1
|
Mutithu DW, Aremu OO, Mokaila D, Bana T, Familusi M, Taylor L, Martin LJ, Heathfield LJ, Kirwan JA, Wiesner L, Adeola HA, Lumngwena EN, Manganyi R, Skatulla S, Naidoo R, Ntusi NAB. A study protocol to characterise pathophysiological and molecular markers of rheumatic heart disease and degenerative aortic stenosis using multiparametric cardiovascular imaging and multiomics techniques. PLoS One 2024; 19:e0303496. [PMID: 38739622 PMCID: PMC11090351 DOI: 10.1371/journal.pone.0303496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
INTRODUCTION Rheumatic heart disease (RHD), degenerative aortic stenosis (AS), and congenital valve diseases are prevalent in sub-Saharan Africa. Many knowledge gaps remain in understanding disease mechanisms, stratifying phenotypes, and prognostication. Therefore, we aimed to characterise patients through clinical profiling, imaging, histology, and molecular biomarkers to improve our understanding of the pathophysiology, diagnosis, and prognosis of RHD and AS. METHODS In this cross-sectional, case-controlled study, we plan to recruit RHD and AS patients and compare them to matched controls. Living participants will undergo clinical assessment, echocardiography, CMR and blood sampling for circulatory biomarker analyses. Tissue samples will be obtained from patients undergoing valve replacement, while healthy tissues will be obtained from cadavers. Immunohistology, proteomics, metabolomics, and transcriptome analyses will be used to analyse circulatory- and tissue-specific biomarkers. Univariate and multivariate statistical analyses will be used for hypothesis testing and identification of important biomarkers. In summary, this study aims to delineate the pathophysiology of RHD and degenerative AS using multiparametric CMR imaging. In addition to discover novel biomarkers and explore the pathomechanisms associated with RHD and AS through high-throughput profiling of the tissue and blood proteome and metabolome and provide a proof of concept of the suitability of using cadaveric tissues as controls for cardiovascular disease studies.
Collapse
Affiliation(s)
- Daniel W. Mutithu
- Department of Medicine, Cape Heart Institute, University of Cape Town, Cape Town, South Africa
- Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
- Extramural Unit on Intersection of Noncommunicable Diseases and Infectious Diseases, South African Medical Research Council, Cape Town, South Africa
| | - Olukayode O. Aremu
- Department of Medicine, Cape Heart Institute, University of Cape Town, Cape Town, South Africa
- Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
- Extramural Unit on Intersection of Noncommunicable Diseases and Infectious Diseases, South African Medical Research Council, Cape Town, South Africa
| | - Dipolelo Mokaila
- Department of Medicine, Cape Heart Institute, University of Cape Town, Cape Town, South Africa
- Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
- Extramural Unit on Intersection of Noncommunicable Diseases and Infectious Diseases, South African Medical Research Council, Cape Town, South Africa
| | - Tasnim Bana
- Department of Medicine, Cape Heart Institute, University of Cape Town, Cape Town, South Africa
- Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
- Extramural Unit on Intersection of Noncommunicable Diseases and Infectious Diseases, South African Medical Research Council, Cape Town, South Africa
| | - Mary Familusi
- Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
- Department of Civil Engineering, University of Cape Town, Cape Town, South Africa
| | - Laura Taylor
- Division of Forensic Medicine and Toxicology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Lorna J. Martin
- Division of Forensic Medicine and Toxicology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Laura J. Heathfield
- Division of Forensic Medicine and Toxicology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Jennifer A. Kirwan
- Metabolomics Platform, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center (MDC) for Molecular Medicine, Helmholtz Association, Berlin, Germany
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Henry A. Adeola
- Division of Dermatology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Evelyn N. Lumngwena
- Department of Medicine, Cape Heart Institute, University of Cape Town, Cape Town, South Africa
- Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
- Extramural Unit on Intersection of Noncommunicable Diseases and Infectious Diseases, South African Medical Research Council, Cape Town, South Africa
- School of Clinical Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Rodgers Manganyi
- Chris Barnard Division of Cardiothoracic Surgery, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Sebastian Skatulla
- Department of Civil Engineering, University of Cape Town, Cape Town, South Africa
| | - Richard Naidoo
- Division of Anatomical Pathology, Department of Pathology, University of Cape Town and National Health Laboratory Service, Cape Town, South Africa
| | - Ntobeko A. B. Ntusi
- Department of Medicine, Cape Heart Institute, University of Cape Town, Cape Town, South Africa
- Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
- Extramural Unit on Intersection of Noncommunicable Diseases and Infectious Diseases, South African Medical Research Council, Cape Town, South Africa
- Cape Universities Body Imaging Centre, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Disease Research, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
2
|
Zhang L, Lin W, Di C, Hou H, Chen H, Zhou J, Yang Q, He G. Metabolomics and Biomarkers for Paroxysmal and Persistent Atrial Fibrillation. J Am Heart Assoc 2024; 13:e032153. [PMID: 38293949 PMCID: PMC11056137 DOI: 10.1161/jaha.123.032153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/05/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common type of arrhythmia worldwide and is associated with serious complications. This study investigated the metabolic biomarkers associated with AF and the differences in metabolomics and associated metabolic biomarkers between paroxysmal AF (AFPA) and persistent AF. METHODS AND RESULTS Plasma samples were prospectively collected from patients with AF and patients in sinus rhythm with negative coronary angiography. The patients were divided into 3 groups: AFPA, persistent AF, and sinus rhythm (N=54). Metabolomics (n=36) using ultra-high-performance liquid chromatography mass spectrometry was used to detect differential metabolites that were validated in a new cohort (n=18). The validated metabolites from the validation phase were further analyzed by receiver operating characteristic. Among the 36 differential metabolites detected by omics assay, 4 were successfully validated with area under the curve >0.8 (P<0.05). Bioinformatics analysis confirmed the enrichment pathways of unsaturated fatty acid biosynthesis, glyoxylate and dicarboxylate metabolism, and carbon metabolism. Arachidonic acid was a potential biomarker of AFPA, glycolic acid and L-serine were biomarkers of AFPA and persistent AF, and palmitelaidic acid was a biomarker of AFPA. CONCLUSIONS In this metabolomics study, we detected 36 differential metabolites in AF, and 4 were validated with high sensitivity and specificity. These differential metabolites are potential biomarkers for diagnosis and monitoring of disease course. This study therefore provides new insights into the precision diagnosis and management of AF.
Collapse
Affiliation(s)
- Li‐Li Zhang
- Faculty of Graduate StudiesChengde Medical University, Chengde, China, & Department of Cardiovascular Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical SciencesTianjinChina
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational MedicineTianjinChina
| | - Wen‐Hua Lin
- Department of Cardiology & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular HospitalTianjin University & Chinese Academy of Medical ScienceTianjinChina
| | - Cheng‐Ye Di
- Department of Cardiology & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular HospitalTianjin University & Chinese Academy of Medical ScienceTianjinChina
| | - Hai‐Tao Hou
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational MedicineTianjinChina
- Department of Cardiovascular Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular HospitalTianjin University & Chinese Academy of Medical ScienceTianjinChina
| | - Huan‐Xin Chen
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational MedicineTianjinChina
- Department of Cardiovascular Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular HospitalTianjin University & Chinese Academy of Medical ScienceTianjinChina
| | - Jie Zhou
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational MedicineTianjinChina
- Department of Cardiovascular Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular HospitalTianjin University & Chinese Academy of Medical ScienceTianjinChina
| | - Qin Yang
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational MedicineTianjinChina
- Department of Cardiovascular Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular HospitalTianjin University & Chinese Academy of Medical ScienceTianjinChina
| | - Guo‐Wei He
- Faculty of Graduate StudiesChengde Medical University, Chengde, China, & Department of Cardiovascular Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical SciencesTianjinChina
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational MedicineTianjinChina
- Department of Cardiovascular Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular HospitalTianjin University & Chinese Academy of Medical ScienceTianjinChina
| |
Collapse
|
3
|
Topçu S, Uçar T. Echocardiographic Screening of Rheumatic Heart Disease: Current Concepts and Challenges. Turk Arch Pediatr 2024; 59:3-12. [PMID: 38454255 PMCID: PMC10837514 DOI: 10.5152/turkarchpediatr.2024.23162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/10/2023] [Indexed: 03/09/2024]
Abstract
The incidence of acute rheumatic fever (ARF), which most commonly affects children aged 5-15 years after group A Streptococcus (GAS) infection, ranges from 8 to 51 per 100 000 people worldwide. Rheumatic heart disease (RHD), which occurs when patients with ARF are inappropriately treated or not given regular prophylaxis, is the most common cause of non-congenital heart disease in children and young adults in low-income countries. Timely treatment of GAS infection can prevent ARF, and penicillin prophylaxis can prevent recurrence of ARF. Secondary prophylaxis with benzathine penicillin G has been shown to decrease the incidence of RHD and is a key aspect of RHD control. The most important factor determining the prognosis of RHD is the severity of cardiac involvement. Although approximately 70% of patients with carditis in the acute phase of the disease recover without sequelae, carditis is important because it is the only complication of ARF that causes sequelae. One-third of patients with ARF are asymptomatic. Patients with mild symptoms of recurrent ARF and silent RHD will develop severe morbidities within 5-10 years if they do not receive secondary preventive treatments. A new screening program should be established to prevent cardiac morbidities of ARF in moderate- and highrisk populations. In the present study, we examined the applicability of echocardiographic screening programs for RHD. Cite this article as: Topçu S, Uçar T. Echocardiographic screening of rheumatic heart disease: Current concepts and challenges. Turk Arch Pediatr. 2024;59(1):3-12.
Collapse
Affiliation(s)
- Seda Topçu
- Division of Social Pediatrics, Department of Pediatrics, Ankara University School of Medicine, Ankara, Turkey
| | - Tayfun Uçar
- Division of Pediatric Cardiology, Department of Pediatrics, Ankara University School of Medicine, Ankara, Turkey
| |
Collapse
|
4
|
Khan N, Ullah J, Hashmi S, Ali A, Siddiqui AJ, Sami SA, Bokhari SS, Sharif H, Uddin J, El-Seedi HR, Musharraf SG. Dysregulation of metalloproteins in ischemic heart disease patients with systolic dysfunction. Int J Biol Macromol 2023; 232:123435. [PMID: 36716834 DOI: 10.1016/j.ijbiomac.2023.123435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/10/2023] [Accepted: 01/22/2023] [Indexed: 01/29/2023]
Abstract
Ischemic heart disease (IHD) is the leading cause of mortality worldwide. Metalloproteins have been linked to human health and diseases. The molecular functions of metalloproteins in IHD is not well understood and require further exploration. The objective of this study was to find out the role of metalloproteins in the pericardial fluid of IHD patients having normal (EF > 45) and impaired (EF < 45) left ventricular ejection fraction (LVEF). IHD patients were grouped into two categories: LVEF<45 (n = 12) and LVEF >45 (n = 33). Pooled samples of pericardial fluid were fractionated by using ZOOM-isoelectric focusing (IEF) followed by further processing using one-dimensional gel electrophoresis (1D SDS-PAGE) and filter-aided sample preparation (FASP). Tryptic peptides of each fraction and differential bands were then analyzed by nano-LC-ESI-MS/MS. Protein identification was performed through a Mascot search engine using NCBI-Prot and SwissProt databases. A total of 1082 proteins including 154 metalloproteins were identified. In the differential bands, 60 metalloproteins were identified, while 115 metalloproteins were identified in all ZOOM-IEF fractions. Twelve differentially expressed metalloproteins were selected in the intense bands according to their molecular weight (MW) and isoelectric point (pI). The 12 differentially expressed metalloprotein includes ceruloplasmin, Prothrombin, Vitamin K-dependent protein, Fibulin-1, Ribosomal protein S6 kinase alpha-6, nidogen, partial, Serum albumin, Hemopexin, C-reactive protein, Serum amyloid P-component, and Intelectin-1 protein which were all up-regulated while serotransferrin is the only metalloprotein that was down-regulated in impaired (LVEF<45) group. Among the metalloproteins, Zn-binding proteins are 36.5 % followed by Ca-binging 32.2 %, and Fe-binging 12.2 %. KEGG, pathway analysis revealed the association of ceruloplasmin and serotransferrin with the ferroptosis pathway. In conclusion, 154 metalloproteins were identified of them the Zn-binding protein followed by Ca-binding and Fe-binding proteins were the most abundant metalloproteins. The two metalloproteins, the Cu-binding protein ceruloplasmin, and Fe-binding protein serotransferrin are involved in the ferroptosis pathway, an iron-dependent form of regulated cell death that has been linked to cardiac pathology, especially in IHD patients having impaired systolic (LVEF<45) dysfunction. However, further research is required to validate these findings.
Collapse
Affiliation(s)
- Noman Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Junaid Ullah
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Satwat Hashmi
- Department of Biological and Biomedical Sciences, Agha Khan University, Karachi 74800, Pakistan
| | - Arslan Ali
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Amna Jabbar Siddiqui
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Shahid Ahmed Sami
- Department of Surgery, The Aga Khan University Hospital, Karachi 74800, Pakistan
| | - Syeda Saira Bokhari
- Department of Medicine, The Aga Khan University Hospital, Karachi 74800, Pakistan
| | - Hasanat Sharif
- Department of Surgery, The Aga Khan University Hospital, Karachi 74800, Pakistan
| | - Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Asir 61421, Saudi Arabia
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Syed Ghulam Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
5
|
Suemanotham N, Photcharatinnakorn P, Chantong B, Buranasinsup S, Phochantachinda S, Sakcamduang W, Reamtong O, Thiangtrongjit T, Chatchaisak D. Curcuminoid supplementation in canine diabetic mellitus and its complications using proteomic analysis. Front Vet Sci 2022; 9:1057972. [PMID: 36619946 PMCID: PMC9816143 DOI: 10.3389/fvets.2022.1057972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Inflammation and oxidative stress contribute to diabetes pathogenesis and consequences. Therapeutic approaches for canine diabetes remain a challenge. Curcumin has anti-inflammatory and anti-oxidative effects and is beneficial for humans with diabetes mellitus (DM); however, data on its impact on canine diabetes is limited. This study aimed to evaluate the potential for causing adverse effects, anti-inflammatory effects, anti-oxidative effects and proteomic patterns of curcuminoid supplementation on canine DM. Methods Altogether, 18 dogs were divided into two groups: DM (n = 6) and healthy (n = 12). Curcuminoid 250 mg was given to the DM group orally daily for 180 days. Blood and urine sample collection for hematological parameters, blood biochemistry, urinalysis, oxidative stress parameters, inflammatory markers and proteomics were performed every 6 weeks. Results and discussion Curcuminoid supplementation with standard therapy significantly decreased oxidative stress with the increased glutathione/oxidized glutathione ratio, but cytokine levels were unaffected. According to the proteomic analysis, curcuminoid altered the expression of alpha-2-HS-glycoprotein, transthyretin, apolipoprotein A-I and apolipoprotein A-IV, suggesting that curcuminoid improves insulin sensitivity and reduces cardiovascular complications. No negative impact on clinical symptoms, kidneys or liver markers was identified. This study proposed that curcuminoids might be used as a targeted antioxidant strategy as an adjunctive treatment to minimize diabetes complications in dogs.
Collapse
Affiliation(s)
- Namphung Suemanotham
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand,Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Boonrat Chantong
- Department of Pre-clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Shutipen Buranasinsup
- Department of Pre-clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Sataporn Phochantachinda
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Walasinee Sakcamduang
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tipparat Thiangtrongjit
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Duangthip Chatchaisak
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand,*Correspondence: Duangthip Chatchaisak ✉
| |
Collapse
|
6
|
Alpha-1-antitrypsin in serum exosomes and pericardial fluid exosomes is associated with severity of rheumatic heart disease. Mol Cell Biochem 2022; 478:1383-1396. [PMID: 36318408 DOI: 10.1007/s11010-022-04595-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
Abstract
Rheumatic heart disease (RHD) is an autoimmune sequel of pharyngitis and rheumatic fever that leads to permanent heart valve damage, especially the mitral valves. The mitral valves, which are responsible for the binding of auto-antibodies during immune response generation, lead to valve scarring and eventually valves dysfunction. Recently, exosomes (EXOs), the nano-sized vesicles, which range in size from 30 to 150 nm, are reported in various cardiovascular physiological and pathological processes. These vesicles are found in several body fluids such as plasma, serum, and also in cell culture media. Exosomal cargo contains proteins, which are taken up by the recipient cells and modulate the cellular characteristics. The role of exosomal proteins in RHD is still obscure. Hence, the present study has been designed to unveil the exosomal proteins in disease severity during RHD. In this study, the exosomes were isolated from biological fluids (serum and pericardial fluid) of RHD patients as well as from their respective controls. Protein profiling of these isolated exosomes revealed that alpha-1 antitrypsin is up-regulated in the biological fluids of RHD patients. The enhanced levels of exosomal alpha-1 antitrypsin, were further, validated in biological samples and mitral valve tissues of RHD patients, to correlate with the disease severity. These findings suggest an association of increased levels of exosomal alpha-1 antitrypsin with the RHD pathogenesis.
Collapse
|
7
|
Chen X, Li Y, Yuan X, Yuan W, Li C, Zeng Y, Lian Y, Qiu X, Qin Y, Zhang G, Liu X, Luo C, Luo JD, Hou N. Methazolamide Attenuates the Development of Diabetic Cardiomyopathy by Promoting β-Catenin Degradation in Type 1 Diabetic Mice. Diabetes 2022; 71:795-811. [PMID: 35043173 DOI: 10.2337/db21-0506] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022]
Abstract
Methazolamide (MTZ), a carbonic anhydrase inhibitor, has been shown to inhibit cardiomyocyte hypertrophy and exert a hypoglycemic effect in patients with type 2 diabetes and diabetic db/db mice. However, whether MTZ has a cardioprotective effect in the setting of diabetic cardiomyopathy is not clear. We investigated the effects of MTZ in a mouse model of streptozotocin-induced type 1 diabetes mellitus (T1DM). Diabetic mice received MTZ by intragastric gavage (10, 25, or 50 mg/kg, daily for 16 weeks). In the diabetic group, MTZ significantly reduced both random and fasting blood glucose levels and improved glucose tolerance in a dose-dependent manner. MTZ ameliorated T1DM-induced changes in cardiac morphology and dysfunction. Mechanistic analysis revealed that MTZ blunted T1DM-induced enhanced expression of β-catenin. Similar results were observed in neonatal rat cardiomyocytes (NRCMs) and adult mouse cardiomyocytes treated with high glucose or Wnt3a (a β-catenin activator). There was no significant change in β-catenin mRNA levels in cardiac tissues or NRCMs. MTZ-mediated β-catenin downregulation was recovered by MG132, a proteasome inhibitor. Immunoprecipitation and immunofluorescence analyses showed augmentation of AXIN1-β-catenin interaction by MTZ in T1DM hearts and in NRCMs treated with Wnt3a; thus, MTZ may potentiate AXIN1-β-catenin linkage to increase β-catenin degradation. Overall, MTZ may alleviate cardiac hypertrophy by mediating AXIN1-β-catenin interaction to promote degradation and inhibition of β-catenin activity. These findings may help inform novel therapeutic strategy to prevent heart failure in patients with diabetes.
Collapse
Affiliation(s)
- Xiaoqing Chen
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State and NMPA Key Laboratory, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yilang Li
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State and NMPA Key Laboratory, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xun Yuan
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State and NMPA Key Laboratory, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Wenchang Yuan
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Conglin Li
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State and NMPA Key Laboratory, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yue Zeng
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State and NMPA Key Laboratory, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yuling Lian
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State and NMPA Key Laboratory, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiaoxia Qiu
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State and NMPA Key Laboratory, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
- Zhujiang Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Yuan Qin
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State and NMPA Key Laboratory, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Guiping Zhang
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State and NMPA Key Laboratory, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiawen Liu
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State and NMPA Key Laboratory, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Chengfeng Luo
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jian-Dong Luo
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State and NMPA Key Laboratory, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Ning Hou
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State and NMPA Key Laboratory, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
8
|
Salie MT, Yang J, Ramírez Medina CR, Zühlke LJ, Chishala C, Ntsekhe M, Gitura B, Ogendo S, Okello E, Lwabi P, Musuku J, Mtaja A, Hugo-Hamman C, El-Sayed A, Damasceno A, Mocumbi A, Bode-Thomas F, Yilgwan C, Amusa GA, Nkereuwem E, Shaboodien G, Da Silva R, Lee DCH, Frain S, Geifman N, Whetton AD, Keavney B, Engel ME. Data-independent acquisition mass spectrometry in severe rheumatic heart disease (RHD) identifies a proteomic signature showing ongoing inflammation and effectively classifying RHD cases. Clin Proteomics 2022; 19:7. [PMID: 35317720 PMCID: PMC8939134 DOI: 10.1186/s12014-022-09345-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rheumatic heart disease (RHD) remains a major source of morbidity and mortality in developing countries. A deeper insight into the pathogenetic mechanisms underlying RHD could provide opportunities for drug repurposing, guide recommendations for secondary penicillin prophylaxis, and/or inform development of near-patient diagnostics. METHODS We performed quantitative proteomics using Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass Spectrometry (SWATH-MS) to screen protein expression in 215 African patients with severe RHD, and 230 controls. We applied a machine learning (ML) approach to feature selection among the 366 proteins quantifiable in at least 40% of samples, using the Boruta wrapper algorithm. The case-control differences and contribution to Area Under the Receiver Operating Curve (AUC) for each of the 56 proteins identified by the Boruta algorithm were calculated by Logistic Regression adjusted for age, sex and BMI. Biological pathways and functions enriched for proteins were identified using ClueGo pathway analyses. RESULTS Adiponectin, complement component C7 and fibulin-1, a component of heart valve matrix, were significantly higher in cases when compared with controls. Ficolin-3, a protein with calcium-independent lectin activity that activates the complement pathway, was lower in cases than controls. The top six biomarkers from the Boruta analyses conferred an AUC of 0.90 indicating excellent discriminatory capacity between RHD cases and controls. CONCLUSIONS These results support the presence of an ongoing inflammatory response in RHD, at a time when severe valve disease has developed, and distant from previous episodes of acute rheumatic fever. This biomarker signature could have potential utility in recognizing different degrees of ongoing inflammation in RHD patients, which may, in turn, be related to prognostic severity.
Collapse
Affiliation(s)
- M Taariq Salie
- AFROStrep Research Group, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Jing Yang
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Carlos R Ramírez Medina
- Division of Informatics, Imaging, and Data Sciences, University of Manchester, Manchester , UK
| | - Liesl J Zühlke
- Division of Paediatric Cardiology, Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital and University of Cape Town, Cape Town, South Africa
| | - Chishala Chishala
- Division of Cardiology, University of Cape Town & Groote Schuur Hospital, Cape Town, South Africa
| | - Mpiko Ntsekhe
- Division of Cardiology, University of Cape Town & Groote Schuur Hospital, Cape Town, South Africa
| | - Bernard Gitura
- Cardiology Department of Medicine, Kenyatta National Hospital, University of Nairobi, Nairobi, Kenya
| | - Stephen Ogendo
- Department of Surgery, University of Nairobi, Nairobi, Kenya
| | - Emmy Okello
- Departments of Adult and Pediatric Cardiology, Uganda Heart Institute, Kampala, Uganda
| | - Peter Lwabi
- Departments of Adult and Pediatric Cardiology, Uganda Heart Institute, Kampala, Uganda
| | - John Musuku
- University Teaching Hospital-Children's Hospital, University of Zambia, Lusaka, Zambia
| | - Agnes Mtaja
- University Teaching Hospital-Children's Hospital, University of Zambia, Lusaka, Zambia
| | - Christopher Hugo-Hamman
- Division of Paediatric Cardiology, Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital and University of Cape Town, Cape Town, South Africa
- Rheumatic Heart Disease Clinic, Windhoek Central Hospital, Windhoek, Namibia
| | - Ahmed El-Sayed
- Department of Cardiothoracic Surgery, Alshaab Teaching Hospital, Alazhari Health Research Center, Alzaiem Alazhari University, Khartoum, Sudan
| | - Albertino Damasceno
- Faculty of Medicine, Eduardo Mondlane University/Nucleo de Investigaçao, Departamento de Medicina, Hospital Central de Maputo, Maputo, Mozambique
| | - Ana Mocumbi
- Faculdade de Medicina, Universidade Eduardo Mondlane, Maputo, Mozambique
- Division of Non Communicable Diseases, Instituto Nacional de Saude, Vila de Marracuene, Mozambique
| | - Fidelia Bode-Thomas
- Departments of Paediatrics, Jos University Teaching Hospital, Jos, Plateau State, Nigeria
| | - Christopher Yilgwan
- Departments of Paediatrics, Jos University Teaching Hospital, Jos, Plateau State, Nigeria
| | - Ganiyu A Amusa
- Department of Medicine, University of Jos and Jos University Teaching Hospital, Jos, Nigeria
| | - Esin Nkereuwem
- Departments of Paediatrics, Jos University Teaching Hospital, Jos, Plateau State, Nigeria
| | - Gasnat Shaboodien
- Department of Medicine and Cape Heart Institute (CHI), University of Cape Town, Cape Town, South Africa
| | - Rachael Da Silva
- Stoller Biomarker Discovery Institute, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Dave Chi Hoo Lee
- Stoller Biomarker Discovery Institute, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Simon Frain
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Nophar Geifman
- School of Health Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Anthony D Whetton
- Faculty of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Bernard Keavney
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Manchester Heart Institute, Manchester University NHS Foundation Trust, Manchester, UK
| | - Mark E Engel
- AFROStrep Research Group, Department of Medicine, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
9
|
Zhou G, Chen J, Wu C, Jiang P, Wang Y, Zhang Y, Jiang Y, Li X. Deciphering the Protein, Modular Connections and Precision Medicine for Heart Failure With Preserved Ejection Fraction and Hypertension Based on TMT Quantitative Proteomics and Molecular Docking. Front Physiol 2021; 12:607089. [PMID: 34721049 PMCID: PMC8552070 DOI: 10.3389/fphys.2021.607089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 09/23/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Exploring the potential biological relationships between heart failure with preserved ejection fraction (HFpEF) and concomitant diseases has been the focus of many studies for the establishment of personalized therapies. Hypertension (HTN) is the most common concomitant disease in HFpEF patients, but the functional connections between HFpEF and HTN are still not fully understood and effective treatment strategies are still lacking. Methods: In this study, tandem mass tag (TMT) quantitative proteomics was used to identify disease-related proteins and construct disease-related networks. Furthermore, functional enrichment analysis of overlapping network modules was used to determine the functional similarities between HFpEF and HTN. Molecular docking and module analyses were combined to identify therapeutic targets for HFpEF and HTN. Results: Seven common differentially expressed proteins (co-DEPs) and eight overlapping modules were identified in HFpEF and HTN. The common biological processes between HFpEF and HTN were mainly related to energy metabolism. Myocardial contraction, energy metabolism, apoptosis, oxidative stress, immune response, and cardiac hypertrophy were all closely associated with HFpEF and HTN. Epinephrine, sulfadimethoxine, chloroform, and prednisolone acetate were best matched with the co-DEPs by molecular docking analyses. Conclusion: Myocardial contraction, energy metabolism, apoptosis, oxidative stress, immune response, and cardiac hypertrophy were the main functional connections between HFpEF and HTN. Epinephrine, sulfadimethoxine, chloroform, and prednisolone acetate could potentially be effective for the treatment of HTN and HFpEF.
Collapse
Affiliation(s)
- Guofeng Zhou
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiye Chen
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuanhong Wu
- The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Ping Jiang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yongcheng Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yongjian Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuehua Jiang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
10
|
Li MY, Chen HX, Hou HT, Wang J, Liu XC, Yang Q, He GW. Biomarkers and key pathways in atrial fibrillation associated with mitral valve disease identified by multi-omics study. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:393. [PMID: 33842614 PMCID: PMC8033373 DOI: 10.21037/atm-20-3767] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Mitral valve disease (MVD)-associated atrial fibrillation (AF) is one of the most common arrhythmias with an increased risk of thromboembolic events. This study aimed to identify the molecular mechanisms and possible biomarkers for chronic AF in MVD by using multi-omics methods. Methods This prospective study enrolled patients with MVD (n=100) undergoing mitral valve replacement surgery. The patients were allocated into chronic AF and sinus rhythm (SR) groups. Plasma samples were collected preoperatively. Proteomics was performed with isobaric tags for relative and absolute quantitation (iTRAQ) to identify differential proteins (DPs) between the two groups. The selected DPs were then validated in a new cohort of patients by enzyme-linked immunosorbent assay (ELISA). A gas chromatography-mass spectrometer was used in the metabolomics study to identify differential metabolites (DMs). Bioinformatics analyses were performed to analyze the results. Results Among the 447 plasma proteins and 322 metabolites detected, 57 proteins and 55 metabolites, including apolipoprotein A-I (ApoA-I), apolipoprotein A-II (ApoA-II), LIM domain only protein 7 (LMO7), and vitronectin (VN) were differentially expressed between AF and SR patients. Bioinformatics analyses identified enriched pathways related to AF, including peroxisome proliferator-activated receptor alpha (PPARα), the renin angiotensin aldosterone system (RAAS), galactose, biosynthesis of unsaturated fatty acids, and linoleic acid metabolism. Conclusions Using integrated multi-omics technologies in MVD-associated AF patients, the present study, for the first time, revealed important signaling pathways, such as PPARα, as well as possible roles of other signaling pathways, including the RAAS and galactose metabolism to understand the molecular mechanism of MVD-associated AF. It also identified a large number of DPs and DMs. Some identified proteins and metabolites, such as ApoA-I, ApoA-II, LMO7, and VN, may be further developed as biomarkers for MVD-associated AF.
Collapse
Affiliation(s)
- Ming-Yang Li
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Graduate School, Peking Union Medical College, Beijing, China
| | - Huan-Xin Chen
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Graduate School, Peking Union Medical College, Beijing, China
| | - Hai-Tao Hou
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Graduate School, Peking Union Medical College, Beijing, China
| | - Jun Wang
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Graduate School, Peking Union Medical College, Beijing, China
| | - Xiao-Cheng Liu
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Graduate School, Peking Union Medical College, Beijing, China
| | - Qin Yang
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Graduate School, Peking Union Medical College, Beijing, China
| | - Guo-Wei He
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Graduate School, Peking Union Medical College, Beijing, China.,The Institute of Cardiovascular Diseases, Tianjin University, Tianjin, China.,Drug Research and Development Center, Wannan Medical College, Wuhu, China.,Department of Surgery, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
11
|
Ullah J, Hashmi S, Ali A, Khan F, Sami SA, Basir N, Bokhari SS, Sharif H, El-Seedi HR, Musharraf SG. Pericardial fluid proteomic label-free quantification of differentially expressed proteins in ischemic heart disease patients with systolic dysfunction by nano-LC-ESI-MS/MS analysis. RSC Adv 2020; 11:320-327. [PMID: 35423047 PMCID: PMC8691035 DOI: 10.1039/d0ra08389e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/30/2020] [Indexed: 12/25/2022] Open
Abstract
Left ventricular systolic dysfunction (LVSD) is common in patients with pre-existing ischemic heart disease (IHD) and myocardial infarction. An untargeted proteomic approach is used to improve the understanding of the molecular mechanisms associated with LVSD and to find out potential proteomic signatures in pericardial fluid. The pericardial fluid of IHD (n = 45) patients was grouped into two categories according to the left ventricular ejection fraction, LVEF ≥45 (n = 33) and LVEF <45 (n = 12), and analyzed by using nano-liquid chromatography-mass spectrometry (nano-LC-MS/MS) technique. The nano-LC-MS/MS analysis resulted in the identification of 709 pericardial fluid (PF) proteins in both normal and impaired systolic functional groups (LVEF ≥45 vs. LVEF <45). Sixteen proteins were found to be differentially expressed (p < 0.05, fold change >2) including 12 down-regulated and 4 up-regulated in the impaired systolic functional group (LVEF <45) compared to the normal group (LVEF ≥45). Among the differentially expressed proteins the inflammatory marker albumin, atherosclerosis marker apolipoprotein A-IV and hedgehog-interacting protein marker of angiogenesis were predominantly associated with the impaired LVEF <45 group. KEGG pathway analysis revealed that the hedgehog (Hh) signalling pathway is up-regulated in LVSD reflecting the underlying molecular and pathophysiological processes.
Collapse
Affiliation(s)
- Junaid Ullah
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan +92 213 4819018 +92 213 4819019 +92 213 4824924 +92 213 4824925 +92 213 4819010
| | - Satwat Hashmi
- Department of Biological and Biomedical Sciences, Agha Khan University Karachi-74800 Pakistan
| | - Arslan Ali
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
| | - Faisal Khan
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
| | - Shahid Ahmed Sami
- Department of Surgery, The Aga Khan University Hospital Karachi-74800 Pakistan
| | - Nageeb Basir
- Department of Medicine, The Aga Khan University Hospital Karachi-74800 Pakistan
| | - Syeda Saira Bokhari
- Department of Medicine, The Aga Khan University Hospital Karachi-74800 Pakistan
| | - Hasanat Sharif
- Department of Surgery, The Aga Khan University Hospital Karachi-74800 Pakistan
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University SE-751 23 Uppsala Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University Zhenjiang 212013 China
| | - Syed Ghulam Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan +92 213 4819018 +92 213 4819019 +92 213 4824924 +92 213 4824925 +92 213 4819010
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
| |
Collapse
|
12
|
Monu, Kharb R, Sharma A, Chaddar MK, Yadav R, Agnihotri P, Kar A, Biswas S. Plasma Proteome Profiling of Coronary Artery Disease Patients: Downregulation of Transthyretin-An Important Event. Mediators Inflamm 2020; 2020:3429541. [PMID: 33299376 PMCID: PMC7707994 DOI: 10.1155/2020/3429541] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/24/2020] [Indexed: 02/07/2023] Open
Abstract
Coronary artery disease (CAD) is a prevalent chronic inflammatory cardiac disorder. An early diagnosis is likely to help in the prevention and proper management of this disease. As the study of proteomics provides the potential markers for detection of a disease, in the present investigation, attempt has been made to identify disease-associated differential proteins involved in CAD pathogenesis. For this study, a total of 200 selected CAD patients were considered, who were recruited for percutaneous coronary intervention (PCI) treatment. The proteomic analysis was performed using two-dimensional gel electrophoresis (2-DE) and MALDI-TOF MS/MS. Samples were also subjected to Western blot analysis, enzyme-linked immunosorbent assay (ELISA), peripheral blood mononuclear cells isolation immunofluorescence (IF) analysis, analytical screening by fluorescence-activated cell sorting (FACS), and in silico analysis. The representative data were shown as mean ± SD of at least three experiments. A total of 19 proteins were identified. Among them, the most abundant five proteins (serotransferrin, talin-1, alpha-2HS glycoprotein, transthyretin (TTR), fibrinogen-α chain) were found to have altered level in CAD. Serotransferrin, talin-1, alpha-2HS glycoprotein, and transthyretin (TTR) were found to have lower level, whereas fibrinogen-α chain was found to have higher level in CAD plasma compared to healthy, confirmed by Western blot analysis. TTR, an important acute phase transport protein, was validated low level in 200 CAD patients who confirmed to undergo PCI treatment. Further, in silico and in vitro studies of TTR indicated a downexpression of CAD in plasma as compared to the plasma of healthy individuals. Lower level of plasma TTR was determined to be an important risk marker in the atherosclerotic-approved CAD patients. We suggest that the TTR lower level predicts disease severity and hence may serve as an important marker tool for CAD screening. However, further large-scale studies are required to determine the clinical significance of TTR.
Collapse
Affiliation(s)
- Monu
- Council of Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, 110007, Delhi, India
| | - Rupsi Kharb
- Council of Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, 110007, Delhi, India
- Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), University of Delhi, Pushpvihar, New Delhi 110017, India
| | - Ankita Sharma
- Council of Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, 110007, Delhi, India
| | - Monu Kumar Chaddar
- Council of Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, 110007, Delhi, India
| | - Rakesh Yadav
- All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Prachi Agnihotri
- Council of Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, 110007, Delhi, India
| | - Anand Kar
- School of Life Sciences, Takshashila Campus, Devi Ahilya University, 452017, Indore, India
| | - Sagarika Biswas
- Council of Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, 110007, Delhi, India
| |
Collapse
|
13
|
Integrative Multi-Omics Analysis in Calcific Aortic Valve Disease Reveals a Link to the Formation of Amyloid-Like Deposits. Cells 2020; 9:cells9102164. [PMID: 32987857 PMCID: PMC7600313 DOI: 10.3390/cells9102164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Calcific aortic valve disease (CAVD) is the most prevalent valvular heart disease in the developed world, yet no pharmacological therapy exists. Here, we hypothesize that the integration of multiple omic data represents an approach towards unveiling novel molecular networks in CAVD. Databases were searched for CAVD omic studies. Differentially expressed molecules from calcified and control samples were retrieved, identifying 32 micro RNAs (miRNA), 596 mRNAs and 80 proteins. Over-representation pathway analysis revealed platelet degranulation and complement/coagulation cascade as dysregulated pathways. Multi-omics integration of overlapping proteome/transcriptome molecules, with the miRNAs, identified a CAVD protein–protein interaction network containing seven seed genes (apolipoprotein A1 (APOA1), hemoglobin subunit β (HBB), transferrin (TF), α-2-macroglobulin (A2M), transforming growth factor β-induced protein (TGFBI), serpin family A member 1 (SERPINA1), lipopolysaccharide binding protein (LBP), inter-α-trypsin inhibitor heavy chain 3 (ITIH3) and immunoglobulin κ constant (IGKC)), four input miRNAs (miR-335-5p, miR-3663-3p, miR-21-5p, miR-93-5p) and two connector genes (amyloid beta precursor protein (APP) and transthyretin (TTR)). In a metabolite–gene–disease network, Alzheimer’s disease exhibited the highest degree of betweenness. To further strengthen the associations based on the multi-omics approach, we validated the presence of APP and TTR in calcified valves from CAVD patients by immunohistochemistry. Our study suggests a novel molecular CAVD network potentially linked to the formation of amyloid-like structures. Further investigations on the associated mechanisms and therapeutic potential of targeting amyloid-like deposits in CAVD may offer significant health benefits.
Collapse
|
14
|
Lumngwena EN, Skatulla S, Blackburn JM, Ntusi NAB. Mechanistic implications of altered protein expression in rheumatic heart disease. Heart Fail Rev 2020; 27:357-368. [PMID: 32653980 DOI: 10.1007/s10741-020-09993-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rheumatic heart disease (RHD) is a major cause of cardiovascular morbidity and mortality in low- and middle-income countries, where living conditions promote spread of group A β-haemolytic streptococcus. Autoimmune reactions due to molecular mimicry of bacterial epitopes by host proteins cause acute rheumatic fever (ARF) and subsequent disease progression to RHD. Despite knowledge of the factors that predispose to ARF and RHD, determinants of the progression to valvular damage and the molecular events involved remain incompletely characterised. This review focuses on altered protein expression in heart valves, myocardial tissue and plasma of patients with RHD and pathogenic consequences on RHD. Proteins mainly involved in structural organization of the valve matrix, blood homeostasis and immune response were altered due to RHD pathogenesis. Study of secreted forms of these proteins may aid the development of non-invasive biomarkers for early diagnosis and monitoring outcomes in RHD. Valve replacement surgery, the single evidence-based strategy to improve outcomes in severe RHD, is costly, largely unavailable in low- and middle-income countries (LMIC) and requires specialised facilities. When diagnosed early, penicillin prophylaxis may be used to delay progression to severe valvular damage. Echocardiography and cardiovascular magnetic resonance and the standard imaging tools recommended to confirm early diagnosis remain largely unavailable and inaccessible in most LMIC and both require expensive equipment and highly skilled persons for manipulation as well as interpretation of results. Changes in protein expression in heart valves and myocardium are associated with progressive valvular deformation in RHD. Understanding these protein changes should shed more light on the mechanisms of pathogenicity, while secreted forms of these proteins may provide leads towards a biomarker for non-invasive early detection of RHD.
Collapse
Affiliation(s)
- Evelyn N Lumngwena
- Division of Cardiology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa.
- Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
- Hatter instititute for Cardiovascualar research in Africa, Departmenent of Medicine, 4th floor Chris Barnard Building, University of Cape Town, Cape Town, South Africa.
- Centre for the Study of Emerging and Re-emerging Infections (CREMER), Institute for Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and Innovation, Yaounde, Cameroon.
| | - Sebastian Skatulla
- Department of Civil Engineering, Faculty of Engineering and the Built Environment, University of Cape Town, Cape Town, South Africa
| | - Jonathan M Blackburn
- Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Ntobeko A B Ntusi
- Division of Cardiology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
- Hatter instititute for Cardiovascualar research in Africa, Departmenent of Medicine, 4th floor Chris Barnard Building, University of Cape Town, Cape Town, South Africa
- Cape Universities Body Imaging Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
15
|
He GW, Hou HT, Xuan C, Wang J, Liu LX, Zhang JF, Liu XC, Yang Q. Corrective surgery alters plasma protein profiling in congenital heart diseases and clinical perspectives. Am J Transl Res 2020; 12:1319-1337. [PMID: 32355544 PMCID: PMC7191161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 01/22/2020] [Indexed: 06/11/2023]
Abstract
The final goal for treatment of congenital heart diseases (CHD) is to resume not only the normal heart structure but also physiology. The present study evaluates surgical results at molecular basis on the proteomic pattern in the pre- and post-operative period in tetralogy of Fallot (TOF) and ventricular septal defect (VSD) in order to find whether structure repair is associated with clinically important molecular changes in CHD. Differential protein analysis by using two-dimensional gel electrophoresis and mass spectrometry followed by ELISA validation was performed in the plasma samples of patients with TOF (n=82) or VSD (n=82) preoperatively, 6-month postoperatively, and in normal controls (n=82). A total of 473 protein spots in preoperative patients and 515 in postoperative patients were detected. Significantly (P<0.01) downregulated or upregulated proteins were detected. Validation of proteins in the new cohort of patients demonstrated that in VSD patients, postoperative complement component C3c (P<0.05) was partially and serum amyloid P-component (P<0.05) was completely recovered. In TOF patients, postoperative gelsolin (P<0.05) was partially recovered. In contrast, the elevated fibrinogen gamma chain level (P<0.01) in preoperative patients became normal postoperatively (P=0.1 vs. control). Thus, we have for the first time by using proteomic methods demonstrated that repair surgery for CHD not only corrects the structure malformation but also resumes the normality of certain altered proteins at molecular level. Identification of the recovered or unchanged proteins may facilitate the evaluation of the surgical results and the personalized management in postoperative period and long-term.
Collapse
Affiliation(s)
- Guo-Wei He
- Department of Cardiovascular Surgery & Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin, China
- Zhejiang University, Hangzhou & School of Pharmacy, Wannan Medical CollegeWuhu, China
- Department of Surgery, Oregon Health and Science UniversityPortland, Oregon, U.S.A
| | - Hai-Tao Hou
- Department of Cardiovascular Surgery & Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin, China
| | - Chao Xuan
- Department of Cardiovascular Surgery & Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin, China
| | - Jun Wang
- Department of Cardiovascular Surgery & Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin, China
| | - Li-Xin Liu
- Department of Pediatric Cardiothoracic Surgery, Maternal and Child Health Hospital of TangshanHebei Province, China
| | - Jian-Feng Zhang
- Department of Pediatric Cardiothoracic Surgery, Maternal and Child Health Hospital of TangshanHebei Province, China
| | - Xiao-Cheng Liu
- Department of Cardiovascular Surgery & Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin, China
| | - Qin Yang
- Department of Cardiovascular Surgery & Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin, China
| |
Collapse
|
16
|
Li XY, Hou HT, Chen HX, Liu XC, Wang J, Yang Q, He GW. Preoperative plasma biomarkers associated with atrial fibrillation after coronary artery bypass surgery. J Thorac Cardiovasc Surg 2020; 162:851-863.e3. [PMID: 32197906 DOI: 10.1016/j.jtcvs.2020.01.079] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/15/2020] [Accepted: 01/29/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Postoperative atrial fibrillation (POAF) is a common complication in coronary artery bypass grafting (CABG) procedures. This prospective study aimed to investigate predisposition of proteins and metabolites correlated to POAF after CABG and related cellular pathways. METHODS Preoperative plasma samples from patients undergoing CABG procedures were prospectively collected. After CABG, the patients were grouped to POAF or sinus rhythm (N = 170; n = 90 in the discovery set and n = 80 in the validation set). The plasma samples were analyzed using proteomics, metabolomics, and bioinformatics to identify the differential proteins and differential metabolites. The correlation between differential proteins and POAF was also investigated by multivariable regression analysis and receiver operator characteristic analysis. RESULTS In the POAF(+) group, 29 differential proteins and 61 differential metabolites were identified compared with the POAF(-) group. The analysis of integrated omics revealed that preoperative alteration of peroxisome proliferators-activated receptor α and glutathione metabolism pathways increased the susceptibility of POAF after CABG. There was a correlation between plasma levels of apolipoprotein-C3, phospholipid transfer protein, glutathione peroxidase 3, cholesteryl ester transfer protein, and POAF. CONCLUSIONS The present study for first time at multi-omics levels explored the mechanism of POAF and validated the results in a new cohort of patients, suggesting preexisting differential proteins and differential metabolites in the plasma of patients prone to POAF after CABG. Dysregulation of peroxisome proliferators-activated receptor α and glutathione metabolism pathways related to metabolic remodeling and redox imbalance-associated electrical remodeling may play a key role in the pathogenesis of POAF. Lower plasma phospholipid transfer protein, apolipoprotein-C3, higher cholesteryl ester transfer protein and glutathione peroxidase 3 levels are linked with POAF. These proteins/metabolites may be developed as biomarkers to predict POAF.
Collapse
Affiliation(s)
- Xin-Ya Li
- Center for Basic Medical Research and Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hai-Tao Hou
- Center for Basic Medical Research and Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Huan-Xin Chen
- Center for Basic Medical Research and Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiao-Cheng Liu
- Center for Basic Medical Research and Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jun Wang
- Center for Basic Medical Research and Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Qin Yang
- Center for Basic Medical Research and Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Guo-Wei He
- Center for Basic Medical Research and Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; Department of Cardiac Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China; School of Pharmacy, Wannan Medical College, Wuhu, Anhui, China; Department of Surgery, Oregon Health and Science University, Portland, Ore.
| |
Collapse
|
17
|
Chen HX, Li MY, Jiang YY, Hou HT, Wang J, Liu XC, Yang Q, He GW. Role of the PPAR pathway in atrial fibrillation associated with heart valve disease: transcriptomics and proteomics in human atrial tissue. Signal Transduct Target Ther 2020; 5:4. [PMID: 32296022 PMCID: PMC6971265 DOI: 10.1038/s41392-019-0093-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/01/2019] [Indexed: 11/09/2022] Open
Affiliation(s)
- Huan-Xin Chen
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ming-Yang Li
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Graduate School, Peking Union Medical College, Beijing, China
| | - Yi-Yao Jiang
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Hai-Tao Hou
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jun Wang
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiao-Cheng Liu
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qin Yang
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Guo-Wei He
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
- The First Affiliated Hospital of Zhejiang University, Hangzhou, and School of Pharmacy, Wannan Medical College, Wuhu, China.
- Department of Surgery, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
18
|
Xuan C, Li H, Li LL, Tian QW, Wang Q, Zhang BB, Guo JJ, He GW, Lun LM. Screening and Identification of Pregnancy Zone Protein and Leucine-Rich Alpha-2-Glycoprotein as Potential Serum Biomarkers for Early-Onset Myocardial Infarction using Protein Profile Analysis. Proteomics Clin Appl 2018; 13:e1800079. [PMID: 30411527 DOI: 10.1002/prca.201800079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 10/19/2018] [Indexed: 12/29/2022]
Abstract
PURPOSE The present study aims to discover novel serum biomarkers of early-onset myocardial infarction (MI) using proteomic analysis. EXPERIMENTAL DESIGN In the first stage, the iTRAQ-coupled LC-MS/MS technique is utilized to investigate protein profiles of patients with early-onset MI. In the second stage, these candidate proteins are validated using ELISA. RESULTS A total of 538 proteins are quantified, with pregnancy zone protein (PZP), leucine-rich α-2-glycoprotein (LRG) and Apolipoprotein C-I (Apo C-I) being upregulated and Apolipoprotein A-I (Apo A-I) and Apolipoprotein A-IV (Apo A-IV) downregulated in early-onset MI patients. Results from the validation stage demonstrate that the serum concentrations of PZP and LRG are significantly increased in the early-onset MI group. The correlation between the concentrations of C-reactive protein (CRP) and the two candidate biomarkers is positive. Area under the curve values used to diagnose early-onset MI for LRG and PZP are 0.939 and 0.874, respectively. CONCLUSIONS AND CLINICAL RELEVANCE Five differential serum proteins are identified in early-onset MI using proteomic analysis. Lipoprotein-related biomarkers further demonstrate the close relationship between lipid metabolism and the disease. Inflammation-associated LRG and PZP may be novel biomarkers of the disease. In addition, changes in these proteins may partly reveal the possible mechanisms in the pathogenesis and pathophysiology of early-onset MI.
Collapse
Affiliation(s)
- Chao Xuan
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hui Li
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Le-Le Li
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qing-Wu Tian
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qing Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bei-Bei Zhang
- Department of Molecular Microbiology, Oslo University Hospital, Oslo, Norway
| | - Jun-Jie Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guo-Wei He
- Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital,, Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Department of Surgery, Oregon Health and Science University, Portland, Oregon
| | - Li-Min Lun
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
19
|
Hou HT, Xi-Zhang, Wang J, Liu LX, Zhang JF, Yang Q, He GW. Altered plasma proteins released from platelets and endothelial cells are associated with human patent ductus arteriosus. J Cell Physiol 2018; 234:6842-6853. [PMID: 30480800 DOI: 10.1002/jcp.27433] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/27/2018] [Indexed: 11/09/2022]
Abstract
Patent ductus arteriosus is the third most common congenital heart disease and resulted from the persistence of ductal patency after birth. Ductus arteriosus closure involves functional and structural remodeling, controlled by many factors. The changes in plasma protein levels associated with PDA closure are not known. Here we for the first time demonstrate six key differential plasma proteins in human patent ductus arteriosus patients using proteomic technology and present a model to illustrate the constriction and closure of ductus arteriosus. Differentially expressed proteins were analyzed by using isobaric tags for relative and absolute quantification and validated by enzyme-linked immunosorbent assay in new samples. The proteomic data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD008568. We found 74 upregulated and 98 downregulated proteins in the plasma of patients with PDA. Five decreased proteins (platelet factor 4, fibrinogen, von Willebrand factor, collagen, and mannose binding lectin-associated serine protease-2) and one increased protein (fibronectin) may increase the risk of patent ductus arteriosus. Those proteins are closely related to platelet activation and coagulation cascades, complement mannan-binding-lectin, and other systemic signaling pathways. Our findings for the first time indicate that the differential proteins involved in different pathways may play key roles in the nonclosure of the ductus arteriosus in humans and may be developed as biomarkers for diagnosis. All those findings may be served as the basis of understanding the etiology and pathogenesis of patent ductus arteriosus.
Collapse
Affiliation(s)
- Hai-Tao Hou
- Department of Cardiovascular Surgery & Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,The Heart Center, The Affiliated Hospital of Hangzhou Normal University & Zhejiang University, Hangzhou, China
| | - Xi-Zhang
- Department of Cardiovascular Surgery & Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jun Wang
- Department of Cardiovascular Surgery & Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Li-Xin Liu
- Department of Pediatric Cardiothoracic Surgery, Maternal and Child Health Hospital of Tangshan, Hebei, China
| | - Jian-Feng Zhang
- Department of Pediatric Cardiothoracic Surgery, Maternal and Child Health Hospital of Tangshan, Hebei, China
| | - Qin Yang
- Department of Cardiovascular Surgery & Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Guo-Wei He
- Department of Cardiovascular Surgery & Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,The Heart Center, The Affiliated Hospital of Hangzhou Normal University & Zhejiang University, Hangzhou, China.,Department of Surgery, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
20
|
Li XY, Hou HT, Chen HX, Wang ZQ, He GW. Increased circulating levels of tumor necrosis factor-like cytokine 1A and decoy receptor 3 correlate with SYNTAX score in patients undergoing coronary surgery. J Int Med Res 2018; 46:5167-5175. [PMID: 30213220 PMCID: PMC6300958 DOI: 10.1177/0300060518793787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Objective Chronic inflammation of the arteries is a critical mechanism responsible for coronary atherosclerosis. We aimed to determine if tumor necrosis factor (TNF)-like cytokine 1A (TL1A) and decoy receptor 3 (DcR3) were involved in promoting atherosclerosis. Methods We compared plasma levels of TL1A and DcR3 in patients with coronary artery disease (CAD) undergoing coronary artery bypass grafting (n=40) and patients without CAD group (n=37, normal coronary artery angiogram) by enzyme-linked immunosorbent assay. We also analyzed the correlation between CAD and SYNTAX scores. Results Plasma levels of TL1A and DcR3 were significantly higher in the CAD compared with the no-CAD group. Multivariate analysis showed that TL1A and DcR3 were significantly correlated with the presence of CAD, and receiver operating characteristic curve analysis indicated that both TL1A and DcR3 showed high sensitivity and specificity for diagnosing CAD. Furthermore, TL1A was positively and significantly correlated with SYNTAX score in CAD patients. Conclusions CAD patients requiring coronary artery bypass grafting have high circulating levels of both TL1A and DcR3, which may thus be useful biomarkers for diagnosing severe CAD. Furthermore, plasma levels of TL1A correlate with SYNTAX score, supporting its potential use as an indicator of the severity of CAD.
Collapse
Affiliation(s)
- Xin-Ya Li
- 1 Department of Cardiovascular Surgery & Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Hai-Tao Hou
- 1 Department of Cardiovascular Surgery & Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Huan-Xin Chen
- 1 Department of Cardiovascular Surgery & Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zheng-Qing Wang
- 1 Department of Cardiovascular Surgery & Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Guo-Wei He
- 1 Department of Cardiovascular Surgery & Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,2 The Affiliated Hospital of Hangzhou Normal University & Zhejiang University, Tianjin, China.,3 Department of Surgery, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
21
|
Manfredi M, Chiariello C, Conte E, Castagna A, Robotti E, Gosetti F, Patrone M, Martinelli N, Bassi A, Cecconi D, Marengo E, Olivieri O. Plasma Proteome Profiles of Stable CAD Patients Stratified According to Total Apo C‐III Levels. Proteomics Clin Appl 2018; 13:e1800023. [DOI: 10.1002/prca.201800023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/30/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Marcello Manfredi
- Department of Sciences and Technological InnovationUniversity of Piemonte Orientale Viale T. Michel 11 15121 Alessandria Italy
- ISALIT S.r.l. Via Canobia 4/6 28100 Novara Italy
| | - Carmela Chiariello
- Department of MedicineUnit of Internal MedicineUniversity of Verona P.le L.A. Scuro 10 37134 Verona Italy
| | | | - Annalisa Castagna
- Department of MedicineUnit of Internal MedicineUniversity of Verona P.le L.A. Scuro 10 37134 Verona Italy
| | - Elisa Robotti
- Department of Sciences and Technological InnovationUniversity of Piemonte Orientale Viale T. Michel 11 15121 Alessandria Italy
- ISALIT S.r.l. Via Canobia 4/6 28100 Novara Italy
| | - Fabio Gosetti
- Department of Sciences and Technological InnovationUniversity of Piemonte Orientale Viale T. Michel 11 15121 Alessandria Italy
| | - Mauro Patrone
- Department of Sciences and Technological InnovationUniversity of Piemonte Orientale Viale T. Michel 11 15121 Alessandria Italy
| | - Nicola Martinelli
- Department of MedicineUnit of Internal MedicineUniversity of Verona P.le L.A. Scuro 10 37134 Verona Italy
| | - Antonella Bassi
- Laboratory of Clinical Chemistry and HematologyUniversity Hospital of Verona P.le L.A. Scuro 10 37134 Verona Italy
| | - Daniela Cecconi
- Department of BiotechnologyProteomics and Mass Spectrometry LaboratoryUniversity of Verona Strada le grazie 15 37134 Verona Italy
| | - Emilio Marengo
- Department of Sciences and Technological InnovationUniversity of Piemonte Orientale Viale T. Michel 11 15121 Alessandria Italy
| | - Oliviero Olivieri
- Department of MedicineUnit of Internal MedicineUniversity of Verona P.le L.A. Scuro 10 37134 Verona Italy
| |
Collapse
|
22
|
Abstract
Acute rheumatic fever is caused by an autoimmune response to throat infection with Streptococcus pyogenes. Cardiac involvement during acute rheumatic fever can result in rheumatic heart disease, which can cause heart failure and premature mortality. Poverty and household overcrowding are associated with an increased prevalence of acute rheumatic fever and rheumatic heart disease, both of which remain a public health problem in many low-income countries. Control efforts are hampered by the scarcity of accurate data on disease burden, and effective approaches to diagnosis, prevention, and treatment. The diagnosis of acute rheumatic fever is entirely clinical, without any laboratory gold standard, and no treatments have been shown to reduce progression to rheumatic heart disease. Prevention mainly relies on the prompt recognition and treatment of streptococcal pharyngitis, and avoidance of recurrent infection using long-term antibiotics. But evidence for the effectiveness of either approach is not strong. High-quality research is urgently needed to guide efforts to reduce acute rheumatic fever incidence and prevent progression to rheumatic heart disease.
Collapse
Affiliation(s)
- Ganesan Karthikeyan
- Department of Cardiology, Cardiothoracic Sciences Centre, All India Institute of Medical Sciences, New Delhi, India.
| | - Luiza Guilherme
- Heart Institute (InCor), University of São Paulo, Institute for Investigation in Immunology, National Institute of Science and Technology, São Paulo, Brazil
| |
Collapse
|
23
|
Chen D, Ganesh S, Wang W, Amiji M. Plasma protein adsorption and biological identity of systemically administered nanoparticles. Nanomedicine (Lond) 2017; 12:2113-2135. [DOI: 10.2217/nnm-2017-0178] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although a variety of nanoparticles (NPs) have been used for drug delivery applications, their surfaces are immediately covered by plasma protein corona upon systemic administration. As a result, the adsorbed proteins create a unique biological identity of the NPs that lead to unpredictable performance. The protein corona on NPs could also impede active targeting, induce off-target effects, trigger particle clearance and even provoke toxicity. This article reviews the fundamentals of NP–plasma protein interaction, the consequences of the interactions, and provides insights into the correlations of protein corona with biodistribution and cellular delivery. We hope that this review will trigger additional questions and possible solutions that lead to more favorable developments in NP-based targeted delivery systems.
Collapse
Affiliation(s)
- Dongyu Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Shanthi Ganesh
- Department of Pre-Clinical Oncology, Dicerna Pharmaceuticals, Inc., Cambridge, MA 02140, USA
| | - Weimin Wang
- Department of Chemistry and Formulation, Dicerna Pharmaceuticals, Inc., Cambridge, MA 02140, USA
| | - Mansoor Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
24
|
Jiang YY, Hou HT, Yang Q, Liu XC, He GW. Chloride Channels are Involved in the Development of Atrial Fibrillation - A Transcriptomic and proteomic Study. Sci Rep 2017; 7:10215. [PMID: 28860555 PMCID: PMC5579191 DOI: 10.1038/s41598-017-10590-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 08/11/2017] [Indexed: 11/23/2022] Open
Abstract
Electrical and structural remodeling processes are contributors to the self-perpetuating nature of atrial fibrillation (AF). However, their correlation has not been clarified. In this study, human atrial tissues from the patients with rheumatic mitral valve disease in either sinus rhythm or persistent AF were analyzed using a combined transcriptomic and proteomic approach. An up-regulation in chloride intracellular channel (CLIC) 1, 4, 5 and a rise in type IV collagen were revealed. Combined with the results from immunohistochemistry and electron microscope analysis, the distribution of type IV collagen and effects of fibrosis on myocyte membrane indicated the possible interaction between CLIC and type IV collagen, confirmed by protein structure prediction and co-immunoprecipitation. These results indicate that CLICs play an important role in the development of atrial fibrillation and that CLICs and structural type IV collagen may interact on each other to promote the development of AF in rheumatic mitral valve disease.
Collapse
Affiliation(s)
- Yi-Yao Jiang
- Department of Cardiovascular Surgery & Center for Basic Medical Research, TEDA International Cardiovascular Hospital, The Chinese Academy of Medical Sciences & Peking Union Medical College, & Nankai University, Tianjin, China.,The Affiliated Hospital of Hangzhou Normal University & Zhejiang University, Hangzhou, China
| | - Hai-Tao Hou
- Department of Cardiovascular Surgery & Center for Basic Medical Research, TEDA International Cardiovascular Hospital, The Chinese Academy of Medical Sciences & Peking Union Medical College, & Nankai University, Tianjin, China
| | - Qin Yang
- Department of Cardiovascular Surgery & Center for Basic Medical Research, TEDA International Cardiovascular Hospital, The Chinese Academy of Medical Sciences & Peking Union Medical College, & Nankai University, Tianjin, China
| | - Xiao-Cheng Liu
- Department of Cardiovascular Surgery & Center for Basic Medical Research, TEDA International Cardiovascular Hospital, The Chinese Academy of Medical Sciences & Peking Union Medical College, & Nankai University, Tianjin, China
| | - Guo-Wei He
- Department of Cardiovascular Surgery & Center for Basic Medical Research, TEDA International Cardiovascular Hospital, The Chinese Academy of Medical Sciences & Peking Union Medical College, & Nankai University, Tianjin, China. .,The Affiliated Hospital of Hangzhou Normal University & Zhejiang University, Hangzhou, China. .,Department of Surgery, Oregon Health and Science University, Portland, Oregon, USA.
| |
Collapse
|
25
|
Guo ZP, Hou HT, Jing R, Song ZG, Liu XC, He GW. Plasma protein profiling in patients undergoing coronary artery bypass grafting surgery and clinical significance. Oncotarget 2017; 8:60528-60538. [PMID: 28947991 PMCID: PMC5601159 DOI: 10.18632/oncotarget.16366] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/15/2017] [Indexed: 12/05/2022] Open
Abstract
This study was designed to identify the protein profiling in patients with triple vessel coronary artery disease (CAD) undergoing CABG, in order to detect CAD-related differential proteins in these patients. CABG patients with triple vessel disease with/without left main stenosis (n =160) were compared to normal coronary angiographic subjects (n =160). Plasma samples of 20 males and 20 females in each group were analyzed with iTRAQ technique. ELISA test was used to test the chosen proteins from iTRAQ results in plasma samples from a new cohort of the CABG group (n=120, male/femal=61/59) and control (n =120, male/female=60/60). iTRAQ detected 544 proteins with 35 up-regulated and 41 down-regulated (change fold > 1.2 or < 0.83, p < 0.05). Three proteins including platelet factor 4 (PF4), coagulation factor XIII B chain (F13B), and secreted frizzled-related protein 1 (sFRP1) were selected for validation by using ELISA that demonstrated significant up-regulation of PF4 and sFRP1 (p < 0.05). There was a positive correlation between these proteins and CAD (p < 0.05) and myocardial infarction history (p < 0.05). Thus, we for the first time have found 76 proteins differentially expressed in plasma of CABG patients. The thrombotic disease/inflammation progress-related protein PF4 and sFRP1, a member of the Wnt/fz signal-transduction pathway and related to myocardial repair, are significantly up-regulated in triple-vessel disease with/without left main stenosis. PF4 may be developed as a biomarker for the diagnosis of the severity of CAD requiring CABG procedure.
Collapse
Affiliation(s)
- Zhi-Peng Guo
- Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Shi, China.,Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Shi, China
| | - Hai-Tao Hou
- Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Shi, China
| | - Rui Jing
- Department of Cardiology, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Shi, China
| | - Zhen-Guo Song
- Department of Cardiology, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Shi, China
| | - Xiao-Cheng Liu
- Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Shi, China
| | - Guo-Wei He
- Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Shi, China.,Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Shi, China.,The Heart Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Medical College, Zhejiang University, Zhejiang, China.,Department of Surgery, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
26
|
Locatelli C, Piras C, Riscazzi G, Alloggio I, Spalla I, Soggiu A, Greco V, Bonizzi L, Roncada P, Brambilla PG. Serum proteomic profiles in CKCS with Mitral valve disease. BMC Vet Res 2017; 13:43. [PMID: 28173805 PMCID: PMC5297119 DOI: 10.1186/s12917-017-0951-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 01/13/2017] [Indexed: 11/16/2022] Open
Abstract
Background Myxomatous mitral valve disease (MVD) is the most common acquired heart disease in dogs, and the Cavalier King Charles Spaniel (CKCS) is the most studied breed because of the high prevalence, early onset and hereditary component evidenced in the breed. MVD has different severity levels, and there are many practical limitations in identifying its asymptomatic stages. Proteomic techniques are valuable for studying the proteins and peptides involved in cardiovascular diseases, including the period prior to the clinical onset of the disease. The aim of this study was to identify the serum proteins that were differentially expressed in healthy CKCS and those affected by MVD in mild to severe stages. Proteomics analysis was performed using two-dimensional gel electrophoresis separation and a bioinformatics analysis for the detection of differentially expressed spots. In a comparative analysis, protein spots with a p < 0.05 (ANOVA) were considered statistically significant and were excised from the gels for analysis by MALDI–TOF–MS for protein identification. Results Eight proteins resulted differentially expressed among the groups and significantly related to the progression of the disease. In mild affected group versus healthy dogs complement factor H isoform 2, inhibitor of carbonic anhydrase, hemopexin, dystrobrevin beta isoform X7 and CD5 molecule-like resulted to be down-regulated, whereas fibronectin type-III domain-containing protein 3A isoform X4 was up-regulated. In severe affected dogs versus healthy group complement factor H isoform 2, calpain-3 isoform X2, dystrobrevin beta isoform X7, CD5 molecule-like and l-2-hydroxyglutarate dehydrogenase resulted to be down-regulated. Complement factor H isoform 2, calpain-3 isoform X2, dystrobrevin beta isoform X7, CD5 molecule-like and hydroxyglutarate dehydrogenase were found to be down-regulated in mild affected group versus healthy dogs. All of these proteins except complement factor H followed a decreasing trend according to the progression of the pathology. Conclusion The differential expression of serum proteins demonstrates the possibility these might be valuable for the detection and monitoring of the disease. Further longitudinal studies are required to determine whether differential protein expression occurs sufficiently early in the progression of the disease and with sufficient predictive value to allow proteomics analysis to be used as an early detection and on-line diagnostic tool.
Collapse
Affiliation(s)
- Chiara Locatelli
- DIMEVET, Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Cristian Piras
- DIMEVET, Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Giulia Riscazzi
- DIMEVET, Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Isabella Alloggio
- DIMEVET, Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Ilaria Spalla
- DIMEVET, Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Alessio Soggiu
- DIMEVET, Department of Veterinary Medicine, University of Milan, Milan, Italy
| | | | - Luigi Bonizzi
- DIMEVET, Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Paola Roncada
- DIMEVET, Department of Veterinary Medicine, University of Milan, Milan, Italy.,Istituto Sperimentale Italiano L. Spallanzani, Milan, Italy
| | - Paola G Brambilla
- DIMEVET, Department of Veterinary Medicine, University of Milan, Milan, Italy.
| |
Collapse
|
27
|
Plasma Proteomic Study in Pulmonary Arterial Hypertension Associated with Congenital Heart Diseases. Sci Rep 2016; 6:36541. [PMID: 27886187 PMCID: PMC5122864 DOI: 10.1038/srep36541] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/17/2016] [Indexed: 02/06/2023] Open
Abstract
Pulmonary arterial hypertension associated with congenital heart disease (CHD-PAH) has serious consequence and plasma protein profiles in CHD-PAH are unknown. We aimed to reveal the differential plasma proteins in 272 CHD patients with or without PAH. Various types of CHD-PAH were studied. Differential plasma proteins were first detected by iTRAQ proteomic technology and those with significant clinical relevance were selected for further ELISA validation in new cohort of patients. Among the 190 differential plasma proteins detected by iTRAQ, carbamoyl-phosphate synthetase I (CPSI, related to urea cycle and endogenous nitric oxide production) and complement factor H-related protein 2 (CFHR2, related to complement system and coagulant mechanism) were selected for further ELISA validation in new cohort of 152 patients. Both CPSI and CFHR2 were down-regulated with decreased plasma levels (p < 0.01). Thus, we for the first time in CHD-PAH patients identified a large number of differential plasma proteins. The decreased CPSI expression in CHD-PAH patients may reveal a mechanism related to endogenous nitric oxide and the decrease of CFHR2 protein may demonstrate the deficiency of the immune system and coagulation mechanism. The findings may open a new direction for translational medicine in CHD-PAH with regard to the diagnosis and progress of the disease.
Collapse
|
28
|
Hanff E, Böhmer A, Zinke M, Gambaryan S, Schwarz A, Supuran CT, Tsikas D. Carbonic anhydrases are producers of S-nitrosothiols from inorganic nitrite and modulators of soluble guanylyl cyclase in human platelets. Amino Acids 2016; 48:1695-706. [PMID: 27129464 DOI: 10.1007/s00726-016-2234-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 04/08/2016] [Indexed: 12/29/2022]
Abstract
Nitric oxide (NO), S-nitrosoglutathione (GSNO) and S-nitrosocysteine are highly potent signaling molecules, acting both by cGMP-dependent and cGMP-independent mechanisms. The NO metabolite nitrite (NO2 (-)) is a major NO reservoir. Hemoglobin, xanthine oxidoreductase and carbonic anhydrase (CA) have been reported to reduce/convert nitrite to NO. We evaluated the role and the physiological importance of CA for an extra-platelet CA/nitrite/NO/cGMP pathway in human platelets. Authentic NO was analyzed by an NO-sensitive electrode. GSNO and GS(15)NO were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). cGMP was determined by LC-MS/MS or RIA. In reduced glutathione (GSH) containing aqueous buffer (pH 7.4), human and bovine erythrocytic CAII-mediated formation of GSNO from nitrite and GS(15)NO from (15)N-nitrite. In the presence of L-cysteine and GSH, this reaction was accompanied by NO release. Incubation of nitrite with bovine erythrocytic CAII and recombinant soluble guanylyl cyclase resulted in cGMP formation. Upon incubation of nitrite with bovine erythrocytic CAII and washed human platelets, cGMP and P-VASP(S239) were formed in the platelets. This study provides the first evidence that extra-platelet nitrite and erythrocytic CAII may modulate platelet function in a cGMP-dependent manner. The new nitrite-dependent CA activity may be a general principle and explain the cardioprotective effects of inorganic nitrite in the vasculature. We propose that nitrous acid (ONOH) is the primary CA-catalyzed reaction product of nitrite.
Collapse
Affiliation(s)
- Erik Hanff
- Centre of Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Anke Böhmer
- Centre of Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Maximilian Zinke
- Centre of Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Stepan Gambaryan
- Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia.,Department of Cytology and Histology, S. Petersburg State University, Universitetskaya Nab 7/9, 199034, S. Petersburg, Russia
| | - Alexandra Schwarz
- Centre of Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Dimitrios Tsikas
- Centre of Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
29
|
Carapetis JR, Beaton A, Cunningham MW, Guilherme L, Karthikeyan G, Mayosi BM, Sable C, Steer A, Wilson N, Wyber R, Zühlke L. Acute rheumatic fever and rheumatic heart disease. Nat Rev Dis Primers 2016; 2:15084. [PMID: 27188830 PMCID: PMC5810582 DOI: 10.1038/nrdp.2015.84] [Citation(s) in RCA: 336] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Acute rheumatic fever (ARF) is the result of an autoimmune response to pharyngitis caused by infection with group A Streptococcus. The long-term damage to cardiac valves caused by ARF, which can result from a single severe episode or from multiple recurrent episodes of the illness, is known as rheumatic heart disease (RHD) and is a notable cause of morbidity and mortality in resource-poor settings around the world. Although our understanding of disease pathogenesis has advanced in recent years, this has not led to dramatic improvements in diagnostic approaches, which are still reliant on clinical features using the Jones Criteria, or treatment practices. Indeed, penicillin has been the mainstay of treatment for decades and there is no other treatment that has been proven to alter the likelihood or the severity of RHD after an episode of ARF. Recent advances - including the use of echocardiographic diagnosis in those with ARF and in screening for early detection of RHD, progress in developing group A streptococcal vaccines and an increased focus on the lived experience of those with RHD and the need to improve quality of life - give cause for optimism that progress will be made in coming years against this neglected disease that affects populations around the world, but is a particular issue for those living in poverty.
Collapse
Affiliation(s)
- Jonathan R Carapetis
- Telethon Kids Institute, the University of Western Australia, PO Box 855, West Perth, Western Australia 6872, Australia
- Princess Margaret Hospital for Children, Perth, Western Australia, Australia
| | - Andrea Beaton
- Children's National Health System, Washington, District of Columbia, USA
| | - Madeleine W Cunningham
- Department of Microbiology and Immunology, Biomedical Research Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Luiza Guilherme
- Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
- Institute for Immunology Investigation, National Institute for Science and Technology, São Paulo, Brazil
| | - Ganesan Karthikeyan
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, India
| | - Bongani M Mayosi
- Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Craig Sable
- Children's National Health System, Washington, District of Columbia, USA
| | - Andrew Steer
- Department of Paediatrics, the University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Nigel Wilson
- Green Lane Paediatric and Congenital Cardiac Services, Starship Hospital, Auckland, New Zealand
- Department of Paediatrics, University of Auckland, Auckland, New Zealand
| | - Rosemary Wyber
- Telethon Kids Institute, the University of Western Australia, PO Box 855, West Perth, Western Australia 6872, Australia
| | - Liesl Zühlke
- Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
- Department of Paediatric Cardiology, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
30
|
Li W, Zeng Z, Gui C, Zheng H, Huang W, Wei H, Gong D. Proteomic analysis of mitral valve in Lewis rat with acute rheumatic heart disease. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:14151-14160. [PMID: 26823728 PMCID: PMC4713514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/28/2015] [Indexed: 06/05/2023]
Abstract
Rheumatic heart disease (RHD) makes a heavy burden in human lives and economy. The proteomic analysis of acute rheumatic heart disease (ARHD) can provide precious data to study RHD at the early stages, but no one has looked into. So based on our early research we applied the method of continuous GAS stimulation on Lewis rats to duplicate the animal model of ARHD. And the mitral valves of rats in control group (n=10) and ARHD group (n=10) were selected for proteomic analysis of ARHD with the iTRAQ labeling based 2D LC-ESI-MS/MS quantitative technology. We identified 3931 proteins in valve tissue out of which we obtained 395 differentially expressed proteins containing 176 up-regulated proteins and 119 down-regulated proteins. Changes in levels of GAPDH (6.793 times higher than the control group) and CD9 (2.63 times higher than the control group) were confirmed by Western blot or immunohistochemistry. The differentially expressed proteins such as GAPDH, CD9, myosin, collagen and RAC1 may be potential biomarkers for ARHD. Moreover, the mitral valve protein profile shed light on further understanding and investigating ARHD.
Collapse
Affiliation(s)
- Wenting Li
- Department of Cardiology, The First Affiliated Hospital, Guangxi Medical UniversityNanning 530021, Guangxi, China
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical UniversityNanning, Guangxi 530021, China
| | - Zhiyu Zeng
- Department of Cardiology, The First Affiliated Hospital, Guangxi Medical UniversityNanning 530021, Guangxi, China
| | - Chun Gui
- Department of Cardiology, The First Affiliated Hospital, Guangxi Medical UniversityNanning 530021, Guangxi, China
| | - Huilei Zheng
- Department of Cardiology, The First Affiliated Hospital, Guangxi Medical UniversityNanning 530021, Guangxi, China
| | - Weiqiang Huang
- Department of Cardiology, The First Affiliated Hospital, Guangxi Medical UniversityNanning 530021, Guangxi, China
| | - Heng Wei
- Department of Cardiology, The First Affiliated Hospital, Guangxi Medical UniversityNanning 530021, Guangxi, China
| | - Danping Gong
- Department of Cardiology, The First Affiliated Hospital, Guangxi Medical UniversityNanning 530021, Guangxi, China
| |
Collapse
|
31
|
Ménoret A, Crocker SJ, Rodriguez A, Rathinam VA, Clark RB, Vella AT. Transition from identity to bioactivity-guided proteomics for biomarker discovery with focus on the PF2D platform. Proteomics Clin Appl 2015. [PMID: 26201056 DOI: 10.1002/prca.201500029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteomic strategies provide a valuable tool kit to identify proteins involved in diseases. With recent progress in MS technology, high throughput proteomics has accelerated protein identification for potential biomarkers. Numerous biomarker candidates have been identified in several diseases, and many are common among pathologies. An overall strategy that could complement and strengthen the search for biomarkers is combining protein identity with biological outcomes. This review describes an emerging framework of bridging bioactivity to protein identity, exploring the possibility that some biomarkers will have a mechanistic role in the disease process. A review of pulmonary, cardiovascular, and CNS biomarkers will be discussed to demonstrate the utility of combining bioactivity with identification as a means to not only find meaningful biomarkers, but also to uncover functional mediators of disease.
Collapse
Affiliation(s)
- Antoine Ménoret
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Stephen J Crocker
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Annabelle Rodriguez
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Vijay A Rathinam
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Robert B Clark
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Anthony T Vella
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
32
|
Zhang X, Wang K, Yang Q, Wang J, Xuan C, Liu XC, Liu ZG, He GW. Acute phase proteins altered in the plasma of patients with congenital ventricular septal defect. Proteomics Clin Appl 2015; 9:1087-96. [PMID: 25914298 DOI: 10.1002/prca.201400166] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 03/20/2015] [Accepted: 04/23/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Xi Zhang
- TEDA International Cardiovascular Hospital; Tianjin and The Affiliated Hospital of Hangzhou Normal University and Zhejiang University; Hangzhou China
| | - Kai Wang
- Department of Cardiovascular Surgery; Tianjin First Center Hospital; Tianjin China
| | - Qin Yang
- TEDA International Cardiovascular Hospital; Tianjin and The Affiliated Hospital of Hangzhou Normal University and Zhejiang University; Hangzhou China
- Department of Medicine and Therapeutics; The Chinese University of Hong Kong; Hong Kong China
| | - Jun Wang
- TEDA International Cardiovascular Hospital; Tianjin and The Affiliated Hospital of Hangzhou Normal University and Zhejiang University; Hangzhou China
| | - Chao Xuan
- TEDA International Cardiovascular Hospital; Tianjin and The Affiliated Hospital of Hangzhou Normal University and Zhejiang University; Hangzhou China
| | - Xiao-Cheng Liu
- TEDA International Cardiovascular Hospital; Tianjin and The Affiliated Hospital of Hangzhou Normal University and Zhejiang University; Hangzhou China
| | - Zhi-Gang Liu
- TEDA International Cardiovascular Hospital; Tianjin and The Affiliated Hospital of Hangzhou Normal University and Zhejiang University; Hangzhou China
| | - Guo-Wei He
- TEDA International Cardiovascular Hospital; Tianjin and The Affiliated Hospital of Hangzhou Normal University and Zhejiang University; Hangzhou China
- Department of Surgery; Oregon Health and Science University; Portland Oregon USA
| |
Collapse
|
33
|
Mukherjee S, Jagadeeshaprasad MG, Banerjee T, Ghosh SK, Biswas M, Dutta S, Kulkarni MJ, Pattari S, Bandyopadhyay A. Proteomic analysis of human plasma in chronic rheumatic mitral stenosis reveals proteins involved in the complement and coagulation cascade. Clin Proteomics 2014; 11:35. [PMID: 25379033 PMCID: PMC4193131 DOI: 10.1186/1559-0275-11-35] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 08/14/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Rheumatic fever in childhood is the most common cause of Mitral Stenosis in developing countries. The disease is characterized by damaged and deformed mitral valves predisposing them to scarring and narrowing (stenosis) that results in left atrial hypertrophy followed by heart failure. Presently, echocardiography is the main imaging technique used to diagnose Mitral Stenosis. Despite the high prevalence and increased morbidity, no biochemical indicators are available for prediction, diagnosis and management of the disease. Adopting a proteomic approach to study Rheumatic Mitral Stenosis may therefore throw some light in this direction. In our study, we undertook plasma proteomics of human subjects suffering from Rheumatic Mitral Stenosis (n = 6) and Control subjects (n = 6). Six plasma samples, three each from the control and patient groups were pooled and subjected to low abundance protein enrichment. Pooled plasma samples (crude and equalized) were then subjected to in-solution trypsin digestion separately. Digests were analyzed using nano LC-MS(E). Data was acquired with the Protein Lynx Global Server v2.5.2 software and searches made against reviewed Homo sapiens database (UniProtKB) for protein identification. Label-free protein quantification was performed in crude plasma only. RESULTS A total of 130 proteins spanning 9-192 kDa were identified. Of these 83 proteins were common to both groups and 34 were differentially regulated. Functional annotation of overlapping and differential proteins revealed that more than 50% proteins are involved in inflammation and immune response. This was corroborated by findings from pathway analysis and histopathological studies on excised tissue sections of stenotic mitral valves. Verification of selected protein candidates by immunotechniques in crude plasma corroborated our findings from label-free protein quantification. CONCLUSIONS We propose that this protein profile of blood plasma, or any of the individual proteins, could serve as a focal point for future mechanistic studies on Mitral Stenosis. In addition, some of the proteins associated with this disorder may be candidate biomarkers for disease diagnosis and prognosis. Our findings might help to enrich existing knowledge on the molecular mechanisms involved in Mitral Stenosis and improve the current diagnostic tools in the long run.
Collapse
Affiliation(s)
- Somaditya Mukherjee
- />Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032 India
| | | | - Tanima Banerjee
- />Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032 India
| | - Sudip K Ghosh
- />General Medicine Department, Medical College, Kolkata, India
| | - Monodeep Biswas
- />Department of Cardiology, Geisinger Community Medical Center & Wright Center for graduate medical education, Scranton, PA 18510 USA
| | - Santanu Dutta
- />Department of Cardio-thoracic and Vascular Surgery, Institute of Post Graduate Medical Education and Research, SSKM Hospital, Kolkata, 700020 India
| | - Mahesh J Kulkarni
- />Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008 India
| | - Sanjib Pattari
- />Rabindranath Tagore International Institute of Cardiac Sciences, Kolkata, 700099 India
| | - Arun Bandyopadhyay
- />Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032 India
| |
Collapse
|
34
|
Xuan C, Gao G, Yang Q, Wang XL, Liu ZG, Liu XC, He GW. Proteomic Study Reveals Plasma Protein Changes in Congenital Heart Diseases. Ann Thorac Surg 2014; 97:1414-9. [DOI: 10.1016/j.athoracsur.2013.11.069] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/18/2013] [Accepted: 11/25/2013] [Indexed: 12/11/2022]
|