Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia.
| | | |
Collapse
|
50
|
EMMPRIN/CD147-encriched membrane vesicles released from malignant human testicular germ cells increase MMP production through tumor-stroma interaction. Biochim Biophys Acta Gen Subj 2014; 1840:2581-8. [PMID: 24608032 DOI: 10.1016/j.bbagen.2014.02.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/12/2014] [Accepted: 02/24/2014] [Indexed: 01/18/2023]
Abstract
BACKGROUND Elevated levels of EMMPRIN/CD147 in cancer tissues have been correlated with tumor progression but the regulation of its expression is not yet understood. Here, the regulation of EMMPRIN expression was investigated in testicular germ cell tumor (TGCTs) cell lines. METHODS EMMPRIN expression in seminoma JKT-1 and embryonal carcinoma NT2/D1 cell lines was determined by Western blot, immunofluorescence and qRT-PCR. Membrane vesicles (MVs) secreted from these cells, treated or not with EMMPRIN siRNA, were isolated by differential centrifugations of their conditioned medium. MMP-2 was analyzed by zymography and qRT-PCR. RESULTS The more aggressive embryonic carcinoma NT2/D1 cells expressed more EMMPRIN mRNA than the seminoma JKT-1 cells, but surprisingly contained less EMMPRIN protein, as determined by immunoblotting and immunostaining. The protein/mRNA discrepancy was not due to accelerated protein degradation in NT2/D1 cells, but by the secretion of EMMPRIN within MVs, as the vesicles released from NT2/D1 contained considerably more EMMPRIN than those released from JKT-1. EMMPRIN-containing MVs obtained from NT2/D1, but not from EMMPRIN-siRNA treated NT2/D1, increased MMP-2 production in fibroblasts to a greater extent than those from JKT-1 cells. CONCLUSION AND GENERAL SIGNIFICANCE The data presented show that the more aggressive embryonic carcinoma cells synthesize more EMMPRIN than seminoma cells, but which they preferentially target to secreted MVs, unlike seminoma cells which retain EMMPRIN within the cell membrane. This cellular event points to a mechanism by which EMMPRIN expressed by malignant testicular cells can exert its MMP inducing effect on distant cells within the tumor microenvironment to promote tumor invasion. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
|