1
|
Kukułowicz J, Siwek A, Wolak M, Bröer A, Yadav A, Bröer S, Bajda M. Insight into the Structure of the Neutral Amino Acid Transporter B 0AT2 Enabled the Discovery of Tiagabine as an Inhibitor. ACS Chem Neurosci 2024. [PMID: 39729024 DOI: 10.1021/acschemneuro.4c00800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
The sodium-dependent membrane transporter SLC6A15 (B0AT2) belongs to the SLC6 family, which comprises carriers of amino acids and monoamines. B0AT2 is expressed in the central nervous system (CNS), including the glutaminergic and GABAergic system. SLC6A15 supplies neurons with neutral amino acids. Its main substrates, branched-chain amino acids, and proline serve for glutamate biosynthesis, whereas silencing of B0AT2 leads to lower levels of neuronal glutamate. Recent research revealed that polymorphisms in the vicinity of slc6a15 are associated with major depressive disorder and anxiety. Mouse B0AT2 knockouts, by contrast, showed an antianxiety feature. Applying computational tools, we constructed models of B0AT2. Their structure was discussed extensively, enabling insight into the determinants of transport mechanism and substrate selectivity. Understanding the molecular basis of the B0AT2 inhibition by loratadine led to the discovery of a new inhibitor that is tiagabine, an anticonvulsant drug prescribed off-label in the treatment of anxiety and possessing antidepressant features. The results showed that tiagabine appears to have a higher affinity to the transporter than loratadine, which is the most potent inhibitor to date. Our findings support the development of new B0AT2 inhibitors that could be useful for investigating their therapeutic relevance, while the identification of tiagabine as a novel SLC6A15 inhibitor adds a new dimension to the pharmacological complexity of this drug.
Collapse
Affiliation(s)
- Jędrzej Kukułowicz
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| | - Małgorzata Wolak
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| | - Angelika Bröer
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Aditya Yadav
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Stefan Bröer
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| |
Collapse
|
2
|
To VPTH, Masagounder K, Loewen ME. Critical transporters of methionine and methionine hydroxyl analogue supplements across the intestine: What we know so far and what can be learned to advance animal nutrition. Comp Biochem Physiol A Mol Integr Physiol 2021; 255:110908. [PMID: 33482339 DOI: 10.1016/j.cbpa.2021.110908] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/15/2020] [Accepted: 01/11/2021] [Indexed: 11/19/2022]
Abstract
DL-methionine (DL-Met) and its analogue DL-2-hydroxy-4-(methylthio) butanoic acid (DL-methionine hydroxyl analogue or DL-MHA) have been used as nutritional supplements in the diets of farmed raised animals. Knowledge of the intestinal transport mechanisms involved in these products is important for developing dietary strategies. This review provides updated information of the expression, function, and transport kinetics in the intestine of known Met-linked transporters along with putative MHA-linked transporters. As a neutral amino acid (AA), the transport of DL-Met is facilitated by multiple apical sodium-dependent/-independent high-/low-affinity transporters such as ASCT2, B0AT1 and rBAT/b0,+AT. The basolateral transport largely relies on the rate-limiting uniporter LAT4, while the presence of the basolateral antiporter y+LAT1 is probably necessary for exchanging intracellular cationic AAs and Met in the blood. In contrast, the intestinal transport kinetics of DL-MHA have been scarcely studied. DL-MHA transport is generally accepted to be mediated simply by the proton-dependent monocarboxylate transporter MCT1. However, in-depth mechanistic studies have indicated that DL-MHA transport is also achieved through apical sodium monocarboxylate transporters (SMCTs). In any case, reliance on either a proton or sodium gradient would thus require energy input for both Met and MHA transport. This expanding knowledge of the specific transporters involved now allows us to assess the effect of dietary ingredients on the expression and function of these transporters. Potentially, the resulting information could be furthered with selective breeding to reduce overall feed costs.
Collapse
Affiliation(s)
- Van Pham Thi Ha To
- Veterinary Biomedical Science, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Matthew E Loewen
- Veterinary Biomedical Science, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
3
|
Unal-Aydin P, Aydin O, Arslan A. Genetic Architecture of Depression: Where Do We Stand Now? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1305:203-230. [PMID: 33834402 DOI: 10.1007/978-981-33-6044-0_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The research of depression genetics has been occupied by historical candidate genes which were tested by candidate gene association studies. However, these studies were mostly not replicable. Thus, genetics of depression have remained elusive for a long time. As research moves from candidate gene association studies to GWAS, the hypothesis-free non-candidate gene association studies in genome-wide level, this trend will likely change. Despite the fact that the earlier GWAS of depression were not successful, the recent GWAS suggest robust findings for depression genetics. These altogether will catalyze a new wave of multidisciplinary research to pin down the neurobiology of depression.
Collapse
Affiliation(s)
- Pinar Unal-Aydin
- Psychology Program, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Orkun Aydin
- Psychology Program, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Ayla Arslan
- School of Advanced Studies, University of Tyumen, Tyumen, Russia.
| |
Collapse
|
4
|
Akil H, Gordon J, Hen R, Javitch J, Mayberg H, McEwen B, Meaney MJ, Nestler EJ. Treatment resistant depression: A multi-scale, systems biology approach. Neurosci Biobehav Rev 2018; 84:272-288. [PMID: 28859997 PMCID: PMC5729118 DOI: 10.1016/j.neubiorev.2017.08.019] [Citation(s) in RCA: 274] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/21/2017] [Accepted: 08/26/2017] [Indexed: 01/10/2023]
Abstract
An estimated 50% of depressed patients are inadequately treated by available interventions. Even with an eventual recovery, many patients require a trial and error approach, as there are no reliable guidelines to match patients to optimal treatments and many patients develop treatment resistance over time. This situation derives from the heterogeneity of depression and the lack of biomarkers for stratification by distinct depression subtypes. There is thus a dire need for novel therapies. To address these known challenges, we propose a multi-scale framework for fundamental research on depression, aimed at identifying the brain circuits that are dysfunctional in several animal models of depression as well the changes in gene expression that are associated with these models. When combined with human genetic and imaging studies, our preclinical studies are starting to identify candidate circuits and molecules that are altered both in models of disease and in patient populations. Targeting these circuits and mechanisms can lead to novel generations of antidepressants tailored to specific patient populations with distinctive types of molecular and circuit dysfunction.
Collapse
Affiliation(s)
- Huda Akil
- Depression Task Force, Hope for Depression Research Foundation, New York, NY 10019, United States; University of Michigan, United States
| | - Joshua Gordon
- Depression Task Force, Hope for Depression Research Foundation, New York, NY 10019, United States; Columbia University, United States; New York State Psychiatric Institute, United States
| | - Rene Hen
- Depression Task Force, Hope for Depression Research Foundation, New York, NY 10019, United States; Columbia University, United States; New York State Psychiatric Institute, United States
| | - Jonathan Javitch
- Depression Task Force, Hope for Depression Research Foundation, New York, NY 10019, United States; Columbia University, United States; New York State Psychiatric Institute, United States
| | - Helen Mayberg
- Depression Task Force, Hope for Depression Research Foundation, New York, NY 10019, United States; Emory University, United States
| | - Bruce McEwen
- Depression Task Force, Hope for Depression Research Foundation, New York, NY 10019, United States; Rockefeller University, United States
| | - Michael J Meaney
- Depression Task Force, Hope for Depression Research Foundation, New York, NY 10019, United States; McGill University, United States; Singapore Institute for Clinical Science, Singapore
| | - Eric J Nestler
- Depression Task Force, Hope for Depression Research Foundation, New York, NY 10019, United States; Icahn School of Medicine at Mount Sinai, United States.
| |
Collapse
|
5
|
Wang L, Liu Z, Cao X, Li J, Zhang A, Sun N, Yang C, Zhang K. A Combined Study of SLC6A15 Gene Polymorphism and the Resting-State Functional Magnetic Resonance Imaging in First-Episode Drug-Naive Major Depressive Disorder. Genet Test Mol Biomarkers 2017; 21:523-530. [PMID: 28915082 DOI: 10.1089/gtmb.2016.0426] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS The SLC6A15 gene has been identified as a novel candidate gene for major depressive disorder (MDD). However, the mechanism underlying the effects of how the SLC6A15 gene affects functional brain activity of patients with MDD remains unknown. METHODS In the present study, we investigated the effect of the SLC6A15 gene polymorphism, rs1545843, on resting-state brain function in MDD with the imaging genomic technology and the regional homogeneity (ReHo) method. Sixty-seven MDD patients and 44 healthy controls underwent functional magnetic resonance imaging scans and genotyping. The differences in ReHo between genotypes were initially tested using the student's t test. We then performed a 2 × 2 (genotypes × disease status) analysis of variance to identify the main effects of genotypes, disease status, and their interactions in MDD. RESULTS MDD patients with A+ genotypes showed decreased ReHo in the medial cingulum compared with MDD patients with the GG genotype. This was in contrast to normal controls with A+ genotypes who showed increased ReHo in the posterior cingulum and the frontal, temporal, and parietal lobes and decreased ReHo in the left corpus callosum, compared with controls with the GG genotypes. The main effect of disease was found in the frontal, parietal, and temporal lobes. The main effect of genotypes was found in the left corpus callosum and the frontal lobe. There was no interaction between rs1545843 genotypes and disease status. We found that the left corpus callosum ReHo was positively correlated with total scores of the Hamilton Depression Scale (HAMD) (p = 0.021), so as was the left inferior parietal gyrus ReHo with cognitive disorder (p = 0.02). In addition, the right middle temporal gyrus had a negative correlation with retardation (p = 0.049). CONCLUSION We observed an association between the SLC6A15 rs1545843 and resting-state brain function of the corpus callosum, cingulum and the frontal, parietal, and temporal lobes in MDD patients, which may be involved in the pathogenesis of MDD.
Collapse
Affiliation(s)
- Lijuan Wang
- 1 Department of Psychiatry, The First Hospital of Shanxi Medical University , Taiyuan, China .,2 The First Clinical Medical College, Shanxi Medical University , Taiyuan, China
| | - Zhifen Liu
- 1 Department of Psychiatry, The First Hospital of Shanxi Medical University , Taiyuan, China
| | - Xiaohua Cao
- 1 Department of Psychiatry, The First Hospital of Shanxi Medical University , Taiyuan, China
| | - Jianying Li
- 1 Department of Psychiatry, The First Hospital of Shanxi Medical University , Taiyuan, China
| | - Aixia Zhang
- 1 Department of Psychiatry, The First Hospital of Shanxi Medical University , Taiyuan, China
| | - Ning Sun
- 1 Department of Psychiatry, The First Hospital of Shanxi Medical University , Taiyuan, China
| | - Chunxia Yang
- 1 Department of Psychiatry, The First Hospital of Shanxi Medical University , Taiyuan, China
| | - Kerang Zhang
- 1 Department of Psychiatry, The First Hospital of Shanxi Medical University , Taiyuan, China
| |
Collapse
|
6
|
Goldberg SJ, Nelson CE, Viviani DA, Shulse CN, Church MJ. Cascading influence of inorganic nitrogen sources on DOM production, composition, lability and microbial community structure in the open ocean. Environ Microbiol 2017; 19:3450-3464. [PMID: 28618153 DOI: 10.1111/1462-2920.13825] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 05/26/2017] [Accepted: 05/29/2017] [Indexed: 12/22/2022]
Abstract
Nitrogen frequently limits oceanic photosynthesis and the availability of inorganic nitrogen sources in the surface oceans is shifting with global change. We evaluated the potential for abrupt increases in inorganic N sources to induce cascading effects on dissolved organic matter (DOM) and microbial communities in the surface ocean. We collected water from 5 m depth in the central North Pacific and amended duplicate 20 liter polycarbonate carboys with nitrate or ammonium, tracking planktonic carbon fixation, DOM production, DOM composition and microbial community structure responses over 1 week relative to controls. Both nitrogen sources stimulated bulk phytoplankton, bacterial and DOM production and enriched Synechococcus and Flavobacteriaceae; ammonium enriched for oligotrophic Actinobacteria OM1 and Gammaproteobacteria KI89A clades while nitrate enriched Gammaproteobacteria SAR86, SAR92 and OM60 clades. DOM resulting from both N enrichments was more labile and stimulated growth of copiotrophic Gammaproteobacteria (Alteromonadaceae and Oceanospirillaceae) and Alphaproteobacteria (Rhodobacteraceae and Hyphomonadaceae) in weeklong dark incubations relative to controls. Our study illustrates how nitrogen pulses may have direct and cascading effects on DOM composition and microbial community dynamics in the open ocean.
Collapse
Affiliation(s)
- S J Goldberg
- Center for Microbial Oceanography: Research and Education, Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, 1950 East West Road, Honolulu, HI 96822, USA
| | - C E Nelson
- Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, 1950 East West Road, Honolulu, HI 96822, USA
| | - D A Viviani
- Center for Microbial Oceanography: Research and Education, Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, 1950 East West Road, Honolulu, HI 96822, USA
| | - C N Shulse
- Center for Microbial Oceanography: Research and Education, Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, 1950 East West Road, Honolulu, HI 96822, USA
| | - M J Church
- Center for Microbial Oceanography: Research and Education, Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, 1950 East West Road, Honolulu, HI 96822, USA
| |
Collapse
|
7
|
Choi S, Han KM, Kang J, Won E, Chang HS, Tae WS, Son KR, Kim SJ, Lee MS, Ham BJ. Effects of a Polymorphism of the Neuronal Amino Acid Transporter SLC6A15 Gene on Structural Integrity of White Matter Tracts in Major Depressive Disorder. PLoS One 2016; 11:e0164301. [PMID: 27723767 PMCID: PMC5056691 DOI: 10.1371/journal.pone.0164301] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 09/18/2016] [Indexed: 12/15/2022] Open
Abstract
Background The SLC6A15 gene has been identified as a novel candidate gene for major depressive disorder (MDD). It is presumed to be involved in the pathophysiology of MDD through regulation of glutamate transmission in the brain. However, the involvement of this gene in microstructural changes in white matter (WM) tracts remains unclear. We aimed to investigate the influence of a polymorphism of this gene (rs1545853) on the structural integrity of WM tracts in the cortico-limbic network. Methods Eighty-six patients with MDD and 64 healthy controls underwent T1-weighted structural magnetic resonance imaging, including diffusion tensor imaging (DTI), and genotype analysis. We selected the genu of the corpus callosum, the uncinate fasciculus, cingulum, and fornix as regions of interest, and extracted fractional anisotropy (FA) values using the FMRIB Diffusion Toolbox software. Results FA values for the left parahippocampal cingulum (PHC) was significantly reduced in the patients with MDD compared to healthy control participants (p = 0.004). We also found that MDD patients with the A allele showed reduced FA values for the left PHC than did healthy controls with the A allele (p = 0.012). There was no significant difference in the FA value of left PHC for the comparison between the G homozygotes of MDD and healthy control group. Conclusions We observed an association between the risk allele of the SLC6A15 gene rs1545843 and the WM integrity of the PHC in MDD patients, which is known to play an important role in the neural circuit involved in emotion processing.
Collapse
Affiliation(s)
- Sunyoung Choi
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| | - Kyu-Man Han
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - June Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Eunsoo Won
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hun Soo Chang
- Department of Medical Bioscience, Graduate school, Soonchunhyang University, Bucheon, South Korea
| | - Woo Suk Tae
- Brain Convergence Research Center, Korea University Anam Hospital, Seoul, South Korea
| | - Kyu Ri Son
- Department of Radiology, Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Su-Jin Kim
- Department of Emergency Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Min-Soo Lee
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
- Brain Convergence Research Center, Korea University Anam Hospital, Seoul, South Korea
- * E-mail:
| |
Collapse
|
8
|
Stemmler S, Hoffjan S. Trying to understand the genetics of atopic dermatitis. Mol Cell Probes 2016; 30:374-385. [PMID: 27725295 DOI: 10.1016/j.mcp.2016.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/06/2016] [Accepted: 10/06/2016] [Indexed: 02/07/2023]
Abstract
Atopic dermatitis (AD) is a common and complex skin disease associated with both genetic and environmental factors. Loss-of-function mutations in the filaggrin gene, encoding a structural protein with an important role in epidermal barrier function, constitutes a well recognised susceptibility locus for AD. Further, genome-wide association studies (GWAS), including large meta-analyses, have discovered 38 additional susceptibility loci with genome-wide significance. However, the reported variations only explain a fraction of the overall heritability of AD. Here, we summarize the current knowledge of the role of filaggrin and the epidermal differentiation complex as well as the results of GWAS, with an emphasis on novel findings and observations made in the past two years. Additionally, we present first results of exome sequencing for AD and discuss novel therapeutic strategies.
Collapse
Affiliation(s)
| | - Sabine Hoffjan
- Department of Human Genetics, Ruhr-University, Bochum, Germany
| |
Collapse
|
9
|
Cuboni S, Devigny C, Hoogeland B, Strasser A, Pomplun S, Hauger B, Höfner G, Wanner KT, Eder M, Buschauer A, Holsboer F, Hausch F. Loratadine and analogues: discovery and preliminary structure-activity relationship of inhibitors of the amino acid transporter B(0)AT2. J Med Chem 2014; 57:9473-9. [PMID: 25318072 DOI: 10.1021/jm501086v] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
B(0)AT2, encoded by the SLC6A15 gene, is a transporter for neutral amino acids that has recently been implicated in mood and metabolic disorders. It is predominantly expressed in the brain, but little is otherwise known about its function. To identify inhibitors for this transporter, we screened a library of 3133 different bioactive compounds. Loratadine, a clinically used histamine H1 receptor antagonist, was identified as a selective inhibitor of B(0)AT2 with an IC50 of 4 μM while being less active or inactive against several other members of the SLC6 family. Reversible inhibition of B(0)AT2 was confirmed by electrophysiology. A series of loratadine analogues were synthesized to gain insight into the structure-activity relationships. Our studies provide the first chemical tool for B(0)AT2.
Collapse
Affiliation(s)
- Serena Cuboni
- Max Planck Institute of Psychiatry , 80804 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Defining the blanks--pharmacochaperoning of SLC6 transporters and ABC transporters. Pharmacol Res 2013; 83:63-73. [PMID: 24316454 PMCID: PMC4059943 DOI: 10.1016/j.phrs.2013.11.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 11/27/2013] [Accepted: 11/27/2013] [Indexed: 02/06/2023]
Abstract
SLC6 family members and ABC transporters represent two extremes: SLC6 transporters are confined to the membrane proper and only expose small segments to the hydrophilic milieu. In ABC transporters the hydrophobic core is connected to a large intracellular (eponymous) ATP binding domain that is comprised of two discontiguous repeats. Accordingly, their folding problem is fundamentally different. This can be gauged from mutations that impair the folding of the encoded protein and give rise to clinically relevant disease phenotypes: in SLC6 transporters, these cluster at the protein–lipid interface on the membrane exposed surface. Mutations in ABC-transporters map to the interface between nucleotide binding domains and the coupling helices, which provide the connection to the hydrophobic core. Folding of these mutated ABC-transporters can be corrected with ligands/substrates that bind to the hydrophobic core. This highlights a pivotal role of the coupling helices in the folding trajectory. In contrast, insights into pharmacochaperoning of SLC6 transporters are limited to monoamine transporters – in particular the serotonin transporter (SERT) – because of their rich pharmacology. Only ligands that stabilize the inward facing conformation act as effective pharmacochaperones. This indicates that the folding trajectory of SERT proceeds via the inward facing conformation. Mutations that impair folding of SLC6 family members can be transmitted as dominant or recessive alleles. The dominant phenotype of the mutation can be rationalized, because SLC6 transporters are exported in oligomeric form from the endoplasmic reticulum (ER). Recessive transmission requires shielding of the unaffected gene product from the mutated transporter in the ER. This can be accounted for by a chaperone-COPII (coatomer protein II) exchange model, where proteinaceous ER-resident chaperones engage various intermediates prior to formation of the oligomeric state and subsequent export from the ER. It is likely that the action of pharmacochaperones is contingent on and modulated by these chaperones.
Collapse
|