1
|
Dumitru CA, Walter N, Siebert CLR, Schäfer FTA, Rashidi A, Neyazi B, Stein KP, Mawrin C, Sandalcioglu IE. The Roles of AGTRAP, ALKBH3, DIVERSIN, NEDD8 and RRM1 in Glioblastoma Pathophysiology and Prognosis. Biomedicines 2024; 12:926. [PMID: 38672281 PMCID: PMC11048029 DOI: 10.3390/biomedicines12040926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
This study determined the expression of five novel biomarker candidates in IDH wild-type glioblastoma (GBM) tissues compared to non-malign brain parenchyma, as well as their prognostic relevance for the GBM patients' outcomes. The markers were analysed by immunohistochemistry in tumour tissues (n = 186) and healthy brain tissues (n = 54). The association with the patients' overall survival (OS) and progression-free survival (PFS) was assessed by Kaplan-Meier and log-rank test. The prognostic value of the markers was determined using multivariate Cox proportional hazard models. AGTRAP, DIVERSIN, cytoplasmic NEDD8 (NEDD8c) and RRM1 were significantly overexpressed in tumour tissues compared to the healthy brain, while the opposite was observed for ALKBH3. AGTRAP, ALKBH3, NEDD8c and RRM1 were significantly associated with OS in univariate analysis. AGTRAP and RRM1 were also independent prognostic factors for OS in multivariate analysis. For PFS, only AGTRAP and NEDD8c reached significance in univariate analysis. Additionally, AGTRAP was an independent prognostic factor for PFS in multivariate models. Finally, combined analysis of the markers enhanced their prognostic accuracy. The combination AGTRAP/ALKBH3 had the strongest prognostic value for the OS of GBM patients. These findings contribute to a better understanding of the GBM pathophysiology and may help identify novel therapeutic targets in this type of cancer.
Collapse
Affiliation(s)
| | - Nikolas Walter
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany (I.E.S.)
| | | | | | - Ali Rashidi
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany (I.E.S.)
| | - Belal Neyazi
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany (I.E.S.)
| | - Klaus-Peter Stein
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany (I.E.S.)
| | - Christian Mawrin
- Department of Neuropathology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | | |
Collapse
|
2
|
Lin X, Tan Y, Pan L, Tian Z, Lin L, Su M, Ou G, Chen Y. Prognostic value of RRM1 and its effect on chemoresistance in pancreatic cancer. Cancer Chemother Pharmacol 2024; 93:237-251. [PMID: 38040978 DOI: 10.1007/s00280-023-04616-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/05/2023] [Indexed: 12/03/2023]
Abstract
PURPOSE Pancreatic cancer (PC) remains a lethal disease, and gemcitabine resistance is prevalent. However, the biomarkers suggestive of gemcitabine resistance remain unclear. METHODS Bioinformatic tools identified ribonucleotide reductase catalytic subunit M1 (RRM1) in gemcitabine-related datasets. A cox regression model revealed the predictive value of RRM1 with clinical features. An external clinical cohort confirmed the prognostic value of RRM1. RRM1 expression was validated in gemcitabine-resistant cells in vitro and in orthotopic PC model. CCK8, flow cytometry, transwell migration, and invasion assays were used to explore the effect of RRM1 on gemcitabine-resistant cells. The CIBERSORT algorithm investigated the impact of RRM1 on immune infiltration. RESULTS The constructed nomogram based on RRM1 effectively predicted prognosis and was further validated. Moreover, patients with higher RRM1 had shorter overall survival. RRM1 expression was significantly higher in PC tissue and gemcitabine-resistant cells in vitro and in vivo. RRM1 knockdown reversed gemcitabine resistance, inhibited migration and invasion. The infiltration levels of CD4 + T cells, CD8 + T cells, neutrophils, and plasma cells correlated markedly with RRM1 expression, and communication between tumor and immune cells probably depends on NF-κB/mTOR signaling. CONCLUSION RRM1 may be a potential marker for prognosis and a target marker for gemcitabine resistance in PC.
Collapse
Affiliation(s)
- Xingyi Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Ying Tan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Lele Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Zhenfeng Tian
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Lijun Lin
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Mingxin Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Guangsheng Ou
- Department of Gastrointestinal Surgery, The Third-Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510600, People's Republic of China.
| | - Yinting Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.
| |
Collapse
|
3
|
Ono H, Murase Y, Yamashita H, Kato T, Asano D, Ishikawa Y, Watanabe S, Ueda H, Akahoshi K, Ogawa K, Kudo A, Akiyama Y, Tanaka S, Tanabe M. RRM1 is mediated by histone acetylation through gemcitabine resistance and contributes to invasiveness and ECM remodeling in pancreatic cancer. Int J Oncol 2023; 62:51. [PMID: 36866763 PMCID: PMC10019754 DOI: 10.3892/ijo.2023.5499] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 02/02/2023] [Indexed: 03/04/2023] Open
Abstract
The invasiveness of pancreatic cancer and its resistance to anticancer drugs define its malignant potential, and are considered to affect the peritumoral microenvironment. Cancer cells with resistance to gemcitabine exposed to external signals induced by anticancer drugs may enhance their malignant transformation. Ribonucleotide reductase large subunit M1 (RRM1), an enzyme in the DNA synthesis pathway, is upregulated during gemcitabine resistance, and its expression is associated with worse prognosis for pancreatic cancer. However, the biological function of RRM1 is unclear. In the present study, it was demonstrated that histone acetylation is involved in the regulatory mechanism related to the acquisition of gemcitabine resistance and subsequent RRM1 upregulation. The current in vitro study indicated that RRM1 expression is critical for the migratory and invasive potential of pancreatic cancer cells. Furthermore, a comprehensive RNA sequencing analysis showed that activated RRM1 induced marked changes in the expression levels of extracellular matrix‑related genes, including N‑cadherin, tenascin‑C and COL11A. RRM1 activation also promoted extracellular matrix remodeling and mesenchymal features, which enhanced the migratory invasiveness and malignant potential of pancreatic cancer cells. The present results demonstrated that RRM1 has a critical role in the biological gene program that regulates the extracellular matrix, which promotes the aggressive malignant phenotype of pancreatic cancer.
Collapse
Affiliation(s)
- Hiroaki Ono
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113‑8510, Japan
| | - Yoshiki Murase
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113‑8510, Japan
| | - Hironari Yamashita
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113‑8510, Japan
| | - Tomotaka Kato
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113‑8510, Japan
| | - Daisuke Asano
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113‑8510, Japan
| | - Yoshiya Ishikawa
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113‑8510, Japan
| | - Shuichi Watanabe
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113‑8510, Japan
| | - Hiroki Ueda
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113‑8510, Japan
| | - Keiichi Akahoshi
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113‑8510, Japan
| | - Kosuke Ogawa
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113‑8510, Japan
| | - Atsushi Kudo
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113‑8510, Japan
| | - Yoshimitsu Akiyama
- Division of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113‑8510, Japan
| | - Shinji Tanaka
- Division of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113‑8510, Japan
| | - Minoru Tanabe
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113‑8510, Japan
| |
Collapse
|
4
|
Kato T, Ono H, Fujii M, Akahoshi K, Ogura T, Ogawa K, Ban D, Kudo A, Tanaka S, Tanabe M. Cytoplasmic RRM1 activation as an acute response to gemcitabine treatment is involved in drug resistance of pancreatic cancer cells. PLoS One 2021; 16:e0252917. [PMID: 34111175 PMCID: PMC8191885 DOI: 10.1371/journal.pone.0252917] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 05/25/2021] [Indexed: 12/31/2022] Open
Abstract
Background RRM1 is functionally associated with DNA replication and DNA damage repair. However, the biological activity of RRM1 in pancreatic cancer remains undetermined. Methods To determine relationships between RRM1 expression and the prognosis of pancreatic cancer, and to explore RRM1 function in cancer biology, we investigated RRM1 expression levels in 121 pancreatic cancer patients by immunohistochemical staining and performed in vitro experiments to analyze the functional consequences of RRM1 expression. Results Patients with high RRM1 expression had significantly poorer clinical outcomes (overall survival; p = 0.006, disease-free survival; p = 0.0491). In particular, high RRM1 expression was also associated with poorer overall survival on adjuvant chemotherapy (p = 0.008). We found that RRM1 expression was increased 24 hours after exposure to gemcitabine and could be suppressed by histone acetyltransferase inhibition. RRM1 activation in response to gemcitabine exposure was induced mainly in the cytoplasm and cytoplasmic RRM1 activation was related to cancer cell viability. In contrast, cancer cells lacking cytoplasmic RRM1 activation were confirmed to show severe DNA damage. RRM1 inhibition with specific siRNA or hydroxyurea enhanced the cytotoxic effects of gemcitabine for pancreatic cancer cells. Conclusions Cytoplasmic RRM1 activation is involved in biological processes related to drug resistance in response to gemcitabine exposure and could be a potential target for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Tomotaka Kato
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroaki Ono
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail:
| | - Mikiya Fujii
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keiichi Akahoshi
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshiro Ogura
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kosuke Ogawa
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daisuke Ban
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsushi Kudo
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Minoru Tanabe
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
5
|
Shen JG, Shen J, Teng RY, Wang LB, Zhao WH, Wang QC. High GP73 Expression Correlates with Poor Response to Neoadjuvant Chemotherapy and Survival in Gastric Cancer: A Tissue Microarray Study. Pathol Oncol Res 2021; 27:603838. [PMID: 34257562 PMCID: PMC8262201 DOI: 10.3389/pore.2021.603838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/26/2021] [Indexed: 02/05/2023]
Abstract
Golgi protein 73 (GP73) is a type II Golgi transmembrane protein which is overexpressed in several cancers, however, its role in gastric cancer is still unclear. The aim of this study is to investigate if high GP73 expression is associated with pathological tumor response to neoadjuvant chemotherapy and prognosis for patients with gastric cancer. A total of 348 patients with gastric cancer, who had undergone surgery between 1999 and 2011 were retrospectively reviewed, GP73 expression was examined in tumor tissues using tissue microarray and the correlations between its expression and pathological response to neoadjuvant chemotherapy as well as patients prognosis were analyzed. We found that GP73 expression was not associated with clinicopathologic features including tumor size, differentiation and TNM stage. High expression of GP73 was associated with less pathological tumor response to neoadjuvant chemotherapy and poor survival in gastric cancer, multivariate analysis showed GP73 expression was an independent predictive factor for pathological response to neoadjuvant chemotherapy and for prognosis in patients with gastric cancer. Our results suggest that GP73 expression correlates with the effect of neoadjuvant chemotherapy and is a promising biomarker to identify patients with poor prognosis.
Collapse
Affiliation(s)
- Jian Guo Shen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Shen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rong Yue Teng
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Bo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wen He Zhao
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qin Chuan Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Wang Q, Liu X, Chen C, Chen J, Xu B, Chen L, Zhou J, Huang Y, Chen W, Teng R, Zhao W, Jin L, Shen J, Shen J, Yen Y, Wang L. A predictive signature for oxaliplatin and 5-fluorouracil based chemotherapy in locally advanced gastric cancer. Transl Oncol 2020; 14:100901. [PMID: 33091827 PMCID: PMC7576514 DOI: 10.1016/j.tranon.2020.100901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 02/08/2023] Open
Abstract
Adjuvant chemotherapy(AC) plays a substantial role in the treatment of locally advanced gastric cancer (LAGC), but the response remains poor. We aims to improve its efficacy in LAGC. Therefore, we identified the expression of eight genes closely associated with platinum and fluorouracil metabolism (RRM1, RRM2, RRM2B, POLH, DUT, TYMS, TYMP, MKI67) in the discovery cohort (N=291). And we further validated the findings in TCGA (N=279) and GEO. Overall survival (OS) was used as an endpoint. Univariate and multivariate Cox models were applied. A multivariate Cox regression model was simulated to predict the OS. In the discovery cohort, the univariate Cox model indicated that AC was beneficial to high-RRM1, high-DUT, low-RRM2, low-RRM2B, low-POLH, low-KI67, low-TYMS or low-TYMP patients, the results were validated in the TCGA cohort. The multivariate Cox model showed consistent results. Cumulative analysis indicated that patients with low C-Score respond poorly to the AC, whereas the high and medium C-Score patients significantly benefit from AC. A risk model based on the above variables successfully predicted the OS in both cohorts (AUC=0.75 and 0.67, respectively). Further validation in a panel of gastric cancer cell (GC) lines (N=37) indicated that C-Score is significantly associated with IC50 value to fluorouracil. Mutation profiling showed that C-Score was associated with the number and types of mutations. In conclusion, we successfully simulated a predictive signature for the efficacy of AC in LAGC patients and further explored the potential mechanisms. Our findings could promote precision medicine and improve the prognosis of LAGC patients. We successfully simulated a predictive signature for the efficacy of chemotherapy in LAGC patients and a GC cell line panel. We further explored the potential mechanisms that it may be associated with the number and type of mutations. Our findings could promote precision medicine and improve the prognosis of LAGC patients.
Collapse
Affiliation(s)
- Qinchuan Wang
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Molecular Pharmacology, City of Hope Comprehensive Cancer Center, Duarte, CA, United States of America; Department of Big Data and Health Statistics, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiyong Liu
- Department of Molecular Pharmacology, City of Hope Comprehensive Cancer Center, Duarte, CA, United States of America
| | - Chen Chen
- Department of Big Data and Health Statistics, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jida Chen
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Beisi Xu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States of America
| | - Lini Chen
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jichun Zhou
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yasheng Huang
- Department of Molecular Pharmacology, City of Hope Comprehensive Cancer Center, Duarte, CA, United States of America; Department of Urology, Hangzhou Traditional Chinese Medicine Hospital, Hangzhou, China
| | - Wenjun Chen
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Rongyue Teng
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenhe Zhao
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lidan Jin
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Shen
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianguo Shen
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yun Yen
- Department of Molecular Pharmacology, City of Hope Comprehensive Cancer Center, Duarte, CA, United States of America; Taipei Medical University, Taipei, Taiwan.
| | - Linbo Wang
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Szabó JE, Surányi ÉV, Mébold BS, Trombitás T, Cserepes M, Tóth J. A user-friendly, high-throughput tool for the precise fluorescent quantification of deoxyribonucleoside triphosphates from biological samples. Nucleic Acids Res 2020; 48:e45. [PMID: 32103262 PMCID: PMC7192609 DOI: 10.1093/nar/gkaa116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 02/05/2020] [Accepted: 02/17/2020] [Indexed: 12/24/2022] Open
Abstract
Cells maintain a fine-tuned, dynamic concentration balance in the pool of deoxyribonucleoside 5′-triphosphates (dNTPs). This balance is essential for physiological processes including cell cycle control or antiviral defense. Its perturbation results in increased mutation frequencies, replication arrest and may promote cancer development. An easily accessible and relatively high-throughput method would greatly accelerate the exploration of the diversified consequences of dNTP imbalances. The dNTP incorporation based, fluorescent TaqMan-like assay published by Wilson et al. has the aforementioned advantages over mass spectrometry, radioactive or chromatography based dNTP quantification methods. Nevertheless, the assay failed to produce reliable data in several biological samples. Therefore, we applied enzyme kinetics analysis on the fluorescent dNTP incorporation curves and found that the Taq polymerase exhibits a dNTP independent exonuclease activity that decouples signal generation from dNTP incorporation. Furthermore, we found that both polymerization and exonuclease activities are unpredictably inhibited by the sample matrix. To resolve these issues, we established a kinetics based data analysis method which identifies the signal generated by dNTP incorporation. We automated the analysis process in the nucleoTIDY software which enables even the inexperienced user to calculate the final and accurate dNTP amounts in a 96-well-plate setup within minutes.
Collapse
Affiliation(s)
- Judit Eszter Szabó
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest 1117, Hungary.,Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest 1111, Hungary
| | - Éva Viola Surányi
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest 1117, Hungary.,Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest 1111, Hungary
| | - Bence Sándor Mébold
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Tamás Trombitás
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest 1117, Hungary.,Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest 1111, Hungary
| | - Mihály Cserepes
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest 1117, Hungary.,Department of Experimental Pharmacology, National Institute of Oncology, Budapest, Hungary
| | - Judit Tóth
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest 1117, Hungary
| |
Collapse
|
8
|
Xiong DD, Zeng CM, Jiang L, Luo DZ, Chen G. Ki-67/MKI67 as a Predictive Biomarker for Clinical Outcome in Gastric Cancer Patients: an Updated Meta-analysis and Systematic Review involving 53 Studies and 7078 Patients. J Cancer 2019; 10:5339-5354. [PMID: 31632479 PMCID: PMC6775696 DOI: 10.7150/jca.30074] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 06/12/2019] [Indexed: 12/18/2022] Open
Abstract
Gastric cancer (GC) threatens human health worldwide and we performed this meta-analysis to evaluate the clinical value of Ki-67/MKI67 in patients with GC. The combined hazard ratio (HR), odds ratio (OR) and 95% confidence interval (95% CI) were calculated to assess the relationships of Ki-67/MKI67 expression with prognoses and clinicopathological characteristics. Genes co-expressed with MKI67 were collected for Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and protein-protein interaction (PPI) network analyses. In total, 53 studies with 7078 patients were included in this study. The pooled HRs indicated that an elevated expression of Ki-67/MKI67 predicted an unfavorable overall survival (HR: 1.54, 95% CI: 1.33-1.78, P<0.0001) and disease-free survival (HR: 2.28, 95% CI: 1.43-3.64, P<0.0001) in GC patients. Additionally, in patients with advanced GC, a high Ki-67/MKI67 expression was also significantly connected with OS (HR: 1.37, 95% CI: 1.18-1.60, P<0.0001). The combined ORs showed that Ki-67/MKI67 expression was related to TNM stage (stage III/IV versus stage I/II: OR=1.93, 95% CI=1.34-2.78, P<0.0001), tumor differentiation (poor versus well/moderate: OR=1.94, 95% CI=1.32-2.85, P=0.001), lymph node metastasis (yes versus no: OR=1.67, 95% CI=1.23-2.25, P=0.001), distant metastasis (yes versus no: OR=1.67, 95% CI=1.24-2.26, P=0.001) and tumor invasion depth (T3/T4 versus Tis/T1/T2: OR=1.98, 95% CI=1.60-2.44, P<0.0001). The results of GO, KEGG pathway and PPI network analyses indicated that Ki-67/MKI67 may be involved in the development of GC via influencing P53 signaling pathway. Ki-67/MKI67 could be a potential indicator to predict the prognosis of patients with GC and identify high-risk cases. Detecting Ki-67/MKI67 expression in clinic may be helpful in optimizing individual treatment and further improving the survival expectancy of patients with GC.
Collapse
Affiliation(s)
- Dan-Dan Xiong
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Chu-Mei Zeng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Ling Jiang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Dian-Zhong Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| |
Collapse
|
9
|
Jiang H, Hong T, Wang T, Wang X, Cao L, Xu X, Zheng M. Gene expression profiling of human bone marrow mesenchymal stem cells during osteogenic differentiation. J Cell Physiol 2018; 234:7070-7077. [PMID: 30378112 DOI: 10.1002/jcp.27461] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/29/2018] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Osteogenesis is a multiple-step process through which osteoblasts are derived from bone marrow mesenchymal stem cells (MSCs) with multilineage differentiation potential. This study aimed to analyze gene expression profiling during osteogenic differentiation of MSCs. MATERIALS AND METHODS Human MSCs were isolated and induced for differentiation in osteogenic medium. Full-genome gene expression microarrays and gene ontology analysis were performed. RESULTS A total of 1,680 differentially expressed genes in differentiated MSCs were identified including 430 upregulated and 1,250 downregulated. Moreover, pathway-act-network analysis showed that cell cycle, p53 signaling pathway and focal adhesion, had high degree (>5). The ribonucleotide reductase M1, thymidine kinase 1 and histone cluster 1 H3e also showed high degree (>10). Polymerase chain reaction analysis confirmed the differential expression of insulin-like growth factor binding protein 3, SMAD family member 3, transforming growth factor beta 2, and fibroblast growth factor 14 in differentiated MSCs. CONCLUSIONS Gene expression profiling provides a foundation to reveal the mechanisms that regulate osteogenic differentiation of MSCs.
Collapse
Affiliation(s)
- He Jiang
- Key Laboratory for System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, Jiangxi, China
| | - Tao Hong
- Department of Ultrasound, The First Hospital of Jiujiang City, Jiangxi, China
| | - Tao Wang
- Key Laboratory for System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, Jiangxi, China
| | - Xinping Wang
- Key Laboratory for System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, Jiangxi, China
| | - Lingling Cao
- Department of Ultrasound, The First Hospital of Jiujiang City, Jiangxi, China
| | - Xiaoyuan Xu
- Key Laboratory for System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, Jiangxi, China
| | - Meirong Zheng
- Key Laboratory for System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, Jiangxi, China
| |
Collapse
|
10
|
Fu Y, Long MJC, Wisitpitthaya S, Inayat H, Pierpont TM, Elsaid IM, Bloom JC, Ortega J, Weiss RS, Aye Y. Nuclear RNR-α antagonizes cell proliferation by directly inhibiting ZRANB3. Nat Chem Biol 2018; 14:943-954. [PMID: 30150681 DOI: 10.1038/s41589-018-0113-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/28/2018] [Indexed: 11/09/2022]
Abstract
Since the origins of DNA-based life, the enzyme ribonucleotide reductase (RNR) has spurred proliferation because of its rate-limiting role in de novo deoxynucleoside-triphosphate (dNTP) biosynthesis. Paradoxically, the large subunit, RNR-α, of this obligatory two-component complex in mammals plays a context-specific antiproliferative role. There is little explanation for this dichotomy. Here, we show that RNR-α has a previously unrecognized DNA-replication inhibition function, leading to growth retardation. This underappreciated biological activity functions in the nucleus, where RNR-α interacts with ZRANB3. This process suppresses ZRANB3's function in unstressed cells, which we show to promote DNA synthesis. This nonreductase function of RNR-α is promoted by RNR-α hexamerization-induced by a natural and synthetic nucleotide of dA/ClF/CLA/FLU-which elicits rapid RNR-α nuclear import. The newly discovered nuclear signaling axis is a primary defense against elevated or imbalanced dNTP pools that can exert mutagenic effects irrespective of the cell cycle.
Collapse
Affiliation(s)
- Yuan Fu
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Marcus J C Long
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY, USA
| | | | - Huma Inayat
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | | | - Islam M Elsaid
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Jordana C Bloom
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Robert S Weiss
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Yimon Aye
- Ecole Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, Lausanne, Switzerland.
| |
Collapse
|
11
|
Apaolaza I, San José-Eneriz E, Tobalina L, Miranda E, Garate L, Agirre X, Prósper F, Planes FJ. An in-silico approach to predict and exploit synthetic lethality in cancer metabolism. Nat Commun 2017; 8:459. [PMID: 28878380 PMCID: PMC5587678 DOI: 10.1038/s41467-017-00555-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 07/07/2017] [Indexed: 02/02/2023] Open
Abstract
Synthetic lethality is a promising concept in cancer research, potentially opening new possibilities for the development of more effective and selective treatments. Here, we present a computational method to predict and exploit synthetic lethality in cancer metabolism. Our approach relies on the concept of genetic minimal cut sets and gene expression data, demonstrating a superior performance to previous approaches predicting metabolic vulnerabilities in cancer. Our genetic minimal cut set computational framework is applied to evaluate the lethality of ribonucleotide reductase catalytic subunit M1 (RRM1) inhibition in multiple myeloma. We present a computational and experimental study of the effect of RRM1 inhibition in four multiple myeloma cell lines. In addition, using publicly available genome-scale loss-of-function screens, a possible mechanism by which the inhibition of RRM1 is effective in cancer is established. Overall, our approach shows promising results and lays the foundation to build a novel family of algorithms to target metabolism in cancer. Exploiting synthetic lethality is a promising approach for cancer therapy. Here, the authors present an approach to identifying such interactions by finding genetic minimal cut sets (gMCSs) that block cancer proliferation, and apply it to study the lethality of RRM1 inhibition in multiple myeloma.
Collapse
Affiliation(s)
- Iñigo Apaolaza
- CEIT and Tecnun, University of Navarra, Manuel de Lardizábal 13, 20018, San Sebastián, Spain
| | - Edurne San José-Eneriz
- Area de Hemato-Oncología, IDISNA, Ciberonc, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pío XII 55, 31008, Pamplona, Spain
| | - Luis Tobalina
- CEIT and Tecnun, University of Navarra, Manuel de Lardizábal 13, 20018, San Sebastián, Spain.,Faculty of Medicine, Joint Research Centre for Computational Biomedicine, RWTH Aachen University, MTI2 Wendlingweg 2, D-52074, Aachen, Germany
| | - Estíbaliz Miranda
- Area de Hemato-Oncología, IDISNA, Ciberonc, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pío XII 55, 31008, Pamplona, Spain
| | - Leire Garate
- Area de Hemato-Oncología, IDISNA, Ciberonc, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pío XII 55, 31008, Pamplona, Spain
| | - Xabier Agirre
- Area de Hemato-Oncología, IDISNA, Ciberonc, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pío XII 55, 31008, Pamplona, Spain
| | - Felipe Prósper
- Area de Hemato-Oncología, IDISNA, Ciberonc, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pío XII 55, 31008, Pamplona, Spain.
| | - Francisco J Planes
- CEIT and Tecnun, University of Navarra, Manuel de Lardizábal 13, 20018, San Sebastián, Spain.
| |
Collapse
|
12
|
Wang Q, Shu X, Dong Y, Zhou J, Teng R, Shen J, Chen Y, Dong M, Zhang W, Huang Y, Xie S, Wei Q, Zhao W, Chen W, Yuan X, Qi X, Wang L. Tumor and serum gamma-glutamyl transpeptidase, new prognostic and molecular interpretation of an old biomarker in gastric cancer. Oncotarget 2017; 8:36171-36184. [PMID: 28404903 PMCID: PMC5482647 DOI: 10.18632/oncotarget.15609] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/24/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Gastric Cancer is one of the most lethal malignancies worldwide. Gamma-glutamyl transpeptidase (GGT) is an enzyme mainly involved in cellular glutathione homeostasis. We aim to explore the clinical value of GGT in gastric cancer. RESULTS Among 322 patients enrolled, 65/82 patients were determined as GGT positive in serum/tumor, respectively. High tumor GGT expression is significantly associated with lymph node metastasis, histological subtype, and Her2 expression. Kaplan-Meier curve shows that high tumor GGT patients have shorter overall survival (P log-rank=0.001) and progress-free survival (P log-rank =0.001). Patients with both high tumor and serum GGT have the poorest prognosis. The multivariable Cox analysis shows that the hazard ratio of overall survival for high tumor GGT is 1.69 (95% CI 1.19-2.37). High serum GGT is a poor prognostic factor in adjuvant chemotherapy hazard ratio=2.18, 95%CI (1.15-4.47). These findings were further validated in six online datasets. Gene Sets Enrichment Analysis showed that GGT promotes cancer progression through EMT, KRAS, SRC and PKCA pathways. METHODS Tumor GGT and serum GGT levels were evaluated with immuno-histochemistry staining and enzymatic assay, respectively. Kaplan-Meier curve and Cox regression model were used to test the association between GGT and gastric cancer prognosis. Independent datasets from Gene Expression Omnibus and Gene Sets Enrichment Analysis were applied to validate the findings and explore the potential mechanisms. CONCLUSION Both tumor GGT and serum GGT are poor prognostic factors in gastric cancer. Patients with high tumor and serum GGT levels require more intense treatment and follow-up.
Collapse
Affiliation(s)
- Qinchuan Wang
- Department of Surgical Oncology, Affiliated Sir Runrun Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yong Dong
- Department of Oncology, Affiliated Sir Runrun Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jichun Zhou
- Department of Surgical Oncology, Affiliated Sir Runrun Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rongyue Teng
- Department of Surgical Oncology, Affiliated Sir Runrun Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianguo Shen
- Department of Surgical Oncology, Affiliated Sir Runrun Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongxia Chen
- Department of Surgical Oncology, Affiliated Sir Runrun Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingjun Dong
- Department of Surgical Oncology, Affiliated Sir Runrun Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjun Zhang
- Zhejiang Academy of Medical Science, Zhejiang University School of Medicine, Hangzhou, China
| | - Yasheng Huang
- Department of Unrology, Hangzhou Chinese Medicine Hospital, Hangzhou, China
| | - Shuduo Xie
- Department of Surgical Oncology, Affiliated Sir Runrun Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qun Wei
- Department of Surgical Oncology, Affiliated Sir Runrun Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenhe Zhao
- Department of Surgical Oncology, Affiliated Sir Runrun Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjun Chen
- Department of Surgical Oncology, Affiliated Sir Runrun Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoming Yuan
- Department of Surgical Oncology, Affiliated Sir Runrun Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xu Qi
- Department of Surgical Oncology, Affiliated Sir Runrun Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linbo Wang
- Department of Surgical Oncology, Affiliated Sir Runrun Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Cao Y, Zhang G, Wang P, Zhou J, Gan W, Song Y, Huang L, Zhang Y, Luo G, Gong J, Zhang L. Clinical significance of UGT1A1 polymorphism and expression of ERCC1, BRCA1, TYMS, RRM1, TUBB3, STMN1 and TOP2A in gastric cancer. BMC Gastroenterol 2017; 17:2. [PMID: 28056823 PMCID: PMC5217235 DOI: 10.1186/s12876-016-0561-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 12/16/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Individualized therapeutic regimen is a recently intensively pursued approach for targeting diseases, in which the search for biomarkers was considered the first and most important. Thus, the goal of this study was to investigate whether the UGT1A1, ERCC1, BRCA1, TYMS, RRM1, TUBB3, STMN1 and TOP2A genes are underlying biomarkers for gastric cancer, which, to our knowledge, has not been performed. METHODS Ninety-eight tissue specimens were collected from gastric cancer patients between May 2012 and March 2015. A multiplex branched DNA liquidchip technology was used for measuring the mRNA expressions of ERCC1, BRCA1, TYMS, RRM1, TUBB3, STMN1 and TOP2A. Direct sequencing was performed for determination of UGT1A1 polymorphisms. Furthermore, correlations between gene expressions, polymorphisms and clinicopathological characteristics were investigated. RESULTS The expressions of TYMS, TUBB3 and STMN1 were significantly associated with the clinicopathological characteristics of age, gender and family history of gastric cancer, but not with differentiation, growth patterns, metastasis and TNM staging in patients with gastric cancer. No clinical characteristics were correlated with the expressions of ERCC1, BRCA1, RRM1 and TOP2A. Additionally, patients carrying G allele at -211 of UGT1A1 were predisposed to developing tubular adenocarcinoma, while individuals carrying 6TAA or G allele respectively at *28 or -3156 of UGT1A1 tended to have a local invasion. CONCLUSIONS The UGT1A1 polymorphism may be useful to screen the risk population of gastric cancer, while TYMS, TUBB3 and STMN1 may be potential biomarkers for prognosis and chemotherapy guidance.
Collapse
Affiliation(s)
- Yongkuan Cao
- Department of Gastrointestinal Surgery, Center of General Surgery of P.L.A., Chengdu Army General Hospital, No.270 Rongdu avenue, Chengdu, 610083, Sichuan Province, China.
| | - Guohu Zhang
- Department of Gastrointestinal Surgery, Center of General Surgery of P.L.A., Chengdu Army General Hospital, No.270 Rongdu avenue, Chengdu, 610083, Sichuan Province, China
| | - Peihong Wang
- Department of Gastrointestinal Surgery, Center of General Surgery of P.L.A., Chengdu Army General Hospital, No.270 Rongdu avenue, Chengdu, 610083, Sichuan Province, China
| | - Jun Zhou
- Department of Gastrointestinal Surgery, Center of General Surgery of P.L.A., Chengdu Army General Hospital, No.270 Rongdu avenue, Chengdu, 610083, Sichuan Province, China
| | - Wei Gan
- Department of Gastrointestinal Surgery, Center of General Surgery of P.L.A., Chengdu Army General Hospital, No.270 Rongdu avenue, Chengdu, 610083, Sichuan Province, China
| | - Yaning Song
- Department of Gastrointestinal Surgery, Center of General Surgery of P.L.A., Chengdu Army General Hospital, No.270 Rongdu avenue, Chengdu, 610083, Sichuan Province, China
| | - Ling Huang
- Department of Gastrointestinal Surgery, Center of General Surgery of P.L.A., Chengdu Army General Hospital, No.270 Rongdu avenue, Chengdu, 610083, Sichuan Province, China
| | - Ya Zhang
- Department of Gastrointestinal Surgery, Center of General Surgery of P.L.A., Chengdu Army General Hospital, No.270 Rongdu avenue, Chengdu, 610083, Sichuan Province, China
| | - Guode Luo
- Department of Gastrointestinal Surgery, Center of General Surgery of P.L.A., Chengdu Army General Hospital, No.270 Rongdu avenue, Chengdu, 610083, Sichuan Province, China
| | - Jiaqing Gong
- Department of Gastrointestinal Surgery, Center of General Surgery of P.L.A., Chengdu Army General Hospital, No.270 Rongdu avenue, Chengdu, 610083, Sichuan Province, China
| | - Lin Zhang
- Department of Gastrointestinal Surgery, Center of General Surgery of P.L.A., Chengdu Army General Hospital, No.270 Rongdu avenue, Chengdu, 610083, Sichuan Province, China
| |
Collapse
|
14
|
Xu XL, Zheng J, Mao WM, Ling ZQ. RRM1 *151A>T, RRM1 -756T>C, and RRM1 -585T>Gis associated with increased susceptibility of lung cancer in Chinese patients. Cancer Med 2016; 5:2084-90. [PMID: 27335251 PMCID: PMC4971936 DOI: 10.1002/cam4.703] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/03/2015] [Accepted: 02/19/2016] [Indexed: 11/07/2022] Open
Abstract
Ribonucleotide reductase M1 (RRM1) is a crucial gene in DNA repair. Recent studies have shown that RRM1 expression can be a powerful predictor of survival or chemotherapy sensitivity in patients presenting with carcinomas who are treated with adjuvant gemcitabine-based chemotherapy including lung cancer. However, the relationship between the single nucleotide polymorphisms (SNP) of RRM1 and the susceptibility of lung cancer to chemotherapy has not been well addressed. We detected six tag SNPs of RRM1 genotypes in a cohort of 1007 patients with primary lung cancer and 1007 age- and sex-matched population controls using SNaPshot detection technology. Logistic regression, odds ratios (OR), and 95% confidence intervals were calculated to estimate lung cancer risk associated with SNP genotypes and haplotypes, after adjusting for case-control matching factors. Compared with the T/T and A/T genotype of RRM1 *151A>T, the A/A genotype had an increased risk for overall lung cancer (adjusted OR, 1.33). Additionally, the T/T+T/C genotypes of RRM1 -756T>C were risk factors that increased the susceptibility to lung cancer (adjusted OR 1.54, as compared with the C/C genotype). While the T/T+G/T genotypes of RRM1 -585T>G behaved as protective factors to increase the susceptibility to lung cancer (adjusted OR 0.44, as compared with the C/C genotype). In summary, this is the first study to systematically identify the relationship between the polymorphisms of RRM1 and individual susceptibility to lung cancer. It is anticipated that the RRM1 *151A>T, RRM1 -756T>C, and RRM1 -585T>G polymorphisms will improve the predictive prognosis of lung cancer sensitivity.
Collapse
Affiliation(s)
- Xiao-Ling Xu
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, No.38 Guangji Rd., Banshanqiao District, Hangzhou, 310022, China.,Key laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, Hangzhou, Zhejiang, 310022, China
| | - Ji Zheng
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, No.38 Guangji Rd., Banshanqiao District, Hangzhou, 310022, China.,Key laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, Hangzhou, Zhejiang, 310022, China
| | - Wei-Min Mao
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, No.38 Guangji Rd., Banshanqiao District, Hangzhou, 310022, China.,Key laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, Hangzhou, Zhejiang, 310022, China.,Department of Thoracic Tumor Surgery, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, No.38 Guangji Rd., Banshanqiao District, Hangzhou, 310022, China
| | - Zhi-Qiang Ling
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, No.38 Guangji Rd., Banshanqiao District, Hangzhou, 310022, China.,Key laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, Hangzhou, Zhejiang, 310022, China
| |
Collapse
|
15
|
Dang Y, Lan F, Ouyang X, Wang K, Lin Y, Yu Y, Wang L, Wang Y, Huang Q. Expression and clinical significance of long non-coding RNA HNF1A-AS1 in human gastric cancer. World J Surg Oncol 2015; 13:302. [PMID: 26472090 PMCID: PMC4608159 DOI: 10.1186/s12957-015-0706-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 09/22/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Increasing evidence has demonstrated that long non-coding RNAs (lncRNAs) play essential roles in the occurrence and development of human cancers, including gastric cancer (GC). However, the functional and clinical significance of lncRNAs are still poorly understood. METHODS In this study, the expression of LncRNA HNF1A antisense RNA 1 (HNF1A-AS1) was first examined by lncRNAs microarray analysis in 6 GC tissues, and was then further verified by real-time quantitative reverse transcription PCR (qRT-PCR) both in 3 GC cell lines and 161 cases of GC tissues. We also evaluated the association between HNF1A-AS1 expression and clinicopathological features of patients with GC. RESULTS LncRNAs microarray analysis results exhibited that HNF1A-AS1 was downregulated in GCs tissues (mean fold change 2.06, p < 0.05), which was further confirmed by qRT-PCR. The results from qRT-PCR showed that the expression of HNF1A-AS1 was not only downregulated in three GC cell lines (AGS, BGC-823, and MKN-45) relative to that in a normal gastric mucosal epithelial cell line (GES-1), but also decreased in GC tissues relative to that in paired adjacent non-neoplastic tissues (low expression, 94 of 161; low expression rate, 58.38%). Furthermore, low HNF1A-AS1 expression was associated with tumor size/diameter (p = 0.005, multivariate analysis), levels of serum carcinoembryonic antigen (CEA), and carbohydrate antigen 19-9 (CA19-9), and RRM1 expression in tissue samples (p = 0.028, p = 0.009, and p = 0.006, respectively). CONCLUSIONS Taken together, our data indicate that lncRNA HNF1A-AS1 may be a regulator of GC, and thus, it may have potential as a novel biomarker and treatment target for this type of cancer.
Collapse
Affiliation(s)
- Yuan Dang
- Department of Experimental Medicine, Fuzhou General Hospital (Dongfang Hospital), 156 North Xi-er Huan Road, Fuzhou City, Fujian Province, 350025, China.
| | - Fenghua Lan
- Department of Experimental Medicine, Fuzhou General Hospital (Dongfang Hospital), 156 North Xi-er Huan Road, Fuzhou City, Fujian Province, 350025, China.
| | - Xiaojuan Ouyang
- Department of Experimental Medicine, Fuzhou General Hospital (Dongfang Hospital), 156 North Xi-er Huan Road, Fuzhou City, Fujian Province, 350025, China.
| | - Kai Wang
- Department of Experimental Medicine, Fuzhou General Hospital (Dongfang Hospital), 156 North Xi-er Huan Road, Fuzhou City, Fujian Province, 350025, China.
| | - Youdong Lin
- Department of Experimental Medicine, Fuzhou General Hospital (Dongfang Hospital), 156 North Xi-er Huan Road, Fuzhou City, Fujian Province, 350025, China.
| | - Yinghao Yu
- Department of Pathology, Fuzhou General Hospital (Dongfang Hospital), 156 North Xi-er Huan Road, Fuzhou City, Fujian Province, 350025, China.
| | - Lie Wang
- Department of General Surgery, Fuzhou General Hospital (Dongfang Hospital), 156 North Xi-er Huan Road, Fuzhou City, Fujian Province, 350025, China.
| | - Yu Wang
- Department of General Surgery, Fuzhou General Hospital (Dongfang Hospital), 156 North Xi-er Huan Road, Fuzhou City, Fujian Province, 350025, China.
| | - Qiaojia Huang
- Department of Experimental Medicine, Fuzhou General Hospital (Dongfang Hospital), 156 North Xi-er Huan Road, Fuzhou City, Fujian Province, 350025, China.
| |
Collapse
|
16
|
Potent effect of adenoviral vector expressing short hairpin RNA targeting ribonucleotide reductase large subunit M1 on cell viability and chemotherapeutic sensitivity to gemcitabine in non-small cell lung cancer cells. Eur J Cancer 2015; 51:2480-9. [PMID: 26254808 DOI: 10.1016/j.ejca.2015.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/08/2015] [Accepted: 05/14/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND Ribonucleotide reductase large subunit (RRM1) is the main enzyme responsible for synthesis of the deoxyribonucleotides used during DNA synthesis. It is also a cellular target for gemcitabine (GEM). Overexpression of RRM1 is reportedly associated with resistance to GEM and the poor prognosis for many types of malignant tumours. Aim of the present study is to establish gene therapy against RRM1-overexpressing tumours. METHOD An adenoviral vector that encoded a short hairpin siRNA targeting the RRM1 gene (Ad-shRRM1) was constructed. Two RRM1-overexpressing non-small cell lung cancer (NSCLC) lines, MAC10 and RERF-LC-MA, were used. Finally, a human tumour xenograft model in nude mice was prepared by subcutaneously implanting tumours derived from RERF-LC-MA cells. RESULTS Ad-shRRM1 effectively downregulated RRM1 mRNA and protein in both types of NSCLC cells and significantly reduced the percentage of viable cells as detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay (p<0.005). Caspase 3/7 analysis revealed that transfection with Ad-RRM1 increased the percentage of apoptotic cells in culture containing either type of RRM1-overexpressing cell (p<0.001). Treatment with Ad-shRRM1 exerted a potent antitumour effect against the RRM1-overexpressing RERF-LC-MA xenografts (p<0.05). Furthermore, Ad-shRRM1-mediated inhibition of RRM1 specifically increased sensitivity to gemcitabine of each type of RRM1-overexpressing tumour cell. Combination treatment with Ad-shRRM1 and GEM exerted significantly greater inhibition on cell proliferation than Ad-shRRM1 or GEM treatment alone. CONCLUSION RRM1 appeared to be a promising target for gene therapy, and Ad-shRRM1 had strong antitumour effects, specifically anti-proliferative and pro-apoptotic effects, against NSCLC cells that overexpressed RRM1. Combination therapy with Ad-shRRM1 and GEM may become a new treatment option for patients with NSCLC.
Collapse
|
17
|
Minami K, Shinsato Y, Yamamoto M, Takahashi H, Zhang S, Nishizawa Y, Tabata S, Ikeda R, Kawahara K, Tsujikawa K, Chijiiwa K, Yamada K, Akiyama SI, Pérez-Torras S, Pastor-Anglada M, Furukawa T, Yasuo T. Ribonucleotide reductase is an effective target to overcome gemcitabine resistance in gemcitabine-resistant pancreatic cancer cells with dual resistant factors. J Pharmacol Sci 2015; 127:319-25. [PMID: 25837929 DOI: 10.1016/j.jphs.2015.01.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/07/2015] [Accepted: 01/22/2015] [Indexed: 12/18/2022] Open
Abstract
Gemcitabine is widely used for pancreatic, lung, and bladder cancer. However, drug resistance against gemcitabine is a large obstacle to effective chemotherapy. Nucleoside transporters, nucleoside and nucleotide metabolic enzymes, and efflux transporters have been reported to be involved in gemcitabine resistance. Although most of the resistant factors are supposed to be related to each other, it is unclear how one factor can affect the other one. In this study, we established gemcitabine-resistant pancreatic cancer cell lines. Gemcitabine resistance in these cells is caused by two major processes: a decrease in gemcitabine uptake and overexpression of ribonucleotide reductase large subunit (RRM1). Knockdown of RRM1, but not the overexpression of concentrative nucleoside transporter 1 (CNT1), could completely overcome the gemcitabine resistance. RRM1 knockdown in gemcitabine-resistant cells could increase the intracellular accumulation of gemcitabine by increasing the nucleoside transporter expression. Furthermore, a synergistic effect was observed between hydroxyurea, a ribonucleotide reductase (RR) inhibitor, and gemcitabine on the gemcitabine-resistant cells. Here we indicate that RR is one of the most promising targets to overcome gemcitabine resistance in gemcitabine-resistant cells with dual resistant factors.
Collapse
Affiliation(s)
- Kentaro Minami
- Department of Clinical Pharmacy and Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Yoshinari Shinsato
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; Center for the Research of Advanced Diagnosis and Therapy of Cancer, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Masatatsu Yamamoto
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; Center for the Research of Advanced Diagnosis and Therapy of Cancer, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Homare Takahashi
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; Department of Surgical Oncology and Regulation of Organ Function, Miyazaki University School of Medicine, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Shaoxuan Zhang
- Laboratory of Molecular Genetics, Institute of Frontier Medical Sciences, Jilin University, 1163 Xinmin Street, Changchun 130021, China
| | - Yukihiko Nishizawa
- Department of Clinical Pharmacy and Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Sho Tabata
- Department of Clinical Pharmacy and Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; Institute for Advanced Biosciences, Keio University, Mizukami 246-2, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Ryuji Ikeda
- Department of Clinical Pharmacy and Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Kohich Kawahara
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; Center for the Research of Advanced Diagnosis and Therapy of Cancer, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Kazutake Tsujikawa
- Graduate School of Pharmaceutical Science, Osaka University, Yamada-oka 1-6, Suita, Osaka 565-0817, Japan
| | - Kazuo Chijiiwa
- Department of Surgical Oncology and Regulation of Organ Function, Miyazaki University School of Medicine, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Katsushi Yamada
- Department of Clinical Pharmacy and Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Nagasaki International University, Huis Ten Bosch Cho 2825-7, Sasebo, Nagasaki 859-3298, Japan
| | - Shin-ichi Akiyama
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; Clinical Research Center, National Kyushu Cancer Center, Notame, Minami-ku, Fukuoka 811-1395, Japan
| | - Sandra Pérez-Torras
- Department of Biochemistry and Molecular Biology, University of Barcelona, Institute of Biomedicine and Oncology Programme, National Biomedical Research Institute of Liver and Gastrointestinal Diseases (CIBER EHD) Diagonal 643, 08028 Barcelona, Spain
| | - Marcal Pastor-Anglada
- Department of Biochemistry and Molecular Biology, University of Barcelona, Institute of Biomedicine and Oncology Programme, National Biomedical Research Institute of Liver and Gastrointestinal Diseases (CIBER EHD) Diagonal 643, 08028 Barcelona, Spain
| | - Tatsuhiko Furukawa
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; Center for the Research of Advanced Diagnosis and Therapy of Cancer, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan.
| | - Takeda Yasuo
- Department of Clinical Pharmacy and Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| |
Collapse
|
18
|
Aird KM, Zhang R. Nucleotide metabolism, oncogene-induced senescence and cancer. Cancer Lett 2014; 356:204-10. [PMID: 24486217 DOI: 10.1016/j.canlet.2014.01.017] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/06/2014] [Accepted: 01/22/2014] [Indexed: 01/28/2023]
Abstract
Senescence is defined as a stable cell growth arrest. Oncogene-induced senescence (OIS) occurs when an activated oncogene is expressed in a normal cell. OIS acts as a bona fide tumor suppressor mechanism by driving stable growth arrest of cancer progenitor cells harboring the initial oncogenic hit. OIS is often characterized by aberrant DNA replication and the associated DNA damage response. Nucleotides, in particular deoxyribonucleotide triphosphates (dNTPs), are necessary for both DNA replication and repair. Imbalanced dNTP pools play a role in a number of human diseases, including during the early stages of cancer development. This review will highlight what is currently known about the role of decreased nucleotide metabolism in OIS, how nucleotide metabolism leads to transformation and tumor progression, and how this pathway can be targeted as a cancer therapeutic by inducing senescence of cancer cells.
Collapse
Affiliation(s)
- Katherine M Aird
- Gene Expression and Regulation Program, The Wistar Institute Cancer Center, The Wistar Institute, Philadelphia, PA 19104, United States
| | - Rugang Zhang
- Gene Expression and Regulation Program, The Wistar Institute Cancer Center, The Wistar Institute, Philadelphia, PA 19104, United States.
| |
Collapse
|