1
|
Manninen T, Aćimović J, Linne ML. Analysis of Network Models with Neuron-Astrocyte Interactions. Neuroinformatics 2023; 21:375-406. [PMID: 36959372 PMCID: PMC10085960 DOI: 10.1007/s12021-023-09622-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2023] [Indexed: 03/25/2023]
Abstract
Neural networks, composed of many neurons and governed by complex interactions between them, are a widely accepted formalism for modeling and exploring global dynamics and emergent properties in brain systems. In the past decades, experimental evidence of computationally relevant neuron-astrocyte interactions, as well as the astrocytic modulation of global neural dynamics, have accumulated. These findings motivated advances in computational glioscience and inspired several models integrating mechanisms of neuron-astrocyte interactions into the standard neural network formalism. These models were developed to study, for example, synchronization, information transfer, synaptic plasticity, and hyperexcitability, as well as classification tasks and hardware implementations. We here focus on network models of at least two neurons interacting bidirectionally with at least two astrocytes that include explicitly modeled astrocytic calcium dynamics. In this study, we analyze the evolution of these models and the biophysical, biochemical, cellular, and network mechanisms used to construct them. Based on our analysis, we propose how to systematically describe and categorize interaction schemes between cells in neuron-astrocyte networks. We additionally study the models in view of the existing experimental data and present future perspectives. Our analysis is an important first step towards understanding astrocytic contribution to brain functions. However, more advances are needed to collect comprehensive data about astrocyte morphology and physiology in vivo and to better integrate them in data-driven computational models. Broadening the discussion about theoretical approaches and expanding the computational tools is necessary to better understand astrocytes' roles in brain functions.
Collapse
Affiliation(s)
- Tiina Manninen
- Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, FI-33720, Tampere, Finland.
| | - Jugoslava Aćimović
- Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, FI-33720, Tampere, Finland
| | - Marja-Leena Linne
- Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, FI-33720, Tampere, Finland.
| |
Collapse
|
2
|
Ajazi F, Chavez-Demoulin V, Turova T. Networks of random trees as a model of neuronal connectivity. J Math Biol 2019; 79:1639-1663. [PMID: 31338567 PMCID: PMC6800872 DOI: 10.1007/s00285-019-01406-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 06/06/2019] [Indexed: 01/09/2023]
Abstract
We provide an analysis of a randomly grown 2-d network which models the morphological growth of dendritic and axonal arbors. From the stochastic geometry of this model we derive a dynamic graph of potential synaptic connections. We estimate standard network parameters such as degree distribution, average shortest path length and clustering coefficient, considering all these parameters as functions of time. Our results show that even a simple model with just a few parameters is capable of representing a wide spectra of architecture, capturing properties of well-known models, such as random graphs or small world networks, depending on the time of the network development. The introduced model allows not only rather straightforward simulations but it is also amenable to a rigorous analysis. This provides a base for further study of formation of synaptic connections on such networks and their dynamics due to plasticity.
Collapse
Affiliation(s)
- Fioralba Ajazi
- Department of Mathematical Statistics, Faculty of Science, Lund University, Sölvegatan 18, 22100, Lund, Sweden
- Faculty of Business and Economics, University of Lausanne, 1015, Lausanne, Switzerland
| | | | - Tatyana Turova
- Department of Mathematical Statistics, Faculty of Science, Lund University, Sölvegatan 18, 22100, Lund, Sweden.
- IMPB - The Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
3
|
Manninen T, Aćimović J, Havela R, Teppola H, Linne ML. Challenges in Reproducibility, Replicability, and Comparability of Computational Models and Tools for Neuronal and Glial Networks, Cells, and Subcellular Structures. Front Neuroinform 2018; 12:20. [PMID: 29765315 PMCID: PMC5938413 DOI: 10.3389/fninf.2018.00020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/06/2018] [Indexed: 01/26/2023] Open
Abstract
The possibility to replicate and reproduce published research results is one of the biggest challenges in all areas of science. In computational neuroscience, there are thousands of models available. However, it is rarely possible to reimplement the models based on the information in the original publication, let alone rerun the models just because the model implementations have not been made publicly available. We evaluate and discuss the comparability of a versatile choice of simulation tools: tools for biochemical reactions and spiking neuronal networks, and relatively new tools for growth in cell cultures. The replicability and reproducibility issues are considered for computational models that are equally diverse, including the models for intracellular signal transduction of neurons and glial cells, in addition to single glial cells, neuron-glia interactions, and selected examples of spiking neuronal networks. We also address the comparability of the simulation results with one another to comprehend if the studied models can be used to answer similar research questions. In addition to presenting the challenges in reproducibility and replicability of published results in computational neuroscience, we highlight the need for developing recommendations and good practices for publishing simulation tools and computational models. Model validation and flexible model description must be an integral part of the tool used to simulate and develop computational models. Constant improvement on experimental techniques and recording protocols leads to increasing knowledge about the biophysical mechanisms in neural systems. This poses new challenges for computational neuroscience: extended or completely new computational methods and models may be required. Careful evaluation and categorization of the existing models and tools provide a foundation for these future needs, for constructing multiscale models or extending the models to incorporate additional or more detailed biophysical mechanisms. Improving the quality of publications in computational neuroscience, enabling progressive building of advanced computational models and tools, can be achieved only through adopting publishing standards which underline replicability and reproducibility of research results.
Collapse
Affiliation(s)
- Tiina Manninen
- Computational Neuroscience Group, BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
- Laboratory of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - Jugoslava Aćimović
- Computational Neuroscience Group, BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
- Laboratory of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - Riikka Havela
- Computational Neuroscience Group, BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
- Laboratory of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - Heidi Teppola
- Computational Neuroscience Group, BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
- Laboratory of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - Marja-Leena Linne
- Computational Neuroscience Group, BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
- Laboratory of Signal Processing, Tampere University of Technology, Tampere, Finland
| |
Collapse
|
4
|
A stepwise neuron model fitting procedure designed for recordings with high spatial resolution: Application to layer 5 pyramidal cells. J Neurosci Methods 2017; 293:264-283. [PMID: 28993204 DOI: 10.1016/j.jneumeth.2017.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 09/07/2017] [Accepted: 10/05/2017] [Indexed: 01/15/2023]
Abstract
BACKGROUND Recent progress in electrophysiological and optical methods for neuronal recordings provides vast amounts of high-resolution data. In parallel, the development of computer technology has allowed simulation of ever-larger neuronal circuits. A challenge in taking advantage of these developments is the construction of single-cell and network models in a way that faithfully reproduces neuronal biophysics with subcellular level of details while keeping the simulation costs at an acceptable level. NEW METHOD In this work, we develop and apply an automated, stepwise method for fitting a neuron model to data with fine spatial resolution, such as that achievable with voltage sensitive dyes (VSDs) and Ca2+ imaging. RESULT We apply our method to simulated data from layer 5 pyramidal cells (L5PCs) and construct a model with reduced neuronal morphology. We connect the reduced-morphology neurons into a network and validate against simulated data from a high-resolution L5PC network model. COMPARISON WITH EXISTING METHODS Our approach combines features from several previously applied model-fitting strategies. The reduced-morphology neuron model obtained using our approach reliably reproduces the membrane-potential dynamics across the dendrites as predicted by the full-morphology model. CONCLUSIONS The network models produced using our method are cost-efficient and predict that interconnected L5PCs are able to amplify delta-range oscillatory inputs across a large range of network sizes and topologies, largely due to the medium after hyperpolarization mediated by the Ca2+-activated SK current.
Collapse
|
5
|
Muki-Marttunen T. An Algorithm for Motif-Based Network Design. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2017; 14:1181-1186. [PMID: 27295682 DOI: 10.1109/tcbb.2016.2576442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A determinant property of the structure of a biological network is the distribution of local connectivity patterns, i.e., network motifs. In this work, a method for creating directed, unweighted networks while promoting a certain combination of motifs is presented. This motif-based network algorithm starts with an empty graph and randomly connects the nodes by advancing or discouraging the formation of chosen motifs. The in- or out-degree distribution of the generated networks can be explicitly chosen. The algorithm is shown to perform well in producing networks with high occurrences of the targeted motifs, both ones consisting of three nodes as well as ones consisting of four nodes. Moreover, the algorithm can also be tuned to bring about global network characteristics found in many natural networks, such as small-worldness and modularity.
Collapse
|
6
|
Paraskevov AV, Zendrikov DK. A spatially resolved network spike in model neuronal cultures reveals nucleation centers, circular traveling waves and drifting spiral waves. Phys Biol 2017; 14:026003. [PMID: 28333685 DOI: 10.1088/1478-3975/aa5fc3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We show that in model neuronal cultures, where the probability of interneuronal connection formation decreases exponentially with increasing distance between the neurons, there exists a small number of spatial nucleation centers of a network spike, from where the synchronous spiking activity starts propagating in the network typically in the form of circular traveling waves. The number of nucleation centers and their spatial locations are unique and unchanged for a given realization of neuronal network but are different for different networks. In contrast, if the probability of interneuronal connection formation is independent of the distance between neurons, then the nucleation centers do not arise and the synchronization of spiking activity during a network spike occurs spatially uniform throughout the network. Therefore one can conclude that spatial proximity of connections between neurons is important for the formation of nucleation centers. It is also shown that fluctuations of the spatial density of neurons at their random homogeneous distribution typical for the experiments in vitro do not determine the locations of the nucleation centers. The simulation results are qualitatively consistent with the experimental observations.
Collapse
Affiliation(s)
- A V Paraskevov
- National Research Centre "Kurchatov Institute", 123182 Moscow, Russia. Moscow Institute of Physics and Technology (State University), 141700 Dolgoprudny, Russia
| | | |
Collapse
|
7
|
Aćimović J, Mäki-Marttunen T, Linne ML. Whole-cell morphological properties of neurons constrain the nonrandom features of network connectivity. BMC Neurosci 2015. [PMCID: PMC4697611 DOI: 10.1186/1471-2202-16-s1-o7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
8
|
Aćimović J, Mäki-Marttunen T, Linne ML. The effects of neuron morphology on graph theoretic measures of network connectivity: the analysis of a two-level statistical model. Front Neuroanat 2015; 9:76. [PMID: 26113811 PMCID: PMC4461825 DOI: 10.3389/fnana.2015.00076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 05/18/2015] [Indexed: 11/13/2022] Open
Abstract
We developed a two-level statistical model that addresses the question of how properties of neurite morphology shape the large-scale network connectivity. We adopted a low-dimensional statistical description of neurites. From the neurite model description we derived the expected number of synapses, node degree, and the effective radius, the maximal distance between two neurons expected to form at least one synapse. We related these quantities to the network connectivity described using standard measures from graph theory, such as motif counts, clustering coefficient, minimal path length, and small-world coefficient. These measures are used in a neuroscience context to study phenomena from synaptic connectivity in the small neuronal networks to large scale functional connectivity in the cortex. For these measures we provide analytical solutions that clearly relate different model properties. Neurites that sparsely cover space lead to a small effective radius. If the effective radius is small compared to the overall neuron size the obtained networks share similarities with the uniform random networks as each neuron connects to a small number of distant neurons. Large neurites with densely packed branches lead to a large effective radius. If this effective radius is large compared to the neuron size, the obtained networks have many local connections. In between these extremes, the networks maximize the variability of connection repertoires. The presented approach connects the properties of neuron morphology with large scale network properties without requiring heavy simulations with many model parameters. The two-steps procedure provides an easier interpretation of the role of each modeled parameter. The model is flexible and each of its components can be further expanded. We identified a range of model parameters that maximizes variability in network connectivity, the property that might affect network capacity to exhibit different dynamical regimes.
Collapse
Affiliation(s)
- Jugoslava Aćimović
- Computational Neuroscience Group, Department of Signal Processing, Tampere University of Technology Tampere, Finland
| | - Tuomo Mäki-Marttunen
- Computational Neuroscience Group, Department of Signal Processing, Tampere University of Technology Tampere, Finland ; Psychosis Research Centre, Institute of Clinical Medicine, University of Oslo Oslo, Norway
| | - Marja-Leena Linne
- Computational Neuroscience Group, Department of Signal Processing, Tampere University of Technology Tampere, Finland
| |
Collapse
|
9
|
Linne ML, Jalonen TO. Astrocyte-neuron interactions: from experimental research-based models to translational medicine. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 123:191-217. [PMID: 24560146 DOI: 10.1016/b978-0-12-397897-4.00005-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this chapter, we review the principal astrocyte functions and the interactions between neurons and astrocytes. We then address how the experimentally observed functions have been verified in computational models and review recent experimental literature on astrocyte-neuron interactions. Benefits of computational neuroscience work are highlighted through selected studies with neurons and astrocytes by analyzing the existing models qualitatively and assessing the relevance of these models to experimental data. Common strategies to mathematical modeling and computer simulation in neuroscience are summarized for the nontechnical reader. The astrocyte-neuron interactions are then further illustrated by examples of some neurological and neurodegenerative diseases, where the miscommunication between glia and neurons is found to be increasingly important.
Collapse
Affiliation(s)
- Marja-Leena Linne
- Computational Neuroscience Group, Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - Tuula O Jalonen
- Department of Physiology and Neuroscience, St. George's University, School of Medicine, Grenada, West Indies
| |
Collapse
|