1
|
Shibamoto A, Kaji K, Nishimura N, Kubo T, Iwai S, Tomooka F, Suzuki J, Tsuji Y, Fujinaga Y, Kawaratani H, Namisaki T, Akahane T, Yoshiji H. Vitamin D deficiency exacerbates alcohol-related liver injury via gut barrier disruption and hepatic overload of endotoxin. J Nutr Biochem 2023; 122:109450. [PMID: 37777163 DOI: 10.1016/j.jnutbio.2023.109450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/16/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023]
Abstract
Endogenous lipopolysaccharide (LPS) that translocates via the disrupted intestinal barrier plays an essential role in the progression of alcohol-related liver disease (ALD). Vitamin D deficiency is observed in ALD, and it participates in regulating gut barrier function. The current study aimed to examine the association between vitamin D deficiency and endotoxemia in patients with ALD-related cirrhosis. Moreover, the effect of vitamin D deficiency on ethanol (EtOH)- and carbon tetrachloride (CCl4)-induced liver injury relevant to gut barrier disruption in mice was investigated. Patients with ALD-related cirrhosis (Child-Pugh Class A/B/C; n=56/15/7) had lower 25(OH)D levels and higher endotoxin activities than non-drinking healthy controls (n=19). The serum 25(OH)D levels were found to be negatively correlated with endotoxin activity (R=-0.481, P<.0001). The EtOH/CCl4-treated mice developed hepatic inflammation and fibrosis, which were significantly enhanced by vitamin D-deficient diet. Vitamin D deficiency enhanced gut hyperpermeability by inhibiting the intestinal expressions of tight junction proteins including ZO-1, occludin, and claudin-2/5/12/15 in the EtOH/CCl4-treated mice. Consequently, it promoted the accumulation of lipid peroxidases, increased the expression of NADPH oxidases, and induced Kupffer cell infiltration and LPS/toll-like receptor 4 signaling-mediated proinflammatory response. Based on the in vitro assay, vitamin D-mediated vitamin D receptor activation inhibited EtOH-stimulated paracellular permeability and the downregulation of tight junction proteins via the upregulation of caudal-type homeobox 1 in Caco-2 cells. Hence, vitamin D deficiency exacerbates the pathogenesis of ALD via gut barrier disruption and hepatic overload of LPS.
Collapse
Affiliation(s)
- Akihiko Shibamoto
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Kosuke Kaji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan.
| | - Norihisa Nishimura
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Takahiro Kubo
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Satoshi Iwai
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Fumimasa Tomooka
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Junya Suzuki
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Yuki Tsuji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Yukihisa Fujinaga
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Hideto Kawaratani
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Tadashi Namisaki
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Takemi Akahane
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Hitoshi Yoshiji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| |
Collapse
|
2
|
Alsharairi NA. Antioxidant Intake and Biomarkers of Asthma in Relation to Smoking Status-A Review. Curr Issues Mol Biol 2023; 45:5099-5117. [PMID: 37367073 DOI: 10.3390/cimb45060324] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
Asthma is considered a chronic inflammatory disorder associated with airway hyperresponsiveness (AHR). Increased oxidative stress (OS) is a clinical feature of asthma, which promotes the inflammatory responses in bronchial/airway epithelial cells. Smokers and nonsmokers with asthma have been shown to have increases in several OS and inflammatory biomarkers. However, studies suggest significant differences in OS and inflammation biomarkers between smokers and nonsmokers. A few studies suggest associations between antioxidant intake from diet/supplements and asthma in patients with different smoking status. Evidence is lacking on the protective role of antioxidant vitamin and/or mineral consumption against asthma by smoking status with respect to inflammation and OS biomarkers. Therefore, the aim of this review is to highlight current knowledge regarding the relations between antioxidant intake, asthma, and its associated biomarkers, according to smoking status. This paper can be used to guide future research directions towards the health consequences of antioxidant intake in smoking and nonsmoking asthmatics.
Collapse
Affiliation(s)
- Naser A Alsharairi
- Heart, Mind & Body Research Group, Griffith University, Gold Coast P.O. Box 4222, QLD, Australia
| |
Collapse
|
3
|
Gayan‐Ramirez G, Janssens W. Vitamin D Actions: The Lung Is a Major Target for Vitamin D, FGF23, and Klotho. JBMR Plus 2021; 5:e10569. [PMID: 34950829 PMCID: PMC8674778 DOI: 10.1002/jbm4.10569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/29/2021] [Accepted: 10/09/2021] [Indexed: 11/16/2022] Open
Abstract
Vitamin D is well known for its role as a calcium regulator and in maintenance of phosphate homeostasis in musculoskeletal health, and fibroblast growth factor 23 (FGF23) and its coreceptor α-klotho are known for their roles as regulators of serum phosphate levels. However, apart from these classical actions, recent data point out a relevant role of vitamin D and FGF23/klotho in lung health. The expression of the vitamin D receptor by different cell types in the lung and the fact that those cells respond to vitamin D or can locally produce vitamin D indicate that the lung represents a target for vitamin D actions. Similarly, the presence of the four FGF receptor isoforms in the lung and the ability of FGF23 to stimulate pulmonary cells support the concept that the lung is a target for FGF23 actions, whereas the contribution of klotho is still undetermined. This review will give an overview on how vitamin D or FGF23/klotho may act on the lung and interfere positively or negatively with lung health. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Ghislaine Gayan‐Ramirez
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department CHROMETAKU LeuvenLeuvenBelgium
| | - Wim Janssens
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department CHROMETAKU LeuvenLeuvenBelgium
- Clinical Department of Respiratory DiseasesUZ LeuvenLeuvenBelgium
| |
Collapse
|
4
|
Keywanloo M, Ahmadi-Hamedani M, Jebelli Javan A, Rakhshani Zabol F. Effects of Parenteral Vitamin D3 Supplementation on Hematological Parameters of Healthy Holstein Bulls. ARCHIVES OF RAZI INSTITUTE 2021; 76:1509-1517. [PMID: 35355761 PMCID: PMC8934096 DOI: 10.22092/ari.2020.352209.1552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/22/2020] [Indexed: 06/14/2023]
Abstract
Vitamin D has been shown to play physiological functions beyond calcium and phosphorus homeostasis and control bone metabolism in the body since its cellular receptors are present in numerous tissues. A total of 20 healthy bulls were divided into four groups to evaluate the effect of different doses of vitamin D3 on the number of bovine blood cells. Groups A, B, C, and D received 11,000, 22,000, 33,000, and 44,000 units/kg of vitamin D3, respectively. The control group was injected with 10 ml of physiological saline intramuscularly. Blood samples were taken before the injection, as well as 2, 4, and 6 days after the injection; furthermore, the white blood cell counts (including granulocytes and lymphocytes), hematocrit, haemoglobin, and platelets were examined by a cell counter. The results showed that vitamin D could cause leukopenia (e.g., neutropenia and lymphopenia), thrombocytopenia, as well as an increase in hematocrit and hemoglobin levels in the blood. Although the mentioned increase or decrease is largely dose- and time-dependent, the first and best group to indicate this is group B. To find the second group, the investigation of the long-term effects of injections, especially in high doses, and evaluation of different tests are required with larger groups over a longer period.
Collapse
Affiliation(s)
- M Keywanloo
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
| | - M Ahmadi-Hamedani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
| | - A Jebelli Javan
- Department of Health Food Education, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
| | | |
Collapse
|
5
|
Hogenkamp A, Ehlers A, Garssen J, Willemsen LEM. Allergy Modulation by N-3 Long Chain Polyunsaturated Fatty Acids and Fat Soluble Nutrients of the Mediterranean Diet. Front Pharmacol 2020; 11:1244. [PMID: 32973501 PMCID: PMC7472571 DOI: 10.3389/fphar.2020.01244] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
The Mediterranean diet, containing valuable nutrients such as n-3 long chain poly-unsaturated fatty acids (LCPUFAs) and other fat-soluble micronutrients, is known for its health promoting and anti-inflammatory effects. Its valuable elements might help in the battle against the rising prevalence of non-communicable diseases (NCD), including the development of allergic diseases and other (chronic) inflammatory diseases. The fat fraction of the Mediterranean diet contains bioactive fatty acids but can also serve as a matrix to dissolve and increase the uptake of fat-soluble vitamins and phytochemicals, such as luteolin, quercetin, resveratrol and lycopene with known immunomodulatory and anti-inflammatory capacities. Especially n-3 LCPUFAs such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) derived from marine oils can target specific receptors or signaling cascades, act as eicosanoid precursors and/or alter membrane fluidity and lipid raft formation, hereby exhibiting anti-inflammatory properties. Beyond n-3 LCPUFAs, fat-soluble vitamins A, D, E, and K1/2 have the potential to affect pro-inflammatory signaling cascades by interacting with receptors or activating/inhibiting signaling proteins or phosphorylation in immune cells (DCs, T-cells, mast cells) involved in allergic sensitization or the elicitation/effector phase of allergic reactions. Moreover, fat-soluble plant-derived phytochemicals can manipulate signaling cascades, mostly by interacting with other receptors or signaling proteins compared to those modified by fat-soluble vitamins, suggesting potential additive or synergistic actions by applying a combination of these nutrients which are all part of the regular Mediterranean diet. Research concerning the effects of phytochemicals such as polyphenols has been hampered due to their poor bio-availability. However, their solubility and uptake are improved by applying them within the dietary fat matrix. Alternatively, they can be prepared for targeted delivery by means of pharmaceutical approaches such as encapsulation within liposomes or even unique nanoparticles. This review illuminates the molecular mechanisms of action and possible immunomodulatory effects of n-3 LCPUFAs and fat-soluble micronutrients from the Mediterranean diet in allergic disease development and allergic inflammation. This will enable us to further appreciate how to make use of the beneficial effects of n-3 LCPUFAs, fat-soluble vitamins and a selection of phytochemicals as active biological components in allergy prevention and/or symptom reduction.
Collapse
Affiliation(s)
- Astrid Hogenkamp
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Anna Ehlers
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Dermatology/Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Global Centre of Excellence Immunology, Danone Nutricia Research B.V., Utrecht, Netherlands
| | - Linette E M Willemsen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
6
|
Balcells ME, Yokobori N, Hong BY, Corbett J, Cervantes J. The lung microbiome, vitamin D, and the tuberculous granuloma: A balance triangle. Microb Pathog 2019; 131:158-163. [PMID: 30953746 DOI: 10.1016/j.micpath.2019.03.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 12/16/2022]
Abstract
Mycobacterium tuberculosis (Mtb) has the extraordinary ability to persist for decades within granulomas in the human host. These histopathological structures involved in both protection and pathogenesis, are subject to various influences from the host systemically and through micro-niche environments. Despite the fact that vitamin D (VD) has a key role in macrophage activation and mycobacterial clearance in the early stages of Mtb infection, the overall role of VD in granuloma maintenance or functionality has been scarcely studied. VD deficiency has long time been known to influence on gut microbiota composition, and recent studies have shown that it can also impact on respiratory microbiome. The human microbiota plays an important role in pathogen colonization resistance, and it has been proposed to play a potential role in TB pathogenesis. In this article, we have reviewed current knowledge on the interaction between VD, the lung microbiome and TB, and propose mechanisms by which the tuberculous granuloma's outcome could be modulated by these two factors. The determinants of the final fate of lung granulomas are still unclear, and deciphering the underlying drivers of Mtb infection outcome within those structures is of critical importance.
Collapse
Affiliation(s)
- María Elvira Balcells
- Department of Infectious Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Noemí Yokobori
- Instituto de Medicina Experimental, CONICET-ANM, Buenos Aires, Argentina
| | - Bo-Young Hong
- Jackson Laboratory for Genomic Medicine, Farmington, USA
| | - John Corbett
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, USA
| | - Jorge Cervantes
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, USA.
| |
Collapse
|
7
|
Smoothy J, Larcombe AN, Chivers EK, Matthews VB, Gorman S. Maternal high fat diet compromises survival and modulates lung development of offspring, and impairs lung function of dams (female mice). Respir Res 2019; 20:21. [PMID: 30700289 PMCID: PMC6354360 DOI: 10.1186/s12931-019-0976-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/03/2019] [Indexed: 12/25/2022] Open
Abstract
Background Epidemiological studies have identified strong relationships between maternal obesity and offspring respiratory dysfunction; however, the causal direction is not known. We tested whether maternal obesity alters respiratory function of offspring in early life. Methods Female C57Bl/6 J mice were fed a high or low fat diet prior to and during two rounds of mating and resulting pregnancies with offspring lung function assessed at 2 weeks of age. The lung function of dams was measured at 33 weeks of age. Results A high fat diet caused significant weight gain prior to conception with dams exhibiting elevated fasting glucose, and glucose intolerance. The number of surviving litters was significantly less for dams fed a high fat diet, and surviving offspring weighed more, were longer and had larger lung volumes than those born to dams fed a low fat diet. The larger lung volumes significantly correlated in a linear fashion with body length. Pups born from the second pregnancy had reduced tissue elastance compared to pups born from the first pregnancy, regardless of the dam’s diet. As there was reduced offspring survival born to dams fed a high fat diet, the statistical power of lung function measures of offspring was limited. There were signs of increased inflammation in the bronchoalveolar lavage fluid of dams (but not offspring) fed a high fat diet, with more tumour necrosis factor-α, interleukin(IL)-5, IL-33 and leptin detected. Dams that were fed a high fat diet and became pregnant twice had reduced fasting glucose immediately prior to the second mating, and lower levels of IL-33 and leptin in bronchoalveolar lavage fluid. Conclusions While maternal high fat diet compromised litter survival, it also promoted somatic and lung growth (increased lung volume) in the offspring. Further studies are required to examine downstream effects of this enhanced lung volume on respiratory function in disease settings.
Collapse
Affiliation(s)
- Jordan Smoothy
- Telethon Kids Institute, University of Western Australia, Northern Entrance Perth Children's Hospital, 15 Hospital Ave, Nedlands, Western Australia, 6009, Australia
| | - Alexander N Larcombe
- Telethon Kids Institute, University of Western Australia, Northern Entrance Perth Children's Hospital, 15 Hospital Ave, Nedlands, Western Australia, 6009, Australia.,School of Public Health, Curtin University, Perth, Western Australia, 6845, Australia
| | - Emily K Chivers
- Telethon Kids Institute, University of Western Australia, Northern Entrance Perth Children's Hospital, 15 Hospital Ave, Nedlands, Western Australia, 6009, Australia
| | - Vance B Matthews
- School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Shelley Gorman
- Telethon Kids Institute, University of Western Australia, Northern Entrance Perth Children's Hospital, 15 Hospital Ave, Nedlands, Western Australia, 6009, Australia.
| |
Collapse
|
8
|
Evans MA, Kim HA, De Silva TM, Arumugam TV, Clarkson AN, Drummond GR, Zosky GR, Broughton BR, Sobey CG. Diet-induced vitamin D deficiency has no effect on acute post-stroke outcomes in young male mice. J Cereb Blood Flow Metab 2018; 38:1968-1978. [PMID: 28832249 PMCID: PMC6259312 DOI: 10.1177/0271678x17719208] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent observational studies have reported that patients with low circulating levels of vitamin D experience larger infarct volumes and worse functional outcomes after ischemic stroke compared to those with sufficient levels. However, it is unknown whether a causal relationship exists between low vitamin D levels and poor stroke outcome. This study aimed to assess the effect of vitamin D deficiency on acute outcomes post-stroke. Male C57Bl6 mice (six week old) were assigned to either a control or vitamin D deficient diet for four weeks prior to stroke. Stroke was induced by 1 h middle cerebral artery occlusion (MCAO) with reperfusion. At 24 h, we assessed functional outcomes, infarct volume, quantified immune cells in the brain by immunofluorescence and examined susceptibility to lung infection. ELISAs showed that the plasma level of hydroxyvitamin D3 was 85% lower in mice fed the vitamin D-deficient diet compared with the control group. Despite this, vitamin D deficiency had no impact on functional outcomes or infarct volume after stroke. Further, there were no differences in the numbers of infiltrating immune cells or bacterial load within the lungs. These data suggest that diet-induced vitamin D deficiency has no effect on acute post-stroke outcomes.
Collapse
Affiliation(s)
- Megan A Evans
- 1 Cardiovascular Disease Program and Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Hyun Ah Kim
- 1 Cardiovascular Disease Program and Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,2 Vascular Biology Immunopharmacology Group, Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - T Michael De Silva
- 1 Cardiovascular Disease Program and Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,2 Vascular Biology Immunopharmacology Group, Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Thiruma V Arumugam
- 3 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,4 School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Andrew N Clarkson
- 5 Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin, New Zealand.,6 Faculty of Pharmacy, The University of Sydney, NSW, Australia
| | - Grant R Drummond
- 1 Cardiovascular Disease Program and Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,2 Vascular Biology Immunopharmacology Group, Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia.,7 Department of Surgery, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Graeme R Zosky
- 8 School of Medicine, Faculty of Health Science, University of Tasmania, Hobart, Tasmania, Australia
| | - Brad Rs Broughton
- 1 Cardiovascular Disease Program and Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Christopher G Sobey
- 1 Cardiovascular Disease Program and Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,2 Vascular Biology Immunopharmacology Group, Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia.,7 Department of Surgery, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
9
|
Gorman S, Lucas RM, Allen-Hall A, Fleury N, Feelisch M. Ultraviolet radiation, vitamin D and the development of obesity, metabolic syndrome and type-2 diabetes. Photochem Photobiol Sci 2018; 16:362-373. [PMID: 28009891 DOI: 10.1039/c6pp00274a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Obesity is increasing in prevalence in many countries around the world. Its causes have been traditionally ascribed to a model where energy intake exceeds energy consumption. Reduced energy output in the form of exercise is associated with less sun exposure as many of these activities occur outdoors. This review explores the potential for ultraviolet radiation (UVR), derived from sun exposure, to affect the development of obesity and two of its metabolic co-morbidities, type-2 diabetes and metabolic syndrome. We here discuss the potential benefits (or otherwise) of exposure to UVR based on evidence from pre-clinical, human epidemiological and clinical studies and explore and compare the potential role of UVR-induced mediators, including vitamin D and nitric oxide. Overall, emerging findings suggest a protective role for UVR and sun exposure in reducing the development of obesity and cardiometabolic dysfunction, but more epidemiological and clinical research is required that focuses on measuring the direct associations and effects of exposure to UVR in humans.
Collapse
Affiliation(s)
- Shelley Gorman
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia.
| | - Robyn M Lucas
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia. and National Centre of Epidemiology and Public Health, Research School of Population Health, Australian National University, Canberra, Australian Capital Territory
| | - Aidan Allen-Hall
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia.
| | - Naomi Fleury
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia.
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, and NIHR Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
10
|
Gorman S, Buckley AG, Ling KM, Berry LJ, Fear VS, Stick SM, Larcombe AN, Kicic A, Hart PH. Vitamin D supplementation of initially vitamin D-deficient mice diminishes lung inflammation with limited effects on pulmonary epithelial integrity. Physiol Rep 2018; 5:5/15/e13371. [PMID: 28774952 PMCID: PMC5555896 DOI: 10.14814/phy2.13371] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/03/2017] [Accepted: 07/07/2017] [Indexed: 12/18/2022] Open
Abstract
In disease settings, vitamin D may be important for maintaining optimal lung epithelial integrity and suppressing inflammation, but less is known of its effects prior to disease onset. Female BALB/c dams were fed a vitamin D3‐supplemented (2280 IU/kg, VitD+) or nonsupplemented (0 IU/kg, VitD−) diet from 3 weeks of age, and mated at 8 weeks of age. Male offspring were fed the same diet as their mother. Some offspring initially fed the VitD− diet were switched to a VitD+ diet from 8 weeks of age (VitD−/+). At 12 weeks of age, signs of low‐level inflammation were observed in the bronchoalveolar lavage fluid (BALF) of VitD− mice (more macrophages and neutrophils), which were suppressed by subsequent supplementation with vitamin D3. There was no difference in the level of expression of the tight junction proteins occludin or claudin‐1 in lung epithelial cells of VitD+ mice compared to VitD− mice; however, claudin‐1 levels were reduced when initially vitamin D‐deficient mice were fed the vitamin D3‐containing diet (VitD−/+). Reduced total IgM levels were detected in BALF and serum of VitD−/+ mice compared to VitD+ mice. Lung mRNA levels of the vitamin D receptor (VDR) were greatest in VitD−/+ mice. Total IgG levels in BALF were greater in mice fed the vitamin D3‐containing diet, which may be explained by increased activation of B cells in airway‐draining lymph nodes. These findings suggest that supplementation of initially vitamin D‐deficient mice with vitamin D3 suppresses signs of lung inflammation but has limited effects on the epithelial integrity of the lungs.
Collapse
Affiliation(s)
- Shelley Gorman
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia
| | - Alysia G Buckley
- Centre of Microscopy, Characterisation and Analysis The University of Western Australia, Nedlands, Western Australia, Australia
| | - Kak-Ming Ling
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia
| | - Luke J Berry
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia
| | - Vanessa S Fear
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia
| | - Stephen M Stick
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia.,School of Paediatrics and Child Health The University of Western Australia, Nedlands, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology The University of Western Australia and Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia
| | - Alexander N Larcombe
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia.,Occupation and Environment School of Public Health Curtin University, Perth, Western Australia, Australia
| | - Anthony Kicic
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia.,School of Paediatrics and Child Health The University of Western Australia, Nedlands, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology The University of Western Australia and Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia.,Occupation and Environment School of Public Health Curtin University, Perth, Western Australia, Australia
| | - Prue H Hart
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia
| |
Collapse
|
11
|
Matsui T, Yamashita H, Saneyasu KI, Tanaka H, Ito K, Inagaki N. Vitamin D deficiency exacerbates sensitization and allergic diarrhea in a murine food allergy model. Allergol Int 2018; 67:289-291. [PMID: 28935120 DOI: 10.1016/j.alit.2017.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 10/18/2022] Open
|
12
|
Kanhere M, Chassaing B, Gewirtz AT, Tangpricha V. Role of vitamin D on gut microbiota in cystic fibrosis. J Steroid Biochem Mol Biol 2018; 175:82-87. [PMID: 27818276 PMCID: PMC5415426 DOI: 10.1016/j.jsbmb.2016.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/24/2016] [Accepted: 11/01/2016] [Indexed: 02/07/2023]
Abstract
This review explores the potential for vitamin D to favorably alter the gut microbiota, given emerging evidence of the role of vitamin D in controlling mucosal inflammation in the gut. It will focus on cystic fibrosis (CF) patients, a population with both vitamin D deficiency due to gut malabsorption and an altered gut microbiota composition. Recent evidence shows that vitamin D acts to maintain the integrity of the gut mucosal barrier by enhancement of intercellular junctions that control mucosal permeability and reduction of pro-inflammatory cytokines such as IL-8. In addition, vitamin D receptor-mediated signaling has been shown to inhibit inflammation-induced apoptosis of intestinal epithelial cells. As a result of these effects on the intestinal mucosa, maintenance of sufficient vitamin D status may be essential for the development of a healthy gut microbiota, particularly in conditions defined by chronic mucosal inflammation such as CF. We hypothesize here that high dose vitamin D may be used to favorably manipulate the aberrant mucosa seen in patients with CF. This may result in improved clinical outcomes in association with a low inflammatory environment that allows beneficial bacteria to outcompete opportunistic pathogens. Current evidence is sparse but encouraging, and additional evidence is needed to establish vitamin D as a therapeutic approach for gut microbiota modification.
Collapse
Affiliation(s)
- Mansi Kanhere
- Division of Endocrinology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Benoit Chassaing
- Center for Inflammation, Immunity, & Infection, Institute for Biomedical Sciences, Georgia State University, USA
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity, & Infection, Institute for Biomedical Sciences, Georgia State University, USA
| | - Vin Tangpricha
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA.
| |
Collapse
|
13
|
Dietary vitamin D3 deficiency exacerbates sinonasal inflammation and alters local 25(OH)D3 metabolism. PLoS One 2017; 12:e0186374. [PMID: 29045457 PMCID: PMC5646812 DOI: 10.1371/journal.pone.0186374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/30/2017] [Indexed: 12/21/2022] Open
Abstract
RATIONALE Patients with chronic rhinosinusitis with nasal polyps (CRSwNP) have been shown to be vitamin D3 (VD3) deficient, which is associated with more severe disease and increased polyp size. To gain mechanistic insights into these observational studies, we examined the impact of VD3 deficiency on inflammation and VD3 metabolism in an Aspergillus fumigatus (Af) mouse model of chronic rhinosinusitis (Af-CRS). METHODS Balb/c mice were fed control or VD3 deficient diet for 4 weeks. Mice were then sensitized with intraperitoneal Af, and one week later given Af intranasally every three days for four weeks while being maintained on control or VD3 deficient diet. Airway function, sinonasal immune cell infiltrate and sinonasal VD3 metabolism profiles were then examined. RESULTS Mice with VD3 deficiency had increased Penh and sRaw values as compared to controls as well as exacerbated changes in sRaw when coupled with Af-CRS. As compared to controls, VD3 deficient and Af-CRS mice had reduced sinonasal 1α-hydroxylase and the active VD3 metabolite, 1,25(OH)2D3. Differential analysis of nasal lavage samples showed that VD3 deficiency alone and in combination with Af-CRS profoundly upregulated eosinophil, neutrophil and lymphocyte numbers. VD3 deficiency exacerbated increases in monocyte-derived dendritic cell (DC) associated with Af-CRS. Conversely, T-regulatory cells were decreased in both Af-CRS mice and VD3 deficient mice, though coupling VD3 deficiency with Af-CRS did not exacerbate CD4 or T-regulatory cells numbers. Lastly, VD3 deficiency had a modifying or exacerbating impact on nasal lavage levels of IFN-γ, IL-6, IL-10 and TNF-α, but had no impact on IL-17A. CONCLUSIONS VD3 deficiency causes changes in sinonasal immunity, which in many ways mirrors the changes observed in Af-CRS mice, while selectively exacerbating inflammation. Furthermore, both VD3 deficiency and Af-CRS were associated with altered sinonasal VD3 metabolism causing reductions in local levels of the active VD3 metabolite, 1,25(OH)2D3, even with adequate circulating levels.
Collapse
|
14
|
Chirumbolo S, Bjørklund G, Sboarina A, Vella A. The Role of Vitamin D in the Immune System as a Pro-survival Molecule. Clin Ther 2017; 39:894-916. [PMID: 28438353 DOI: 10.1016/j.clinthera.2017.03.021] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 02/07/2023]
Abstract
PURPOSE Vitamin D is a fascinating and attractive molecule that has gained particular attention in medicine in recent years. Its immunomodulatory and anti-inflammatory potential might resemble the activity of many nature-derived molecules (eg, flavonoids), but its role in biology was selected during a long evolutionary pathway to dampen the damaging effect of cell stress response and of the immune reaction. In this sense, this molecule can be considered an ancient hormone that serves, in its primary role, as a pro-survival agent. The goal of this review was to elucidate this topic. METHODS The article reviews current literature on the field, focusing on issues regarding the role of vitamin D in immunity. FINDINGS Vitamin D participates in the survival machinery used by the cell, and in particular it plays a major role in synchronizing calcium oscillatory signaling to allow cell autophagy or apoptosis during a stress response. IMPLICATIONS Vitamin D should be better highlighted in its molecular action and vitamin D receptor genomics to conceive a more suited therapeutic supplementation protocol in clinics.
Collapse
Affiliation(s)
- Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy.
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| | - Andrea Sboarina
- Department of Surgery, Dentistry, Gynaecology and Paediatrics, University of Verona, Verona, Italy
| | - Antonio Vella
- Department of Medicine-University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| |
Collapse
|
15
|
Titmarsh HF, Cartwright JA, Kilpatrick S, Gaylor D, Milne EM, Berry JL, Bommer NX, Gunn-Moore D, Reed N, Handel I, Mellanby RJ. Relationship between vitamin D status and leukocytes in hospitalised cats. J Feline Med Surg 2017; 19:364-369. [PMID: 26795125 PMCID: PMC11119642 DOI: 10.1177/1098612x15625454] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Objectives Vitamin D deficiency, as assessed by serum 25-hydroxyvitamin D (25[OH]D) concentrations, has been linked to markers of systemic inflammation in human and canine medicine. However, the relationship between vitamin D status and inflammation has not been previously investigated in cats. The aim of this study was to examine the relationship between serum 25(OH)D concentrations and leukocyte counts in hospitalised sick cats. Methods Serum 25(OH)D concentrations and haematology profiles were measured in 170 consecutive hospitalised sick cats. A binary logistical regression model examined the relationship between serum 25(OH)D concentration, age, sex, breed and neutrophil, monocyte, eosinophil and lymphocyte counts. Results Cats with neutrophilia had lower serum 25(OH)D concentrations than cats with neutrophil concentrations below the upper limit of the reference interval (RI). There were no differences in serum 25(OH)D concentrations in cats with monocyte, lymphocyte or eosinophil counts above their respective RI compared with cats with counts below the upper limit of the RI. Conclusions and relevance Hospitalised cats with a neutrophil count above the RI had lower vitamin D status. There is a need to establish whether lower vitamin D status is a cause or consequence of increased neutrophil counts.
Collapse
Affiliation(s)
- Helen F Titmarsh
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, The University of Edinburgh, Roslin, UK
| | - Jennifer A Cartwright
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, The University of Edinburgh, Roslin, UK
| | - Scott Kilpatrick
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, The University of Edinburgh, Roslin, UK
| | - Donna Gaylor
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, The University of Edinburgh, Roslin, UK
| | - Elspeth M Milne
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, The University of Edinburgh, Roslin, UK
| | - Jacqueline L Berry
- Specialist Assay Laboratory (Vitamin D), Clinical Biochemistry, Manchester Royal Infirmary, Manchester, UK
| | - Nicholas X Bommer
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, The University of Edinburgh, Roslin, UK
| | - Danièlle Gunn-Moore
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, The University of Edinburgh, Roslin, UK
| | - Nicola Reed
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, The University of Edinburgh, Roslin, UK
- Current address: Wear Referrals, Stockton-on-Tees, UK
| | - Ian Handel
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, The University of Edinburgh, Roslin, UK
| | - Richard J Mellanby
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, The University of Edinburgh, Roslin, UK
| |
Collapse
|
16
|
He Y, Wen Q, Yao F, Xu D, Huang Y, Wang J. Gut-lung axis: The microbial contributions and clinical implications. Crit Rev Microbiol 2016; 43:81-95. [PMID: 27781554 DOI: 10.1080/1040841x.2016.1176988] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gut microbiota interacts with host immune system in ways that influence the development of disease. Advances in respiratory immune system also broaden our knowledge of the interaction between host and microbiome in the lung. Increasing evidence indicated the intimate relationship between the gastrointestinal tract and respiratory tract. Exacerbations of chronic gut and lung disease have been shown to share key conceptual features with the disorder and dysregulation of the microbial ecosystem. In this review, we discuss the impact of gut and lung microbiota on disease exacerbation and progression, and the recent understanding of the immunological link between the gut and the lung, the gut-lung axis.
Collapse
Affiliation(s)
- Yang He
- a Department of Cancer Center, Union Hospital , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Qu Wen
- a Department of Cancer Center, Union Hospital , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Fangfang Yao
- a Department of Cancer Center, Union Hospital , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Dong Xu
- b Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Yuancheng Huang
- b Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Junshuai Wang
- c Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
17
|
Roggenbuck M, Anderson D, Barfod KK, Feelisch M, Geldenhuys S, Sørensen SJ, Weeden CE, Hart PH, Gorman S. Vitamin D and allergic airway disease shape the murine lung microbiome in a sex-specific manner. Respir Res 2016; 17:116. [PMID: 27655266 PMCID: PMC5031331 DOI: 10.1186/s12931-016-0435-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/17/2016] [Indexed: 02/06/2023] Open
Abstract
Background Vitamin D is under scrutiny as a potential regulator of the development of respiratory diseases characterised by chronic lung inflammation, including asthma and chronic obstructive pulmonary disease. It has anti-inflammatory effects; however, knowledge around the relationship between dietary vitamin D, inflammation and the microbiome in the lungs is limited. In our previous studies, we observed more inflammatory cells in the bronchoalveolar lavage fluid and increased bacterial load in the lungs of vitamin D-deficient male mice with allergic airway disease, suggesting that vitamin D might modulate the lung microbiome. In the current study, we examined in more depth the effects of vitamin D deficiency initiated early in life, and subsequent supplementation with dietary vitamin D on the composition of the lung microbiome and the extent of respiratory inflammation. Methods BALB/c dams were fed a vitamin D-supplemented or -deficient diet throughout gestation and lactation, with offspring continued on this diet post-natally. Some initially deficient offspring were fed a supplemented diet from 8 weeks of age. The lungs of naïve adult male and female offspring were compared prior to the induction of allergic airway disease. In further experiments, offspring were sensitised and boosted with the experimental allergen, ovalbumin (OVA), and T helper type 2-skewing adjuvant, aluminium hydroxide, followed by a single respiratory challenge with OVA. Results In mice fed a vitamin D-containing diet throughout life, a sex difference in the lung microbial community was observed, with increased levels of an Acinetobacter operational taxonomic unit (OTU) in female lungs compared to male lungs. This effect was not observed in vitamin D-deficient mice or initially deficient mice supplemented with vitamin D from early adulthood. In addition, serum 25-hydroxyvitamin D levels inversely correlated with total bacterial OTUs, and Pseudomonas OTUs in the lungs. Increased levels of the antimicrobial murine ß-defensin-2 were detected in the bronchoalveolar lavage fluid of male and female mice fed a vitamin D-containing diet. The induction of OVA-induced allergic airway disease itself had a profound affect on the OTUs identified in the lung microbiome, which was accompanied by substantially more respiratory inflammation than that induced by vitamin D deficiency alone. Conclusion These data support the notion that maintaining sufficient vitamin D is necessary for optimal lung health, and that vitamin D may modulate the lung microbiome in a sex-specific fashion. Furthermore, our data suggest that the magnitude of the pro-inflammatory and microbiome-modifying effects of vitamin D deficiency were substantially less than that of allergic airway disease, and that there is an important interplay between respiratory inflammation and the lung microbiome.
Collapse
Affiliation(s)
- Michael Roggenbuck
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Denise Anderson
- Telethon Kids Institute, University of Western Australia, 100 Roberts Rd, Subiaco, WA, 6008, Australia
| | | | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Sian Geldenhuys
- Telethon Kids Institute, University of Western Australia, 100 Roberts Rd, Subiaco, WA, 6008, Australia
| | - Søren J Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Clare E Weeden
- Telethon Kids Institute, University of Western Australia, 100 Roberts Rd, Subiaco, WA, 6008, Australia
| | - Prue H Hart
- Telethon Kids Institute, University of Western Australia, 100 Roberts Rd, Subiaco, WA, 6008, Australia
| | - Shelley Gorman
- Telethon Kids Institute, University of Western Australia, 100 Roberts Rd, Subiaco, WA, 6008, Australia.
| |
Collapse
|
18
|
Dietary Vitamin D Increases Percentages and Function of Regulatory T Cells in the Skin-Draining Lymph Nodes and Suppresses Dermal Inflammation. J Immunol Res 2016; 2016:1426503. [PMID: 27672666 PMCID: PMC5031886 DOI: 10.1155/2016/1426503] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 08/04/2016] [Accepted: 08/17/2016] [Indexed: 12/16/2022] Open
Abstract
Skin inflammatory responses in individuals with allergic dermatitis may be suppressed by dietary vitamin D through induction and upregulation of the suppressive activity of regulatory T (TReg) cells. Vitamin D may also promote TReg cell tropism to dermal sites. In the current study, we examined the capacity of dietary vitamin D3 to modulate skin inflammation and the numbers and activity of TReg cells in skin and other sites including lungs, spleen, and blood. In female BALB/c mice, dietary vitamin D3 suppressed the effector phase of a biphasic ear swelling response induced by dinitrofluorobenzene in comparison vitamin D3-deficient female BALB/c mice. Vitamin D3 increased the percentage of TReg (CD3+CD4+CD25+Foxp3+) cells in the skin-draining lymph nodes (SDLN). The suppressive activity of TReg cells in the SDLN, mesenteric lymph nodes, spleen, and blood was upregulated by vitamin D3. However, there was no difference in the expression of the naturally occurring TReg cell marker, neuropilin, nor the expression of CCR4 or CCR10 (skin-tropic chemokine receptors) on TReg cells in skin, SDLN, lungs, and airway-draining lymph nodes. These data suggest that dietary vitamin D3 increased the percentages and suppressive activity of TReg cells in the SDLN, which are poised to suppress dermal inflammation.
Collapse
|
19
|
Fischer KD, Hall SC, Agrawal DK. Vitamin D Supplementation Reduces Induction of Epithelial-Mesenchymal Transition in Allergen Sensitized and Challenged Mice. PLoS One 2016; 11:e0149180. [PMID: 26872336 PMCID: PMC4752470 DOI: 10.1371/journal.pone.0149180] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/05/2016] [Indexed: 01/05/2023] Open
Abstract
Asthma is a chronic disease of the lung associated with airway hyperresponsiveness (AHR), airway obstruction and airway remodeling. Airway remodeling involves differentiation of airway epithelial cells into myofibroblasts via epithelial-mesenchymal transition (EMT) to intensify the degree of subepithelial fibrosis. EMT involves loss in E-cadherin with an increase in mesenchymal markers, including vimentin and N-cadherin. There is growing evidence that vitamin D has immunomodulatory and anti-inflammatory properties. However, the underlying molecular mechanisms of these effects are still unclear. In this study, we examined the contribution of vitamin D on the AHR, airway inflammation and expression of EMT markers in the airways of mice sensitized and challenged with a combination of clinically relevant allergens, house dust mite, ragweed, and Alternaria (HRA). Female Balb/c mice were fed with vitamin D-sufficient (2000 IU/kg) or vitamin D-supplemented (10,000 IU/kg) diet followed by sensitization with HRA. The density of inflammatory cells in the bronchoalveolar lavage fluid (BALF), lung histology, and expression of EMT markers by immunofluorescence were examined. Vitamin D-supplementation decreased AHR, airway inflammation in the BALF and the features of airway remodeling compared to vitamin D-sufficiency in HRA-sensitized and -challenged mice. This was accompanied with increased expression of E-cadherin and decreased vimentin and N-cadherin expression in the airways. These results indicate that vitamin D may be a beneficial adjunct in the treatment regime in allergic asthma.
Collapse
Affiliation(s)
- Kimberly D. Fischer
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, United States of America
| | - Sannette C. Hall
- Department of Biomedical Science, Creighton University School of Medicine, Omaha, NE, United States of America
| | - Devendra K. Agrawal
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, United States of America
- Department of Biomedical Science, Creighton University School of Medicine, Omaha, NE, United States of America
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE, United States of America
- * E-mail:
| |
Collapse
|
20
|
Heulens N, Korf H, Cielen N, De Smidt E, Maes K, Gysemans C, Verbeken E, Gayan-Ramirez G, Mathieu C, Janssens W. Vitamin D deficiency exacerbates COPD-like characteristics in the lungs of cigarette smoke-exposed mice. Respir Res 2015; 16:110. [PMID: 26376849 PMCID: PMC4574263 DOI: 10.1186/s12931-015-0271-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/30/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterized by excessive inflammation and disturbed bacterial clearance in the airways. Although cigarette smoke (CS) exposure poses a major risk, vitamin D deficiency could potentially contribute to COPD progression. Many in vitro studies demonstrate important anti-inflammatory and antibacterial effects of vitamin D, but a direct contribution of vitamin D deficiency to COPD onset and disease progression has not been explored. METHODS In the current study, we used a murine experimental model to investigate the combined effect of vitamin D deficiency and CS exposure on the development of COPD-like characteristics. Therefore, vitamin D deficient or control mice were exposed to CS or ambient air for a period of 6 (subacute) or 12 weeks (chronic). Besides lung function and structure measurements, we performed an in depth analysis of the size and composition of the cellular infiltrate in the airways and lung parenchyma and tested the ex vivo phagocytic and oxidative burst capacity of alveolar macrophages. RESULTS Vitamin D deficient mice exhibited an accelerated lung function decline following CS exposure compared to control mice. Furthermore, early signs of emphysema were only observed in CS-exposed vitamin D deficient mice, which was accompanied by elevated levels of MMP-12 in the lung. Vitamin D deficient mice showed exacerbated infiltration of inflammatory cells in the airways and lung parenchyma after both subacute and chronic CS exposure compared to control mice. Furthermore, elevated levels of typical proinflammatory cytokines and chemokines could be detected in the bronchoalveolar lavage fluid (KC and TNF-α) and lung tissue (IP-10, MCP-1, IL-12) of CS-exposed vitamin D deficient mice compared to control mice. Finally, although CS greatly impaired the ex vivo phagocytic and oxidative burst function of alveolar macrophages, vitamin D deficient mice did not feature an additional defect. CONCLUSIONS Our data demonstrate that vitamin D deficiency both accelerates and aggravates the development of characteristic disease features of COPD. As vitamin D deficiency is highly prevalent, large randomized trials exploring effects of vitamin D supplementation on lung function decline and COPD onset are needed.
Collapse
Affiliation(s)
- Nele Heulens
- Laboratory of Respiratory Diseases, Department of Clinical and Experimental Medicine, Katholieke Universiteit Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Hannelie Korf
- Laboratory of Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, Katholieke Universiteit Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Nele Cielen
- Laboratory of Respiratory Diseases, Department of Clinical and Experimental Medicine, Katholieke Universiteit Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Elien De Smidt
- Laboratory of Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, Katholieke Universiteit Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Karen Maes
- Laboratory of Respiratory Diseases, Department of Clinical and Experimental Medicine, Katholieke Universiteit Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Conny Gysemans
- Laboratory of Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, Katholieke Universiteit Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Erik Verbeken
- Translational Cell and Tissue Research, Department of Imaging and Pathology, Katholieke Universiteit Leuven, Minderbroederstraat 12, 3000, Leuven, Belgium.
| | - Ghislaine Gayan-Ramirez
- Laboratory of Respiratory Diseases, Department of Clinical and Experimental Medicine, Katholieke Universiteit Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Chantal Mathieu
- Laboratory of Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, Katholieke Universiteit Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Wim Janssens
- Laboratory of Respiratory Diseases, Department of Clinical and Experimental Medicine, Katholieke Universiteit Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
21
|
Mazzilli SA, Hershberger PA, Reid ME, Bogner PN, Atwood K, Trump DL, Johnson CS. Vitamin D Repletion Reduces the Progression of Premalignant Squamous Lesions in the NTCU Lung Squamous Cell Carcinoma Mouse Model. Cancer Prev Res (Phila) 2015; 8:895-904. [PMID: 26276745 DOI: 10.1158/1940-6207.capr-14-0403] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 07/20/2015] [Indexed: 12/14/2022]
Abstract
The chemopreventive actions of vitamin D were examined in the N-nitroso-tris-chloroethylurea (NTCU) mouse model, a progressive model of lung squamous cell carcinoma (SCC). SWR/J mice were fed a deficient diet (D) containing no vitamin D3, a sufficient diet (S) containing 2,000 IU/kg vitamin D3, or the same diets in combination with the active metabolite of vitamin D, calcitriol (C; 80 μg/kg, weekly). The percentage (%) of the mucosal surface of large airways occupied by dysplastic lesions was determined in mice after treatment with a total dose of 15 or 25 μmol NTCU (N). After treatment with 15 μmol NTCU, the percentages of the surface of large airways containing high-grade dysplastic (HGD) lesions were vitamin D-deficient + NTCU (DN), 22.7% [P < 0.05 compared with vitamin D-sufficient +NTCU (SN)]; DN + C, 12.3%; SN, 8.7%; and SN + C, 6.6%. The extent of HGD increased with NTCU dose in the DN group. Proliferation, assessed by Ki-67 labeling, increased upon NTCU treatment. The highest Ki-67 labeling index was seen in the DN group. As compared with SN mice, DN mice exhibited a three-fold increase (P < 0.005) in circulating white blood cells (WBC), a 20% (P < 0.05) increase in IL6 levels, and a four-fold (P < 0.005) increase in WBC in bronchial lavages. Thus, vitamin D repletion reduces the progression of premalignant lesions, proliferation, and inflammation, and may thereby suppress development of lung SCC. Further investigations of the chemopreventive effects of vitamin D in lung SCC are warranted.
Collapse
Affiliation(s)
- Sarah A Mazzilli
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York.
| | - Pamela A Hershberger
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York
| | - Mary E Reid
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York
| | - Paul N Bogner
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, New York
| | - Kristopher Atwood
- Department of Biostatistics, Roswell Park Cancer Institute, Buffalo New York
| | | | - Candace S Johnson
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York
| |
Collapse
|
22
|
Park S, Baek H, Jung KH, Lee G, Lee H, Kang GH, Lee G, Bae H. Bee venom phospholipase A2 suppresses allergic airway inflammation in an ovalbumin-induced asthma model through the induction of regulatory T cells. IMMUNITY INFLAMMATION AND DISEASE 2015; 3:386-97. [PMID: 26734460 PMCID: PMC4693726 DOI: 10.1002/iid3.76] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/23/2015] [Accepted: 07/17/2015] [Indexed: 01/27/2023]
Abstract
Bee venom (BV) is one of the alternative medicines that have been widely used in the treatment of chronic inflammatory diseases. We previously demonstrated that BV induces immune tolerance by increasing the population of regulatory T cells (Tregs) in immune disorders. However, the major component and how it regulates the immune response have not been elucidated. We investigated whether bee venom phospholipase A2 (bvPLA2) exerts protective effects that are mediated via Tregs in OVA‐induced asthma model. bvPLA2 was administered by intraperitoneal injection into control and OVA‐challenged mice. The Treg population, total and differential bronchoalveolar lavage fluid (BALF) cell count, Th2 cytokines, and lung histological features were assessed. Treg depletion was used to determine the involvement of Treg migration and the reduction of asthmatic symptoms. The CD206‐dependence of bvPLA2‐treated suppression of airway inflammation was evaluated in OVA‐challenged CD206‐/‐ mice. The bvPLA2 treatment induced the Tregs and reduced the infiltration of inflammatory cells into the lung in the OVA‐challenged mice. Th2 cytokines in the bronchoalveolar lavage fluid (BALF) were reduced in bvPLA2‐treated mice. Although bvPLA2 suppressed the number of inflammatory cells after OVA challenge, these effects were not observed in Treg‐depleted mice. In addition, we investigated the involvement of CD206 in bvPLA2‐mediated immune tolerance in OVA‐induced asthma model. We observed a significant reduction in the levels of Th2 cytokines and inflammatory cells in the BALF of bvPLA2‐treated OVA‐induced mice but not in bvPLA2‐treated OVA‐induced CD206‐/‐ mice. These results demonstrated that bvPLA2 can mitigate airway inflammation by the induction of Tregs in an OVA‐induced asthma model.
Collapse
Affiliation(s)
- Soojin Park
- Department of Physiology College of Korean Medicine Kyung Hee University #1 Hoeki-Dong Dongdaemoon-Gu Seoul 130-701 Republic of Korea
| | - Hyunjung Baek
- Department of Physiology College of Korean Medicine Kyung Hee University #1 Hoeki-Dong Dongdaemoon-Gu Seoul 130-701 Republic of Korea
| | - Kyung-Hwa Jung
- Department of Physiology College of Korean Medicine Kyung Hee University #1 Hoeki-Dong Dongdaemoon-Gu Seoul 130-701 Republic of Korea
| | - Gihyun Lee
- Department of Physiology College of Korean Medicine Kyung Hee University #1 Hoeki-Dong Dongdaemoon-Gu Seoul 130-701 Republic of Korea
| | - Hyeonhoon Lee
- Department of Physiology College of Korean Medicine Kyung Hee University #1 Hoeki-Dong Dongdaemoon-Gu Seoul 130-701 Republic of Korea
| | - Geun-Hyung Kang
- Department of Physiology College of Korean Medicine Kyung Hee University #1 Hoeki-Dong Dongdaemoon-Gu Seoul 130-701 Republic of Korea
| | - Gyeseok Lee
- Department of Physiology College of Korean Medicine Kyung Hee University #1 Hoeki-Dong Dongdaemoon-Gu Seoul 130-701 Republic of Korea
| | - Hyunsu Bae
- Department of Physiology College of Korean Medicine Kyung Hee University #1 Hoeki-Dong Dongdaemoon-Gu Seoul 130-701 Republic of Korea
| |
Collapse
|
23
|
Abstract
The incidence of allergic diseases is increasing, both in developed and developing countries, concomitantly with the rise in living standards and the adoption of a 'western lifestyle'. For two decades, the hygiene hypothesis - which proposes that the lack of early childhood exposure to infectious agents increases susceptibility to allergic diseases in later life - provided the conceptual framework for unravelling the mechanisms that could account for the increased incidence of allergic diseases. In this Review, we discuss recent evidence that highlights the role of diet as a key factor influencing immune homeostasis and the development of allergic diseases through a complex interplay between nutrients, their metabolites and immune cell populations. Although further investigations are still required to understand these complex relationships, recent data have established a possible connection between metabolic homeostasis and allergic diseases.
Collapse
|
24
|
Li W, Dong H, Zhao H, Song J, Tang H, Yao L, Liu L, Tong W, Zou M, Zou F, Cai S. 1,25-Dihydroxyvitamin D3 prevents toluene diisocyanate-induced airway epithelial barrier disruption. Int J Mol Med 2015; 36:263-70. [PMID: 25998793 DOI: 10.3892/ijmm.2015.2214] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 05/05/2015] [Indexed: 11/05/2022] Open
Abstract
The loss of airway epithelial integrity contributes significantly to asthma pathogenesis. Evidence suggests that vitamin D plays an important role in the prevention and treatment of asthma. However, its role in airway epithelial barrier function remains uncertain. We have previously demonstrated impaired epithelial junctions in a model of toluene diisocyanate (TDI)-induced asthma. In the present study, we hypothesized that 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] may prevent TDI-induced epithelial barrier disruption. Male BALB/c mice were dermally sensitized and then challenged with TDI. The mice were then administered 1,25(OH)2D3 intraperitoneally prior to challenge with TDI. For in vitro experiments, 16HBE bronchial epithelial cells were cultured and stimulated with TDI-human serum albumin (HSA). The results revealed that the mice treated with 1,25(OH)2D3 displayed decreased airway hyperresponsiveness (AHR), suppressed neutrophil and eosinophil infiltration into the airways, as well as an increased E-cadherin and zonula occludens-1 (ZO-1) expression at the cell-cell contact sites. In vitro, exposure of the cells to TDI-HSA induced a rapid decline in transepithelial electrical resistance (TER) and an increase in cell permeability, followed by a decrease in occludin expression and the redistribution of E-cadherin, accompanied by a significant upregulation in the levels of phosphorylated extracellular signal-regulated kinase (ERK)1/2. These effects were all partly reversed by treatment with either 1,25(OH)2D3 or an ERK1/2 inhibitor. In conclusion, the findings of our study demonstrate that 1,25(OH)2D3 prevents TDI-induced epithelial barrier disruption, and that the ERK1/2 pathway may play a role in this process.
Collapse
Affiliation(s)
- Wenjia Li
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Hangming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Haijin Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Jiafu Song
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Haixiong Tang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Lihong Yao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Laiyu Liu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Wancheng Tong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Mengchen Zou
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Fei Zou
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
25
|
Heulens N, Korf H, Janssens W. Innate immune modulation in chronic obstructive pulmonary disease: moving closer toward vitamin D therapy. J Pharmacol Exp Ther 2015; 353:360-8. [PMID: 25755208 DOI: 10.1124/jpet.115.223032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the most common respiratory diseases and a major cause of morbidity and mortality worldwide. Disturbed innate immune processes characterize the pathogenesis of COPD. Vitamin D deficiency is very common in COPD patients and has been associated with disease severity. Interestingly, mechanistic evidence from animal and in vitro studies has demonstrated important innate immunomodulatory functions of vitamin D, including anti-inflammatory, antioxidative, and antimicrobial functions. This review discusses in detail how the innate immunomodulatory functions of vitamin D may have therapeutic potential in COPD patients. The remaining challenges associated with vitamin D therapy in COPD patients are also discussed.
Collapse
Affiliation(s)
- Nele Heulens
- Laboratory of Respiratory Diseases (N.H., W.J.) and Laboratory of Clinical and Experimental Endocrinology (H.K.), Department of Clinical and Experimental Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Hannelie Korf
- Laboratory of Respiratory Diseases (N.H., W.J.) and Laboratory of Clinical and Experimental Endocrinology (H.K.), Department of Clinical and Experimental Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Wim Janssens
- Laboratory of Respiratory Diseases (N.H., W.J.) and Laboratory of Clinical and Experimental Endocrinology (H.K.), Department of Clinical and Experimental Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
26
|
Vitamin D deficiency at 16 to 20 weeks' gestation is associated with impaired lung function and asthma at 6 years of age. Ann Am Thorac Soc 2015; 11:571-7. [PMID: 24601713 DOI: 10.1513/annalsats.201312-423oc] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
RATIONALE Vitamin D deficiency is associated with chronic lung disease. We have previously shown in an in vivo mouse model that maternal vitamin D deficiency is associated with alterations in early life lung structure and function. However, there are limited data to support a relationship between maternal vitamin D deficiency during the early stages of lung development and postnatal lung function in human populations. OBJECTIVES To assess the association between maternal vitamin D deficiency, postnatal lung function, and asthmatic status in a longitudinal birth cohort. METHODS Serum was collected at 16 to 20 weeks' gestation at the time of recruitment in a community-based prospective birth cohort for measurement of vitamin D (25[OH]D). Lung function was assessed by spirometry according to American Thoracic Society guidelines in children at 6 and 14 years of age. Demographic and clinical history data were collected by questionnaire at recruitment and at the follow-up visits. MEASUREMENTS AND MAIN RESULTS FVC Z-scores in both sexes (β, 0.007 [95% confidence interval (CI), 0.001-0.013]; P = 0.02) and FEV1 Z-scores in girls (β, 0.007 [95% CI, 0.001-0.013]; P = 0.02) were positively associated with maternal serum 25(OH)D at 6 years of age. These associations were mostly absent at 14 years of age. Maternal vitamin D deficiency was positively associated with asthma at 6 years of age but only in boys (odds ratio, 3.03 [95% CI, 1.02-9.02]; P = 0.04). CONCLUSIONS This study supports the notion that vitamin D deficiency during lung development may impact on postnatal lung growth and increase the risk of developing lung disease.
Collapse
|
27
|
Abstract
Vitamin D deficiency has been linked to an increased risk of a wide range of adverse health outcomes. The active form of vitamin D has an important role in calcium metabolism and in bone mineralisation, but the evidence for other health outcomes is mixed, with the strongest effects seen in the weakest epidemiological study designs. There are plausible pathways whereby vitamin D deficiency can impair immune function, resulting in both overactivity and increased risk of autoimmune disease, as well as immune suppression with poorer resistance to infection. Vitamin D status may influence the bacterial flora that constitute the microbiome and affect immune function through this route. Exposure of the skin to ultraviolet radiation causes the production of a range of chemicals, including vitamin D, and new research is exploring possible vitamin D-independent immunomodulatory pathways.
Collapse
Affiliation(s)
- Robyn M. Lucas
- Telethon Kids Institute, University of Western Australia100 Roberts Road, Subiaco, PerthAustralia 6008
- National Centre for Epidemiology and Population Health, The Australian National UniversityCanberraAustralia 0200
| | - Shelley Gorman
- Telethon Kids Institute, University of Western Australia100 Roberts Road, Subiaco, PerthAustralia 6008
| | - Sian Geldenhuys
- Telethon Kids Institute, University of Western Australia100 Roberts Road, Subiaco, PerthAustralia 6008
| | - Prue H. Hart
- Telethon Kids Institute, University of Western Australia100 Roberts Road, Subiaco, PerthAustralia 6008
| |
Collapse
|
28
|
Jung KH, Choi HL, Park S, Lee G, Kim M, Min JK, Min BI, Bae H. The effects of the standardized herbal formula PM014 on pulmonary inflammation and airway responsiveness in a murine model of cockroach allergen-induced asthma. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:113-122. [PMID: 24879958 DOI: 10.1016/j.jep.2014.04.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 03/24/2014] [Accepted: 04/17/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE PM014 is a modified form of the Chung-Sang-Bo-Ha-Tang (CSBHT) herbal formula that has been used to treat chronic pulmonary diseases in Korea for centuries. Previously, we developed a formulation of PM014 based on a series of in vitro and in vivo screening efforts that comprises seven herbal extracts. The PM014 formula includes the root of Rehmannia glutinosa, the cortex of Paeonia suffruticosa, the fruit of Schizandra chinensis, the root of Asparagus cochinchinensis, seeds of Prunus armeniaca, the root of Scutellaria baicalensis and the root of Stemona sessilifolia. Asthma is a chronic inflammatory disease of the lungs that is characterized by wheezing, bronchial contraction, and chest tightness. In addition, the airway becomes hypersensitive and narrows through an inflammatory reaction mediated by Th2 cells. The present study was conducted to evaluate the ability of PM014 to prevent allergic airway inflammation and to attenuate airway responses in a cockroach allergen-induced mouse model. MATERIALS AND METHODS Mice sensitized to and challenged with cockroach allergen were treated with oral administration of PM014. Airway resistance was determined by whole body plethysmography. In addition, Th2 cytokines and immune cell profiles of bronchoalveolar lavage (BAL) fluid and inflammatory mediators in serum were analyzed by ELISA. A series of histological examinations were also conducted to demonstrate the effects of PM014 on airway remodeling, goblet cell hyperplasia and inflammatory responses in the lung. RESULTS PM014 significantly inhibited the number of total cells, eosinophils, neutrophils, macrophages and lymphocytes in the BAL fluid of mice that were challenged with cockroach allergen. In addition, PM014 reduced the levels of Th2 cytokines (IL-4, IL-5 and IL-13) in the BAL fluid and inflammatory mediators such as IgE in the serum, as measured by enzyme-linked immunosorbent assay (ELISA). Histopathological analysis also showed that PM014 substantially inhibited eosinophil infiltration into the airway, goblet cell hyperplasia and smooth muscle hypertrophy. CONCLUSIONS In this study, our results indicate that PM014 has significant effects on allergic airway inflammation upon exposure to cockroach allergen in a mouse model. According to these outcomes, PM014 may have therapeutic potential as a treatment for allergic asthma.
Collapse
Affiliation(s)
- Kyung-Hwa Jung
- Department of Physiology, College of Korean Medicine, Kyung Hee University, #1 Hoekidong, Dongdaemoon-ku, Seoul 130-701, Republic of Korea.
| | - Hei-Lim Choi
- Department of East-West Medicine, Kyung Hee University, #1 Hoekidong, Dongdaemoon-ku, Seoul 130-701, Republic of Korea.
| | - Soojin Park
- Department of Physiology, College of Korean Medicine, Kyung Hee University, #1 Hoekidong, Dongdaemoon-ku, Seoul 130-701, Republic of Korea.
| | - Geunhyeog Lee
- Central Research Institute, Hanlim Pharm. Co. Ltd., 1007 Yoobang Dong, Yongin, Kyounggi Do, Republic of Korea.
| | - Miran Kim
- Central Research Institute, Hanlim Pharm. Co. Ltd., 1007 Yoobang Dong, Yongin, Kyounggi Do, Republic of Korea.
| | - Joon-Ki Min
- Department of East-West Medicine, Kyung Hee University, #1 Hoekidong, Dongdaemoon-ku, Seoul 130-701, Republic of Korea.
| | - Byung-Il Min
- Department of East-West Medicine, Kyung Hee University, #1 Hoekidong, Dongdaemoon-ku, Seoul 130-701, Republic of Korea.
| | - Hyunsu Bae
- Department of Physiology, College of Korean Medicine, Kyung Hee University, #1 Hoekidong, Dongdaemoon-ku, Seoul 130-701, Republic of Korea; Institute of Korean Medicine, Kyung Hee University, #1 Hoekidong, Dongdaemoon-ku, Seoul 130-701, Republic of Korea.
| |
Collapse
|
29
|
Novel drug targets for asthma and COPD: lessons learned from in vitro and in vivo models. Pulm Pharmacol Ther 2014; 29:181-98. [PMID: 24929072 DOI: 10.1016/j.pupt.2014.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/20/2014] [Accepted: 05/31/2014] [Indexed: 12/28/2022]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are highly prevalent respiratory diseases characterized by airway inflammation, airway obstruction and airway hyperresponsiveness. Whilst current therapies, such as β-agonists and glucocorticoids, may be effective at reducing symptoms, they do not reduce disease progression. Thus, there is a need to identify new therapeutic targets. In this review, we summarize the potential of novel targets or tools, including anti-inflammatories, phosphodiesterase inhibitors, kinase inhibitors, transient receptor potential channels, vitamin D and protease inhibitors, for the treatment of asthma and COPD.
Collapse
|
30
|
Rajabbik MH, Lotfi T, Alkhaled L, Fares M, El-Hajj Fuleihan G, Mroueh S, Akl EA. Association between low vitamin D levels and the diagnosis of asthma in children: a systematic review of cohort studies. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2014; 10:31. [PMID: 24955097 PMCID: PMC4064110 DOI: 10.1186/1710-1492-10-31] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 05/27/2014] [Indexed: 01/29/2023]
Abstract
BACKGROUND There is conflicting evidence about the association between low vitamin D levels in children and development of asthma in later life. The objective of this study was to systematically review the evidence for an epidemiological association between low serum levels of vitamin D and the diagnosis of asthma in children. METHODS We used the Cochrane methodology for conducting systematic reviews. The search strategy included an electronic search of MEDLINE and EMBASE in February 2013. Two reviewers completed, in duplicate and independently, study selection, data abstraction, and assessment of risk of bias. RESULTS Of 1081 identified citations, three cohort studies met eligibility criteria. Two studies found that low serum vitamin D level is associated with an increased risk of developing asthma late in childhood, while the third study found no association with either vitamin D2 or vitamin D3 levels. All three studies suffer from major methodological shortcomings that limit our confidence in their results. CONCLUSIONS Available epidemiological evidence suggests a potential association between low serum levels of vitamin D and the diagnosis of asthma in children. High quality studies are needed to reliably answer the question of interest.
Collapse
Affiliation(s)
| | - Tamara Lotfi
- Clinical Research Institute, American University of Beirut, Beirut, Lebanon
| | - Lina Alkhaled
- Department of Pediatrics and Adolescent Medicine, American University of Beirut, Beirut, Lebanon
| | - Munes Fares
- Department of Pediatrics and Adolescent Medicine, American University of Beirut, Beirut, Lebanon
| | - Ghada El-Hajj Fuleihan
- Department of Internal Medicine, Calcium Metabolism and Osteoporosis Program, WHO Collaborating Center for Metabolic Bone Disorders, American University of Beirut, Beirut, Lebanon
| | - Salman Mroueh
- Department of Pediatrics and Adolescent Medicine, American University of Beirut, Beirut, Lebanon
| | - Elie A Akl
- Clinical Research Institute, American University of Beirut, Beirut, Lebanon
- Department of Internal Medicine, Calcium Metabolism and Osteoporosis Program, WHO Collaborating Center for Metabolic Bone Disorders, American University of Beirut, Beirut, Lebanon
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, State University of New York at Buffalo, Buffalo, New York, USA
| |
Collapse
|
31
|
Sharma S, Chhabra D, Kho AT, Hayden LP, Tantisira KG, Weiss ST. The genomic origins of asthma. Thorax 2014; 69:481-7. [PMID: 24668408 DOI: 10.1136/thoraxjnl-2014-205166] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Lung function tracks from the earliest age that it can be reliably measured. Genome wide association studies suggest that most variants identified for common complex traits are regulatory in function and active during fetal development. Fetal programming of gene expression during development is critical to the formation of a normal lung. An understanding of how fetal developmental genes related to diseases of the lungs and airways is a critical area for research. This review article considers the developmental origins hypothesis, the stages of normal lung development and a variety of environmental exposures that might influence the developmental process: in utero cigarette smoke exposure, vitamin D and folate. We conclude with some information on developmental genes and asthma.
Collapse
Affiliation(s)
- Sunita Sharma
- Channing Division of Network Medicine, Brigham and Women's Hospital, , Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
32
|
Park S, Park MS, Jung KH, Song J, Kim YA, Cho HJ, Min BI, Bae H. Treatment with pyranopyran-1, 8-dione attenuates airway responses in cockroach allergen sensitized asthma in mice. PLoS One 2014; 9:e87558. [PMID: 24489937 PMCID: PMC3906187 DOI: 10.1371/journal.pone.0087558] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 12/24/2013] [Indexed: 12/25/2022] Open
Abstract
Chronic allergic asthma is characterized by Th2-typed inflammation, and contributes to airway remodeling and the deterioration of lung function. Viticis Fructus (VF) has long been used in China and Korea as a traditional herbal remedy for treating various inflammatory diseases. Previously, we have isolated a novel phytochemical, pyranopyran-1, 8-dione (PPY), from VF. This study was conducted to evaluate the ability of PPY to prevent airway inflammation and to attenuate airway responses in a cockroach allergen-induced asthma model in mice. The mice sensitized to and challenged with cockroach allergen were treated with oral administration of PPY. The infiltration of total cells, eosinophils and lymphocytes into the BAL fluid was significantly inhibited in cockroach allergen-induced asthma mice treated with PPY (1, 2, or 10 mg/kg). Th2 cytokines and chemokine, such as IL-4, IL-5, IL-13 and eotaxin in BAL fluid were also reduced to normal levels following treatment with PPY. In addition, the levels of IgE were also markedly suppressed after PPY treatment. Histopathological examination demonstrated that PPY substantially inhibited eosinophil infiltration into the airway, goblet cell hyperplasia and smooth muscle hypertrophy. Taken together, these results demonstrate that PPY possesses a potent efficacy on controlling allergic asthma response such as airway inflammation and remodeling.
Collapse
Affiliation(s)
- Soojin Park
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Min-Sun Park
- Department of East-West Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Kyung-Hwa Jung
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Joohyun Song
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - You Ah Kim
- Natural Products Department, Korea Promotion Institute for Traditional Medical Industry, Kyungbuk, Republic of Korea
| | - Hi Jae Cho
- Natural Products Department, Korea Promotion Institute for Traditional Medical Industry, Kyungbuk, Republic of Korea
| | - Byung-Il Min
- Department of East-West Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyunsu Bae
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
33
|
Vitamin D deficiency and the lung: disease initiator or disease modifier? Nutrients 2013; 5:2880-900. [PMID: 23896653 PMCID: PMC3775233 DOI: 10.3390/nu5082880] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/15/2013] [Accepted: 07/17/2013] [Indexed: 12/27/2022] Open
Abstract
Vitamin D deficiency is a global public health problem and has been associated with an increased incidence and severity of many diseases including diseases of the respiratory system. These associations have largely been demonstrated epidemiologically and have formed the basis of the justification for a large number of clinical supplementation trials with a view to improving disease outcomes. However, the trials that have been completed to date and the ongoing experimental studies that have attempted to demonstrate a mechanistic link between vitamin D deficiency and lung disease have been disappointing. This observation raises many questions regarding whether vitamin D deficiency is truly associated with disease pathogenesis, is only important in the exacerbation of disease or is simply an indirect biomarker of other disease mechanisms? In this review, we will briefly summarize our current understanding of the role of vitamin D in these processes with a focus on lung disease.
Collapse
|