1
|
Fontana C, Weintraub A, Widmalm G. Structural elucidation of the O-antigen polysaccharide from shigatoxin-producing E. coli O179 using genetic information, NMR spectroscopy and the CASPER program. Carbohydr Res 2025; 550:109382. [PMID: 39848011 DOI: 10.1016/j.carres.2025.109382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/25/2025]
Abstract
The serological properties of the O-antigen polysaccharide region of the lipopolysaccharides are used to differentiate E. coli strains into serogroups. In this study, we report the structure elucidation of the O-specific chain of E. coli O179 using NMR data, the program CASPER and analysis of biosynthetic information available in the E. coli O-antigen Database (ECODAB). The presence of genes that encode enzymes involved in the biosynthesis of the GDP-Man and UDP-GlcA within the O-antigen gene cluster of the bacteria indicates that the corresponding residues could be present in the polysaccharide. Furthermore, the occurrence of four genes that encode for glycosyltransferases indicates that the polysaccharide is composed of pentasaccharide repeating units; a bioinformatics approach based on predictive glycosyltransferase functions present in ECODAB revealed that the β-d-Manp-(1→4)-β-d-Manp-(1→3)-d-GlcpNAc structural element could be present in the O-specific chain. NMR spectroscopy data obtained from homonuclear and heteronuclear 2D NMR spectra (1H,1H-TOCSY, 1H,13C-HSQC, 1H,13C-H2BC and 1H,13C-HMBC) were analyzed using the CASPER program, revealing the following arrangement of monosaccharide residues as the most probable structure: →4)-α-d-GlcpA-(1→3)-[β-d-Glcp-(1→2)]β-d-Manp-(1→4)-β-d-Manp-(1→3)-β-d-GlcpNAc-(1→, which was further confirmed using 2D homonuclear 1H,1H-COSY and 1H,1H-NOESY spectra. The functions of the α-gluconosyltransferase and the β-glucosyltransferase were predicted using structural alignment of AlphaFold-predicted 3D structures. This O-antigen polysaccharide shares structural similarities with those of E. coli O6 and O188, S. boydii type 16, and the capsular polysaccharide of E. coli K43, explaining the serological cross-reactivities observed with strains belonging these O- and K-antigen groups.
Collapse
Affiliation(s)
- Carolina Fontana
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91, Stockholm, Sweden; Departamento de Química del Litoral, CENUR Litoral Norte, Universidad de la República, Ruta 3 Km 363, Paysandú, 60000, Uruguay
| | - Andrej Weintraub
- Karolinska Institute, Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska University Hospital, S-141 86, Stockholm, Sweden
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91, Stockholm, Sweden.
| |
Collapse
|
2
|
Nagode A, Vanbeselaere J, Dutkiewicz Z, Kaltenbrunner S, Wilson IBH, Duchêne M. Molecular characterisation of Entamoeba histolytica UDP-glucose 4-epimerase, an enzyme able to provide building blocks for cyst wall formation. PLoS Negl Trop Dis 2023; 17:e0011574. [PMID: 37616327 PMCID: PMC10482301 DOI: 10.1371/journal.pntd.0011574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/06/2023] [Accepted: 08/06/2023] [Indexed: 08/26/2023] Open
Abstract
In the human host, the protozoan parasite Entamoeba histolytica is adapted to a non-invasive lifestyle in the colon as well as to an invasive lifestyle in the mesenterial blood vessels and the liver. This means to cope with bacteria and human cells as well as various metabolic challenges. Galactose and N-acetylgalactosamine (GalNAc) are sugars of great importance for the amoebae, they attach to the host mucus and enterocytes via their well-studied Gal/GalNAc specific lectin, they carry galactose residues in their surface glycans, and they cleave GalNAc from host mucins. The enzyme UDP-glucose 4-epimerase (GalE) works as a bridge between the galactose and glucose worlds, it can help to generate glucose for glycolysis from phagocytosis products containing galactose as well as providing UDP-galactose necessary for the biosynthesis of galactose-containing surface components. E. histolytica contains a single galE gene. We recombinantly expressed the enzyme in Escherichia coli and used a spectrophotometric assay to determine its temperature and pH dependency (37°C, pH 8.5), its kinetics for UDP-glucose (Km = 31.82 μM, Vmax = 4.31 U/mg) and substrate spectrum. As observed via RP-HPLC, the enzyme acts on UDP-Glc/Gal as well as UDP-GlcNAc/GalNAc. Previously, Trypanosoma brucei GalE and the bloodstream form of the parasite were shown to be susceptible to the three compounds ebselen, a selenoorganic drug with antioxidant properties, diethylstilbestrol, a mimic of oestrogen with anti-inflammatory properties, and ethacrynic acid, a loop diuretic used to treat oedema. In this study, the three compounds had cytotoxic activity against E. histolytica, but only ebselen inhibited the recombinant GalE with an IC50 of 1.79 μM (UDP-Gal) and 1.2 μM (UDP-GalNAc), suggesting that the two other compounds are active against other targets in the parasite. The importance of the ability of GalE to interconvert UDP-GalNAc and UDP-GlcNAc may be that the trophozoites can generate precursors for their own cyst wall from the sugar subunits cleaved from host mucins. This finding advances our understanding of the biochemical interactions of E. histolytica in its colonic environment.
Collapse
Affiliation(s)
- Anna Nagode
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | | | - Samantha Kaltenbrunner
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Iain B. H. Wilson
- Department of Chemistry, Universität für Bodenkultur, Vienna, Austria
| | - Michael Duchêne
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Mendoza-Porras O, Broadbent JA, Beale DJ, Escobar-Correas SM, Osborne SA, Simon CJ, Wade NM. Post-prandial response in hepatopancreas and haemolymph of Penaeus monodon fed different diets. Omics insights into glycoconjugate metabolism, energy utilisation, chitin biosynthesis, immune function, and autophagy. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY PART D: GENOMICS AND PROTEOMICS 2023; 46:101073. [PMID: 37018937 DOI: 10.1016/j.cbd.2023.101073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/28/2023] [Accepted: 03/12/2023] [Indexed: 03/30/2023]
Abstract
Raw materials or bioactive ingredients trigger mechanisms to assimilate nutrients and activate metabolic pathways that promote growth, immune function, or energy storage. Our understanding of these processes at a molecular level remains limited in aquaculture, especially in shrimp. Here, hepatopancreas proteomics and haemolymph metabolomics were used to investigate the post-prandial response of black tiger shrimps (Penaeus monodon) fed a conventional fishmeal diet (FM); a diet supplemented with the microbial biomass Novacq™ (NV); krill meal (KM); or, fasted (FS). Using FM as a control, a 2-fold change in abundance threshold was implemented to determine the significance of proteins and metabolites. NV fed shrimp showed preference for energy derived from carbohydrates indicated by a strong signature of glycoconjugate metabolism and activation of the amino- and nucleotide sugar metabolic pathway. KM activated the glyoxylate and dicarboxylate pathway that denoted shrimp preference for lipidic energy. KM also influenced energy generation by the TCA cycle inferred from higher abundance of the metabolites succinic semialdehyde, citric acid, isocitrate, alpha ketoglutarate and ATP and downregulation of the enzyme isocitrate dehydrogenase that catalyses oxidative decarboxylation of isocitrate. FS shrimp displayed down-regulation of oxidative phosphorylation and resorted to internal lipid reserves for energy homeostasis displaying a strong signature of autophagy. Pyrimidine metabolism was the preferred energy strategy in this group. Our study also provided evidence that during fasting or consumption of specific ingredients, shrimp share common pathways to meet their energy requirements, however, the intensity at which these pathways were impacted was diet dependent.
Collapse
Affiliation(s)
- Omar Mendoza-Porras
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, QLD, Australia.
| | - James A Broadbent
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, QLD, Australia
| | - David J Beale
- CSIRO Land and Water, Ecosciences Precinct, Dutton Park, QLD, Australia
| | | | - Simone A Osborne
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, QLD, Australia
| | - Cedric J Simon
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, QLD, Australia
| | - Nicholas M Wade
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, QLD, Australia
| |
Collapse
|
4
|
Furevi A, Udekwu KI, Widmalm G. Structural elucidation of the O-antigen polysaccharide from Escherichia coli O125ac and biosynthetic aspects thereof. Glycobiology 2022; 32:1089-1100. [PMID: 36087289 PMCID: PMC9680116 DOI: 10.1093/glycob/cwac061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 01/07/2023] Open
Abstract
Enteropathogenic Escherichia coli O125, the cause of infectious diarrheal disease, is comprised of two serogroups, viz., O125ab and O125ac, which display the aggregative adherence pattern with epithelial cells. Herein, the structure of the O-antigen polysaccharide from E. coli O125ac:H6 has been elucidated. Sugar analysis revealed the presence of fucose, mannose, galactose and N-acetyl-galactosamine as major components. Unassigned 1H and 13C NMR data from one- and two-dimensional NMR experiments of the O125ac O-antigen in conjunction with sugar components were used as input to the CASPER program, which can determine polysaccharide structure in a fully automated way, and resulted in the following branched pentasaccharide structure of the repeating unit: →4)[β-d-Galp-(1 → 3)]-β-d-GalpNAc-(1 → 2)-α-d-Manp-(1 → 3)-α-l-Fucp-(1 → 3)-α-d-GalpNAc-(1→, where the side chain is denoted by square brackets. The proposed O-antigen structure was confirmed by 1H and 13C NMR chemical shift assignments and determination of interresidue connectivities. Based on this structure, that of the O125ab O-antigen, which consists of hexasaccharide repeating units with an additional glucosyl group, was possible to establish in a semi-automated fashion by CASPER. The putative existence of gnu and gne in the gene clusters of the O125 serogroups is manifested by N-acetyl-d-galactosamine residues as the initial sugar residue of the biological repeating unit as well as within the repeating unit. The close similarity between O-antigen structures is consistent with the presence of two subgroups in the E. coli O125 serogroup.
Collapse
Affiliation(s)
- Axel Furevi
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Klas I Udekwu
- Department of Aquatic Sciences and Assessment, Swedish University of Agriculture, P.O. Box 7050, SE-750 07 Uppsala, Sweden
| | - Göran Widmalm
- To whom correspondence should be addressed: Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden. e-mail:
| |
Collapse
|
5
|
Wang J, Xu Y, Qin C, Hu J, Yin J, Guo X. Structural Determination and Genetic Identification of the O-Antigen from an Escherichia coli Strain, LL004, Representing a Novel Serogroup. Int J Mol Sci 2021; 22:ijms222312746. [PMID: 34884549 PMCID: PMC8657804 DOI: 10.3390/ijms222312746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/27/2022] Open
Abstract
The O-antigen is the outermost component of the lipopolysaccharide layer in Gram-negative bacteria, and the variation of O-antigen structure provides the basis for bacterial serological diversity. Here, we determined the O-antigen structure of an Escherichia coli strain, LL004, which is totally different from all of the E. coli serogroups. The tetrasaccharide repeating unit was determined as →4)-β-d-Galp-(1→3)-β-d-GlcpNAc6OAc(~70%)-(1→3)-β-d-GalpA-(1→3)-β-d-GalpNAc-(1→ with monosaccharide analysis and NMR spectra. We also characterized the O-antigen gene cluster of LL004, and sequence analysis showed that it correlated well with the O-antigen structure. Deletion and complementation testing further confirmed its role in O-antigen biosynthesis, and indicated that the O-antigen of LL004 is assembled via the Wzx/Wzy dependent pathway. Our findings, in combination, suggest that LL004 should represent a novel serogroup of E. coli.
Collapse
Affiliation(s)
- Jing Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, Tianjin 300457, China;
| | - Yujuan Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Ave. 1800, Wuxi 214122, China; (Y.X.); (C.Q.); (J.Y.)
| | - Chunjun Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Ave. 1800, Wuxi 214122, China; (Y.X.); (C.Q.); (J.Y.)
| | - Jing Hu
- Wuxi School of Medicine, Jiangnan University, Lihu Ave. 1800, Wuxi 214122, China
- Correspondence: (J.H.); (X.G.)
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Ave. 1800, Wuxi 214122, China; (Y.X.); (C.Q.); (J.Y.)
| | - Xi Guo
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, Tianjin 300457, China;
- Correspondence: (J.H.); (X.G.)
| |
Collapse
|
6
|
Badri A, Williams A, Awofiranye A, Datta P, Xia K, He W, Fraser K, Dordick JS, Linhardt RJ, Koffas MAG. Complete biosynthesis of a sulfated chondroitin in Escherichia coli. Nat Commun 2021; 12:1389. [PMID: 33654100 PMCID: PMC7925653 DOI: 10.1038/s41467-021-21692-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
Sulfated glycosaminoglycans (GAGs) are a class of important biologics that are currently manufactured by extraction from animal tissues. Although such methods are unsustainable and prone to contamination, animal-free production methods have not emerged as competitive alternatives due to complexities in scale-up, requirement for multiple stages and cost of co-factors and purification. Here, we demonstrate the development of single microbial cell factories capable of complete, one-step biosynthesis of chondroitin sulfate (CS), a type of GAG. We engineer E. coli to produce all three required components for CS production–chondroitin, sulfate donor and sulfotransferase. In this way, we achieve intracellular CS production of ~27 μg/g dry-cell-weight with about 96% of the disaccharides sulfated. We further explore four different factors that can affect the sulfation levels of this microbial product. Overall, this is a demonstration of simple, one-step microbial production of a sulfated GAG and marks an important step in the animal-free production of these molecules. Chondroitin sulfate (CS) is a type of sulfated glycosaminoglycan that is manufactured by extraction from animal tissues for the treatment of osteoarthritis and in drug delivery applications. Here, the authors report the development of single microbial cell factories capable of compete, one-step biosynthesis of animal-free CS production in E. coli.
Collapse
Affiliation(s)
- Abinaya Badri
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Asher Williams
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Adeola Awofiranye
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Payel Datta
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Ke Xia
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Wenqin He
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Keith Fraser
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.,Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.,Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA.,Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Mattheos A G Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA. .,Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
7
|
Bian S, Zeng W, Li Q, Li Y, Wong NK, Jiang M, Zuo L, Hu Q, Li L. Genetic Structure, Function, and Evolution of Capsule Biosynthesis Loci in Vibrio parahaemolyticus. Front Microbiol 2021; 11:546150. [PMID: 33505361 PMCID: PMC7829505 DOI: 10.3389/fmicb.2020.546150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 11/24/2020] [Indexed: 01/29/2023] Open
Abstract
Capsule-forming extracellular polysaccharides are crucial for bacterial host colonization, invasion, immune evasion, and ultimately pathogenicity. Due to warming ocean waters and human encroachment of coastal ecosystems, Vibrio parahaemolyticus has emerged as a globally important foodborne enteropathogen implicated in acute gastroenteritis, wound infections, and septic shock. Conventionally, the antigenic properties of lipopolysaccharide (LPS, O antigen) and capsular polysaccharide (CPS, K antigen) have provided a basis for serotyping V. parahaemolyticus, whereas disclosure of genetic elements encoding 13 O-serogroups have allowed molecular serotyping methods to be developed. However, the genetic structure of CPS loci for 71 K-serogroups has remained unidentified, limiting progress in understanding its roles in V. parahaemolyticus pathophysiology. In this study, we identified and characterized the genetic structure and their evolutionary relationship of CPS loci of 40 K-serogroups through whole genome sequencing of 443 V. parahaemolyticus strains. We found a distinct pattern of CPS gene cluster across different K-serogroups and expanded its new 3'-border by identifying glpX as a key gene conserved across all K-serogroups. A total of 217 genes involved in CPS biosynthesis were annotated. Functional contents and genetic structure of the 40 K-serogroups were analyzed. Based on inferences from species trees and gene trees, we proposed an evolution model of the CPS gene clusters of 40 K-serogroups. Horizontal gene transfer by recombination from other Vibrio species, gene duplication is likely to play instrumental roles in the evolution of CPS in V. parahaemolyticus. This is the first time, to the best of our knowledge, that a large scale of CPS gene clusters of different K-serogroups in V. parahaemolyticus have been identified and characterized in evolutionary contexts. This work should help advance understanding on the variation of CPS in V. parahaemolyticus and provide a framework for developing diagnostically relevant serotyping methods.
Collapse
Affiliation(s)
- Shengzhe Bian
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Wenhong Zeng
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qiwen Li
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, Shenzhen, China
| | - Yinghui Li
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Nai-Kei Wong
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Min Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Le Zuo
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Qinghua Hu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Liqiang Li
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, Shenzhen, China
| |
Collapse
|
8
|
Liu B, Furevi A, Perepelov AV, Guo X, Cao H, Wang Q, Reeves PR, Knirel YA, Wang L, Widmalm G. Structure and genetics of Escherichia coli O antigens. FEMS Microbiol Rev 2020; 44:655-683. [PMID: 31778182 PMCID: PMC7685785 DOI: 10.1093/femsre/fuz028] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 11/22/2019] [Indexed: 02/07/2023] Open
Abstract
Escherichia coli includes clonal groups of both commensal and pathogenic strains, with some of the latter causing serious infectious diseases. O antigen variation is current standard in defining strains for taxonomy and epidemiology, providing the basis for many serotyping schemes for Gram-negative bacteria. This review covers the diversity in E. coli O antigen structures and gene clusters, and the genetic basis for the structural diversity. Of the 187 formally defined O antigens, six (O31, O47, O67, O72, O94 and O122) have since been removed and three (O34, O89 and O144) strains do not produce any O antigen. Therefore, structures are presented for 176 of the 181 E. coli O antigens, some of which include subgroups. Most (93%) of these O antigens are synthesized via the Wzx/Wzy pathway, 11 via the ABC transporter pathway, with O20, O57 and O60 still uncharacterized due to failure to find their O antigen gene clusters. Biosynthetic pathways are given for 38 of the 49 sugars found in E. coli O antigens, and several pairs or groups of the E. coli antigens that have related structures show close relationships of the O antigen gene clusters within clades, thereby highlighting the genetic basis of the evolution of diversity.
Collapse
Affiliation(s)
- Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjing 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, China
| | - Axel Furevi
- Department of Organic Chemistry, Arrhenius Laboratory, Svante Arrhenius väg 16C, Stockholm University, S-106 91 Stockholm, Sweden
| | - Andrei V Perepelov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, Moscow, Russia
| | - Xi Guo
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjing 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, China
| | - Hengchun Cao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjing 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, China
| | - Quan Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjing 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, China
| | - Peter R Reeves
- School of Molecular and Microbial Bioscience, University of Sydney, 2 Butilin Ave, Darlington NSW 2008, Sydney, Australia
| | - Yuriy A Knirel
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, Moscow, Russia
| | - Lei Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjing 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, China
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Svante Arrhenius väg 16C, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
9
|
Perepelov AV, Song Y, Zhu Y, Shashkov AS, Filatov AV, Hu B. Structure and gene cluster of the O-antigen of Escherichia coli strain SDLZB008. Carbohydr Res 2020; 498:108154. [PMID: 33197700 DOI: 10.1016/j.carres.2020.108154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 10/23/2022]
Abstract
The O-polysaccharide (O-antigen) of Escherichia coli SDLZB008 was isolated from the lipopolysaccharide and studied by sugar analyses along with 1H and 13C NMR spectroscopy. The following structure of the branched pentasaccharide repeating unit was established, which is unique among the known structures of bacterial polysaccharides: The O-antigen gene cluster of E. coli SDLZB008 has been sequenced. The gene functions were tentatively assigned by comparison with sequences in the available databases and found to be in full agreement with the O-polysaccharide structure.
Collapse
Affiliation(s)
- Andrei V Perepelov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation.
| | - Yajun Song
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, 300457, Tianjin, PR China
| | - Yiming Zhu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, 300457, Tianjin, PR China
| | - Alexander S Shashkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - Andrei V Filatov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - Bin Hu
- Shandong Center for Disease Control and Prevention, Jinan, 250014, Shandong, PR China
| |
Collapse
|
10
|
Shajahan A, Supekar NT, Wu H, Wands AM, Bhat G, Kalimurthy A, Matsubara M, Ranzinger R, Kohler JJ, Azadi P. Mass Spectrometric Method for the Unambiguous Profiling of Cellular Dynamic Glycosylation. ACS Chem Biol 2020; 15:2692-2701. [PMID: 32809798 DOI: 10.1021/acschembio.0c00453] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Various biological processes at the cellular level are regulated by glycosylation which is a highly microheterogeneous post-translational modification (PTM) on proteins and lipids. The dynamic nature of glycosylation can be studied through metabolic incorporation of non-natural sugars into glycan epitopes and their detection using bio-orthogonal probes. However, this approach possesses a significant drawback due to nonspecific background reactions and ambiguity of non-natural sugar metabolism. Here, we report a probe-free strategy for their direct detection by glycoproteomics and glycomics using mass spectrometry (MS). The method dramatically simplifies the detection of non-natural functional group bearing monosaccharides installed through promiscuous sialic acid, N-acetyl-d-galactosamine (GalNAc) and N-acetyl-d-glucosamine (GlcNAc) biosynthetic pathways. Multistage enrichment of glycoproteins by cellular fractionation, subsequent ZIC-HILIC (zwitterionic-hydrophilic interaction chromatography) based glycopeptide enrichment, and a spectral enrichment algorithm for the MS data processing enabled direct detection of non-natural monosaccharides that are incorporated at low abundance on the N/O-glycopeptides along with their natural counterparts. Our approach allowed the detection of both natural and non-natural sugar bearing glycopeptides, N- and O-glycopeptides, differentiation of non-natural monosaccharide types on the glycans and also their incorporation efficiency through quantitation. Through this, we could deduce interconversion of monosaccharides during their processing through glycan salvage pathway and subsequent incorporation into glycan chains. The study of glycosylation dynamics through this method can be conducted in high throughput, as few sample processing steps are involved, enabling understanding of glycosylation dynamics under various external stimuli and thereby could bolster the use of metabolic glycan engineering in glycosylation functional studies.
Collapse
Affiliation(s)
- Asif Shajahan
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Nitin T. Supekar
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Han Wu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Amberlyn M. Wands
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Ganapati Bhat
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Aravind Kalimurthy
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Masaaki Matsubara
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Rene Ranzinger
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Jennifer J. Kohler
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| |
Collapse
|
11
|
Naumenko OI, Senchenkova SN, Knirel YA. O-Specific Polysaccharides (O-Antigens) of a New Species of Enteric Bacteria Escherichia albertii Closely Related to Escherichia coli. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162019060293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Ståhle J, Widmalm G. Lipopolysaccharides of Gram-Negative Bacteria: Biosynthesis and Structural Aspects. TRENDS GLYCOSCI GLYC 2019. [DOI: 10.4052/tigg.1749.7j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jonas Ståhle
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University
| |
Collapse
|
13
|
Ståhle J, Widmalm G. Lipopolysaccharides of Gram-Negative Bacteria: Biosynthesis and Structural Aspects. TRENDS GLYCOSCI GLYC 2019. [DOI: 10.4052/tigg.1749.7e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Jonas Ståhle
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University
| |
Collapse
|
14
|
Pang Y, Guo X, Tian X, Liu F, Wang L, Wu J, Zhang S, Li S, Liu B. Developing a novel molecular serotyping system based on capsular polysaccharide synthesis gene clusters of Vibrio parahaemolyticus. Int J Food Microbiol 2019; 309:108332. [DOI: 10.1016/j.ijfoodmicro.2019.108332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 08/26/2019] [Accepted: 08/31/2019] [Indexed: 12/12/2022]
|
15
|
Li X, Perepelov AV, Filatov AV, Shashkov AS, Liu B. Structure elucidation and gene cluster characterization of the O-antigen of Vibrio cholerae O68 containing (2S,4R)-2,4-dihydroxypentanoic acid. Carbohydr Res 2019; 484:107766. [DOI: 10.1016/j.carres.2019.107766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/28/2019] [Accepted: 08/02/2019] [Indexed: 12/01/2022]
|
16
|
Arend P. ABO phenotype-protected reproduction based on human specific α1,2 L-fucosylation as explained by the Bombay type formation. Immunobiology 2018; 223:684-693. [PMID: 30075871 DOI: 10.1016/j.imbio.2018.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 07/10/2018] [Indexed: 12/19/2022]
Abstract
The metabolic relationship between the formation of the ABO(H) blood group phenotype and human fertility is evident in the case of the (Oh) or Bombay blood type, which Charles Darwin would have interpreted as resulting from reduced male fertility in consanguinities, based on the history of his own family, the Darwin/Wedgwood Dynasty. The classic Bombay type occurs with the extremely rare, human-specific genotype (h/h; se/se), which (due to point mutations) does not encode fucosyltransferases 1(FUT1) and 2 (FUT2). These enzymes are the basis for ABO(H) phenotype formation on the cell surfaces and fucosylation of plasma proteins, involving neonatal immunoglobulin M (IgM). In the normal human blood group O(H), which is not protected by clonal selection with regard to environmental A/B immunization, the plasma contains a mixture of non-immune and adaptive anti-A/B reactive isoagglutinins, which in the O(h) Bombay type show extremely elevated levels, associated with decreased levels of fucosylation-dependent functional plasma proteins, suchs as the van Willebrand factor (vWF) and clotting factor VIII. In fact, while the involvement of adaptive immunoglobulins remains unknown, poor fucosylation may explain the polyreactivity in the Bombay type plasma, which exhibits pronounced complement-binding cross-reactive anti-A/Tn and anti-B IgM levels, with additional anti-H reactivity, acting over a wide range of temperatures, with an amplitude at 37 °C. This aggressive anti-glycan-reactive IgM molecule suggests the induction of ADCC (antibody-dependent) and/or complement-mediated cytotoxicity via overexpressed glycosidic bond sites against the embryogenic stem cell-to-germ cell transformation, which is characterized by fleeting appearances of A-like, developmental trans-species GalNAcα1-O-Ser/Thr-R glycan, also referred to as the Tn (T "nouvelle") antigen.
Collapse
Affiliation(s)
- Peter Arend
- Philipps University Marburg, Department of Medicine, D-355, Marburg, Lahn, Germany; Gastroenterology Research Laboratory, University of Iowa, College of Medicine, Iowa City, IA, USA; Research Laboratories, Chemie Grünenthal GmbH, D-52062 Aachen, Germany.
| |
Collapse
|
17
|
Sharma S, Ding Y, Jarrell KF, Brockhausen I. Identification and characterization of the 4-epimerase AglW from the archaeon Methanococcus maripaludis. Glycoconj J 2018; 35:525-535. [PMID: 30293150 DOI: 10.1007/s10719-018-9845-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/11/2018] [Accepted: 09/24/2018] [Indexed: 11/27/2022]
Abstract
Archaea are ubiquitous single-cell microorganisms that have often adapted to harsh conditions and play important roles in biogeochemical cycles with potential applications in biotechnology. Methanococcus maripaludis, a methane-producing archaeon, is motile through multiple archaella on its cell surface. The major structural proteins (archaellins) of the archaellum are glycoproteins, modified with N-linked tetrasaccharides that are essential for the proper assembly and function of archaella. The aglW gene, encoding the putative 4-epimerase AglW, plays a key role in the synthesis of the tetrasaccharide. The goal of our work was to biochemically demonstrate the 4-epimerase activity of AglW, and to develop assays to determine its substrate specificity and properties. We carried out assays using UDP-Galactose, UDP-Glucose, UDP-N-acetylglucosamine, UDP-N-acetylgalactosamine and N-acetylglucosamine/N-acetylgalactosamine-diphosphate - lipid as substrates, coupled with specific glycosyltransferases. We showed that AglW has a broad specificity towards UDP-sugars and that Tyr151 within a conserved YxxxK sequon is essential for the 4-epimerase function of AglW. The glycosyltransferase-coupled assays are generally useful for the identification and specificity studies of novel 4-epimerases.
Collapse
Affiliation(s)
- Sulav Sharma
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
| | - Yan Ding
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
| | - Ken F Jarrell
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
| | - Inka Brockhausen
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
18
|
Zdorovenko EL, Wang Y, Shashkov AS, Chen T, Ovchinnikova OG, Liu B, Golomidova AK, Babenko VV, Letarov AV, Knirel YA. O-Antigens of Escherichia coli Strains O81 and HS3-104 Are Structurally and Genetically Related, Except O-Antigen Glucosylation in E. coli HS3-104. BIOCHEMISTRY (MOSCOW) 2018; 83:534-541. [PMID: 29738687 DOI: 10.1134/s0006297918050061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Glycerophosphate-containing O-specific polysaccharides (OPSs) were obtained by mild acidic degradation of lipopolysaccharides isolated from Escherichia coli type strain O81 and E. coli strain HS3-104 from horse feces. The structures of both OPSs and of the oligosaccharide derived from the strain O81 OPS by treatment with 48% HF were studied by monosaccharide analysis and one- and two-dimensional 1H- and 13C-NMR spectroscopy. Both OPSs had similar structures and differed only in the presence of a side-chain glucose residue in the strain HS3-104 OPS. The genes and the organization of the O-antigen biosynthesis gene cluster in both strains are almost identical with the exception of the gtr gene cluster responsible for glucosylations in the strain HS3-104, which is located elsewhere in the genome.
Collapse
Affiliation(s)
- E L Zdorovenko
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Y Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China
| | - A S Shashkov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - T Chen
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China
| | - O G Ovchinnikova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - B Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.
| | - A K Golomidova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 117312, Russia
| | - V V Babenko
- Federal Research and Clinical Centre of Physico-Chemical Medicine, Moscow, 119435, Russia.
| | - A V Letarov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 117312, Russia.
| | - Y A Knirel
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
19
|
Naumenko OI, Zheng H, Wang J, Senchenkova SN, Wang H, Shashkov AS, Chizhov AO, Li Q, Knirel YA, Xiong Y. Structure elucidation of the O-specific polysaccharide by NMR spectroscopy and selective cleavage and genetic characterization of the O-antigen of Escherichia albertii O5. Carbohydr Res 2018; 457:25-31. [PMID: 29309918 DOI: 10.1016/j.carres.2017.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/27/2017] [Accepted: 12/29/2017] [Indexed: 11/29/2022]
Abstract
The O-specific polysaccharide (O-antigen) was obtained by mild acid degradation of the lipopolysaccharide of Escherichia albertii O5 (strain T150248) and studied by sugar analysis, selective cleavages of glycosidic linkages, and 1D and 2D 1H and 13C NMR spectroscopy. Partial solvolysis with anh (anhydrous) CF3CO2H and hydrolysis with 0.05 M CF3CO2H cleaved predominantly the glycosidic linkage of β-GalpNAc or β-Galf, respectively, whereas the linkages of α-GlcpNAc and β-Galp were stable. Mixtures of the corresponding tri- and tetra-saccharides thus obtained were studied by NMR spectroscopy and high-resolution ESI MS. The following new structure was established for the tetrasaccharide repeat (O-unit) of the O-polysaccharide: →4)-α-d-GlcpNAc-(1 → 4)-β-d-Galp6Ac-(1 → 6)-β-d-Galf-(1 → 3)-β-d-GalpNAc-(1→where the degree of O-acetylation of d-Galp is ∼70%. The O-polysaccharide studied has a β-d-Galp-(1 → 6)-β-d-Galf-(1 → 3)-β-d-GalpNAc trisaccharide fragment in common with the O-polysaccharides of E. albertii O7, Escherichia coli O124 and O164, and Shigella dysenteriae type 3 studied earlier. The orf5-7 in the O-antigen gene cluster of E. albertii O5 are 47%, 78%, and 75% identical on the amino acid level to genes for predicted enzymes of E. albertii O7, including Galp-transferase wfeS, UDP-d-Galp mutase glf, and Galf-transferase wfeT, respectively, which are putatively involved with the synthesis of the shared trisaccharide fragment of the O-polysaccharides. The occurrence upstream of the O-antigen gene cluster of a 4-epimerase gene gnu for conversion of undecaprenyl diphosphate-linked d-GlcNAc (UndPP-d-GlcNAc) into UndPP-d-GalNAc indicates that d-GalNAc is the first monosaccharide of the O-unit, and hence the O-units are interlinked in the O-polysaccharide of E. albertii O5 by the β-d-GalpNAc-(1 → 4)-α-d-GlcpNAc linkage.
Collapse
Affiliation(s)
- Olesya I Naumenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia; Higher Chemical College of the Russian Academy of Sciences, D. I. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Han Zheng
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China.
| | - Jianping Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Sof'ya N Senchenkova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Hong Wang
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan Province, China
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander O Chizhov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Qun Li
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan Province, China
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yanwen Xiong
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, China
| |
Collapse
|
20
|
Li T, Noel KD. Synthesis of N-acetyl-d-quinovosamine in Rhizobium etli CE3 is completed after its 4-keto-precursor is linked to a carrier lipid. MICROBIOLOGY-SGM 2017; 163:1890-1901. [PMID: 29165235 DOI: 10.1099/mic.0.000576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacterial O-antigens are synthesized on lipid carriers before being transferred to lipopolysaccharide core structures. Rhizobium etli CE3 lipopolysaccharide is a model for understanding O-antigen biological function. CE3 O-antigen structure and genetics are known. However, proposed enzymology for CE3 O-antigen synthesis has been examined very little in vitro, and even the sugar added to begin the synthesis is uncertain. A model based on mutagenesis studies predicts that 2-acetamido-2,6-dideoxy-d-glucose (QuiNAc) is the first O-antigen sugar and that genes wreV, wreQ and wreU direct QuiNAc synthesis and O-antigen initiation. Previously, synthesis of UDP-QuiNAc was shown to occur in vitro with a WreV orthologue (4,6-hexose dehydratase) and WreQ (4-reductase), but the WreQ catalysis in this conventional deoxyhexose-synthesis pathway was very slow. This seeming deficiency was explained in the present study after WreU transferase activity was examined in vitro. Results fit the prediction that WreU transfers sugar-1-phosphate to bactoprenyl phosphate (BpP) to initiate O-antigen synthesis. Interestingly, WreU demonstrated much higher activity using the product of the WreV catalysis [UDP-4-keto-6-deoxy-GlcNAc (UDP-KdgNAc)] as the sugar-phosphate donor than using UDP-QuiNAc. Furthermore, the WreQ catalysis with WreU-generated BpPP-KdgNAc as the substrate was orders of magnitude faster than with UDP-KdgNAc. The inferred product BpPP-QuiNAc reacted as an acceptor substrate in an in vitro assay for addition of the second O-antigen sugar, mannose. These results imply a novel pathway for 6-deoxyhexose synthesis that may be commonly utilized by bacteria when QuiNAc is the first sugar of a polysaccharide or oligosaccharide repeat unit: UDP-GlcNAc → UDP-KdgNAc → BpPP-KdgNAc → BpPP-QuiNAc.
Collapse
Affiliation(s)
- Tiezheng Li
- Present address: Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.,Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - K Dale Noel
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| |
Collapse
|
21
|
Yu X, Torzewska A, Zhang X, Yin Z, Drzewiecka D, Cao H, Liu B, Knirel YA, Rozalski A, Wang L. Genetic diversity of the O antigens of Proteus species and the development of a suspension array for molecular serotyping. PLoS One 2017; 12:e0183267. [PMID: 28817637 PMCID: PMC5560731 DOI: 10.1371/journal.pone.0183267] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/01/2017] [Indexed: 11/18/2022] Open
Abstract
Proteus species are well-known opportunistic pathogens frequently associated with skin wound and urinary tract infections in humans and animals. O antigen diversity is important for bacteria to adapt to different hosts and environments, and has been used to identify serotypes of Proteus isolates. At present, 80 Proteus O-serotypes have been reported. Although the O antigen structures of most Proteus serotypes have been identified, the genetic features of these O antigens have not been well characterized. The O antigen gene clusters of Proteus species are located between the cpxA and secB genes. In this study, we identified 55 O antigen gene clusters of different Proteus serotypes. All clusters contain both the wzx and wzy genes and exhibit a high degree of heterogeneity. Potential functions of O antigen-related genes were proposed based on their similarity to genes in available databases. The O antigen gene clusters and structures were compared, and a number of glycosyltransferases were assigned to glycosidic linkages. In addition, an O serotype-specific suspension array was developed for detecting 31 Proteus serotypes frequently isolated from clinical specimens. To our knowledge, this is the first comprehensive report to describe the genetic features of Proteus O antigens and to develop a molecular technique to identify different Proteus serotypes.
Collapse
Affiliation(s)
- Xiang Yu
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China
- Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, P. R. China
| | - Agnieszka Torzewska
- Department of Immunobiology of Bacteria, Department of General Microbiology Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Xinjie Zhang
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China
- Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, P. R. China
| | - Zhiqiu Yin
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China
- Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, P. R. China
| | - Dominika Drzewiecka
- Department of Immunobiology of Bacteria, Department of General Microbiology Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Hengchun Cao
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China
- Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, P. R. China
| | - Bin Liu
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China
- Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, P. R. China
| | - Yuriy A. Knirel
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Antoni Rozalski
- Department of Immunobiology of Bacteria, Department of General Microbiology Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Lei Wang
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China
- Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, P. R. China
- * E-mail:
| |
Collapse
|
22
|
Arend P. Early ovariectomy reveals the germline encoding of natural anti-A- and Tn-cross-reactive immunoglobulin M (IgM) arising from developmental O-GalNAc glycosylations. (Germline-encoded natural anti-A/Tn cross-reactive IgM). Cancer Med 2017; 6:1601-1613. [PMID: 28580709 PMCID: PMC5504323 DOI: 10.1002/cam4.1079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/26/2017] [Accepted: 03/24/2017] [Indexed: 01/02/2023] Open
Abstract
While native blood group A-like glycans have not been demonstrated in prokaryotic microorganisms as a source of human "natural" anti-A isoagglutinin production, and metazoan eukaryotic N-acetylgalactosamine O-glycosylation of serine or threonine residues (O-GalNAc-Ser/Thr-R) does not occur in bacteria, the O-GalNAc glycan-bearing ovarian glycolipids, discovered in C57BL/10 mice, are complementary to the syngeneic anti-A-reactive immunoglobulin M (IgM), which is not present in animals that have undergone ovariectomy prior to the onset of puberty. These mammalian ovarian glycolipids are complementary also to the anti-A/Tn cross-reactive Helix pomatia agglutinin (HPA), a molluscan defense protein, emerging from the coat proteins of fertilized eggs and reflecting the snail-intrinsic, reversible O-GalNAc glycosylations. The hexameric structure of this primitive invertebrate defense protein gives rise to speculation regarding an evolutionary relationship to the mammalian nonimmune, anti-A-reactive immunoglobulin M (IgM) molecule. Hypothetically, this molecule obtains its complementarity from the first step of protein glycosylations, initiated by GalNAc via reversible O-linkages to peptides displaying Ser/Thr motifs, whereas the subsequent transferase depletion completes germ cell maturation and cell renewal, associated with loss of glycosidic bonds and release of O-glycan-depleted proteins, such as complementary IgM revealing the structure of the volatilely expressed "lost" glycan carrier through germline Ser residues. Consequently, the evolutionary/developmental first glycosylations of proteins appear metabolically related or identical to that of the mucin-type, potentially "aberrant" monosaccharide GalNAcα1-O-Ser/Thr-R, also referred to as the Tn (T "nouvelle") antigen, and explain the anti-Tn cross-reactivity of human innate or "natural" anti-A-specific isoagglutinin and the pronounced occurrence of cross-reactive anti-Tn antibody in plasma from humans with histo-blood group O. In fact, A-allelic, phenotype-specific GalNAc glycosylation of plasma proteins does not occur in human blood group O, affecting anti-Tn antibody levels, which may function as a growth regulator that contributes to a potential survival advantage of this group in the overall risk of developing cancer when compared with non-O blood groups.
Collapse
Affiliation(s)
- Peter Arend
- Philipps University MarburgDepartment of MedicineD‐355 Marburg/Lahn, Germany
- Gastroenterology Research LaboratoryUniversity of Iowa, College of MedicineIowa CityIowa
- Research LaboratoriesChemie Grünenthal GmbHD‐52062AachenGermany
| |
Collapse
|
23
|
Naumenko OI, Zheng H, Senchenkova SN, Wang H, Li Q, Shashkov AS, Wang J, Knirel YA, Xiong Y. Structures and gene clusters of the O-antigens of Escherichia albertii O3, O4, O6, and O7. Carbohydr Res 2017; 449:17-22. [PMID: 28672166 DOI: 10.1016/j.carres.2017.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/02/2017] [Accepted: 06/16/2017] [Indexed: 11/27/2022]
Abstract
The O-specific polysaccharides (OPSs) called O-antigens were obtained by mild acid degradation of the lipopolysaccharides of Escherichia albertii serotypes O3, O4, O6, and O7 and studied by sugar analysis along with 1D and 2D 1H and 13C NMR spectroscopy. The following structure was established for the OPS of E. albertii O4, which, to our knowledge, is unique among known bacterial polysaccharide structures: →2)-α-l-Rhap-(1 → 2)-α-l-Fucp-(1 → 2)-β-d-Galp-(1 → 3)-α-d-GalpNAc-(1 → 3)-β-d-GlcpNAc-(1→ The OPS structure of the strain of E. albertii O7 studied was identical to that of strain LMG 20973 (= Albert 10457), whose structure has been reported earlier (R. Eserstam et al. Eur. J. Biochem. 269 (2002) 3289-3295). E. albertii O3 and O6 shared the OPS structures with Escherichia coli O181 and O3, respectively, except for the lack of O-acetylation in E. albertii O3, which is present in E. coli O181. The gene clusters driving the O-antigen biosynthesis of the E. albertii strains were sequenced, the genes were annotated by comparison with sequences in the available databases, and the predicted functions of the encoded proteins were found to be consistent with the OPS structures established. In accordance with the relatedness of the OPS structures, the O-antigen gene clusters of E. albertii O3 and O6 contain the same genes and have the same organization as those of E. coli O181 and O3, the entire gene clusters being 83% and 98% identical, respectively.
Collapse
Affiliation(s)
- Olesya I Naumenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia; Higher Chemical College of the Russian Academy of Sciences, D. I. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Han Zheng
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Sof'ya N Senchenkova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Hong Wang
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan Province, China
| | - Qun Li
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan Province, China
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Jianping Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yanwen Xiong
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.
| |
Collapse
|
24
|
Chen C, Hou X, Utkina N, Danilov L, Zhou D, Torgov V, Veselovsky V, Liu B, Feng L. Identification and biochemical characterization of a novel α-1,3-mannosyltransferase WfcD from Escherichia coli O141. Carbohydr Res 2017; 443-444:78-86. [PMID: 28402841 DOI: 10.1016/j.carres.2017.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/31/2017] [Accepted: 04/02/2017] [Indexed: 11/30/2022]
Abstract
Glycosyltransferases (GTs) catalyze the formation of regio- and stereospecific glycosidic linkages between specific sugar donors and recipients. In this study, the function of the wfcD gene from the Escherichia coli O141 O-antigen gene cluster encoding an α-1,3-mannosyltransferase that catalyzed the formation of the linkage Man(α1-3)-GlcNAc was biochemically characterized. WfcD was expressed in E. coli BL21 (DE3), and the enzymatic product was identified by liquid chromatography-mass spectrometry (LC-MS), collision-induced dissociation electrospray ionization ion trap multiple tandem MS (CID-ESI-IT-MSn) and glycosidase digestion using the donor substrate GDP-Man and the synthetic acceptor substrate decyl diphosphate 2-acetamido-2-deoxy-α-D-glucopyranose (GlcNAc-PP-De). The kinetic and physiochemical properties and the substrate specificity of WfcD were investigated. WfcD is the first characterized bacterial mannosyltransferase that acts on the Man(α1-3)-GlcNAc linkage. This study enhances our knowledge of the diverse functions of GTs.
Collapse
Affiliation(s)
- Chao Chen
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, 300457, PR China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin, 300457, PR China
| | - Xi Hou
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, 300457, PR China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin, 300457, PR China
| | - Natalia Utkina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Leonid Danilov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Dawei Zhou
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, 300457, PR China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin, 300457, PR China
| | - Vladimir Torgov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Vladimir Veselovsky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, 300457, PR China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin, 300457, PR China
| | - Lu Feng
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, 300457, PR China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin, 300457, PR China.
| |
Collapse
|
25
|
Kenyon JJ, Cunneen MM, Reeves PR. Genetics and evolution of Yersinia pseudotuberculosis O-specific polysaccharides: a novel pattern of O-antigen diversity. FEMS Microbiol Rev 2017; 41:200-217. [PMID: 28364730 PMCID: PMC5399914 DOI: 10.1093/femsre/fux002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/02/2017] [Indexed: 11/29/2022] Open
Abstract
O-antigen polysaccharide is a major immunogenic feature of the lipopolysaccharide of Gram-negative bacteria, and most species produce a large variety of forms that differ substantially from one another. There are 18 known O-antigen forms in the Yersinia pseudotuberculosis complex, which are typical in being composed of multiple copies of a short oligosaccharide called an O unit. The O-antigen gene clusters are located between the hemH and gsk genes, and are atypical as 15 of them are closely related, each having one of five downstream gene modules for alternative main-chain synthesis, and one of seven upstream modules for alternative side-branch sugar synthesis. As a result, many of the genes are in more than one gene cluster. The gene order in each module is such that, in general, the earlier a gene product functions in O-unit synthesis, the closer the gene is to the 5΄ end for side-branch modules or the 3΄ end for main-chain modules. We propose a model whereby natural selection could generate the observed pattern in gene order, a pattern that has also been observed in other species.
Collapse
Affiliation(s)
- Johanna J. Kenyon
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology. Brisbane, QLD 4001, Australia
| | - Monica M. Cunneen
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia
| | - Peter R. Reeves
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
26
|
Structure elucidation and analysis of biosynthesis genes of the O-antigen of Escherichia coli O131 containing N-acetylneuraminic acid. Carbohydr Res 2016; 436:41-44. [PMID: 27863302 DOI: 10.1016/j.carres.2016.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/03/2016] [Accepted: 11/03/2016] [Indexed: 11/24/2022]
Abstract
The O-polysaccharide (O-antigen) of Escherichia coli O131 was studied by sugar analysis along with 1D and 2D 1H and 13C NMR spectroscopy. The following structure of the linear tetrasaccharide repeating unit of the polysaccharide was established: →8)-α-Neup5Ac-(2 → 6)-β-D-Galp-(1 → 6)-β-D-Galp-(1 → 3)-β-D-GalpNAc-(1→ The gene functions were tentatively assigned by comparison with sequences in the available databases and found to be in agreement with the E. coli O131-antigen structure.
Collapse
|
27
|
Senchenkova SN, Guo X, Naumenko OI, Shashkov AS, Perepelov AV, Liu B, Knirel YA. Structure and genetics of the O-antigens of Escherichia coli O182-O187. Carbohydr Res 2016; 435:58-67. [PMID: 27710814 DOI: 10.1016/j.carres.2016.09.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/22/2016] [Accepted: 09/21/2016] [Indexed: 11/25/2022]
Abstract
O-polysaccharides (OPSs) were obtained by mild acid degradation of the lipopolysaccharides of Escherichia coli O182-O187, and their structures were established by sugar analysis, Smith degradation, and 1H and 13C NMR spectroscopy. In addition to the monosaccharides that occur often in E. coli OPSs (d-Glc, d-Gal, d-Man, d-GlcNAc, d-GalNAc, d-GlcA, l-Fuc, d-Rib), a number of less common components were identified as the OPS constituents, including 2-acetamido-2-deoxy-l-quinovose and 4-deoxy-4-[(S)-3-hydroxybutanoyl-l-alanyl]-d-quinovose (O186), 3-acetamido-3-deoxy-d-fucose (O187), 3-deoxy-3-[(R)-3-hydroxybutanoyl]-d-fucose (O184), and 2,3-diacetamido-2,3-dideoxy-l-rhamnose (O182). The OPS structures of E. coli O183 and O182 are identical to those of the OPS of Shigella boydii type 10 and the capsular polysaccharide of E. coli K48, respectively. The OPSs of E. coli O186 and O123 are closely related differing in the presence of a Glc residue in the former in place of a GlcNAc residue in the latter. The O-antigen gene clusters of the bacteria studied were analyzed and their contents were found to be consistent with the OPS structures. Predicted glycosyltransferases encoded in the gene clusters were tentatively assigned to glycosidic linkages based on similarities to sequences of other E. coli O-serogroups available from GenBank and taking into account the OPS structures established.
Collapse
Affiliation(s)
- Sof'ya N Senchenkova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - Xi Guo
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, 300457, Tianjin, PR China
| | - Olesya I Naumenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - Andrei V Perepelov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - Bin Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, 300457, Tianjin, PR China
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation.
| |
Collapse
|
28
|
Structures and gene clusters of the O-specific polysaccharides of the lipopolysaccharides of Escherichia coli O69 and O146 containing glycolactilic acids: ether conjugates of D-GlcNAc and D-Glc with (R)- and (S)-lactic acid. Glycoconj J 2016; 34:71-84. [PMID: 27645300 DOI: 10.1007/s10719-016-9730-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/04/2016] [Accepted: 09/06/2016] [Indexed: 10/21/2022]
Abstract
Based on the O-specific polysaccharides of the lipopolysaccharides (O-polysaccharides, O-antigens), strains of a clonal species Escherichia coli are classified into 184 O serogroups. In this work, structures of the O-polysaccharides of E. coli O69 and O146 were elucidated and gene clusters for their biosynthesis were characterized. The O-polysaccharides were released from the lipopolysaccharides by mild acid hydrolysis and studied by sugar analysis and one- and two-dimensional 1H and 13C NMR spectroscopy before and after O-deacetylation. The O146 polysaccharide was also studied by Smith degradation. The O69 and O146 polysaccharides were found to contain ether conjugates of monosaccharides with lactic acid called glycolactilic acids: 2-acetamido-2-deoxy-4-O-[(R)-1-carboxyethyl]-D-glucose (D-GlcNAc4Rlac) and 3-O-[(S)-1-carboxyethyl]-D-glucose (D-Glc3Slac), respectively. Structures of the pentasaccharide repeats of the O-polysaccharides were established, and that of E. coli O69 was found to differ in the presence of D-GlcNAc4Rlac from the structure reported for this bacterium earlier (Erbing C, Kenne L, Lindberg B. 1977. Carbohydr Res. 56:371-376). The O-antigen gene clusters of E. coli O69 and O146 between conserved genes galF and gnd were analyzed taking into account the O-polysaccharide structures established, and functions of putative genes for synthesis of D-Glc3Slac and D-GlcNAc4Rlac and for glycosyltransferases were assigned based on homology with O-antigen biosynthesis genes of other enteric bacteria. It was found that in E. coli and Shigella spp. predicted enolpyruvate reductases of the biosynthesis pathway of glycolactilic acids, LarR and LarS, which catalyze formation of conjugates with (R)- or (S)-lactic acid, respectively, are distinguished by sequence homology and size.
Collapse
|
29
|
Streptococcus iniae cpsG alters capsular carbohydrate composition and is a cause of serotype switching in vaccinated fish. Vet Microbiol 2016; 193:116-24. [DOI: 10.1016/j.vetmic.2016.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 08/12/2016] [Accepted: 08/16/2016] [Indexed: 11/21/2022]
|
30
|
Senchenkova SN, Guo X, Filatov AV, Perepelov AV, Liu B, Shashkov AS, Knirel YA. Structure elucidation and gene cluster characterization of the O-antigen of Escherichia coli O80. Carbohydr Res 2016; 432:83-7. [PMID: 27454490 DOI: 10.1016/j.carres.2016.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 01/29/2023]
Abstract
Mild alkaline degradation of the lipopolysaccharide of Escherichia coli O80 afforded a polysaccharide, which was studied by sugar analysis, selective cleavage of glycosidic linkages, and (1)H and (13)C NMR spectroscopy. Solvolysis of the polysaccharide with CF3CO2H cleaved the linkages of α-Fuc and β-linked GlcNAc and GalNAc residues to give two disaccharides. The following structure of the hexasaccharide repeating unit of the O-polysaccharide was established: The polysaccharide repeat also contains a minor O-acetyl group but its position was not determined. The O-antigen gene cluster of E. coli O80 between the conserved galF and gnd genes was analyzed and found to be consistent with the O-polysaccharide structure established.
Collapse
Affiliation(s)
- Sof'ya N Senchenkova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - Xi Guo
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, 300457, Tianjin, PR China
| | - Andrei V Filatov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - Andrei V Perepelov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, 300457, Tianjin, PR China
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation.
| |
Collapse
|
31
|
Genetic Diversity of O-Antigens in Hafnia alvei and the Development of a Suspension Array for Serotype Detection. PLoS One 2016; 11:e0155115. [PMID: 27171009 PMCID: PMC4869667 DOI: 10.1371/journal.pone.0155115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/25/2016] [Indexed: 11/19/2022] Open
Abstract
Hafnia alvei is a facultative and rod-shaped gram-negative bacterium
that belongs to the Enterobacteriaceae family. Although it has been
more than 50 years since the genus was identified, very little is known about
variations among Hafnia species. Diversity in O-antigens
(O-polysaccharide, OPS) is thought to be a major factor in bacterial adaptation to
different hosts and situations and variability in the environment. Antigenic
variation is also an important factor in pathogenicity that has been used to define
clones within a number of species. The genes that are required to synthesize OPS are
always clustered within the bacterial chromosome. A serotyping scheme including 39
O-serotypes has been proposed for H. alvei, but it
has not been correlated with known OPS structures, and no previous report has
described the genetic features of OPS. In this study, we obtained the genome
sequences of 21 H. alvei strains (as defined by
previous immunochemical studies) with different lipopolysaccharides. This is the
first study to show that the O-antigen gene cluster in H.
alvei is located between mpo and
gnd in the chromosome. All 21 of the OPS gene clusters contain
both the wzx gene and the wzy gene and display a
large number of polymorphisms. We developed an O serotype-specific
wzy-based suspension array to detect all 21 of the distinct OPS
forms we identified in H. alvei. To the best of our
knowledge, this is the first report to identify the genetic features of
H. alvei antigenic variation and to develop a
molecular technique to identify and classify different serotypes.
Collapse
|
32
|
Wang M, Arbatsky NP, Xu L, Shashkov AS, Wang L, Knirel YA. O antigen of FranconibacterpulverisG3872 (O1) is a 4-deoxy-d-arabino-hexose-containing polysaccharide synthesized by the ABC-transporter-dependent pathway. MICROBIOLOGY-SGM 2016; 162:1103-1113. [PMID: 27166227 DOI: 10.1099/mic.0.000307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Franconibacter (Enterobacter, Cronobacter) pulveris bacteria share several typical characteristics with, and hence pose a challenge for the detection of, Cronobacter sakazakii, an emerging opportunistic pathogen, which can cause severe infections in neonates. A structurally variable O-specific polysaccharide (OPS) called O antigen provides the major basis for the typing of Gram-negative bacteria. We investigated the structure and genetics of the O antigen of F. pulveris G3872 (designated O1). An OPS was isolated by mild alkaline degradation of the LPS, whereas the same polysaccharide and its oligosaccharide fragments were obtained by mild acid degradation. Studies by sugar analysis and NMR spectroscopy showed that the OPS contained d-ribose, l-rhamnose (l-Rha) and a rarely occurring monosaccharide 4-deoxy-d-arabino-hexose, and the OPS structure was established. The O-antigen gene cluster of F. pulveris G3872 between JUMPStart and gnd genes includes putative genes for glycosyltransferases, ATP-binding cassette (ABC)-transporter genes wzm and wzt, and genes for the synthesis of l-Rha, but no genes for the synthesis of 4-deoxy-d-arabino-hexose. A mutation test with the wzm gene confirmed that the OPS is synthesized and exported by the ABC-transporter-dependent pathway. A trifunctional transferase was suggested to catalyse formation of two glycosidic linkages and add a methyl group to the non-reducing end of the OPS to terminate the chain elongation. A carbohydrate-binding module that presumably recognizes the terminal methyl-modified monosaccharide was found at the C-terminus of Wzt. Primers specific for F. pulveris G3872 were designed based on the wzm gene, which has potential to be used for identification and detection of the O1 serogroup.
Collapse
Affiliation(s)
- Min Wang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, TEDA, 300457 Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, 300071 Tianjin, China
| | - Nikolay P Arbatsky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Lingling Xu
- TEDA School of Biological Sciences and Biotechnology, Nankai University, TEDA, 300457 Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, 300071 Tianjin, China
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Lei Wang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, TEDA, 300457 Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, 300071 Tianjin, China
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
33
|
Shashkov AS, Yang B, Senchenkova SN, Perepelov AV, Liu B, Knirel YA. Structures and genetics of biosynthesis of glycerol 1-phosphate-containing O-polysaccharides of Escherichia coli O28ab, O37, and O100. Carbohydr Res 2016; 426:26-32. [PMID: 27058293 DOI: 10.1016/j.carres.2016.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 12/01/2022]
Abstract
O-polysaccharides of E. coli O28ab, O37, and O100 were found to contain glycerol 1-phosphate and the following structures of their oligosaccharide repeats were established by sugar analysis, Smith degradation (for O28ab), 1D and 2D (1)H, (13)C, and (13)P NMR spectroscopy: [Formula: see text]. Functions of putative glycosyltransferases genes in the O-antigen gene clusters of the strains studied were tentatively assigned based on similarities to genes of other E. coli O-serogroups available from GenBank and taking into account the O-polysaccharide structures established.
Collapse
Affiliation(s)
- Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - Baopeng Yang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, China
| | - Sofya N Senchenkova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - Andrei V Perepelov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - Bin Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, China
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation.
| |
Collapse
|
34
|
Kenyon JJ, Duda KA, De Felice A, Cunneen MM, Molinaro A, Laitinen J, Skurnik M, Holst O, Reeves PR, De Castro C. Serotype O:8 isolates in the Yersinia pseudotuberculosis complex have different O-antigen gene clusters and produce various forms of rough LPS. Innate Immun 2016; 22:205-17. [PMID: 26873504 DOI: 10.1177/1753425916631403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/13/2016] [Indexed: 11/15/2022] Open
Abstract
In Yersinia pseudotuberculosis complex, the O-antigen of LPS is used for the serological characterization of strains, and 21 serotypes have been identified to date. The O-antigen biosynthesis gene cluster and corresponding O-antigen structure have been described for 18, leaving O:8, O:13 and O:14 unresolved. In this study, two O:8 isolates were examined. The O-antigen gene cluster sequence of strain 151 was near identical to serotype O:4a, though a frame-shift mutation was found in ddhD, while No. 6 was different to 151 and carried the O:1b gene cluster. Structural analysis revealed that No. 6 produced a deeply truncated LPS, suggesting a mutation within the waaF gene. Both ddhD and waaF were cloned and expressed in 151 and No. 6 strains, respectively, and it appeared that expression of ddhD gene in strain 151 restored the O-antigen on LPS, while waaF in No. 6 resulted in an LPS truncated less severely but still without the O-antigen, suggesting that other mutations occurred in this strain. Thus, both O:8 isolates were found to be spontaneous O-antigen-negative mutants derived from other validated serotypes, and we propose to remove this serotype from the O-serotyping scheme, as the O:8 serological specificity is not based on the O-antigen.
Collapse
Affiliation(s)
- Johanna J Kenyon
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Katarzyna A Duda
- Division of Structural Biochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Antonia De Felice
- Department of Chemical Sciences, University of Napoli, Napoli, Italy
| | - Monica M Cunneen
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Napoli, Napoli, Italy
| | - Juha Laitinen
- Department of Bacteriology and Immunology, Medicum, and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland Helsinki University Central Hospital Laboratory Diagnostics, Helsinki, Finland
| | - Otto Holst
- Division of Structural Biochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Peter R Reeves
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Cristina De Castro
- Department of Agriculture Sciences, University of Napoli, Portici, Italy
| |
Collapse
|
35
|
Arend P. ABO (histo) blood group phenotype development and human reproduction as they relate to ancestral IgM formation: A hypothesis. Immunobiology 2016; 221:116-27. [DOI: 10.1016/j.imbio.2015.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 03/18/2015] [Accepted: 07/07/2015] [Indexed: 10/23/2022]
|
36
|
Perepelov AV, Guo X, Senchenkova SN, Shashkov AS, Knirel YA. Structure and genetics of biosynthesis of the glycosyl phosphate-containing O-polysaccharide of Escherichia coli O160. Carbohydr Res 2015; 417:89-93. [PMID: 26451883 DOI: 10.1016/j.carres.2015.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 08/17/2015] [Accepted: 09/09/2015] [Indexed: 12/25/2022]
Abstract
On mild acid degradation of the lipopolysaccharide of Escherichia coli O160, the O-polysaccharide was cleaved by acid-labile glycosyl phosphate linkages in the main chain. The resultant oligosaccharide and the alkali-treated lipopolysaccharide were studied by sugar analysis along with (1)H and (13)C NMR spectroscopies, and the following structure of the branched pentasaccharide repeating unit of the O-polysaccharide was established: The O-antigen gene cluster of E. coli O160 was found to be consistent with the O-polysaccharide structure established.
Collapse
Affiliation(s)
- Andrei V Perepelov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation.
| | - Xi Guo
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, 300457 Tianjin, China
| | - Sof'ya N Senchenkova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| |
Collapse
|
37
|
Perepelov AV, Guo X, Filatov AV, Liu B, Knirel YA. Structure and gene cluster of the O-antigen of Escherichia coli O43. Carbohydr Res 2015; 416:32-6. [PMID: 26342864 DOI: 10.1016/j.carres.2015.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/09/2015] [Accepted: 08/12/2015] [Indexed: 11/26/2022]
Abstract
The O-polysaccharide (O-antigen) of Escherichia coli O43 was isolated from the lipopolysaccharide and studied by chemical methods, including sugar analyses, Smith degradation, and solvolysis with anhydrous trifluoroacetic acid, along with (1)H and (13)C NMR spectroscopy. The following structure of the pentasaccharide repeating unit of the O-polysaccharide was established: [Formula: see text] Functions of genes in the O-antigen gene cluster of E. coli O43 were assigned by a comparison with sequences in the available databases and found to be in agreement with the O-polysaccharide structure.
Collapse
Affiliation(s)
- Andrei V Perepelov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation.
| | - Xi Guo
- TEDA Institute of Biological Sciences and Biotechnology, TEDA, Nankai University, 300457 Tianjin, China
| | - Andrei V Filatov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, TEDA, Nankai University, 300457 Tianjin, China
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| |
Collapse
|
38
|
Beerens K, Soetaert W, Desmet T. UDP-hexose 4-epimerases: a view on structure, mechanism and substrate specificity. Carbohydr Res 2015; 414:8-14. [PMID: 26162744 DOI: 10.1016/j.carres.2015.06.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 06/09/2015] [Accepted: 06/13/2015] [Indexed: 12/19/2022]
Abstract
UDP-sugar 4-epimerase (GalE) belongs to the short-chain dehydrogenase/reductase (SDR) superfamily of proteins and is one of enzymes in the Leloir pathway. They have been shown to be important virulence factors in a number of Gram-negative pathogens and to be involved in the biosynthesis of different polysaccharide structures. The metabolic disease type III galactosemia is caused by detrimental mutations in the human GalE. GalE and related enzymes display unusual enzymologic, chemical, and stereochemical properties; including irreversible binding of the cofactor NAD and uridine nucleotide-induced activation of this cofactor. These epimerases have been found active on UDP-hexoses, the N-acetylated and uronic acid forms thereof as well as UDP-pentoses. As they are involved in different pathways and functions, a deeper understanding of the enzymes, and their substrate promiscuity and/or selectivity, could lead to drug and vaccine design as well as antibiotic and probiotic development. This review summarizes the research performed on UDP-sugar 4-epimerases' structure, mechanism and substrate promiscuity.
Collapse
Affiliation(s)
- Koen Beerens
- Centre for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium.
| | - Wim Soetaert
- Centre for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| | - Tom Desmet
- Centre for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| |
Collapse
|
39
|
Perepelov AV, Shashkov AS, Guo X, Filatov AV, Weintraub A, Widmalm G, Knirel YA. Structure and genetics of the O-antigen of Escherichia coli O169 related to the O-antigen of Shigella boydii type 6. Carbohydr Res 2015; 414:46-50. [PMID: 26232763 DOI: 10.1016/j.carres.2015.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 05/20/2015] [Accepted: 05/23/2015] [Indexed: 11/27/2022]
Abstract
The O-polysaccharide (O-antigen) of Escherichia coli O169 was studied by sugar analysis along with 1D and 2D (1)H and (13)C NMR spectroscopy. The following structure of the branched hexasaccharide repeating unit was established: [Formula: see text] The O-polysaccharide of E. coli O169 differs from that of Shigella boydii type 6 only in the presence of a side-chain glucose residue. A comparison of the O-antigen biosynthesis gene clusters between the galF to gnd genes in the genomes of the two bacteria revealed their close relationship. The glycosyltransferase gene responsible for the formation of the β-D-Glcp-(1 → 6)-α-D-Galp linkage in the O-antigen was identified in the gene cluster.
Collapse
Affiliation(s)
- Andrei V Perepelov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation.
| | - Alexander S Shashkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - Xi Guo
- TEDA School of Biological Sciences and Biotechnology, Nankai University, TEDA, 300457 Tianjin, China
| | - Andrei V Filatov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - Andrej Weintraub
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institute, Karolinska University Hospital, S-141 86 Stockholm, Sweden
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| | - Yuriy A Knirel
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| |
Collapse
|
40
|
Perepelov AV, Wang Q, Filatov AV, Xia X, Shashkov AS, Weintraub A, Widmalm G, Wang L, Knirel YA. Structures and gene clusters of the closely related O-antigens of Escherichia coli O46 and O134, both containing D-glucuronoyl-D-allothreonine. Carbohydr Res 2015; 409:20-4. [PMID: 25898391 DOI: 10.1016/j.carres.2015.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 03/25/2015] [Indexed: 11/19/2022]
Abstract
The O-polysaccharides (O-antigens) were isolated by mild acid degradation of the lipopolysaccharide (LPS) of Escherichia coli O46 and O134. The structures of their linear tetrasaccharide repeating units were established by sugar analysis along with 1D and 2D (1)H and (13)C NMR spectroscopy: [Formula: see text], where D-aThr indicates D-allothreonine and R indicates O-acetyl substitution (∼ 70% on aThr and ∼ 15% on GalNAc) in E. coli O46 whereas the O-acetylation is absent in E. coli O134. Functions of genes in the essentially identical O-antigen gene clusters of E. coli O46 and O134 were tentatively assigned by a comparison with sequences in available databases and found to be in agreement with the O-polysaccharide structures established.
Collapse
Affiliation(s)
- Andrei V Perepelov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation.
| | - Quan Wang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, TEDA, 300457 Tianjin, China
| | - Andrei V Filatov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - Xianghong Xia
- TEDA School of Biological Sciences and Biotechnology, Nankai University, TEDA, 300457 Tianjin, China
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - Andrej Weintraub
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institute, Karolinska University Hospital, S-141 86 Stockholm, Sweden
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| | - Lei Wang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, TEDA, 300457 Tianjin, China
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| |
Collapse
|
41
|
Related structures of the O-polysaccharides of Cronobacter dublinensis G3983 and G3977 containing 3-(N-acetyl-l-alanyl)amino-3,6-dideoxy-d-galactose. Carbohydr Res 2015; 404:132-7. [DOI: 10.1016/j.carres.2014.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 11/21/2022]
|
42
|
Diversity of o-antigen repeat unit structures can account for the substantial sequence variation of wzx translocases. J Bacteriol 2014; 196:1713-22. [PMID: 24532778 DOI: 10.1128/jb.01323-13] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The most common system for synthesis of cell surface polysaccharides is the Wzx/Wzy-dependent pathway, which involves synthesis, on the cytoplasmic face of the cell membrane, of repeat units, which are then translocated to the periplasmic face by a Wzx translocase and then polymerized by Wzy to generate the polysaccharide. One such polysaccharide is O antigen, which is incorporated into lipopolysaccharide (LPS). The O antigen is extremely variable, with over 186 forms in Escherichia coli. Wzx proteins are also very diverse, but they have been thought to be specific only for the first sugar of the repeat units. However, recent studies demonstrated examples in which Wzx translocases have considerable preference for their native repeat unit, showing that specificity can extend well beyond the first sugar. These results appear to be in conflict with the early conclusions, but they involved specificity for side branch residues and could be a special case. Here we take six Wzx translocases that were critical in the earlier studies on the importance of the first sugar and assess their ability to translocate the Escherichia coli O16 and O111 repeat units. We use gene replacements to optimize maintenance of expression level and show that under these conditions the native translocases are the most effective for their native repeat unit, being, respectively, 64-fold and 4-fold more effective than the next best. We conclude that Wzx translocases are commonly adapted to their native repeat unit, which provides an explanation for the great diversity of wzx genes.
Collapse
|
43
|
Structure and genetics of the O-antigen of Enterobacter cloacae C6285 containing di-N-acetyllegionaminic acid. Carbohydr Res 2014; 392:21-4. [PMID: 24837902 DOI: 10.1016/j.carres.2014.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/11/2014] [Accepted: 01/13/2014] [Indexed: 12/29/2022]
Abstract
On mild acid degradation of the lipopolysaccharide of Enterobacter cloacae C6285, the O-polysaccharide was cleaved at residues of 5,7-diacetamido-3,5,7,9-tetradeoxy-d-glycero-d-galacto-non-2-ulosonic acid (di-N-acetyllegionaminic acid, Leg5Ac7Ac) in the main chain. The resultant oligosaccharide and an alkali-treated lipopolysaccharide were studied by sugar analysis along with (1)H and (13)C NMR spectroscopy, and the following structure of the tetrasaccharide repeating unit of the linear O-polysaccharide was established: →4)-α-d-Galp-(1→4)-α-Legp5Ac7Ac-(2→3)-β-d-Galp-(1→3)-β-d-GalpNAc-(1→ The O-antigen gene cluster of E. cloacae C6285 was sequenced, the gene functions were tentatively assigned by comparison with sequences in the available databases and found to be in agreement with the O-polysaccharide structure.
Collapse
|
44
|
Liu B, Knirel YA, Feng L, Perepelov AV, Senchenkova SN, Reeves PR, Wang L. Structural diversity in Salmonella O antigens and its genetic basis. FEMS Microbiol Rev 2013; 38:56-89. [PMID: 23848592 DOI: 10.1111/1574-6976.12034] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 05/15/2013] [Accepted: 07/05/2013] [Indexed: 11/30/2022] Open
Abstract
This review covers the structures and genetics of the 46 O antigens of Salmonella, a major pathogen of humans and domestic animals. The variation in structures underpins the serological specificity of the 46 recognized serogroups. The O antigen is important for the full function and virulence of many bacteria, and the considerable diversity of O antigens can confer selective advantage. Salmonella O antigens can be divided into two major groups: those which have N-acetylglucosamine (GlcNAc) or N-acetylgalactosamine (GalNAc) and those which have galactose (Gal) as the first sugar in the O unit. In recent years, we have determined 21 chemical structures and sequenced 28 gene clusters for GlcNAc-/GalNAc-initiated O antigens, thus completing the structure and DNA sequence data for the 46 Salmonella O antigens. The structures and gene clusters of the GlcNAc-/GalNAc-initiated O antigens were found to be highly diverse, and 24 of them were found to be identical or closely related to Escherichia coli O antigens. Sequence comparisons indicate that all or most of the shared gene clusters were probably present in the common ancestor, although alternative explanations are also possible. In contrast, the better-known eight Gal-initiated O antigens are closely related both in structures and gene cluster sequences.
Collapse
Affiliation(s)
- Bin Liu
- TEDA School of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China
| | | | | | | | | | | | | |
Collapse
|