1
|
Lin YC, Tsai WH, Chang SC, Hsu HC. Apoptotic Cell-Derived CD14(+) Microparticles Promote the Phagocytic Activity of Neutrophilic Precursor Cells in the Phagocytosis of Apoptotic Cells. Cells 2023; 12:1983. [PMID: 37566062 PMCID: PMC10417108 DOI: 10.3390/cells12151983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023] Open
Abstract
Membranous CD14 is crucial in the phagocytic activity of neutrophils. However, the role of CD14(+) microparticles (MPs) derived from apoptotic neutrophils (apo-MP) during the phagocytic process is not clear. All trans-retinoic acid (ATRA) induces acute promyelocytic leukemic NB4 cells along granulocytic differentiation. In this study, we investigated the role of CD14(+)apo-MP in the cell-cell interaction during the phagocytic process of apoptotic cells by viable ATRA-NB4 cells. We firstly demonstrate that CD14 expression and phagocytic activity of NB4 cells were upregulated simultaneously after ATRA treatment in a time-dependent manner, and both were significantly enhanced via concurrent lipopolysaccharide treatment. The phagocytic activity of ATRA-NB4 cells and lipopolysaccharide-treated ATRA-NB4 cells were both significantly attenuated by pre-treating cells with an antibody specific to either CD14 or TLR4. Further flow cytometric analysis demonstrates that apoptotic ATRA-NB4 cells release CD14(+)apo-MP in an idarubicin dosage-dependent manner. Both CD14 expression and the phagocytic activity of viable ATRA-NB4 cells were significantly enhanced after incubation with apo-MP harvested from apoptotic ATRA-NB4 cells, and the apo-MP-enhanced phagocytic activity was significantly attenuated by pre-treating apo-MP with an anti-CD14 antibody before incubation with viable cells. We conclude that CD14(+)apo-MP derived from apoptotic ATRA-NB4 cells promotes the phagocytic activity of viable ATRA-NB4 cells in engulfing apoptotic cells.
Collapse
Affiliation(s)
- Yu-Chieh Lin
- Department of Physiology, School of Medicine, National Yang-Ming Chiao-Tung University, Taipei 112, Taiwan; (Y.-C.L.)
- Sleep Medicine Center, Division of Chest Medicine, Taichung Tzu Chi Hospital, Taichung 427, Taiwan
| | - Wen-Hui Tsai
- Department of Respiratory Therapy, Taipei Medical University, Taipei 106, Taiwan;
| | - Shao-Chi Chang
- Department of Physiology, School of Medicine, National Yang-Ming Chiao-Tung University, Taipei 112, Taiwan; (Y.-C.L.)
| | - Hui-Chi Hsu
- Department of Medicine, School of Medicine, National Yang-Ming Chiao-Tung University, Taipei 112, Taiwan
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Division of Hematology & Oncology, Department of Medicine, Cheng-Hsin General Hospital, Taipei 112, Taiwan
| |
Collapse
|
2
|
Development of a rapid in vitro pre-screen for distinguishing effective liposome-adjuvant delivery systems. Sci Rep 2022; 12:12448. [PMID: 35859154 PMCID: PMC9299755 DOI: 10.1038/s41598-022-14449-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 06/06/2022] [Indexed: 01/07/2023] Open
Abstract
Liposomes are a strong supporting tool in vaccine technology, as they are a versatile system that not only act as antigen delivery systems but also adjuvants that can be highly effective at stimulating both innate and adaptive immune responses. Their ability to induce cell-mediated immunity makes their use in vaccines a useful tool in the development of novel, more effective vaccines against intracellular infections (e.g. HIV, malaria and tuberculosis). Currently, screening of novel liposome formulations uses murine in vivo models which generate data that often correlates poorly with human data. In addition, these models are both high cost and low throughput, making them prohibitive for large scale screening of formulation libraries. This study uses the cationic liposome formulation DDA:TDB (known as cationic adjuvant formulation 01 (CAF01)), as a lead formulation, along with other liposome formulations of known in vivo efficacy to develop an in vitro screening tool for liposome formulation development. THP-1-derived macrophages were the model antigen presenting cell used to assess the ability of the liposome formulations to attract, associate with and activate antigen presenting cells in vitro, crucial steps necessary for an effective immune response to antigen. By using a combination of in vitro functions, the study highlights the potential use of an in vitro screening tool, to predict the in vivo efficacy of novel liposome formulations. CAF01 was predicted as the most effective liposome formulation when assessing all in vitro functions and a measure of in vitro activation was able to predict 80% of the liposome correctly for their ability to induce an in vivo IFN-ү response.
Collapse
|
3
|
Chaudhary S, Patidar A, Dhiman A, Chaubey GK, Dilawari R, Talukdar S, Modanwal R, Raje M. Exposure of a specific pleioform of multifunctional glyceraldehyde 3-phosphate dehydrogenase initiates CD14-dependent clearance of apoptotic cells. Cell Death Dis 2021; 12:892. [PMID: 34593755 PMCID: PMC8482365 DOI: 10.1038/s41419-021-04168-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/02/2021] [Accepted: 09/15/2021] [Indexed: 02/08/2023]
Abstract
Rapid clearance of apoptotic cells by phagocytes is crucial for organogenesis, tissue homeostasis, and resolution of inflammation. This process is initiated by surface exposure of various 'eat me' ligands. Though phosphatidylserine (PS) is the best recognized general recognition ligand till date, recent studies have shown that PS by itself is not sufficient for clearance of apoptotic cells. In this study, we have identified a specific pleioform of GAPDH (Glyceraldehyde 3-phosphate dehydrogenase) that functions as an 'eat me' signal on apoptotic cell surface. This specific form of GAPDH which is exposed on surface of apoptotic cells was found to interact with CD14 present on plasma membrane of phagocytes leading to their engulfment. This is the first study demonstrating the novel interaction between multifunctional GAPDH and the phagocytic receptor CD14 resulting in apoptotic cell clearance (efferocytosis).
Collapse
Affiliation(s)
- Surbhi Chaudhary
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, 160036, India
| | - Anil Patidar
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, 160036, India
| | - Asmita Dhiman
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, 160036, India
| | | | - Rahul Dilawari
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, 160036, India
| | - Sharmila Talukdar
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, 160036, India
| | - Radheshyam Modanwal
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, 160036, India
| | - Manoj Raje
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, 160036, India.
| |
Collapse
|
4
|
Ross EA, Devitt A, Johnson JR. Macrophages: The Good, the Bad, and the Gluttony. Front Immunol 2021; 12:708186. [PMID: 34456917 PMCID: PMC8397413 DOI: 10.3389/fimmu.2021.708186] [Citation(s) in RCA: 201] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022] Open
Abstract
Macrophages are dynamic cells that play critical roles in the induction and resolution of sterile inflammation. In this review, we will compile and interpret recent findings on the plasticity of macrophages and how these cells contribute to the development of non-infectious inflammatory diseases, with a particular focus on allergic and autoimmune disorders. The critical roles of macrophages in the resolution of inflammation will then be examined, emphasizing the ability of macrophages to clear apoptotic immune cells. Rheumatoid arthritis (RA) is a chronic autoimmune-driven spectrum of diseases where persistent inflammation results in synovial hyperplasia and excessive immune cell accumulation, leading to remodeling and reduced function in affected joints. Macrophages are central to the pathophysiology of RA, driving episodic cycles of chronic inflammation and tissue destruction. RA patients have increased numbers of active M1 polarized pro-inflammatory macrophages and few or inactive M2 type cells. This imbalance in macrophage homeostasis is a main contributor to pro-inflammatory mediators in RA, resulting in continual activation of immune and stromal populations and accelerated tissue remodeling. Modulation of macrophage phenotype and function remains a key therapeutic goal for the treatment of this disease. Intriguingly, therapeutic intervention with glucocorticoids or other DMARDs promotes the re-polarization of M1 macrophages to an anti-inflammatory M2 phenotype; this reprogramming is dependent on metabolic changes to promote phenotypic switching. Allergic asthma is associated with Th2-polarised airway inflammation, structural remodeling of the large airways, and airway hyperresponsiveness. Macrophage polarization has a profound impact on asthma pathogenesis, as the response to allergen exposure is regulated by an intricate interplay between local immune factors including cytokines, chemokines and danger signals from neighboring cells. In the Th2-polarized environment characteristic of allergic asthma, high levels of IL-4 produced by locally infiltrating innate lymphoid cells and helper T cells promote the acquisition of an alternatively activated M2a phenotype in macrophages, with myriad effects on the local immune response and airway structure. Targeting regulators of macrophage plasticity is currently being pursued in the treatment of allergic asthma and other allergic diseases. Macrophages promote the re-balancing of pro-inflammatory responses towards pro-resolution responses and are thus central to the success of an inflammatory response. It has long been established that apoptosis supports monocyte and macrophage recruitment to sites of inflammation, facilitating subsequent corpse clearance. This drives resolution responses and mediates a phenotypic switch in the polarity of macrophages. However, the role of apoptotic cell-derived extracellular vesicles (ACdEV) in the recruitment and control of macrophage phenotype has received remarkably little attention. ACdEV are powerful mediators of intercellular communication, carrying a wealth of lipid and protein mediators that may modulate macrophage phenotype, including a cargo of active immune-modulating enzymes. The impact of such interactions may result in repair or disease in different contexts. In this review, we will discuss the origin, characterization, and activity of macrophages in sterile inflammatory diseases and the underlying mechanisms of macrophage polarization via ACdEV and apoptotic cell clearance, in order to provide new insights into therapeutic strategies that could exploit the capabilities of these agile and responsive cells.
Collapse
Affiliation(s)
- Ewan A Ross
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Andrew Devitt
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Jill R Johnson
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| |
Collapse
|
5
|
Westman J, Grinstein S, Marques PE. Phagocytosis of Necrotic Debris at Sites of Injury and Inflammation. Front Immunol 2020; 10:3030. [PMID: 31998312 PMCID: PMC6962235 DOI: 10.3389/fimmu.2019.03030] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022] Open
Abstract
Clearance of cellular debris is required to maintain the homeostasis of multicellular organisms. It is intrinsic to processes such as tissue growth and remodeling, regeneration and resolution of injury and inflammation. Most of the removal of effete and damaged cells is performed by macrophages and neutrophils through phagocytosis, a complex phenomenon involving ingestion and degradation of the disposable particles. The study of the clearance of cellular debris has been strongly biased toward the removal of apoptotic bodies; as a result, the mechanisms underlying the removal of necrotic cells have remained relatively unexplored. Here, we will review the incipient but growing knowledge of the phagocytosis of necrotic debris, from their recognition and engagement to their internalization and disposal. Critical insights into these events were gained recently through the development of new in vitro and in vivo models, along with advances in live-cell and intravital microscopy. This review addresses the classes of "find-me" and "eat-me" signals presented by necrotic cells and their cognate receptors in phagocytes, which in most cases differ from the extensively characterized counterparts in apoptotic cell engulfment. The roles of damage-associated molecular patterns, chemokines, lipid mediators, and complement components in recruiting and activating phagocytes are reviewed. Lastly, the physiological importance of necrotic cell removal is emphasized, highlighting the key role of impaired debris clearance in autoimmunity.
Collapse
Affiliation(s)
- Johannes Westman
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Pedro Elias Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Marongiu L, Gornati L, Artuso I, Zanoni I, Granucci F. Below the surface: The inner lives of TLR4 and TLR9. J Leukoc Biol 2019; 106:147-160. [PMID: 30900780 PMCID: PMC6597292 DOI: 10.1002/jlb.3mir1218-483rr] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022] Open
Abstract
TLRs are a class of pattern recognition receptors (PRRs) that detect invading microbes by recognizing pathogen-associated molecular patterns (PAMPs). Upon PAMP engagement, TLRs activate a signaling cascade that leads to the production of inflammatory mediators. The localization of TLRs, either on the plasma membrane or in the endolysosomal compartment, has been considered to be a fundamental aspect to determine to which ligands the receptors bind, and which transduction pathways are induced. However, new observations have challenged this view by identifying complex trafficking events that occur upon TLR-ligand binding. These findings have highlighted the central role that endocytosis and receptor trafficking play in the regulation of the innate immune response. Here, we review the TLR4 and TLR9 transduction pathways and the importance of their different subcellular localization during the inflammatory response. Finally, we discuss the implications of TLR9 subcellular localization in autoimmunity.
Collapse
Affiliation(s)
- Laura Marongiu
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Laura Gornati
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Irene Artuso
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Ivan Zanoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Francesca Granucci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
7
|
Zizzo G, Cohen PL. Antibody Cross-Linking of CD14 Activates MerTK and Promotes Human Macrophage Clearance of Apoptotic Neutrophils: the Dual Role of CD14 at the Crossroads Between M1 and M2c Polarization. Inflammation 2019; 41:2206-2221. [PMID: 30091033 DOI: 10.1007/s10753-018-0864-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Mer receptor tyrosine kinase (MerTK) is key for efficient phagocytosis of apoptotic neutrophils (ANs) and homeostasis of IL-10 production by human anti-inflammatory M2c monocytes/macrophages. We asked whether stimulation of M2c surface receptors contributes in turn to MerTK activation. For this purpose, human monocytes/macrophages were differentiated under M1, M2a, and M2c polarizing conditions. The effects of antibody-mediated cross-linking of M2c receptors (i.e., CD14, CD16, CD32, CD163, CD204) on MerTK phosphorylation and phagocytosis of ANs were tested. MerTK expression was also studied by flow cytometry and western blot in the presence of LPS and in M2c-derived microvesicles (MVs). Antibody cross-linking of either CD14 or CD32/FcγRII led to Syk activation and MerTK phosphorylation in its two distinct glycoforms (175-205 and 135-155 kDa). Cross-linked CD14 enhanced efferocytosis by M2c macrophages and enabled M1 and M2a cells to clear ANs efficiently. In M1 conditions, LPS abolished surface MerTK expression on CD14bright cell subsets, so disrupting the anti-inflammatory pathway. In M2c cells, instead, MerTK was diffusely and brightly co-expressed with CD14, and was also detected in M2c macrophage-derived MVs; in these conditions, LPS only partially downregulated MerTK on cell surfaces, while the smaller MerTK glycoform contained in MVs remained intact. Altogether, cooperation between CD14 and MerTK may foster the clearance of ANs by human monocytes/macrophages. CD14 stands between M1-related LPS co-receptor activity and M2c-related MerTK-dependent response. MerTK interaction with CD32/FcγRII, its detection in M2c MVs, and the differential localization and LPS susceptibility of MerTK glycoforms add further new elements to the complexity of the MerTK network.
Collapse
Affiliation(s)
- Gaetano Zizzo
- Temple Autoimmunity Center, Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA. .,Section of Rheumatology, Department of Medicine, Lewis Katz School of Medicine at Temple University, 3322 N. Broad Street, Philadelphia, PA, 19140, USA.
| | - Philip L Cohen
- Temple Autoimmunity Center, Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA. .,Section of Rheumatology, Department of Medicine, Lewis Katz School of Medicine at Temple University, 3322 N. Broad Street, Philadelphia, PA, 19140, USA.
| |
Collapse
|
8
|
Porphyromonas gingivalis gingipains cause defective macrophage migration towards apoptotic cells and inhibit phagocytosis of primary apoptotic neutrophils. Cell Death Dis 2017; 8:e2644. [PMID: 28252646 PMCID: PMC5386511 DOI: 10.1038/cddis.2016.481] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 01/17/2023]
Abstract
Periodontal disease is a prevalent chronic inflammatory condition characterised by an aberrant host response to a pathogenic plaque biofilm resulting in local tissue damage and frustrated healing that can result in tooth loss. Cysteine proteases (gingipains) from the key periodontal pathogen Porphyromonas gingivalis have been implicated in periodontal disease pathogenesis by inhibiting inflammation resolution and are linked with systemic chronic inflammatory conditions such as rheumatoid arthritis. Efficient clearance of apoptotic cells is essential for the resolution of inflammation and tissue restoration. Here we sought to characterise the innate immune clearance of apoptotic cells and its modulation by gingipains. We examined the capacity of gingipain-treated macrophages to migrate towards and phagocytose apoptotic cells. Lysine gingipain treatment of macrophages impaired macrophage migration towards apoptotic neutrophils. Furthermore, lysine gingipain treatment reduced surface expression levels of CD14, a key macrophage receptor for apoptotic cells, which resulted in reduced macrophage interactions with apoptotic cells. Additionally, while apoptotic cells and their derived secretome were shown to inhibit TNF-α-induced expression by P. gingivalis lipopolysaccharide, we demonstrated that gingipain preparations induced a rapid inflammatory response in macrophages that was resistant to the anti-inflammatory effects of apoptotic cells or their secretome. Taken together, these data indicate that P. gingivalis may promote the chronic inflammation seen in periodontal disease patients by multiple mechanisms, including rapid, potent gingipain-mediated inflammation, coupled with receptor cleavage leading to defective clearance of apoptotic cells and reduced anti-inflammatory responses. Thus, gingipains represent a potential therapeutic target for intervention in the management of chronic periodontal disease.
Collapse
|
9
|
Zwozdesky MA, Fei C, Lillico DME, Stafford JL. Imaging flow cytometry and GST pulldown assays provide new insights into channel catfish leukocyte immune-type receptor-mediated phagocytic pathways. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:126-138. [PMID: 27984101 DOI: 10.1016/j.dci.2016.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/26/2016] [Accepted: 10/26/2016] [Indexed: 06/06/2023]
Abstract
Channel catfish (Ictalurus punctatus) leukocyte immune-type receptors (IpLITRs) control various innate immune cell effector responses including the phagocytic process. This large immunoregulatory receptor family also consists of multiple receptor-types with variable signaling abilities that is dependent on their inherent or acquired tyrosine-containing cytoplasmic tail (CYT) regions. For example, IpLITR 2.6b associates with the immunoreceptor tyrosine-based activation motif (ITAM)-containing adaptor molecule IpFcRγ-L, and when expressed in mammalian cells it activates phagocytosis using a similar profile of intracellular signaling mediators that also regulate the prototypical mammalian Fc receptor (FcR) phagocytic pathway. Alternatively, IpLITR 1.1b contains a long tyrosine-containing CYT with multifunctional capabilities including both inhibitory and stimulatory actions. Recently, we demonstrated that IpLITR 1.1b activates a unique phagocytic pathway involving the generation of multiple plasma membrane extensions that rapidly capture extracellular targets and secure them on the cell surface in phagocytic cup-like structures. Occasionally, these captured targets are completely engulfed albeit at a significantly lower rate than what was observed for IpLITR 2.6b. While this novel IpLITR 1.1b phagocytic activity is insensitive to classical blockers of phagocytosis, its distinct target capture and engulfment actions depend on the engagement of the actin polymerization machinery. However, it is not known how this protein translates target recognition into intracellular signaling events during this atypical mode of phagocytosis. Using imaging flow cytometry and GST pulldown assays, the aims of this study were to specifically examine what regions of the IpLITR 1.1b CYT trigger phagocytosis and to establish what profile of intracellular signaling molecules likely participate in its actions. Our results show that in stably transfected AD293 cells, the membrane proximal and distal CYT segments of IpLITR 1.1b independently regulate its phagocytic activities. These CYT regions were also shown to differentially recruit various SH2 domain-containing intracellular mediators, which provides new information about the dynamic immunoregulatory abilities of IpLITR 1.1b. Overall, this work further advances our understanding of how certain immunoregulatory receptor-types link extracellular target binding events to the actin polymerization machinery during a non-classical mode of phagocytosis.
Collapse
Affiliation(s)
- Myron A Zwozdesky
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Chenjie Fei
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Dustin M E Lillico
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
10
|
Leslie LJ, Vasanthi Bathrinarayanan P, Jackson P, Mabiala Ma Muanda JA, Pallett R, Stillman CJP, Marshall LJ. A comparative study of electronic cigarette vapor extracts on airway-related cell lines in vitro. Inhal Toxicol 2017; 29:126-136. [PMID: 28470141 DOI: 10.1080/08958378.2017.1318193] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/09/2017] [Accepted: 04/07/2017] [Indexed: 10/19/2022]
Abstract
The use of electronic cigarettes (ECs) is rapidly increasing worldwide; however, scientific evidence regarding EC cytotoxicity is limited. The aim of this study was to evaluate the acute cytotoxicity of EC vapor extract (ECE) on airway-related cells in vitro. Cigarette smoke extract (CSE), vapor extract of fifteen brands/flavors of ECs and the extract from the E-vehicle (propylene glycol and glycerin) was collected. Extracts, in concentrations of 100-12.5%, were added to human bronchial epithelial (BEAS-2B, IB3-1 and C38), fibroblast (Wi-38) and macrophage (J774 and THP-1) cell lines. Viability was assessed after 24 h using a standard XTT assay. Viability of <70% of control (no extract) was considered cytotoxic according to UNI EN ISO 10993-5 standards. CSE displayed a concentration-dependent influence on cell viability across all four cell lines with 100% producing the most toxic effect, therefore validating the model and indicating higher cytotoxicity than in ECEs. ECEs did reduce viability although this was not correlated with nicotine content or the E-vehicle. However, several flavors proved cytotoxic, with variation between different brands and cell lines. These data indicate that not all ECs are the same and that use of a particular flavor or brand may have differing effects. The cell line used is also an important factor. More research is crucial to ascertain the health effects of different ECs before they can be accepted as a safe alternative to tobacco cigarettes.
Collapse
Affiliation(s)
- Laura J Leslie
- a School of Engineering and Applied Science , Aston University , Birmingham , UK
| | | | - Pamela Jackson
- b School of Life and Health Sciences , Aston University , Birmingham , UK
| | | | - Ross Pallett
- b School of Life and Health Sciences , Aston University , Birmingham , UK
| | | | - Lindsay J Marshall
- b School of Life and Health Sciences , Aston University , Birmingham , UK
| |
Collapse
|
11
|
Al-Kahiry W, Sharshira H, Ghanem A, El-Gammal M, Mikhael IL. Evaluation of Prognostic Impact of Soluble CD14 in B-Chronic Lymphocytic Leukemia. Indian J Hematol Blood Transfus 2016; 33:321-326. [PMID: 28824232 DOI: 10.1007/s12288-016-0745-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/03/2016] [Indexed: 11/28/2022] Open
Abstract
sCD14 is an acute phase reactant; few studies reported its prognostic value in B-CLL patients. This gave us the impetus to conduct this study. This study enrolled 40 newly diagnosed B-CLL Egyptian patients, presented to the Hematology Department of the Medical Research Institute in Alexandria University. The ZAP-70 was determined by flow cytometry whereas serum sCD14 concentration by human sCD14 sandwich ELISA method. The mean serum level of sCD14 was significantly higher among patients with positive ZAP-70, Binet stage C, Rai stage III-IV and high risk CLL prognostic index. It showed a significant positive correlation to the percentage of ZAP-70 expression and significant negative correlation to the hemoglobin concentration. Serum sCD14 concentration could be used to assess B-CLL patients initially as an additional prognostic marker, especially in low resources areas where flow cytometry is not available.
Collapse
Affiliation(s)
- Waiel Al-Kahiry
- Department of Hematology, Faculty of Medicine and Health Sciences, University of Aden, Aden, Yemen
| | - Homam Sharshira
- Department of Hematology, Medical Research Institute, University of Alexandria, 47 (A) Memphis - Camp Chezar, Alexandria, Egypt
| | - Amal Ghanem
- Department of Hematology, Medical Research Institute, University of Alexandria, 47 (A) Memphis - Camp Chezar, Alexandria, Egypt
| | - Maha El-Gammal
- Department of Hematology, Medical Research Institute, University of Alexandria, 47 (A) Memphis - Camp Chezar, Alexandria, Egypt
| | - Irene Lewis Mikhael
- Department of Hematology, Medical Research Institute, University of Alexandria, 47 (A) Memphis - Camp Chezar, Alexandria, Egypt
| |
Collapse
|
12
|
Lillico DME, Zwozdesky MA, Pemberton JG, Deutscher JM, Jones LO, Chang JP, Stafford JL. Teleost leukocyte immune-type receptors activate distinct phagocytic modes for target acquisition and engulfment. J Leukoc Biol 2015; 98:235-48. [DOI: 10.1189/jlb.2a0215-039rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/15/2015] [Indexed: 12/22/2022] Open
|
13
|
Di Gioia M, Zanoni I. Toll-like receptor co-receptors as master regulators of the immune response. Mol Immunol 2015; 63:143-52. [DOI: 10.1016/j.molimm.2014.05.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/24/2014] [Accepted: 05/25/2014] [Indexed: 12/12/2022]
|
14
|
Transglutaminase 2 interacts with syndecan-4 and CD44 at the surface of human macrophages to promote removal of apoptotic cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:201-12. [DOI: 10.1016/j.bbamcr.2014.09.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 09/07/2014] [Accepted: 09/19/2014] [Indexed: 11/20/2022]
|
15
|
Marshall LJ, Oguejiofor W, Willetts RS, Griffiths HR, Devitt A. Developing accurate models of the human airways. J Pharm Pharmacol 2014; 67:464-72. [DOI: 10.1111/jphp.12340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/19/2014] [Indexed: 12/14/2022]
Abstract
Abstract
Objectives
Particle delivery to the airways is an attractive prospect for many potential therapeutics, including vaccines. Developing strategies for inhalation of particles provides a targeted, controlled and non-invasive delivery route but, as with all novel therapeutics, in vitro and in vivo testing are needed prior to clinical use. Whilst advanced vaccine testing demands the use of animal models to address safety issues, the production of robust in vitro cellular models would take account of the ethical framework known as the 3Rs (Replacement, Reduction and Refinement of animal use), by permitting initial screening of potential candidates prior to animal use. There is thus a need for relevant, realistic in vitro models of the human airways.
Key findings
Our laboratory has designed and characterised a multi-cellular model of human airways that takes account of the conditions in the airways and recapitulates many salient features, including the epithelial barrier and mucus secretion.
Summary
Our human pulmonary models recreate many of the obstacles to successful pulmonary delivery of particles and therefore represent a valid test platform for screening compounds and delivery systems.
Collapse
Affiliation(s)
| | - Wilson Oguejiofor
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Rachel S Willetts
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Helen R Griffiths
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Andrew Devitt
- School of Life and Health Sciences, Aston University, Birmingham, UK
| |
Collapse
|
16
|
Szondy Z, Garabuczi E, Joós G, Tsay GJ, Sarang Z. Impaired clearance of apoptotic cells in chronic inflammatory diseases: therapeutic implications. Front Immunol 2014; 5:354. [PMID: 25136342 PMCID: PMC4117929 DOI: 10.3389/fimmu.2014.00354] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/09/2014] [Indexed: 12/14/2022] Open
Abstract
In healthy individuals, billions of cells die by apoptosis every day. Removal of the dead cells by phagocytosis (a process called efferocytosis) must be efficient to prevent secondary necrosis and the consequent release of pro-inflammatory cell contents that damages the tissue environment and provokes autoimmunity. In addition, detection and removal of apoptotic cells generally induces an anti-inflammatory response. As a consequence improper clearance of apoptotic cells, being the result of either genetic anomalies and/or a persistent disease state, contributes to the establishment and progression of a number of human chronic inflammatory diseases such as autoimmune and neurological disorders, inflammatory lung diseases, obesity, type 2 diabetes, or atherosclerosis. During the past decade, our knowledge about the mechanism of efferocytosis has significantly increased, providing therapeutic targets through which impaired phagocytosis of apoptotic cells and the consequent inflammation could be influenced in these diseases.
Collapse
Affiliation(s)
- Zsuzsa Szondy
- Department of Dental Biochemistry, Faculty of Dentistry, University of Debrecen , Debrecen , Hungary
| | - Eva Garabuczi
- Department of Dental Biochemistry, Faculty of Dentistry, University of Debrecen , Debrecen , Hungary
| | - Gergely Joós
- Department of Dental Biochemistry, Faculty of Dentistry, University of Debrecen , Debrecen , Hungary
| | - Gregory J Tsay
- Department of Internal Medicine, Faculty of Medicine, Chung Shan Medical University Hospital , Taichung , Taiwan
| | - Zsolt Sarang
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen , Debrecen , Hungary
| |
Collapse
|
17
|
McCanna DJ, Barthod-Malat AV, Gorbet MB. In vitro methods of assessing ocular biocompatibility using THP-1-derived macrophages. Cutan Ocul Toxicol 2014; 34:89-100. [PMID: 24738714 DOI: 10.3109/15569527.2014.908205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Macrophages play an important role in the elimination of infections, the removal of debris and in tissue repair after infection and trauma. In vitro models that assess ocular biomaterials for toxicity typically focus on the effects of these materials on epithelial or fibroblast cells. This investigation evaluated known ocular toxins deposited on model materials for their effects on the viability and activation of macrophages. THP-1-derived macrophages were cultured onto silicone films (used as a base biomaterial) deposited with chemical toxins (benzalkonium chloride (BAK), zinc diethyldithiocarbamate (ZDEC) and lipopolysaccharide (LPS)). Utilizing three fluorescent dyes calcein, ethidium homodimer-1 (EthD-1) and annexin V, the viability of macrophages attached to the biomaterial was determined using confocal microscopy. Propidium iodide (PI) staining and alamarBlue® (resazurin) reduction were used to assess cell death and metabolic activity. CD14, CD16, CD33, CD45, and CD54 expression of adherent macrophages, were also evaluated to detect LPS activation of macrophages using flow cytometry. The sensitivity of this test battery was demonstrated as significant toxicity from treated surfaces with ZDEC (0.001-0.01%), and BAK (0.001%-0.1%) was detected. Also, macrophage activation could be detected by measuring CD54 expression after exposure to adsorbed LPS. These in vitro methods will be helpful in determining the toxicity potential of new ocular biomaterials.
Collapse
Affiliation(s)
- David Joseph McCanna
- School of Optometry and Vision Science, Centre for Contact Lens Research, University of Waterloo , Waterloo, Ontario , Canada and
| | | | | |
Collapse
|
18
|
Hawkins LA, Devitt A. Current understanding of the mechanisms for clearance of apoptotic cells-a fine balance. J Cell Death 2013; 6:57-68. [PMID: 25278779 PMCID: PMC4147779 DOI: 10.4137/jcd.s11037] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Apoptosis is an important cell death mechanism by which multicellular organisms remove unwanted cells. It culminates in a rapid, controlled removal of cell corpses by neighboring or recruited viable cells. Whilst many of the molecular mechanisms that mediate corpse clearance are components of the innate immune system, clearance of apoptotic cells is an anti-inflammatory process. Control of cell death is dependent on competing pro-apoptotic and anti-apoptotic signals. Evidence now suggests a similar balance of competing signals is central to the effective removal of cells, through so called 'eat me' and 'don't eat me' signals. Competing signals are also important for the controlled recruitment of phagocytes to sites of cell death. Consequently recruitment of phagocytes to and from sites of cell death can underlie the resolution or inappropriate propagation of cell death and inflammation. This article highlights our understanding of mechanisms mediating clearance of dying cells and discusses those mechanisms controlling phagocyte migration and how inappropriate control may promote important pathologies.
Collapse
Affiliation(s)
- Lois A Hawkins
- Aston Research Centre for Healthy Ageing, School of Life & Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Andrew Devitt
- Aston Research Centre for Healthy Ageing, School of Life & Health Sciences, Aston University, Birmingham, B4 7ET, UK
| |
Collapse
|