1
|
Heydarnia E, Sepasi A, Asefi N, Khakshournia S, Mohammadnejad J. The effects of metformin and PCL-sorafenib nanoparticle co-treatment on MCF-7 cell culture model of breast cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7213-7221. [PMID: 38656346 DOI: 10.1007/s00210-024-03049-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/10/2024] [Indexed: 04/26/2024]
Abstract
Despite breakthrough therapeutics in breast cancer, it is one of the main causes of mortality among women worldwide. Thus, drug therapies for treating breast cancer have recently been developed by scientists. Metformin and sorafenib are well-known therapeutics in breast cancer. In the present study, we combined sorafenib and PCL-sorafenib with metformin to improve drug absorption and promote therapeutic efficiency. The MCF-7 cells were treated with metformin, sorafenib, or PCL-sorafenib. The growth inhibitory effect of these drugs and cell viability were assessed using MTT and flow cytometry assays, respectively. The expression of targeted genes involved in cell proliferation, signaling, and the cell cycle was measured by real-time PCR. The results showed that MCF-7 cells treated with metformin/sorafenib and PCL-sorafenib/metformin co-treatment contributed to 50% viability compared to the untreated group. Moreover, PI and Annexin V staining tests showed that the cell viability for metformin/sorafenib and PCL-sorafenib/metformin was 38% and 17%, respectively. Furthermore, sorafenib/metformin and PCL-sorafenib/metformin lead to p53 gene expression increase by which they can increase ROS, thereby decreasing GPX4 gene expression. In addition, they affected the expression of BCL2 and BAX genes and altered the cell cycle. Together, the combination of PCL-sorafenib/metformin and sorafenib/metformin increased sorafenib absorption at lower doses and also led to apoptosis and oxidative stress increases in MCF-7 cells.
Collapse
Affiliation(s)
- Emad Heydarnia
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Aref Sepasi
- Department of Medical Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Genetics, Breast Cancer Research Center, Motamed Cancer Institute, Tehran, Iran
| | - Nika Asefi
- Department of Genetics, Breast Cancer Research Center, Motamed Cancer Institute, Tehran, Iran
| | - Sara Khakshournia
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Javad Mohammadnejad
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, 14395-1561, Iran.
| |
Collapse
|
2
|
Ahmmed R, Hossen MB, Ajadee A, Mahmud S, Ali MA, Mollah MMH, Reza MS, Islam MA, Mollah MNH. Bioinformatics analysis to disclose shared molecular mechanisms between type-2 diabetes and clear-cell renal-cell carcinoma, and therapeutic indications. Sci Rep 2024; 14:19133. [PMID: 39160196 PMCID: PMC11333728 DOI: 10.1038/s41598-024-69302-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024] Open
Abstract
Type 2 diabetes (T2D) and Clear-cell renal cell carcinoma (ccRCC) are both complicated diseases which incidence rates gradually increasing. Population based studies show that severity of ccRCC might be associated with T2D. However, so far, no researcher yet investigated about the molecular mechanisms of their association. This study explored T2D and ccRCC causing shared key genes (sKGs) from multiple transcriptomics profiles to investigate their common pathogenetic processes and associated drug molecules. We identified 259 shared differentially expressed genes (sDEGs) that can separate both T2D and ccRCC patients from control samples. Local correlation analysis based on the expressions of sDEGs indicated significant association between T2D and ccRCC. Then ten sDEGs (CDC42, SCARB1, GOT2, CXCL8, FN1, IL1B, JUN, TLR2, TLR4, and VIM) were selected as the sKGs through the protein-protein interaction (PPI) network analysis. These sKGs were found significantly associated with different CpG sites of DNA methylation that might be the cause of ccRCC. The sKGs-set enrichment analysis with Gene Ontology (GO) terms and KEGG pathways revealed some crucial shared molecular functions, biological process, cellular components and KEGG pathways that might be associated with development of both T2D and ccRCC. The regulatory network analysis of sKGs identified six post-transcriptional regulators (hsa-mir-93-5p, hsa-mir-203a-3p, hsa-mir-204-5p, hsa-mir-335-5p, hsa-mir-26b-5p, and hsa-mir-1-3p) and five transcriptional regulators (YY1, FOXL1, FOXC1, NR2F1 and GATA2) of sKGs. Finally, sKGs-guided top-ranked three repurposable drug molecules (Digoxin, Imatinib, and Dovitinib) were recommended as the common treatment for both T2D and ccRCC by molecular docking and ADME/T analysis. Therefore, the results of this study may be useful for diagnosis and therapies of ccRCC patients who are also suffering from T2D.
Collapse
Affiliation(s)
- Reaz Ahmmed
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
- Department of Biochemistry & Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Bayazid Hossen
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
- Department of Agricultural and Applied Statistics, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Alvira Ajadee
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Sabkat Mahmud
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Ahad Ali
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
- Department of Chemistry, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Manir Hossain Mollah
- Department of Physical Sciences, Independent University, Bangladesh (IUB), Dhaka, Bangladesh
| | - Md Selim Reza
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
- Division of Biomedical Informatics and Genomics, School of Medicine, Tulane University, 1440 Canal St., RM 1621C, New Orleans, LA, 70112, USA
| | - Mohammad Amirul Islam
- Department of Biochemistry & Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Nurul Haque Mollah
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
3
|
Ajmeera D, Ajumeera R. Drug repurposing: A novel strategy to target cancer stem cells and therapeutic resistance. Genes Dis 2024; 11:148-175. [PMID: 37588226 PMCID: PMC10425757 DOI: 10.1016/j.gendis.2022.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 11/21/2022] [Accepted: 12/08/2022] [Indexed: 01/21/2023] Open
Abstract
Chemotherapy is an effortless and frequently used approach in cancer therapy. However, in most cases, it can only prolong life expectancy and does not guarantee a complete cure. Furthermore, chemotherapy is associated with severe adverse effects, one of the major complications of effective cancer therapy. In addition, newly published research outputs show that cancer stem cells are involved in cancer disease progression, drug resistance, metastasis, and recurrence and that they are functional in the trans-differentiation capacity of cancer stem cells to cancer cells in response to treatments. Novel strategies are therefore required for better management of cancer therapy. The prime approach would be to synthesize and develop novel drugs that need extensive resources, time, and endurance to be brought into therapeutic use. The subsequent approach would be to screen the anti-cancer activity of available non-cancerous drugs. This concept of repurposing non-cancer drugs as an alternative to current cancer therapy has become popular in recent years because using existing anticancer drugs has several adverse effects. Micronutrients have also been investigated for cancer therapy due to their significant anti-cancer effects with negligible or no side effects and availability in food sources. In this paper, we discuss an ideal hypothesis for screening available non-cancerous drugs with anticancer activity, with a focus on cancer stem cells and their clinical application for cancer treatment. Further, drug repurposing and the combination of micronutrients that can target both cancers and cancer stem cells may result in a better therapeutic approach leading to maximum tumor growth control.
Collapse
Affiliation(s)
- Divya Ajmeera
- Cell Biology Department, ICMR-National Institute of Nutrition (NIN), Hyderabad, Telangana 500007, India
| | - Rajanna Ajumeera
- Cell Biology Department, ICMR-National Institute of Nutrition (NIN), Hyderabad, Telangana 500007, India
| |
Collapse
|
4
|
Mukherjee K, Elsayed M, Choksi E, Loya MF, Duszak R, Akce M, Majdalany BS, Bercu ZL, Cristescu M, Kokabi N. Use of Metformin and Survival in Patients with Hepatocellular Carcinoma (HCC) Undergoing Liver Directed Therapy: Analysis of a Nationwide Cancer Registry. Cardiovasc Intervent Radiol 2023; 46:870-879. [PMID: 37217649 PMCID: PMC10619471 DOI: 10.1007/s00270-023-03467-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 05/07/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Examine the association of metformin use and overall survival (OS) in patients with HCC undergoing image-guided liver-directed therapy (LDT): ablation, transarterial chemoembolization (TACE), or Yttrium-90 radioembolization (Y90 RE). METHODS Using National Cancer Institute Surveillance, Epidemiology, and End Results registry and Medicare claims databases between 2007 and 2016, we identified patients ≥ 66 years who underwent LDT within 30 days of HCC diagnosis. Patients with liver transplant, surgical resection, and other malignancies were excluded. Metformin use was identified by at least two prescription claims within 6 months before LDT. OS was measured by time between first LDT and death or last Medicare observation. Comparisons were performed between both all and diabetic patients on and not on metformin. RESULTS Of 2746 Medicare beneficiaries with HCC undergoing LDT, 1315 (47.9%) had diabetes or diabetes-related complications. Among all and diabetic patients, 433(15.8%) and 402 (30.6%) were on metformin respectively. Median OS was greater for patients on metformin (19.6 months, 95% CI 17.1-23.0) vs those not (16.0 months, 15.0-16.9; p = 0.0238). Patients on metformin had lower risk of death undergoing ablation (HR 0.70; 0.51-0.95; p = 0.0239) and TACE (HR 0.76, 0.66-0.87; p = 0.0001), but not Y90 RE (HR1.22, 0.89-1.69; p = 0.2231). Among diabetics, OS was greater for those on metformin vs those not (HR 0.77, 0.68-0.88; p < 0.0001). Diabetic patients on metformin had longer OS undergoing TACE (HR 0.71, 0.61-0.83; p < 0.0001), but not ablation (HR 0.74, 0.52-1.04; p = 0.0886) or Y90 RE (HR 1.26, 0.87-1.85; p = 0.2217). CONCLUSION Metformin use is associated with improved survival in HCC patients undergoing TACE and ablation.
Collapse
Affiliation(s)
- Kumar Mukherjee
- Department of Pharmacy Practice, Philadelphia College of Osteopathic Medicine, Suwanee, GA, USA
| | - Mohammad Elsayed
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, USA.
| | - Eshani Choksi
- Rowan University School of Osteopathic Medicine, Stratford, NJ, USA
| | - Mohammed F Loya
- Diagnostic and Interventional Radiology Institute, Mid-Atlantic Permanente Group, Kaiser Permanente, Rockville, MD, USA
| | - Richard Duszak
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Mehmet Akce
- Division of Hematology and Oncology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bill S Majdalany
- Division of Interventional Radiology and Image-Guided Medicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Zachary L Bercu
- Division of Interventional Radiology and Image-Guided Medicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Mircea Cristescu
- Division of Vascular and Interventional Radiology, Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nima Kokabi
- Division of Interventional Radiology and Image-Guided Medicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
5
|
Huynh KN, Rao S, Roth B, Bryan T, Fernando DM, Dayyani F, Imagawa D, Abi-Jaoudeh N. Targeting Hypoxia-Inducible Factor-1α for the Management of Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:2738. [PMID: 37345074 DOI: 10.3390/cancers15102738] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Hypoxia-inducible factor 1 alpha (HIF-1α) is a transcription factor that regulates the cellular response to hypoxia and is upregulated in all types of solid tumor, leading to tumor angiogenesis, growth, and resistance to therapy. Hepatocellular carcinoma (HCC) is a highly vascular tumor, as well as a hypoxic tumor, due to the liver being a relatively hypoxic environment compared to other organs. Trans-arterial chemoembolization (TACE) and trans-arterial embolization (TAE) are locoregional therapies that are part of the treatment guidelines for HCC but can also exacerbate hypoxia in tumors, as seen with HIF-1α upregulation post-hepatic embolization. Hypoxia-activated prodrugs (HAPs) are a novel class of anticancer agent that are selectively activated under hypoxic conditions, potentially allowing for the targeted treatment of hypoxic HCC. Early studies targeting hypoxia show promising results; however, further research is needed to understand the effects of HAPs in combination with embolization in the treatment of HCC. This review aims to summarize current knowledge on the role of hypoxia and HIF-1α in HCC, as well as the potential of HAPs and liver-directed embolization.
Collapse
Affiliation(s)
- Kenneth N Huynh
- Division of Interventional Radiology, Department of Radiological Sciences, University of California Irvine, Orange, CA 92868, USA
| | - Sriram Rao
- Division of Interventional Radiology, Department of Radiological Sciences, University of California Irvine, Orange, CA 92868, USA
| | - Bradley Roth
- Division of Interventional Radiology, Department of Radiological Sciences, University of California Irvine, Orange, CA 92868, USA
| | - Theodore Bryan
- Division of Interventional Radiology, Department of Radiological Sciences, University of California Irvine, Orange, CA 92868, USA
| | - Dayantha M Fernando
- Division of Interventional Radiology, Department of Radiological Sciences, University of California Irvine, Orange, CA 92868, USA
| | - Farshid Dayyani
- Division of Hematology and Oncology, Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Orange, CA 92868, USA
| | - David Imagawa
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, University of California Irvine, Orange, CA 92868, USA
| | - Nadine Abi-Jaoudeh
- Division of Interventional Radiology, Department of Radiological Sciences, University of California Irvine, Orange, CA 92868, USA
| |
Collapse
|
6
|
The Emerging Role of Tumor Microenvironmental Stimuli in Regulating Metabolic Rewiring of Liver Cancer Stem Cells. Cancers (Basel) 2022; 15:cancers15010005. [PMID: 36612000 PMCID: PMC9817521 DOI: 10.3390/cancers15010005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Primary liver cancer (PLC) is one of the most devastating cancers worldwide. Extensive phenotypical and functional heterogeneity is a cardinal hallmark of cancer, including PLC, and is related to the cancer stem cell (CSC) concept. CSCs are responsible for tumor growth, progression, relapse and resistance to conventional therapies. Metabolic reprogramming represents an emerging hallmark of cancer. Cancer cells, including CSCs, are very plastic and possess the dynamic ability to constantly shift between different metabolic states depending on various intrinsic and extrinsic stimuli, therefore amplifying the complexity of understanding tumor heterogeneity. Besides the well-known Warburg effect, several other metabolic pathways including lipids and iron metabolism are altered in PLC. An increasing number of studies supports the role of the surrounding tumor microenvironment (TME) in the metabolic control of liver CSCs. In this review, we discuss the complex metabolic rewiring affecting liver cancer cells and, in particular, liver CSCs. Moreover, we highlight the role of TME cellular and noncellular components in regulating liver CSC metabolic plasticity. Deciphering the specific mechanisms regulating liver CSC-TME metabolic interplay could be very helpful with respect to the development of more effective and innovative combinatorial therapies for PLC treatment.
Collapse
|
7
|
Mechanism of cancer stemness maintenance in human liver cancer. Cell Death Dis 2022; 13:394. [PMID: 35449193 PMCID: PMC9023565 DOI: 10.1038/s41419-022-04848-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/08/2022]
Abstract
Primary liver cancer mainly includes the following four types: hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), hepatoblastoma (HB), and combined hepatocellular carcinoma and cholangiocarcinoma (cHCC-CCA). Recent studies have indicated that there are differences in cancer stem cell (CSC) properties among different types of liver cancer. Liver cancer stem cells (LCSCs), also called liver tumor-initiating cells, have been viewed as drivers of tumor initiation and metastasis. Many mechanisms and factors, such as mitophagy, mitochondrial dynamics, epigenetic modifications, the tumor microenvironment, and tumor plasticity, are involved in the regulation of cancer stemness in liver cancer. In this review, we analyze cancer stemness in different liver cancer types. Moreover, we further evaluate the mechanism of cancer stemness maintenance of LCSCs and discuss promising treatments for eradicating LCSCs.
Collapse
|
8
|
Xiong S, Liu W. Role of metformin in the diagnosis, prevention, and treatment of hepatocellular carcinoma. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:364-373. [PMID: 35545330 PMCID: PMC10930065 DOI: 10.11817/j.issn.1672-7347.2022.210118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Indexed: 06/15/2023]
Abstract
Hepatocellular carcinoma is one of the most common malignant tumors in the world. Although there are many options for the treatment of hepatocellular carcinoma, such as surgical resection, interventional therapy, radiotherapy, chemotherapy, targeted therapy and liver transplantation, the poor therapeutic effect seriously reduces the quality of life for patients and also increases the social and economic burden. Metformin is originally used as the first-line drug for type 2 diabetes, but it has been found to play a certain effect in the prevention and treatment of malignant tumor. The potential roles of metformin against hepatocellular carcinoma, such as regulation of the microenvironment, proliferation signal pathway, metabolism, invasion and metastasis, apoptosis, autophagy, and epigenetics of hepatoma cells. It provides a new choice for the prevention and treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Shize Xiong
- First College of Clinical Medical Science, China Three Gorges University; Institute of Digestive Disease, China Three Gorges University; Department of Gastroenterology, Yichang Central People's Hospital, Yichang Hubei 443000, China.
| | - Wei Liu
- First College of Clinical Medical Science, China Three Gorges University; Institute of Digestive Disease, China Three Gorges University; Department of Gastroenterology, Yichang Central People's Hospital, Yichang Hubei 443000, China.
| |
Collapse
|
9
|
Korsakova L, Krasko JA, Stankevicius E. Metabolic-targeted Combination Therapy With Dichloroacetate and Metformin Suppresses Glioblastoma Cell Line Growth In Vitro and In Vivo. In Vivo 2021; 35:341-348. [PMID: 33402483 DOI: 10.21873/invivo.12265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND/AIM We investigated the hypothesis that dichloroacetate (DCA), a pyruvate dehydrogenase kinase inhibitor, and metformin (MET), an antidiabetic agent and complex I inhibitor, have synergistic cytotoxic effects in glioblastoma cells in vitro and in vivo. MATERIALS AND METHODS We performed dose response experiments and combination index calculation. Apoptotic and necrotic cells were estimated by flow cytometry. Cell metabolism was evaluated by Seahorse analysis and lactate export. Overall survival and tumor volume growth experiments were performed in C57BL/6 mice GL-261 allograft model. RESULTS DCA and MET showed dose-dependent cytotoxicity and synergistic effects. DCA alleviated the increase in lactate production induced by MET. Seahorse analysis showed that DCA treatment results in increased oxygen consumption rate, which is decreased by MET. DCA and MET significantly inhibited tumor growth and increased overall survival in mice. CONCLUSION Compounds targeting tumor cell metabolism could become potential treatment options for glioblastoma multiforme.
Collapse
Affiliation(s)
- Laura Korsakova
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania;
| | | | - Edgaras Stankevicius
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania;
| |
Collapse
|
10
|
Harati R, Vandamme M, Blanchet B, Bardin C, Praz F, Hamoudi RA, Desbois-Mouthon C. Drug-Drug Interaction between Metformin and Sorafenib Alters Antitumor Effect in Hepatocellular Carcinoma Cells. Mol Pharmacol 2021; 100:32-45. [PMID: 33990407 DOI: 10.1124/molpharm.120.000223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/09/2021] [Indexed: 01/21/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and is one of the leading causes of cancer-related deaths worldwide. The multitarget inhibitor sorafenib is a first-line treatment of patients with advanced unresectable HCC. Recent clinical studies have evidenced that patients treated with sorafenib together with the antidiabetic drug metformin have a survival disadvantage compared with patients receiving sorafenib only. Here, we examined whether a clinically relevant dose of metformin (50 mg/kg per day) could influence the antitumoral effects of sorafenib (15 mg/kg per day) in a subcutaneous xenograft model of human HCC growth using two different sequences of administration, i.e., concomitant versus sequential dosing regimens. We observed that the administration of metformin 6 hours prior to sorafenib was significantly less effective in inhibiting tumor growth (15.4% tumor growth inhibition) than concomitant administration of the two drugs (59.5% tumor growth inhibition). In vitro experiments confirmed that pretreatment of different human HCC cell lines with metformin reduced the effects of sorafenib on cell viability, proliferation, and signaling. Transcriptomic analysis confirmed significant differences between xenografted tumors obtained under the concomitant and the sequential dosing regimens. Taken together, these observations call into question the benefit of parallel use of metformin and sorafenib in patients with advanced HCC and diabetes, as the interaction between the two drugs could ultimately compromise patient survival. SIGNIFICANCE STATEMENT: When drugs are administered sequentially, metformin alters the antitumor effect of sorafenib, the reference treatment for advanced hepatocellular carcinoma, in a preclinical murine xenograft model of liver cancer progression as well as in hepatic cancer cell lines. Defective activation of the AMP-activated protein kinase pathway as well as major transcriptomic changes are associated with the loss of the antitumor effect. These results echo recent clinical work reporting a poorer prognosis for patients with liver cancer who were cotreated with metformin and sorafenib.
Collapse
Affiliation(s)
- Rania Harati
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy (R.H.), and Department of Clinical Sciences, College of Medicine (R.A.H), University of Sharjah, Sharjah, United Arab Emirates; Centre de Recherche Saint-Antoine (R.H., M.V., F.P., C.D.-M.) and Centre de Recherche des Cordeliers (C.D.-M.), Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, Paris, France; Département de Pharmacocinétique et Pharmacochimie, Hôpital Cochin, AP-HP, CARPEM, Paris, France (B.B., C.B.); UMR8038 CNRS, U1268 INSERM, Faculté de Pharmacie, Université de Paris, PRES Sorbonne Paris Cité, Paris, France (B.B); Centre National de la Recherche Scientifique, Paris, France (F.P.); and Division of Surgery and Interventional Science, UCL, London, United Kingdom (R.A.H.)
| | - Marc Vandamme
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy (R.H.), and Department of Clinical Sciences, College of Medicine (R.A.H), University of Sharjah, Sharjah, United Arab Emirates; Centre de Recherche Saint-Antoine (R.H., M.V., F.P., C.D.-M.) and Centre de Recherche des Cordeliers (C.D.-M.), Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, Paris, France; Département de Pharmacocinétique et Pharmacochimie, Hôpital Cochin, AP-HP, CARPEM, Paris, France (B.B., C.B.); UMR8038 CNRS, U1268 INSERM, Faculté de Pharmacie, Université de Paris, PRES Sorbonne Paris Cité, Paris, France (B.B); Centre National de la Recherche Scientifique, Paris, France (F.P.); and Division of Surgery and Interventional Science, UCL, London, United Kingdom (R.A.H.)
| | - Benoit Blanchet
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy (R.H.), and Department of Clinical Sciences, College of Medicine (R.A.H), University of Sharjah, Sharjah, United Arab Emirates; Centre de Recherche Saint-Antoine (R.H., M.V., F.P., C.D.-M.) and Centre de Recherche des Cordeliers (C.D.-M.), Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, Paris, France; Département de Pharmacocinétique et Pharmacochimie, Hôpital Cochin, AP-HP, CARPEM, Paris, France (B.B., C.B.); UMR8038 CNRS, U1268 INSERM, Faculté de Pharmacie, Université de Paris, PRES Sorbonne Paris Cité, Paris, France (B.B); Centre National de la Recherche Scientifique, Paris, France (F.P.); and Division of Surgery and Interventional Science, UCL, London, United Kingdom (R.A.H.)
| | - Christophe Bardin
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy (R.H.), and Department of Clinical Sciences, College of Medicine (R.A.H), University of Sharjah, Sharjah, United Arab Emirates; Centre de Recherche Saint-Antoine (R.H., M.V., F.P., C.D.-M.) and Centre de Recherche des Cordeliers (C.D.-M.), Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, Paris, France; Département de Pharmacocinétique et Pharmacochimie, Hôpital Cochin, AP-HP, CARPEM, Paris, France (B.B., C.B.); UMR8038 CNRS, U1268 INSERM, Faculté de Pharmacie, Université de Paris, PRES Sorbonne Paris Cité, Paris, France (B.B); Centre National de la Recherche Scientifique, Paris, France (F.P.); and Division of Surgery and Interventional Science, UCL, London, United Kingdom (R.A.H.)
| | - Françoise Praz
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy (R.H.), and Department of Clinical Sciences, College of Medicine (R.A.H), University of Sharjah, Sharjah, United Arab Emirates; Centre de Recherche Saint-Antoine (R.H., M.V., F.P., C.D.-M.) and Centre de Recherche des Cordeliers (C.D.-M.), Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, Paris, France; Département de Pharmacocinétique et Pharmacochimie, Hôpital Cochin, AP-HP, CARPEM, Paris, France (B.B., C.B.); UMR8038 CNRS, U1268 INSERM, Faculté de Pharmacie, Université de Paris, PRES Sorbonne Paris Cité, Paris, France (B.B); Centre National de la Recherche Scientifique, Paris, France (F.P.); and Division of Surgery and Interventional Science, UCL, London, United Kingdom (R.A.H.)
| | - Rifat Akram Hamoudi
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy (R.H.), and Department of Clinical Sciences, College of Medicine (R.A.H), University of Sharjah, Sharjah, United Arab Emirates; Centre de Recherche Saint-Antoine (R.H., M.V., F.P., C.D.-M.) and Centre de Recherche des Cordeliers (C.D.-M.), Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, Paris, France; Département de Pharmacocinétique et Pharmacochimie, Hôpital Cochin, AP-HP, CARPEM, Paris, France (B.B., C.B.); UMR8038 CNRS, U1268 INSERM, Faculté de Pharmacie, Université de Paris, PRES Sorbonne Paris Cité, Paris, France (B.B); Centre National de la Recherche Scientifique, Paris, France (F.P.); and Division of Surgery and Interventional Science, UCL, London, United Kingdom (R.A.H.)
| | - Christèle Desbois-Mouthon
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy (R.H.), and Department of Clinical Sciences, College of Medicine (R.A.H), University of Sharjah, Sharjah, United Arab Emirates; Centre de Recherche Saint-Antoine (R.H., M.V., F.P., C.D.-M.) and Centre de Recherche des Cordeliers (C.D.-M.), Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, Paris, France; Département de Pharmacocinétique et Pharmacochimie, Hôpital Cochin, AP-HP, CARPEM, Paris, France (B.B., C.B.); UMR8038 CNRS, U1268 INSERM, Faculté de Pharmacie, Université de Paris, PRES Sorbonne Paris Cité, Paris, France (B.B); Centre National de la Recherche Scientifique, Paris, France (F.P.); and Division of Surgery and Interventional Science, UCL, London, United Kingdom (R.A.H.)
| |
Collapse
|
11
|
Xu L, Wang X, Chen Y, Soong L, Chen Y, Cai J, Liang Y, Sun J. Metformin Modulates T Cell Function and Alleviates Liver Injury Through Bioenergetic Regulation in Viral Hepatitis. Front Immunol 2021; 12:638575. [PMID: 33968030 PMCID: PMC8097169 DOI: 10.3389/fimmu.2021.638575] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Metformin is not only the first-line medication for the treatment of type 2 diabetes, but it is also effective as an anti-inflammatory, anti-oxidative and anti-tumor agent. However, the effect of metformin during viral hepatitis remains elusive. Using an adenovirus (Ad)-induced viral hepatitis mouse model, we found that metformin treatment significantly attenuated liver injury, with reduced serum aspartate transaminase (AST) and alanine transaminase (ALT) levels and liver histological changes, presumably via decreased effector T cell responses. We then demonstrated that metformin reduced mTORC1 activity in T cells from infected mice, as evidenced by decreased phosphorylation of ribosome protein S6 (p-S6). The inhibitory effects on the mTORC1 signaling by metformin was dependent on the tuberous sclerosis complex 1 (TSC1). Mechanistically, metformin treatment modulated the phosphorylation of dynamin-related protein 1 (Drp-1) and mitochondrial fission 1 protein (FIS1), resulting in increased mass in effector T cells. Moreover, metformin treatment promoted mitochondrial superoxide production, which can inhibit excessive T cell activation in viral hepatitis. Together, our results revealed a protective role and therapeutic potential of metformin against liver injury in acute viral hepatitis via modulating effector T cell activation via regulating the mTORC1 pathway and mitochondrial functions.
Collapse
Affiliation(s)
- Lanman Xu
- Department of Infectious Diseases and Liver Diseases, Ningbo Medical Center Lihuili Hospital, Affiliated Lihuili Hospital of Ningbo University, Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Xiaofang Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States.,Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Chen
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, United States
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States.,Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| | - Yongping Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, China
| | - Jiyang Cai
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, United States
| | - Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| | - Jiaren Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States.,Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
12
|
The Pivotal Role of the Dysregulation of Cholesterol Homeostasis in Cancer: Implications for Therapeutic Targets. Cancers (Basel) 2020; 12:cancers12061410. [PMID: 32486083 DOI: 10.3390/cancers12061410] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/23/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
Cholesterol plays an important role in cellular homeostasis by maintaining the rigidity of cell membranes, providing a medium for signaling transduction, and being converted into other vital macromolecules, such as sterol hormones and bile acids. Epidemiological studies have shown the correlation between cholesterol content and cancer incidence worldwide. Accumulating evidence has shown the emerging roles of the dysregulation of cholesterol metabolism in cancer development. More specifically, recent reports have shown the distinct role of cholesterol in the suppression of immune cells, regulation of cell survival, and modulation of cancer stem cells in cancer. Here, we provide a comprehensive review of the epidemiological analysis, functional roles, and mechanistic action of cholesterol homeostasis in regard to its contribution to cancer development. Based on the existing data, cholesterol homeostasis is identified to be a new key player in cancer pathogenesis. Lastly, we also discuss the therapeutic implications of natural compounds and cholesterol-lowering drugs in cancer prevention and treatment. In conclusion, intervention in cholesterol metabolism may offer a new therapeutic avenue for cancer treatment.
Collapse
|
13
|
Bort A, Sánchez BG, de Miguel I, Mateos-Gómez PA, Diaz-Laviada I. Dysregulated lipid metabolism in hepatocellular carcinoma cancer stem cells. Mol Biol Rep 2020; 47:2635-2647. [DOI: 10.1007/s11033-020-05352-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/18/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
|
14
|
Maehara O, Ohnishi S, Asano A, Suda G, Natsuizaka M, Nakagawa K, Kobayashi M, Sakamoto N, Takeda H. Metformin Regulates the Expression of CD133 Through the AMPK-CEBPβ Pathway in Hepatocellular Carcinoma Cell Lines. Neoplasia 2019; 21:545-556. [PMID: 31042624 PMCID: PMC6488768 DOI: 10.1016/j.neo.2019.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 02/07/2023]
Abstract
CD133 is a cellular surface protein, which has been reported to be a cancer stem cell marker, and thus is considered a potential target for cancer treatment. Metformin, one of the biguanides used for the treatment of diabetes, is also known to reduce the risk of cancer development and cancer stem-like cells (CSCs), including the expression of CD133. However, the mechanism underlying the reduction of the expression of CD133 by metformin is not yet understood. This study shows that metformin suppressed CD133 expression mainly by affecting the CD133 P1 promoter via adenosine monophosphate (AMP)-activated protein kinase (AMPK) signaling but not the mammalian target of rapamycin (mTOR). AMPK inhibition rescued the reduction of CD133 by metformin. Further experiments demonstrated that CCAAT/enhancer-binding protein beta (CEBPβ) was upregulated by metformin and that two isoforms of CEBPβ reciprocally regulated the expression of CD133. Specifically, the liver-enriched activator protein (LAP) isoform increased the expression of CD133 by directly binding to the P1 promoter region, whereas the liver-enriched inhibitory protein (LIP) isoform suppressed the expression of CD133. Consistent with these findings, a three dimensional (3D) culture assay and drug sensitivity assay demonstrated that LAP-overexpressing cells formed large spheroids and were more resistant to 5-fluorouracil (5-FU) treatment, whereas LIP-overexpressing cells were more sensitive to 5-FU and showed combined effects with metformin. Our results indicated that metformin-AMPK-CEBPβ signaling plays a crucial role in regulating the gene expression of CD133. Additionally, regulating the ratio of LAP/LIP may be a novel strategy for targeting CSCs for the treatment of cancer.
Collapse
Key Words
- acc, acetyl-coa-carboxylase
- ampk, amp-activated protein kinase
- csc, cancer stem-like cells
- cebpβ, ccaat/enhancer-binding protein beta
- dmem, dulbecco's modified eagle's medium
- facs, fluorescence activated cell sorting
- h&e, hematoxylin and eosin
- lap, liver-enriched activator protein
- lip, liver-enriched inhibitory protein
- sds, sodium dodecyl sulfate
- tbs, tris-buffered saline
Collapse
Affiliation(s)
- Osamu Maehara
- Department of Pathophysiology and Therapeutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Shunsuke Ohnishi
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - Ayaka Asano
- Department of Pathophysiology and Therapeutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Goki Suda
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Mitsuteru Natsuizaka
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Koji Nakagawa
- Department of Pathophysiology and Therapeutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Masanobu Kobayashi
- Department of Nursing, Health Sciences University of Hokkaido, Tobetsu, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiroshi Takeda
- Department of Pathophysiology and Therapeutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
15
|
Wu MH, Chiu YF, Wu WJ, Wu PL, Lin CY, Lin CL, Hsieh YH, Liu CJ. Synergistic antimetastatic effect of cotreatment with licochalcone A and sorafenib on human hepatocellular carcinoma cells through the inactivation of MKK4/JNK and uPA expression. ENVIRONMENTAL TOXICOLOGY 2018; 33:1237-1244. [PMID: 30187994 DOI: 10.1002/tox.22630] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/07/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
To improve the clinical outcome of tumor chemotherapy, more effective combination treatments against tumor metastasis and recurrence are required. Licochalcone A (LicA) is the root of Glycyrrhiza inflata and has been reported to possess anti-inflammatory, antimicrobial, and antitumor effects. Sorafenib (Sor), a multikinase inhibitor, is used to treat patients with solid tumors such as advanced hepatocellular carcinoma (HCC). However, the synergistic effects of LicA and Sor on the metastasis of human HCC cells have not been reported. We found that LicA and Sor did not have cytotoxic effects or arrest growth in human SK-Hep-1 and Huh-7 cells. In addition, treatment with LicA or Sor alone inhibited migration and invasion in human SK-Hep-1 and Huh-7 HCC cells. Furthermore, cotreatment with LicA and Sor synergistically inhibited the migration and invasion of HCC cells and significantly inhibited uPA protein expression. Notably, cotreatment of LicA and Sor synergistically and significantly downregulated MKK4-JNK expression. Through tail vein injection in nude mice, the aforementioned cotreatment synergistically suppressed SK-Hep-1 cell-mediated lung metastasis. These findings first revealed the synergistic effects of LicA and Sor cotreatment against human HCC cells, further suggesting that beneficial effects on tumor regression could be confirmed through prospective clinical trials.
Collapse
Affiliation(s)
- Min-Hua Wu
- Department of Laboratory, Chung-Kang Branch, Cheng-Ching General Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Fang Chiu
- Department of Laboratory, Chung-Kang Branch, Cheng-Ching General Hospital, Taichung, Taiwan
| | - Wen-Jun Wu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Lien Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ching-Yi Lin
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chia-Liang Lin
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chung-Jung Liu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
16
|
Deng J, Peng M, Wang Z, Zhou S, Xiao D, Deng J, Yang X, Peng J, Yang X. Novel application of metformin combined with targeted drugs on anticancer treatment. Cancer Sci 2018; 110:23-30. [PMID: 30358009 PMCID: PMC6317954 DOI: 10.1111/cas.13849] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 12/20/2022] Open
Abstract
The success of targeted drug therapies for treating cancer patients has attracted broad attention both in the academic community and social society. However, rapidly developed acquired resistance is becoming a newly recognized major challenge to the continuing efficiency of these therapies. Metformin is a well‐known natural compound with low toxicity derived from the plant French lilac. Our previous work has highlighted research progress of the combination of clinically applied chemotherapies and metformin by different mechanisms. We have also launched a study to combine metformin with the small molecule targeted drug gefitinib to treat bladder cancer using intravesical administration. Thus, in this minireview, we summarize recent achievements combining metformin with various targeted therapies. This work directs the potential clinical future by selecting available cancer patients and providing precise medicine by the combination of metformin and targeted drugs to overcome resistance and enhance therapeutic efficacies.
Collapse
Affiliation(s)
- Jun Deng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Mei Peng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhiren Wang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Sichun Zhou
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Di Xiao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Jiating Deng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Xue Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingyuan Peng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
17
|
Arai MA, Ochi F, Makita Y, Chiba T, Higashi K, Suganami A, Tamura Y, Toida T, Iwama A, Sadhu SK, Ahmed F, Ishibashi M. GLI1 Inhibitors Identified by Target Protein Oriented Natural Products Isolation (TPO-NAPI) with Hedgehog Inhibition. ACS Chem Biol 2018; 13:2551-2559. [PMID: 30160475 DOI: 10.1021/acschembio.8b00492] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This report describes the development of a target-protein-oriented natural-products-isolation (TPO-NAPI) method for Hedgehog inhibitors and the direct GLI1 inhibitor, 5'- O-methyl-3-hydroxyflemingin A (3), which inhibited hedgehog (Hh) signal transduction and diminished characteristics of cancer stem cells. Eight natural products (including three newly described products) that directly bind to GLI1 were rapidly obtained via the TPO-NAPI method developed using GLI1 protein-immobilized beads. 5'- O-Methyl-3-hydroxyflemingin A (3) inhibited Hh signaling (IC50 7.3 μM), leading to decreasing production of the Hh target proteins BCL2, PTCH1, and BMI1. 5'- O-Methyl-3-hydroxyflemingin A (3) was cytotoxic to Hh-related cancer cells. CD experiments revealed that 5'- O-methyl-3-hydroxyflemingin A (3) directly bound GLI1 ( Kd = 7.7 μM). Moreover, 5'- O-methyl-3-hydroxyflemingin A (3) diminished cancer stem cell characters of Huh7 such as sphere formation and production of the cancer stem cell marker EpCAM. These results suggest that Hh inhibitors can efficiently suppress the activity of cancer stem cells.
Collapse
Affiliation(s)
- Midori A. Arai
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Fumie Ochi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Yoshinori Makita
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Tetsuhiro Chiba
- Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Kyohei Higashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Akiko Suganami
- Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Yutaka Tamura
- Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Toshihiko Toida
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Atsushi Iwama
- Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
- The Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Samir K. Sadhu
- Pharmacy Discipline, Khulna University, Khulna-9208, Bangladesh
| | - Firoj Ahmed
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka-1000, Bangladesh
| | - Masami Ishibashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
18
|
Feng Y, Guo X, Huang X, Wu M, Li X, Wu S, Luo X. Metformin reverses stem cell‑like HepG2 sphere formation and resistance to sorafenib by attenuating epithelial‑mesenchymal transformation. Mol Med Rep 2018; 18:3866-3872. [PMID: 30106125 PMCID: PMC6131649 DOI: 10.3892/mmr.2018.9348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/05/2018] [Indexed: 12/19/2022] Open
Abstract
Cancer stem cells (CSCs) have been reported to be associated with the recurrence and drug resistance of liver cancer. In the present study, stem cell-like HepG2 cell spheres were enriched using stem cell conditioned culture medium. As expected, stem-like HepG2 cell spheres exhibited increased resistance to sorafenib. Metformin, a common drug used to treat type 2 diabetes mellitus, reduced the diameters and numbers of stem-like HepG2 spheres, and increased their sensitivity to sorafenib. Western blotting confirmed that low doses of metformin reversed the epithelial-mesenchymal transformation (EMT) process of HepG2 spheres. These results suggested that metformin enhanced sensitivity to sorafenib, which was probably through reversal of the EMT process of sphere-forming cells and by reducing the formation of CSCs.
Collapse
Affiliation(s)
- Yan Feng
- Research Department, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xing Guo
- Research Department, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xinping Huang
- Research Department, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Manya Wu
- Research Department, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xin Li
- Research Department, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shushu Wu
- Research Department, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaoling Luo
- Research Department, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
19
|
Zhou J, Han S, Qian W, Gu Y, Li X, Yang K. Metformin induces miR-378 to downregulate the CDK1, leading to suppression of cell proliferation in hepatocellular carcinoma. Onco Targets Ther 2018; 11:4451-4459. [PMID: 30104887 PMCID: PMC6074828 DOI: 10.2147/ott.s167614] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Metformin is one of the extensively and most commonly used oral antihyperglycemic agents, but it has been shown to exert antineoplastic effects in many cancer cells. Recent studies have confirmed that metformin has an antitumor effect on hepatocellular carcinoma (HCC). However, the molecular mechanism underlying this effect needs to be further studied.
Collapse
Affiliation(s)
- Jin Zhou
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China,
| | - Sheng Han
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China, .,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Science, Beijing, China,
| | - Weichun Qian
- Division of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuanyuan Gu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China,
| | - Xiangcheng Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China, .,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Science, Beijing, China,
| | - Kunxing Yang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China,
| |
Collapse
|
20
|
Development of an Injectable Slow-Release Metformin Formulation and Evaluation of Its Potential Antitumor Effects. Sci Rep 2018; 8:3929. [PMID: 29500390 PMCID: PMC5834504 DOI: 10.1038/s41598-018-22054-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 02/16/2018] [Indexed: 12/23/2022] Open
Abstract
Metformin is an antidiabetic drug which possesses antiproliferative activity in cancer cells when administered at high doses, due to its unfavorable pharmacokinetics. The aim of this work was to develop a pharmacological tool for the release of metformin in proximity of the tumor, allowing high local concentrations, and to demonstrate the in vivo antitumor efficacy after a prolonged metformin exposition. A 1.2% w/w metformin thermoresponsive parenteral formulation based on poloxamers P407 and P124, injectable at room temperature and undergoing a sol-gel transition at body temperature, has been developed and optimized for rheological, thermal and release control properties; the formulation is easily scalable, and proved to be stable during a 1-month storage at 5 °C. Using NOD/SCID mice pseudo-orthotopically grafted with MDA-MB-231/luc+ human breast cancer cells, we report that multiple administrations of 100 mg of the optimized metformin formulation close to the tumor site cause tissue accumulation of the drug at levels significantly higher than those observed in plasma, and enough to exert antiproliferative and pro-apoptotic activities. Our results demonstrate that this formulation is endowed with good stability, tolerability, thermal and rheological properties, representing a novel tool to be pursued in further investigations for adjuvant cancer treatment.
Collapse
|
21
|
Metformin enhances the radiosensitivity of human liver cancer cells to γ-rays and carbon ion beams. Oncotarget 2018; 7:80568-80578. [PMID: 27802188 PMCID: PMC5348341 DOI: 10.18632/oncotarget.12966] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/19/2016] [Indexed: 01/03/2023] Open
Abstract
The purpose of this study was to investigate the effect of metformin on the responses of hepatocellular carcinoma (HCC) cells to γ-rays (low-linear energy transfer (LET) radiation) and carbon-ion beams (high-LET radiation). HCC cells were pretreated with metformin and exposed to a single dose of γ-rays or carbon ion beams. Metformin treatment increased radiation-induced clonogenic cell death, DNA damage, and apoptosis. Carbon ion beams combined with metformin were more effective than carbon ion beams or γ-rays alone at inducing subG1 and decreasing G2/M arrest, reducing the expression of vimentin, enhancing phospho-AMPK expression, and suppressing phospho-mTOR and phospho-Akt. Thus, metformin effectively enhanced the therapeutic effect of radiation with a wide range of LET, in particular carbon ion beams and it may be useful for increasing the clinical efficacy of carbon ion beams.
Collapse
|
22
|
del Campo JA, García-Valdecasas M, Gil-Gómez A, Rojas Á, Gallego P, Ampuero J, Gallego-Durán R, Pastor H, Grande L, Padillo FJ, Muntané J, Romero-Gómez M. Simvastatin and metformin inhibit cell growth in hepatitis C virus infected cells via mTOR increasing PTEN and autophagy. PLoS One 2018; 13:e0191805. [PMID: 29385181 PMCID: PMC5791999 DOI: 10.1371/journal.pone.0191805] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/11/2018] [Indexed: 01/24/2023] Open
Abstract
Hepatitis C virus (HCV) infection has been related to increased risk of development of hepatocellular carcinoma (HCC) while metformin (M) and statins treatment seemed to protect against HCC development. In this work, we aim to identify the mechanisms by which metformin and simvastatin (S) could protect from liver cancer. Huh7.5 cells were infected with HCV particles and treated with M+S. Human primary hepatocytes were treated with M+S. Treatment with both drugs inhibited Huh7.5 cell growth and HCV infection. In non-infected cells S increased translational controlled tumor protein (TCTP) and phosphatase and tensin homolog (PTEN) proteins while M inhibited mammalian target of rapamycin (mTOR) and TCTP. Simvastatin and metformin co-administered down-regulated mTOR and TCTP, while PTEN was increased. In cells infected by HCV, mTOR, TCTP, p62 and light chain 3B II (LC3BII) were increased and PTEN was decreased. S+M treatment increased PTEN, p62 and LC3BII in Huh7.5 cells. In human primary hepatocytes, metformin treatment inhibited mTOR and PTEN, but up-regulated p62, LC3BII and Caspase 3. In conclusion, simvastatin and metformin inhibited cell growth and HCV infection in vitro. In human hepatocytes, metformin increased cell-death markers. These findings suggest that M+S treatment could be useful in therapeutic prevention of HCV-related hepatocellular carcinoma.
Collapse
Affiliation(s)
- José A. del Campo
- Department of Digestive Diseases and CIBERehd, Valme University Hospital, Servicio Andaluz de Salud, Seville, Spain
- * E-mail:
| | - Marta García-Valdecasas
- Department of Digestive Disease, Biomedicine Institute of Seville & CIBERehd, Rocío University Hospital, Seville, Spain
| | - Antonio Gil-Gómez
- Department of Digestive Disease, Biomedicine Institute of Seville & CIBERehd, Rocío University Hospital, Seville, Spain
| | - Ángela Rojas
- Department of Digestive Disease, Biomedicine Institute of Seville & CIBERehd, Rocío University Hospital, Seville, Spain
| | - Paloma Gallego
- Department of Digestive Diseases and CIBERehd, Valme University Hospital, Servicio Andaluz de Salud, Seville, Spain
| | - Javier Ampuero
- Department of Digestive Disease, Biomedicine Institute of Seville & CIBERehd, Rocío University Hospital, Seville, Spain
| | - Rocío Gallego-Durán
- Department of Digestive Disease, Biomedicine Institute of Seville & CIBERehd, Rocío University Hospital, Seville, Spain
| | - Helena Pastor
- Department of Digestive Disease, Biomedicine Institute of Seville & CIBERehd, Rocío University Hospital, Seville, Spain
| | - Lourdes Grande
- Department of Digestive Diseases and CIBERehd, Valme University Hospital, Servicio Andaluz de Salud, Seville, Spain
| | - Francisco J. Padillo
- Department of General Surgery, Rocío University Hospital, CSIC and University of Seville, Seville, Spain
| | - Jordi Muntané
- Department of General Surgery, Rocío University Hospital, CSIC and University of Seville, Seville, Spain
| | - Manuel Romero-Gómez
- Department of Digestive Disease, Biomedicine Institute of Seville & CIBERehd, Rocío University Hospital, Seville, Spain
| |
Collapse
|
23
|
Gatti M, Solari A, Pattarozzi A, Campanella C, Thellung S, Maniscalco L, De Maria R, Würth R, Corsaro A, Bajetto A, Ratto A, Ferrari A, Daga A, Barbieri F, Florio T. In vitro and in vivo characterization of stem-like cells from canine osteosarcoma and assessment of drug sensitivity. Exp Cell Res 2018; 363:48-64. [PMID: 29305964 DOI: 10.1016/j.yexcr.2018.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/22/2017] [Accepted: 01/02/2018] [Indexed: 12/19/2022]
Abstract
Cancer stem cell (CSC) self-renewing and drug resistance cause treatment failure and tumor recurrence. Osteosarcoma is an aggressive bone tumor characterized by biological and molecular heterogeneity, possibly dependent on CSCs. CSC identification in osteosarcoma and their efficient targeting are still open questions. Spontaneous canine osteosarcoma shares clinical and biological features with the human tumors, representing a model for translational studies. We characterized three CSC-enriched canine osteosarcoma cultures. In serum-free conditions, these CSC cultures grow as anchorage-independent spheroids, show mesenchymal-like properties and in vivo tumorigenicity, recapitulating the heterogeneity of the original osteosarcoma. Osteosarcoma CSCs express stem-related factors (Sox2, Oct4, CD133) and chemokine receptors and ligands (CXCR4, CXCL12) involved in tumor proliferation and self-renewal. Standard drugs for osteosarcoma treatment (doxorubicin and cisplatin) affected CSC-enriched and parental primary cultures, showing different efficacy within tumors. Moreover, metformin, a type-2 diabetes drug, significantly inhibits osteosarcoma CSC viability, migration and self-renewal and, in co-treatment with doxorubicin and cisplatin, enhances drug cytotoxicity. Collectively, we demonstrate that canine osteosarcoma primary cultures contain CSCs exhibiting distinctive sensitivity to anticancer agents, as a reliable experimental model to assay drug efficacy. We also provide proof-of-principle of metformin efficacy, alone or in combination, as pharmacological strategy to target osteosarcoma CSCs.
Collapse
Affiliation(s)
- Monica Gatti
- Section of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2, 16132 Genova, Italy
| | - Agnese Solari
- Section of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2, 16132 Genova, Italy
| | - Alessandra Pattarozzi
- Section of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2, 16132 Genova, Italy
| | - Chiara Campanella
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Piazza Borgo Pila 39, 16129 Genova, Italy
| | - Stefano Thellung
- Section of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2, 16132 Genova, Italy
| | - Lorella Maniscalco
- Department of Veterinary Sciences, University of Torino, Largo Braccini 2, 10095 Grugliasco (Torino), Italy
| | - Raffaella De Maria
- Department of Veterinary Sciences, University of Torino, Largo Braccini 2, 10095 Grugliasco (Torino), Italy
| | - Roberto Würth
- Section of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2, 16132 Genova, Italy
| | - Alessandro Corsaro
- Section of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2, 16132 Genova, Italy
| | - Adriana Bajetto
- Section of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2, 16132 Genova, Italy
| | - Alessandra Ratto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Piazza Borgo Pila 39, 16129 Genova, Italy
| | - Angelo Ferrari
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Piazza Borgo Pila 39, 16129 Genova, Italy
| | - Antonio Daga
- IRCCS-AOU San Martino-IST, Largo Benzi 10, 16132 Genova, Italy
| | - Federica Barbieri
- Section of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2, 16132 Genova, Italy.
| | - Tullio Florio
- Section of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2, 16132 Genova, Italy.
| |
Collapse
|
24
|
Min HY, Lee HY. Oncogene-Driven Metabolic Alterations in Cancer. Biomol Ther (Seoul) 2018; 26:45-56. [PMID: 29212306 PMCID: PMC5746037 DOI: 10.4062/biomolther.2017.211] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 02/07/2023] Open
Abstract
Cancer is the leading cause of human deaths worldwide. Understanding the biology underlying the evolution of cancer is important for reducing the economic and social burden of cancer. In addition to genetic aberrations, recent studies demonstrate metabolic rewiring, such as aerobic glycolysis, glutamine dependency, accumulation of intermediates of glycolysis, and upregulation of lipid and amino acid synthesis, in several types of cancer to support their high demands on nutrients for building blocks and energy production. Moreover, oncogenic mutations are known to be associated with metabolic reprogramming in cancer, and these overall changes collectively influence tumor-microenvironment interactions and cancer progression. Accordingly, several agents targeting metabolic alterations in cancer have been extensively evaluated in preclinical and clinical settings. Additionally, metabolic reprogramming is considered a novel target to control cancers harboring un-targetable oncogenic alterations such as KRAS. Focusing on lung cancer, here, we highlight recent findings regarding metabolic rewiring in cancer, its association with oncogenic alterations, and therapeutic strategies to control deregulated metabolism in cancer.
Collapse
Affiliation(s)
- Hye-Young Min
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho-Young Lee
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.,College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
25
|
Kaneta Y, Arai MA, Ishikawa N, Toume K, Koyano T, Kowithayakorn T, Chiba T, Iwama A, Ishibashi M. Identification of BMI1 Promoter Inhibitors from Beaumontia murtonii and Eugenia operculata. JOURNAL OF NATURAL PRODUCTS 2017; 80:1853-1859. [PMID: 28598616 DOI: 10.1021/acs.jnatprod.7b00138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
B-Cell-specific Moloney murine leukemia virus insertion region 1 (BMI1) is a core component of the polycomb repressive complex 1 (PRC1). Abnormal expression of BMI1 is associated with a number of human malignances and cancer stem cells (CSCs), which cause chemotherapy resistance. Therefore, small molecules that inhibit BMI1 expression are potential candidates for cancer therapy. In this study, a cell-based reporter gene assay was developed that allowed BMI1 promoter activity to be measured in 293T human embryonic kidney cells based on luciferase expression levels. Using this screening assay, the methanol-soluble extracts of Beaumontia murtonii and Eugenia operculata were selected as leads. Bioassay-guided fractionation of the extracts led to the isolation of three known cardenolides (1-3) and one new compound (4) from B. murtonii and two known triterpenoids (5 and 6) and one new compound (7) from E. operculata. These seven compounds inhibited BMI1 promoter activity (IC50 range 0.093-23.0 μM), and the most active compound, wallichoside (1), was further evaluated. Western blot analysis revealed that wallichoside (1) decreases BMI1 protein levels in HCT116 human colon carcinoma cells, and flow cytometry analysis showed that it significantly reduced levels of the CSC biomarker epithelial cell adhesion molecule. Wallichoside (1) also inhibited sphere formation of Huh7 human hepatocellular carcinoma cells, indicating that it diminished the self-renewal capability of CSCs.
Collapse
Affiliation(s)
- Yui Kaneta
- Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Midori A Arai
- Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Naoki Ishikawa
- Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kazufumi Toume
- Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Takashi Koyano
- Temko Corporation , 4-27-4 Honcho, Nakano, Tokyo 164-0012, Japan
| | | | - Tetsuhiro Chiba
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Atsushi Iwama
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Masami Ishibashi
- Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
26
|
Tsai HH, Lai HY, Chen YC, Li CF, Huang HS, Liu HS, Tsai YS, Wang JM. Metformin promotes apoptosis in hepatocellular carcinoma through the CEBPD-induced autophagy pathway. Oncotarget 2017; 8:13832-13845. [PMID: 28099155 PMCID: PMC5355142 DOI: 10.18632/oncotarget.14640] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 01/04/2017] [Indexed: 12/19/2022] Open
Abstract
Metformin, as an AMP-activated protein kinase (AMPK) activator, can activate autophagy. A study showed that metformin decreased the risk of hepatocellular carcinoma (HCC) in diabetic patients. However, the detailed mechanism in the metformin-mediated anticancer effect remains an open question. Transcription factor CCAAT/enhancer-binding protein delta (CEBPD) has been suggested to serve as a tumor suppressor and is responsive to multiple anticancer drugs in HCC. In this study, we found that CEBPD and autophagy are involved in metformin-induced cell apoptosis in Huh7 cells. The underlying mechanisms in this process included a reduction in Src-mediated CEBPD protein degradation and an increase in CEBPD-regulated LC3B and ATG3 gene transcription under metformin treatment. We also found that AMPK is involved in metformin-induced CEBPD expression. Combined treatment with metformin and rapamycin can enhance autophagic cell death through the AMPK-dependent and AMPK-independent pathway, respectively. Taken together, we provide a new insight and therapeutic approach by targeting autophagy in the treatment of HCC.
Collapse
Affiliation(s)
- Hsin-Hwa Tsai
- Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Tainan, Taiwan
| | - Hong-Yue Lai
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yueh-Chiu Chen
- Department of Pharmacology, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Feng Li
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Huei-Sheng Huang
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Hsiao-Sheng Liu
- Department of Microbiology and Immunology, National Cheng Kung University, Tainan, Taiwan
| | - Yau-Sheng Tsai
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ju-Ming Wang
- Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Tainan, Taiwan
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
27
|
Ling S, Song L, Fan N, Feng T, Liu L, Yang X, Wang M, Li Y, Tian Y, Zhao F, Liu Y, Huang Q, Hou Z, Xu F, Shi L, Li Y. Combination of metformin and sorafenib suppresses proliferation and induces autophagy of hepatocellular carcinoma via targeting the mTOR pathway. Int J Oncol 2016; 50:297-309. [PMID: 27959383 DOI: 10.3892/ijo.2016.3799] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/02/2016] [Indexed: 12/19/2022] Open
Abstract
The multi‑kinase inhibitor sorafenib is the only drug for which randomized control trials have shown improved patient survival in advanced hepatocellular carcinoma (HCC). However, life expectancy is extended in these cases by only a few months. The anti‑type II diabetes agent metformin was used in this study in an effort to find a more efficient approach to HCC treatment. Sorafenib effectively reversed the activation status of mTORC2 induced by metformin and enhanced the suppression of the mTORC1 and MAPK pathway by metformin in HCC cells, which may be responsible for reduced proliferation upon combined treatment. The metformin and sorafenib combination led to increased impaired proliferation and tumor inhibition of HCC in vitro and in vivo compared to single agent, which was partially bridged by disrupting the mTORC1/mTORC2 feedback loop. Metformin and sorafenib cooperated to promote apoptosis and autophagy in HCC cells. Pharmacological inhibition of autophagy sensitized HCC cells to metformin and sorefenib‑induced apoptotic cell death. Therefore, the anti‑autophagy treatment should be considered in metformin and sorafenib-based treatments in HCC cells.
Collapse
Affiliation(s)
- Sunbin Ling
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Lei Song
- The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Ning Fan
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Tingting Feng
- Department of Intergrative Medicine, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Lu Liu
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Xu Yang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Mingjie Wang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Yanling Li
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Yu Tian
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Feng Zhao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Ying Liu
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Qihong Huang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Zhaoyuan Hou
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Fei Xu
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Lei Shi
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Yan Li
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
28
|
Strong antineoplastic effects of metformin in preclinical models of liver carcinogenesis. Clin Sci (Lond) 2016; 131:27-36. [PMID: 27803295 DOI: 10.1042/cs20160438] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/30/2016] [Accepted: 10/29/2016] [Indexed: 02/07/2023]
Abstract
Studies suggest that metformin, widely used for treating Type 2 diabetes, possesses innate antineoplastic properties. For metabolic syndrome patients with hepatocellular carcinoma (HCC), metformin may provide antitumoral effects. We evaluated the impact of metformin on tumour growth and visceral fat composition using relevant preclinical models of metabolic syndrome. Studies were performed in three hepatoma cell lines, in HepG2 xenograft mice fed with standard chow (SC) diet, 60% high-fat diet (HFD) or 30% fructose diet (FR), and an ex vivo model of human cultured HCC slices. Visceral fatty acid composition was analysed by magnetic resonance imaging (MRI). Metformin had a dose-dependent inhibitory effect on cell proliferation and apoptosis in vitro through the deregulation of mTOR/AMPK, AKT and extracellular signal regulated kinase (ERK) signalling pathways. Tumour engraftment rates were higher in HFD mice than SC mice (hepatic: 79% compared with 25%, P=0.02) and FR mice (subcutaneous: 86% compared with 50%, P=0.04). Subcutaneous tumour volume was increased in HFD mice (+64% compared with FR and SC, P=0.03). Metformin significantly decreased subcutaneous tumour growth via cell-cycle block and mammalian target of rapamycin (mTOR) pathway inhibition, and also induced hypoxia and decreased angiogenesis. In ex vivo tumour slices, metformin treatment led to increased necrosis, decreased cyclin D1 and increased carbonic anhydrase-9 (CA-9). Metformin caused qualitative changes in visceral fat composition of HFD mice, with decreased proportions of polyunsaturated fatty acids (14.6% ± 2.3% compared with 17.9% ± 3.0%, P=0.04). The potent antitumoral effects of metformin in multiple preclinical models implicating several molecular mechanisms provide a strong rationale for clinical trials including combination studies in HCC patients.
Collapse
|
29
|
Cabillic F, Corlu A. Regulation of Transdifferentiation and Retrodifferentiation by Inflammatory Cytokines in Hepatocellular Carcinoma. Gastroenterology 2016; 151:607-15. [PMID: 27443822 DOI: 10.1053/j.gastro.2016.06.052] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 06/14/2016] [Accepted: 06/29/2016] [Indexed: 01/02/2023]
Abstract
Liver cancers are typically inflammation-associated cancers characterized by close communication between the tumor cells and the tumor environment. This supportive inflammatory environment contributes to the establishment of a pathologic niche consisting of transformed epithelial cells, tumor-educated fibroblasts, endothelial cells, and immunosuppressive immature myeloid cells. Stromal and infiltrated immune cells help determine tumor fate, but the tumor cells themselves, including cancer stem cells, also influence the surrounding cells. This bidirectional communication generates an intricate network of signals that promotes tumor growth. Cell plasticity, which includes transdifferentiation and retrodifferentiation of differentiated cells, increases tumor heterogeneity. Plasticity allows non-cancer stem cells to replenish the cancer stem cell pool, initiate tumorigenesis, and escape the effects of therapeutic agents; it also promotes tumor aggressiveness. There is increasing evidence that an inflammatory environment promotes the retrodifferentiation of tumor cells into stem or progenitor cells; this could account for the low efficacies of some chemotherapies and the high rates of cancer recurrence. Increasing our understanding of the signaling network that connects inflammation with retrodifferentiation could identify new therapeutic targets, and lead to combined therapies that are effective against highly heterogeneous tumors.
Collapse
Affiliation(s)
- Florian Cabillic
- Institut National de la Santé et de la Recherche Médicale, UMR 991, Liver Metabolism and Cancer, Hôpital Pontchaillou, Rennes, France; Université de Rennes 1, Rennes, France; Laboratoire de Cytogénétique et Biologie Cellulaire, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - Anne Corlu
- Institut National de la Santé et de la Recherche Médicale, UMR 991, Liver Metabolism and Cancer, Hôpital Pontchaillou, Rennes, France; Université de Rennes 1, Rennes, France.
| |
Collapse
|
30
|
The Progress and Prospects of Putative Biomarkers for Liver Cancer Stem Cells in Hepatocellular Carcinoma. Stem Cells Int 2016; 2016:7614971. [PMID: 27610139 PMCID: PMC5005617 DOI: 10.1155/2016/7614971] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/06/2016] [Accepted: 07/04/2016] [Indexed: 01/30/2023] Open
Abstract
Accumulating evidence suggests that hepatocellular carcinoma (HCC) is organized by liver cancer stem cells (LCSCs), which are a subset of cells with “stem-like” characteristics. Identification of the LCSCs is a fundamental and important problem in HCC research. LCSCs have been investigated by various stem cell biomarkers. There is still lack of consensus regarding the existence of a “global” marker for LCSCs in HCC. In this review article, we summarize the progress and prospects of putative biomarkers for LCSCs in the past decades, which is essential to develop future therapies targeting CSCs and to predict prognosis and curative effect of these therapies.
Collapse
|
31
|
Fujita K, Iwama H, Miyoshi H, Tani J, Oura K, Tadokoro T, Sakamoto T, Nomura T, Morishita A, Yoneyama H, Masaki T. Diabetes mellitus and metformin in hepatocellular carcinoma. World J Gastroenterol 2016; 22:6100-13. [PMID: 27468203 PMCID: PMC4945972 DOI: 10.3748/wjg.v22.i27.6100] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/25/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the leading cause of cancer-related death worldwide. Diabetes mellitus, a risk factor for cancer, is also globally endemic. The clinical link between these two diseases has been the subject of investigation for a century, and diabetes mellitus has been established as a risk factor for HCC. Accordingly, metformin, a first-line oral anti-diabetic, was first proposed as a candidate anti-cancer agent in 2005 in a cohort study in Scotland. Several subsequent large cohort studies and randomized controlled trials have not demonstrated significant efficacy for metformin in suppressing HCC incidence and mortality in diabetic patients; however, two recent randomized controlled trials have reported positive data for the tumor-preventive potential of metformin in non-diabetic subjects. The search for biological links between cancer and diabetes has revealed intracellular pathways that are shared by cancer and diabetes. The signal transduction mechanisms by which metformin suppresses carcinogenesis in cell lines or xenograft tissues and improves chemoresistance in cancer stem cells have also been elucidated. This review addresses the clinical and biological links between HCC and diabetes mellitus and the anti-cancer activity of metformin in clinical studies and basic experiments.
Collapse
|
32
|
Bhat M, Yanagiya A, Graber T, Razumilava N, Bronk S, Zammit D, Zhao Y, Zakaria C, Metrakos P, Pollak M, Sonenberg N, Gores G, Jaramillo M, Morita M, Alain T. Metformin requires 4E-BPs to induce apoptosis and repress translation of Mcl-1 in hepatocellular carcinoma cells. Oncotarget 2016; 8:50542-50556. [PMID: 28881582 PMCID: PMC5584165 DOI: 10.18632/oncotarget.10671] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 07/06/2016] [Indexed: 12/18/2022] Open
Abstract
Metformin inhibits the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway, which is frequently upregulated in hepatocellular carcinoma (HCC). Metformin has also been shown to induce apoptosis in this cancer. Here, we investigate whether metformin-induced apoptosis in HCC is mediated by the downstream mTORC1 effectors eukaryotic initiation factor 4E and (eIF4E)-binding proteins (4E-BPs). Further, we ask whether changes in 4E-BPs activity during metformin treatment negatively regulate translation of the anti-apoptotic myeloid cell leukemia 1 (Mcl-1) mRNA. A genetic HCC mouse model was employed to assess the ability of metformin to reduce tumor formation, induce apoptosis, and control 4E-BP1 activation and Mcl-1 protein expression. In parallel, the HCC cell line Huh7 was transduced with scrambled shRNA (control) or shRNAs targeting 4E-BP1 and 4E-BP2 (4E-BP knock-down (KD)) to measure differences in mRNA translation, apoptosis, and Mcl-1 protein expression after metformin treatment. In addition, immunohistochemical staining of eIF4E and 4E-BP1 protein levels was addressed in a HCC patient tissue microarray. We found that metformin decreased HCC tumor burden, and tumor tissues showed elevated apoptosis with reduced Mcl-1 and phosphorylated 4E-BP1 protein levels. In control but not 4E-BP KD Huh7 cells, metformin induced apoptosis and repressed Mcl-1 mRNA translation and protein levels. Immunostaining of HCC patient tumor tissues revealed a varying ratio of eIF4E/4E-BP1 expression. Our results propose that metformin induces apoptosis in mouse and cellular models of HCC through activation of 4E-BPs, thus tumors with elevated expression of 4E-BPs may display improved clinical chemopreventive benefit of metformin.
Collapse
Affiliation(s)
- Mamatha Bhat
- Goodman Cancer Centre, Department of Biochemistry, McGill University, Montreal, Canada.,Division of Gastroenterology, University Health Network and University of Toronto, Toronto, Canada, USA.,Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Akiko Yanagiya
- Goodman Cancer Centre, Department of Biochemistry, McGill University, Montreal, Canada
| | - Tyson Graber
- Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Nataliya Razumilava
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.,Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan, USA
| | - Steve Bronk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Domenick Zammit
- Goodman Cancer Centre, Department of Biochemistry, McGill University, Montreal, Canada
| | - Yunhao Zhao
- Departments of Medicine and Oncology, Lady Davis Institute for Medical Research and Segal Cancer Center, Montreal, Canada
| | - Chadi Zakaria
- Goodman Cancer Centre, Department of Biochemistry, McGill University, Montreal, Canada
| | - Peter Metrakos
- Department of Surgery, McGill University Health Centre, Montreal, Canada
| | - Michael Pollak
- Departments of Medicine and Oncology, Lady Davis Institute for Medical Research and Segal Cancer Center, Montreal, Canada
| | - Nahum Sonenberg
- Goodman Cancer Centre, Department of Biochemistry, McGill University, Montreal, Canada
| | - Gregory Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Maritza Jaramillo
- INRS Institut Armand-Frappier Research Centre, Laval, Quebec, Canada
| | - Masahiro Morita
- Goodman Cancer Centre, Department of Biochemistry, McGill University, Montreal, Canada
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
33
|
Xin HW, Ambe CM, Miller TC, Chen JQ, Wiegand GW, Anderson AJ, Ray S, Mullinax JE, Hari DM, Koizumi T, Godbout JD, Goldsmith PK, Stojadinovic A, Rudloff U, Thorgeirsson SS, Avital I. Liver Label Retaining Cancer Cells Are Relatively Resistant to the Reported Anti-Cancer Stem Cell Drug Metformin. J Cancer 2016; 7:1142-51. [PMID: 27326258 PMCID: PMC4911882 DOI: 10.7150/jca.10047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background & Aims: Recently, we reported that liver Label Retaining Cancer Cells (LRCC) can initiate tumors with only 10 cells and are relatively resistant to the targeted drug Sorafenib, a standard of practice in advanced hepatocellular carcinoma (HCC). LRCC are the only cancer stem cells (CSC) isolated alive according to a stem cell fundamental function, asymmetric cell division. Metformin has been reported to preferentially target many other types of CSC of different organs, including liver. It's important to know if LRCC, a novel class of CSC, are relatively resistant to metformin, unlike other types of CSC. As metformin inhibits the Sorafenib-Target-Protein (STP) PI3K, and LRCC are newly described CSC, we undertook this study to test the effects of Metformin on Sorafenib-treated HCC and HCC-derived-LRCC. Methods: We tested various STP levels and phosphorylation status, associated genes' expression, proliferation, viability, toxicity, and apoptosis profiles, before and after treatment with Sorafenib with/without Metformin. Results: Metformin enhances the effects of Sorafenib on HCC, and significantly decreased viability/proliferation of HCC cells. This insulin-independent effect was associated with inhibition of multiple STPs (PKC, ERK, JNK and AKT). However, Metformin increased the relative proportion of LRCCs. Comparing LRCC vs. non-LRCC, this effect was associated with improved toxicity and apoptosis profiles, down-regulation of cell death genes and up-regulation of cell proliferation and survival genes in LRCC. Concomitantly, Metformin up-regulated pluripotency, Wnt, Notch and SHH pathways genes in LRCC vs. non-LRCC. Conclusions: Metformin and Sorafenib have enhanced anti-cancer effects. However, in contradistinction to reports on other types of CSC, Metformin is less effective against HCC-derived-CSC LRCC. Our results suggest that combining Metformin with Sorafenib may be able to repress the bulk of tumor cells, but as with other anti-cancer drugs, may leave LRCC behind leading to cancer recurrence. Therefore, liver LRCC, unlike other types of CSC, are relatively resistant to the reported anti-cancer stem cell drug metformin. This is the first report that there is a type of CSC that is not relatively resistant to the CSC-targeting drug. Our findings suggest that a drug targeting LRCC may be critically needed to target CSC and prevent cancer recurrence. These may significantly contribute to the understanding of Metformin's anti-cancer effects and the development of novel drugs targeting the relatively resistant LRCC.
Collapse
Affiliation(s)
- Hong-Wu Xin
- 1. Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;; 2. Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Chenwi M Ambe
- 1. Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tyler C Miller
- 1. Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jin-Qiu Chen
- 3. Collaborative Protein Technology Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gordon W Wiegand
- 1. Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew J Anderson
- 1. Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Satyajit Ray
- 1. Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - John E Mullinax
- 1. Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danielle M Hari
- 1. Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tomotake Koizumi
- 1. Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jessica D Godbout
- 1. Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul K Goldsmith
- 3. Collaborative Protein Technology Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexander Stojadinovic
- 5. Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Udo Rudloff
- 1. Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Snorri S Thorgeirsson
- 4. Laboratory for Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Itzhak Avital
- 1. Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;; 6. Department of Surgery, Saint Peter's Healthcare System, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
34
|
Khan S, Karmokar A, Howells L, Thomas AL, Bayliss R, Gescher A, Brown K. Targeting cancer stem-like cells using dietary-derived agents - Where are we now? Mol Nutr Food Res 2016; 60:1295-309. [PMID: 27060283 DOI: 10.1002/mnfr.201500887] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 12/17/2022]
Abstract
Diet has been linked to an overwhelming proportion of cancers. Current chemotherapy and targeted therapies are limited by toxicity and the development of resistance against these treatments results in cancer recurrence or progression. In vitro evidence indicates that a number of dietary-derived agents have activity against a highly tumorigenic, chemoradiotherapy resistant population of cells within a tumour. This population is associated with cancer recurrence and is therefore clinically significant. Targeting this subpopulation, termed cancer stem-like cells with dietary-derived agents provides a potentially low toxicity strategy to enhance current treatment regimens. In addition, dietary-derived compounds also provide a novel approach to cancer prevention strategies. This review focusses on selected diet-derived agents that have been shown to specifically target cancer stem-like cells using in vivo models, or in clinical trials. Furthermore, the potential limitations of these studies are discussed, and areas of research that need to be addressed to allow successful translation of dietary-derived agents to the clinical arena are highlighted.
Collapse
Affiliation(s)
- Sameena Khan
- Department of Cancer Studies, University of Leicester, Leicester, UK
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Ankur Karmokar
- Department of Cancer Studies, University of Leicester, Leicester, UK
| | - Lynne Howells
- Department of Cancer Studies, University of Leicester, Leicester, UK
| | - Anne L Thomas
- Department of Cancer Studies, University of Leicester, Leicester, UK
| | - Richard Bayliss
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Andreas Gescher
- Department of Cancer Studies, University of Leicester, Leicester, UK
| | - Karen Brown
- Department of Cancer Studies, University of Leicester, Leicester, UK
| |
Collapse
|
35
|
Abstract
AMP-activated protein kinase (AMPK) is an important mediator in maintaining cellular energy homeostasis. AMPK is activated in response to a shortage of energy. Once activated, AMPK can promote ATP production and regulate metabolic energy. AMPK is a known target for treating metabolic syndrome and type-2 diabetes; however, recently AMPK is emerging as a possible metabolic tumor suppressor and target for cancer prevention and treatment. Recent epidemiological studies indicate that treatment with metformin, an AMPK activator reduces the incidence of cancer. In this article we review the role of AMPK in regulating inflammation, metabolism, and other regulatory processes with an emphasis on cancer, as well as, discuss the potential for targeting AMPK to treat various types of cancer. Activation of AMPK has been found to oppose tumor progression in several cancer types and offers a promising cancer therapy. This review evaluates the evidence linking AMPK with tumor suppressor function and analyzes the molecular mechanisms involved. AMPK activity opposes tumor development and progression in part by regulating inflammation and metabolism.
Collapse
|
36
|
Adams LA, Arauz O, Angus PW, Sinclair M, MacDonald GA, Chelvaratnam U, Wigg AJ, Yeap S, Shackel N, Lin L, Raftopoulos S, McCaughan GW, Jeffrey GP. Additive impact of pre-liver transplant metabolic factors on survival post-liver transplant. J Gastroenterol Hepatol 2016; 31:1016-24. [PMID: 26589875 DOI: 10.1111/jgh.13240] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/06/2015] [Accepted: 11/14/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM Diabetes at time of liver transplantation is associated with reduced post-transplant survival. We aimed to assess whether additional metabolic conditions such as obesity or hypertension had additive prognostic impact on post-transplantation survival. METHODS A multi-center cohort study of 617 adult subjects undergoing liver transplantation between 2003 and 2009 has been used. Dry body mass index was calculated following adjustment for ascites. RESULTS After a median follow-up of 5.8 years (range 0-10.5), 112 (18.2%) patients died. Diabetes was associated with reduced post-transplant survival (hazard ratio 1.89, 95% confidence interval [CI] 1.25-2.86, P = 0.003), whereas obesity, hypertension, dyslipidemia, and the metabolic syndrome itself were not (P > 0.3 for all). Patients with concomitant diabetes and obesity had lower survival (adjusted Hazard Ratio [aHR] 2.40, 95%CI 1.32-4.38, P = 0.004), whereas obese non-diabetic patients or diabetic non-obese patients had similar survival compared with non-diabetic, non-obese individuals. The presence of hypertension or dyslipidemia did not impact on survival in patients with diabetes (P > 0.1 for both). Obese diabetic patients had longer intensive care and hospital stays than non-obese diabetic or obese, non-diabetic patients (P < 0.05). The impact of concomitant obesity and diabetes on survival was greater in subjects aged 50+ years (52.6% 5-year survival, aHR 3.04, 95% CI 1.54-5.98) or those transplanted with hepatocellular carcinoma (34.1% 5-year survival, aHR 3.35, 95% CI 1.31-5.57). Diabetes without obesity was not associated with an increased mortality rate in these sub-groups. CONCLUSIONS Concomitant diabetes and obesity but not each condition in the absence of the other is associated with reduced post-liver transplant survival. The impact of diabetes and obesity is greater in older patients and those with hepatocellular carcinoma.
Collapse
Affiliation(s)
- Leon A Adams
- Sir Charles Gairdner Hospital, Perth, Australia.,School of Medicine and Pharmacology, The University of Western Australia, Perth, Western Australia
| | - Oscar Arauz
- Sir Charles Gairdner Hospital, Perth, Australia
| | - Peter W Angus
- The Austin Hospital, Melbourne, Victoria, South Australia
| | - Marie Sinclair
- The Austin Hospital, Melbourne, Victoria, South Australia
| | | | | | - Alan J Wigg
- Flinders Medical Centre, Adelaide, South Australia
| | - Sze Yeap
- Flinders Medical Centre, Adelaide, South Australia
| | - Nicholas Shackel
- Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Linda Lin
- Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | | | | | - Gary P Jeffrey
- Sir Charles Gairdner Hospital, Perth, Australia.,School of Medicine and Pharmacology, The University of Western Australia, Perth, Western Australia
| | | |
Collapse
|
37
|
Rogalska A, Sliwinska A, Kasznicki J, Drzewoski J, Marczak A. Effects of Epothilone A in Combination with the Antidiabetic Drugs Metformin and Sitagliptin in HepG2 Human Hepatocellular Cancer Cells: Role of Transcriptional Factors NF-κB and p53. Asian Pac J Cancer Prev 2016; 17:993-1001. [DOI: 10.7314/apjcp.2016.17.3.993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
38
|
Bukowska B, Rogalska A, Forma E, Brys M, Marczak A. Why a Combination of WP 631 and Epo B is an Improvement on the Drugs Singly - Involvement in the Cell Cycle and Mitotic Slippage. Asian Pac J Cancer Prev 2016; 17:1299-308. [DOI: 10.7314/apjcp.2016.17.3.1299] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
39
|
DePeralta DK, Wei L, Ghoshal S, Schmidt B, Lauwers GY, Lanuti M, Chung RT, Tanabe KK, Fuchs BC. Metformin prevents hepatocellular carcinoma development by suppressing hepatic progenitor cell activation in a rat model of cirrhosis. Cancer 2016; 122:1216-27. [PMID: 26914713 DOI: 10.1002/cncr.29912] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 12/07/2015] [Accepted: 12/21/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC)-associated mortality is increasing at an alarming rate, and there is a readily identifiable cohort of at-risk patients with cirrhosis, viral hepatitis, nonalcoholic fatty liver disease, and diabetes. These patients are candidates for chemoprevention. Metformin is an attractive agent for chemoprevention because it is inexpensive, has a favorable safety profile, and is well tolerated over long time periods. METHODS The authors studied the efficacy of metformin as a prevention agent in a clinically relevant rat model of HCC, in which tumors develop in the setting of chronic inflammation and cirrhosis. Repeated injections of diethylnitrosamine were used to induce sequential cirrhosis and HCC, and metformin was administered at the first signs of either fibrosis or cirrhosis. RESULTS Prolonged metformin exposure was safe and was associated with decreases in fibrotic and inflammatory markers, especially when administered early at the first signs of fibrosis. In addition, early metformin treatment led to a 44% decrease in HCC incidence, whereas tumor burden was unchanged when metformin was administered at the first signs of cirrhosis. It is noteworthy that activation of the hepatic progenitor/stem cell compartment was first observed at the onset of cirrhosis; therefore, only early metformin treatment suppressed receptor for advanced glycation end products and inhibited the activation of hepatic progenitor cells. CONCLUSIONS The current results are the first to demonstrate an effect on progenitor/stem cells in the setting of chemoprevention and provide further rationale to explore metformin as an early intervention in clinical trials of patients with chronic liver disease at high risk for HCC.
Collapse
Affiliation(s)
- Danielle K DePeralta
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Lan Wei
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Sarani Ghoshal
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Benjamin Schmidt
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Gregory Y Lauwers
- Department of Pathology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Michael Lanuti
- Division of Thoracic Surgery, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Raymond T Chung
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kenneth K Tanabe
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Bryan C Fuchs
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
40
|
Di Francesco AM, Toesca A, Cenciarelli C, Giordano A, Gasbarrini A, Puglisi MA. Metabolic Modification in Gastrointestinal Cancer Stem Cells: Characteristics and Therapeutic Approaches. J Cell Physiol 2016; 231:2081-7. [PMID: 26791139 DOI: 10.1002/jcp.25318] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 01/20/2016] [Indexed: 12/19/2022]
Abstract
Currently, there is much interest in the characterization of metabolic profiling of cancer stem cells (CSCs), a small subset of tumor cells with self-renewal capacity. Indeed, ever-growing evidence indicate that metabolism and stemness are highly intertwined processes in tumor tissue. In this review, we analyze the potential metabolic targeting strategies for eradicating CSCs that could help to develop a more effective therapeutic approach for gastrointestinal cancers. Indeed, the successful elimination of a tumor requires an anticancer therapy that affects both cancer cells and CSCs. The observation that gastrointestinal CSCs possess higher inducible nitric oxide sinthase (iNOS) expression, lower reactive oxygen species (ROS) production, and a different metabolism respect to no-CSCs tumor cells has paved the way to develop drugs targeting CSC specific signaling. In particular, several studies have highlighted that metformin, aldehyde dehydrogenase 1, and iNOS inhibitors selectively suppressed CSC growth and that combinatorial therapy of them with standard chemotherapeutic drugs had a synergistic effect resulting in reduced tumor burden and delayed tumor recurrence. Thus, the possibility of combining specific CSC metabolism inhibitors with existing therapeutic approaches could have profound anticancer effects, changing the conventional treatment approaches to gastrointestinal cancers. J. Cell. Physiol. 231: 2081-2087, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Amelia Toesca
- Institute of Human Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Carlo Cenciarelli
- Institute of Translational Pharmacology-National Research Council, Rome, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, Pennsylvania
| | - Antonio Gasbarrini
- Department of Internal Medicine and Gastroenterology, Gemelli Hospital, Rome, Italy
| | | |
Collapse
|
41
|
Chiba T, Iwama A, Yokosuka O. Cancer stem cells in hepatocellular carcinoma: Therapeutic implications based on stem cell biology. Hepatol Res 2016; 46:50-7. [PMID: 26123821 DOI: 10.1111/hepr.12548] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/13/2015] [Accepted: 06/22/2015] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer and the third most frequent cause of cancer-related death worldwide. Despite advances in its diagnosis and treatment, the prognosis of patients with advanced HCC remains unfavorable. Recent advances in stem cell biology and associated technologies have enabled the identification of minor components of tumorigenic cells, termed cancer stem cells (CSC) or tumor-initiating cells, in cancers such as HCC. Furthermore, because CSC play a central role in tumor development, metastasis and recurrence, they are considered to be a therapeutic target in cancer treatment. Hepatic CSC have been successfully identified using functional and cell surface markers. The analysis of purified hepatic CSC has revealed the molecular machinery and signaling pathways involved in their maintenance. In addition, epigenetic transcriptional regulation has been shown to be important in the development and maintenance of CSC. Although inhibitors of CSC show promise as CSC-targeting drugs, novel therapeutic approaches for the eradication of CSC are yet to be established. In this review, we describe recent progress in hepatic CSC research and provide a perspective on the available therapeutic approaches based on stem cell biology.
Collapse
Affiliation(s)
- Tetsuhiro Chiba
- Departments of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Iwama
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Osamu Yokosuka
- Departments of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
42
|
Jo W, Yu ES, Chang M, Park HK, Choi HJ, Ryu JE, Jang S, Lee HJ, Jang JJ, Son WC. Metformin inhibits early stage diethylnitrosamine‑induced hepatocarcinogenesis in rats. Mol Med Rep 2015; 13:146-52. [PMID: 26548419 PMCID: PMC4686101 DOI: 10.3892/mmr.2015.4513] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 09/09/2015] [Indexed: 11/06/2022] Open
Abstract
Antitumor effects of metformin have recently emerged despite its original use for type II diabetes. In the present study, the effects of metformin on the development and recurrence of hepatocellular carcinoma (HCC) were investigated using the diethylnitrosamine (DEN)‑induced rat model of HCC. Tumor foci were characterized by gross examination and by histopathological characteristics, including proliferation, hepatic progenitor cell content and the expression of hepatocarcinoma‑specific molecular markers. Potential target molecules of metformin were investigated to determine the molecular mechanism underlying the inhibitory effects of metformin on chemically induced liver tumorigenesis. The antitumor effects of metformin were increased by the reduction of surface nodules and decreased the incidence of altered hepatocellular foci, hepatocellular adenoma and carcinoma. Also, decreased expression levels of glutathione S‑transferase placental form, proliferating cell nuclear antigen and cytokeratin 8 described the inhibitory effects of metformin on HCC. In the present study, Wistar rats receiving treatment with DEN were administered metformin for 16 weeks. In addition, metformin suppressed liver tumorigenesis via an AMPK‑dependent pathway. These results suggested that metformin has promising effects on the early stage of HCC in rats. Therefore, metformin may be used for the prevention of HCC recurrence following primary chemotherapy for HCC and/or for high‑risk patients, including chronic hepatitis and cirrhosis.
Collapse
Affiliation(s)
- Woori Jo
- Comparative Pathology Core, Asan Institute for Life Sciences, Asan Medical Center, Seoul 138‑736, Republic of Korea
| | - Eun-Sil Yu
- Comparative Pathology Core, Asan Institute for Life Sciences, Asan Medical Center, Seoul 138‑736, Republic of Korea
| | - Minsun Chang
- Department of Medical and Pharmaceutical Sciences, Sookmyung Woman's University, Seoul 140‑742, Republic of Korea
| | - Hyun-Kyu Park
- Comparative Pathology Core, Asan Institute for Life Sciences, Asan Medical Center, Seoul 138‑736, Republic of Korea
| | - Hyun-Ji Choi
- Comparative Pathology Core, Asan Institute for Life Sciences, Asan Medical Center, Seoul 138‑736, Republic of Korea
| | - Jae-Eun Ryu
- Comparative Pathology Core, Asan Institute for Life Sciences, Asan Medical Center, Seoul 138‑736, Republic of Korea
| | - Sungwoong Jang
- Comparative Pathology Core, Asan Institute for Life Sciences, Asan Medical Center, Seoul 138‑736, Republic of Korea
| | - Hyo-Ju Lee
- Comparative Pathology Core, Asan Institute for Life Sciences, Asan Medical Center, Seoul 138‑736, Republic of Korea
| | - Ja-June Jang
- Department of Pathology, Seoul National University College of Medicine, Seoul 110‑799, Republic of Korea
| | - Woo-Chan Son
- Comparative Pathology Core, Asan Institute for Life Sciences, Asan Medical Center, Seoul 138‑736, Republic of Korea
| |
Collapse
|
43
|
PARK CHEOL, JEONG JISUK, JEONG JINWOO, KIM YONGJOO, JUNG YEONKWON, GO GEUNBAE, KIM SUNGOK, KIM GIYOUNG, HONG SUHYUN, YOO YOUNGHYUN, CHOI YUNGHYUN. Ethanol extract of Kalopanax septemlobus leaf induces caspase-dependent apoptosis associated with activation of AMPK in human hepatocellular carcinoma cells. Int J Oncol 2015; 48:261-70. [DOI: 10.3892/ijo.2015.3233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/21/2015] [Indexed: 11/06/2022] Open
|
44
|
Metformin synergistically sensitizes FLT3-ITD-positive acute myeloid leukemia to sorafenib by promoting mTOR-mediated apoptosis and autophagy. Leuk Res 2015; 39:1421-7. [PMID: 26505133 DOI: 10.1016/j.leukres.2015.09.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 09/11/2015] [Accepted: 09/13/2015] [Indexed: 02/05/2023]
Abstract
Mutations of Fms-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD), accounting for approximately 30% of patients with acute myeloid leukemia (AML), results in poor therapeutic efficacy and short survival. Sorafenib, an oral multikinase inhibitor, can inhibit FLT3 and improve clinical outcome of FLT3 mutated leukemia. Our current studies have shown that, the antidiabetic drug metformin also exerts anti-leukemic effect by activating p-AMPK and synergistically sensitizes FLT3 mutated AML to sorafenib. Both agents suppress cell proliferation in a dose-dependent manner and induce apoptosis via cell cycle arrest, but does not obviously modulate autophagy marker, light chain 3 (LC3). Mechanistically, in the presence of metformin, the anticancer potential of sorafenib, accompanying with increased LC3 levels, is found to be synergistically enhanced with the remarkably reduced protein expression of the mTOR/p70S6K/4EBP1 pathway, while not appreciably altering cell cycle. Overall, these results show metformin in aid of sorafenib may represent a promising and attractive strategy for the treatment of FLT3-ITD mutated AML.
Collapse
|
45
|
Metformin repositioning as antitumoral agent: selective antiproliferative effects in human glioblastoma stem cells, via inhibition of CLIC1-mediated ion current. Oncotarget 2015; 5:11252-68. [PMID: 25361004 PMCID: PMC4294381 DOI: 10.18632/oncotarget.2617] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/21/2014] [Indexed: 12/25/2022] Open
Abstract
Epidemiological and preclinical studies propose that metformin, a first-line drug for type-2 diabetes, exerts direct antitumor activity. Although several clinical trials are ongoing, the molecular mechanisms of this effect are unknown. Here we show that chloride intracellular channel-1 (CLIC1) is a direct target of metformin in human glioblastoma cells. Metformin exposure induces antiproliferative effects in cancer stem cell-enriched cultures, isolated from three individual WHO grade IV human glioblastomas. These effects phenocopy metformin-mediated inhibition of a chloride current specifically dependent on CLIC1 functional activity. CLIC1 ion channel is preferentially active during the G1-S transition via transient membrane insertion. Metformin inhibition of CLIC1 activity induces G1 arrest of glioblastoma stem cells. This effect was time-dependent, and prolonged treatments caused antiproliferative effects also for low, clinically significant, metformin concentrations. Furthermore, substitution of Arg29 in the putative CLIC1 pore region impairs metformin modulation of channel activity. The lack of drugs affecting cancer stem cell viability is the main cause of therapy failure and tumor relapse. We identified CLIC1 not only as a modulator of cell cycle progression in human glioblastoma stem cells but also as the main target of metformin's antiproliferative activity, paving the way for novel and needed pharmacological approaches to glioblastoma treatment.
Collapse
|
46
|
Li J, Hernanda PY, Bramer WM, Peppelenbosch MP, van Luijk J, Pan Q. Anti-tumor effects of metformin in animal models of hepatocellular carcinoma: a systematic review and meta-analysis. PLoS One 2015; 10:e0127967. [PMID: 26030161 PMCID: PMC4451077 DOI: 10.1371/journal.pone.0127967] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/22/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Several studies have reported that metformin can reduce the risk of hepatocellular carcinoma (HCC) in diabetes patients. However, the direct anti-HCC effects of metformin have hardly been studied in patients, but have been extensively investigated in animal models of HCC. We therefore performed a systematic review and meta-analysis of animal studies evaluating the effects of metformin on HCC. METHODS We collected the relevant studies by searching EMBASE, Medline (OvidSP), Web of Science, Scopus, PubMed Publisher, and Google Scholar. Studies were included according to the following inclusion criteria: HCC, animal study, and metformin intervention. Study quality was assessed using SYRCLE's risk of bias tool. A meta-analysis was performed for the outcome measures: tumor growth (tumor volume, weight and size), tumor number and incidence. RESULTS The search resulted in 573 references, of which 13 could be included in the review and 12 included in the meta-analysis. The study characteristics of the included studies varied considerably. Two studies used rats, while the others used mice. Only one study used female animals, nine used male, and three studies didn't mention the gender of animals in their experiments. The quality of the included studies was low to moderate based on the assessment of their risk of bias. The meta-analysis showed that metformin significantly inhibited the growth of HCC tumour (SMD -2.20[-2.96,-1.43]; n=16), but no significant effect on the number of tumors (SMD-1.05[-2.13,0.03]; n=5) or the incidence of HCC was observed (RR 0.62[0.33,1.16]; n=6). To investigate the potential sources of significant heterogeneities found in outcome of tumor growth (I2=81%), subgroup analyses of scales of growth measures and of types of animal models used were performed. CONCLUSION Metformin appears to have a direct anti-HCC effect in animal models. Although the intrinsic limitations of animal studies, this systematic review could provide an important reference for future preclinical animal trials of good quality and clinical development.
Collapse
Affiliation(s)
- Juan Li
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- * E-mail: (JL); (QP)
| | - Pratika Y. Hernanda
- Laboratory of Medical Genetics, Biomolecular Research Centre, Wijaya Kusuma University, Surabaya, Indonesia
| | - Wichor M. Bramer
- Medical Library, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Maikel P. Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Judith van Luijk
- SYRCLE at Central Animal Laboratory, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- * E-mail: (JL); (QP)
| |
Collapse
|
47
|
Na HJ, Park JS, Pyo JH, Jeon HJ, Kim YS, Arking R, Yoo MA. Metformin inhibits age-related centrosome amplification in Drosophila midgut stem cells through AKT/TOR pathway. Mech Ageing Dev 2015; 149:8-18. [PMID: 25988874 DOI: 10.1016/j.mad.2015.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/23/2015] [Accepted: 05/06/2015] [Indexed: 12/16/2022]
Abstract
We delineated the mechanism regulating the inhibition of centrosome amplification by metformin in Drosophila intestinal stem cells (ISCs). Age-related changes in tissue-resident stem cells may be closely associated with tissue aging and age-related diseases, such as cancer. Centrosome amplification is a hallmark of cancers. Our recent work showed that Drosophila ISCs are an excellent model for stem cell studies evaluating age-related increase in centrosome amplification. Here, we showed that metformin, a recognized anti-cancer drug, inhibits age- and oxidative stress-induced centrosome amplification in ISCs. Furthermore, we revealed that this effect is mediated via down-regulation of AKT/target of rapamycin (TOR) activity, suggesting that metformin prevents centrosome amplification by inhibiting the TOR signaling pathway. Additionally, AKT/TOR signaling hyperactivation and metformin treatment indicated a strong correlation between DNA damage accumulation and centrosome amplification in ISCs, suggesting that DNA damage might mediate centrosome amplification. Our study reveals the beneficial and protective effects of metformin on centrosome amplification via AKT/TOR signaling modulation. We identified a new target for the inhibition of age- and oxidative stress-induced centrosome amplification. We propose that the Drosophila ISCs may be an excellent model system for in vivo studies evaluating the effects of anti-cancer drugs on tissue-resident stem cell aging.
Collapse
Affiliation(s)
- Hyun-Jin Na
- Department of Molecular Biology, Pusan National University, Busan 609-735, South Korea
| | - Joung-Sun Park
- Department of Molecular Biology, Pusan National University, Busan 609-735, South Korea
| | - Jung-Hoon Pyo
- Department of Molecular Biology, Pusan National University, Busan 609-735, South Korea
| | - Ho-Jun Jeon
- Department of Molecular Biology, Pusan National University, Busan 609-735, South Korea
| | - Young-Shin Kim
- Department of Molecular Biology, Pusan National University, Busan 609-735, South Korea
| | - Robert Arking
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Mi-Ae Yoo
- Department of Molecular Biology, Pusan National University, Busan 609-735, South Korea.
| |
Collapse
|
48
|
Saeki K, Watanabe M, Tsuboi M, Sugano S, Yoshitake R, Tanaka Y, Ong SM, Saito T, Matsumoto K, Fujita N, Nishimura R, Nakagawa T. Anti-tumour effect of metformin in canine mammary gland tumour cells. Vet J 2015; 205:297-304. [PMID: 25981932 DOI: 10.1016/j.tvjl.2015.04.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 04/07/2015] [Accepted: 04/19/2015] [Indexed: 01/06/2023]
Abstract
Metformin is an oral hypoglycaemic drug used in type 2 diabetes. Its pharmacological activity reportedly involves mitochondrial respiratory complex I, and mitochondrial respiratory complex inhibitors have a strong inhibitory effect on the growth of metastatic canine mammary gland tumour (CMGT) cell lines. It is hypothesised that metformin has selective anti-tumour effects on metastatic CMGT cells. The aim of this study was to investigate the in vitro effect of metformin on cell growth, production of ATP and reactive oxygen species (ROS), and the AMP-activated protein kinase (AMPK) mammalian target of rapamycin (mTOR) pathway in two CMGT clonal cell lines with different metastatic potential. In addition, transcriptome analysis was used to determine cellular processes disrupted by metformin and in vivo anti-tumour effects were examined in a mouse xenograft model. Metformin inhibited CMGT cell growth in vitro, with the metastatic clone (CHMp-5b) displaying greater sensitivity. ATP depletion and ROS elevation were observed to a similar extent in the metastatic and non-metastatic (CHMp-13a) cell lines after metformin exposure. However, subsequent AMPK activation and mTOR pathway inhibition were prominent only in metformin-insensitive non-metastatic cells. Microarray analysis revealed inhibition of cell cycle progression by metformin treatment in CHMp-5b cells, which was further confirmed by Western blotting and cell cycle analysis. Additionally, metformin significantly suppressed tumour growth in xenografted metastatic CMGT cells. In conclusion, metformin exhibited an anti-tumour effect in metastatic CMGT cells through AMPK-independent cell cycle arrest. Its mechanism of action differed in the non-metastatic clone, where AMPK activation and mTOR inhibition were observed.
Collapse
Affiliation(s)
- K Saeki
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - M Watanabe
- Department of Medical Genome Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan
| | - M Tsuboi
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - S Sugano
- Department of Medical Genome Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan
| | - R Yoshitake
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Y Tanaka
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - S M Ong
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - T Saito
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - K Matsumoto
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - N Fujita
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - R Nishimura
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - T Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
49
|
Metformin suppresses diethylnitrosamine-induced liver tumorigenesis in obese and diabetic C57BL/KsJ-+Leprdb/+Leprdb mice. PLoS One 2015; 10:e0124081. [PMID: 25879666 PMCID: PMC4399835 DOI: 10.1371/journal.pone.0124081] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 03/03/2015] [Indexed: 12/22/2022] Open
Abstract
Obesity and related metabolic disorders, such as diabetes mellitus, raise the risk of liver carcinogenesis. Metformin, which is widely used in the treatment of diabetes, ameliorates insulin sensitivity. Metformin is also thought to have antineoplastic activities and to reduce cancer risk. The present study examined the preventive effect of metformin on the development of diethylnitrosamine (DEN)-induced liver tumorigenesis in C57BL/KsJ-+Leprdb/+Leprdb (db/db) obese and diabetic mice. The mice were given a single injection of DEN at 2 weeks of age and subsequently received drinking water containing metformin for 20 weeks. Metformin administration significantly reduced the multiplicity of hepatic premalignant lesions and inhibited liver cell neoplasms. Metformin also markedly decreased serum levels of insulin and reduced insulin resistance, and inhibited phosphorylation of Akt, mammalian target of rapamycin (mTOR), and p70S6 in the liver. Furthermore, serum levels of leptin were decreased, while those of adiponectin were increased by metformin. These findings suggest that metformin prevents liver tumorigenesis by ameliorating insulin sensitivity, inhibiting the activation of Akt/mTOR/p70S6 signaling, and improving adipokine imbalance. Therefore, metformin may be a potent candidate for chemoprevention of liver tumorigenesis in patients with obesity or diabetes.
Collapse
|
50
|
Barbieri F, Thellung S, Ratto A, Carra E, Marini V, Fucile C, Bajetto A, Pattarozzi A, Würth R, Gatti M, Campanella C, Vito G, Mattioli F, Pagano A, Daga A, Ferrari A, Florio T. In vitro and in vivo antiproliferative activity of metformin on stem-like cells isolated from spontaneous canine mammary carcinomas: translational implications for human tumors. BMC Cancer 2015; 15:228. [PMID: 25884842 PMCID: PMC4397725 DOI: 10.1186/s12885-015-1235-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 03/20/2015] [Indexed: 12/21/2022] Open
Abstract
Background Cancer stem cells (CSCs) are considered the cell subpopulation responsible for breast cancer (BC) initiation, growth, and relapse. CSCs are identified as self-renewing and tumor-initiating cells, conferring resistance to chemo- and radio-therapy to several neoplasias. Nowadays, th (about 10mM)e pharmacological targeting of CSCs is considered an ineludible therapeutic goal. The antidiabetic drug metformin was reported to suppress in vitro and in vivo CSC survival in different tumors and, in particular, in BC preclinical models. However, few studies are available on primary CSC cultures derived from human postsurgical BC samples, likely because of the limited amount of tissue available after surgery. In this context, comparative oncology is acquiring a relevant role in cancer research, allowing the analysis of larger samples from spontaneous pet tumors that represent optimal models for human cancer. Methods Isolation of primary canine mammary carcinoma (CMC) cells and enrichment in stem-like cell was carried out from fresh tumor specimens by culturing cells in stem-permissive conditions. Phenotypic and functional characterization of CMC-derived stem cells was performed in vitro, by assessment of self-renewal, long-lasting proliferation, marker expression, and drug sensitivity, and in vivo, by tumorigenicity experiments. Corresponding cultures of differentiated CMC cells were used as internal reference. Metformin efficacy on CMC stem cell viability was analyzed both in vitro and in vivo. Results We identified a subpopulation of CMC cells showing human breast CSC features, including expression of specific markers (i.e. CD44, CXCR4), growth as mammospheres, and tumor-initiation in mice. These cells show resistance to doxorubicin but were highly sensitive to metformin in vitro. Finally, in vivo metformin administration significantly impaired CMC growth in NOD-SCID mice, associated with a significant depletion of CSCs. Conclusions Similarly to the human counterpart, CMCs contain stem-like subpopulations representing, in a comparative oncology context, a valuable translational model for human BC, and, in particular, to predict the efficacy of antitumor drugs. Moreover, metformin represents a potential CSC-selective drug for BC, as effective (neo-)adjuvant therapy to eradicate CSC in mammary carcinomas of humans and animals. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1235-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Federica Barbieri
- Dipartimento di Medicina Interna, Sezione di Farmacologia, University of Genova, Genoa, Italy. .,Centro di Eccellenza per la Ricerca Biomedica (CEBR), University of Genova, Genoa, Italy.
| | - Stefano Thellung
- Dipartimento di Medicina Interna, Sezione di Farmacologia, University of Genova, Genoa, Italy. .,Centro di Eccellenza per la Ricerca Biomedica (CEBR), University of Genova, Genoa, Italy.
| | - Alessandra Ratto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, and National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Genoa, Italy.
| | - Elisa Carra
- Dipartimento di Medicina Sperimentale, University of Genova, Genoa, Italy.
| | - Valeria Marini
- Dipartimento di Medicina Interna, Sezione di Farmacologia, University of Genova, Genoa, Italy.
| | - Carmen Fucile
- Dipartimento di Medicina Interna, Sezione di Farmacologia, University of Genova, Genoa, Italy.
| | - Adriana Bajetto
- Dipartimento di Medicina Interna, Sezione di Farmacologia, University of Genova, Genoa, Italy.
| | - Alessandra Pattarozzi
- Dipartimento di Medicina Interna, Sezione di Farmacologia, University of Genova, Genoa, Italy.
| | - Roberto Würth
- Dipartimento di Medicina Interna, Sezione di Farmacologia, University of Genova, Genoa, Italy.
| | - Monica Gatti
- Dipartimento di Medicina Interna, Sezione di Farmacologia, University of Genova, Genoa, Italy.
| | - Chiara Campanella
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, and National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Genoa, Italy.
| | - Guendalina Vito
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, and National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Genoa, Italy.
| | - Francesca Mattioli
- Dipartimento di Medicina Interna, Sezione di Farmacologia, University of Genova, Genoa, Italy.
| | - Aldo Pagano
- Dipartimento di Medicina Sperimentale, University of Genova, Genoa, Italy. .,IRCCS AOU San Martino - IST, Genoa, Italy.
| | | | - Angelo Ferrari
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, and National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Genoa, Italy.
| | - Tullio Florio
- Dipartimento di Medicina Interna, Sezione di Farmacologia, University of Genova, Genoa, Italy. .,Centro di Eccellenza per la Ricerca Biomedica (CEBR), University of Genova, Genoa, Italy.
| |
Collapse
|