1
|
Longo A, Hudler P, Strojan P, Plavc G, Umek L, Popovic KS. Predictive potential of dynamic contrast-enhanced MRI and plasma-derived angiogenic factors for response to concurrent chemoradiotherapy in human papillomavirus-negative oropharyngeal cancer. Radiol Oncol 2024; 58:366-375. [PMID: 39287165 PMCID: PMC11406927 DOI: 10.2478/raon-2024-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/22/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can assess tumour vascularity, which depends on the process of angiogenesis and affects tumour response to treatment. Our study explored the associations between DCE-MRI parameters and the expression of plasma angiogenic factors in human papilloma virus (HPV)-negative oropharyngeal cancer, as well as their predictive value for response to concurrent chemoradiotherapy (cCRT). PATIENTS AND METHODS Twenty-five patients with locally advanced HPV-negative oropharyngeal carcinoma were prospectively enrolled in the study. DCE-MRI and blood plasma sampling were conducted before cCRT, after receiving a radiation dose of 20 Gy, and after the completion of cCRT. Perfusion parameters ktrans, kep, Ve, initial area under the curve (iAUC) and plasma expression levels of angiogenic factors (vascular endothelial growth factor [VEGF], connective tissue growth factor [CTGF], platelet-derived growth factor [PDGF]-AB, angiogenin [ANG], endostatin [END] and thrombospondin-1 [THBS1]) were measured at each time-point. Patients were stratified into responders and non-responders based on clinical evaluation. Differences and correlations between measures were used to generate prognostic models for response prediction. RESULTS Higher perfusion parameter ktrans and higher plasma VEGF levels successfully discriminated responders from non-responders across all measured time-points, whereas higher iAUC and higher plasma PDGF-AB levels were also discriminative at selected time points. Using early intra-treatment measurements of ktrans and VEGF, a predictive model was created with cut-off values of 0.259 min-1 for ktrans and 62.5 pg/mL for plasma VEGF. CONCLUSIONS Early intra-treatment DCE-MRI parameter ktrans and plasma VEGF levels may be valuable early predictors of response to cCRT in HPV-negative oropharyngeal cancer.
Collapse
Affiliation(s)
- Alja Longo
- Institute of Radiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Hudler
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Primoz Strojan
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Institute of Oncology, Ljubljana, Slovenia
| | - Gaber Plavc
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Institute of Oncology, Ljubljana, Slovenia
| | - Lan Umek
- Faculty of Public Administration, University of Ljubljana, Ljubljana, Slovenia
| | - Katarina Surlan Popovic
- Institute of Radiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
2
|
Mohamed ASR, Abusaif A, He R, Wahid KA, Salama V, Youssef S, McDonald BA, Naser M, Ding Y, Salzillo TC, AboBakr MA, Wang J, Lai SY, Fuller CD. Prospective validation of diffusion-weighted MRI as a biomarker of tumor response and oncologic outcomes in head and neck cancer: Results from an observational biomarker pre-qualification study. Radiother Oncol 2023; 183:109641. [PMID: 36990394 PMCID: PMC10848569 DOI: 10.1016/j.radonc.2023.109641] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
PURPOSE To determine DWI parameters associated with tumor response and oncologic outcomes in head and neck (HNC) patients treated with radiotherapy (RT). METHODS HNC patients in a prospective study were included. Patients had MRIs pre-, mid-, and post-RT completion. We used T2-weighted sequences for tumor segmentation which were co-registered to respective DWIs for extraction of apparent diffusion coefficient (ADC) measurements. Treatment response was assessed at mid- and post-RT and was defined as: complete response (CR) vs. non-complete response (non-CR). The Mann-Whitney U test was used to compare ADC between CR and non-CR. Recursive partitioning analysis (RPA) was performed to identify ADC threshold associated with relapse. Cox proportional hazards models were done for clinical vs. clinical and imaging parameters and internal validation was done using bootstrapping technique. RESULTS Eighty-one patients were included. Median follow-up was 31 months. For patients with post-RT CR, there was a significant increase in mean ADC at mid-RT compared to baseline ((1.8 ± 0.29) × 10-3 mm2/s vs. (1.37 ± 0.22) × 10-3 mm2/s, p < 0.0001), while patients with non-CR had no significant increase (p > 0.05). RPA identified GTV-P delta (Δ)ADCmean < 7% at mid-RT as the most significant parameter associated with worse LC and RFS (p = 0.01). Uni- and multi-variable analysis showed that GTV-P ΔADCmean at mid-RT ≥ 7% was significantly associated with better LC and RFS. The addition of ΔADCmean significantly improved the c-indices of LC and RFS models compared with standard clinical variables (0.85 vs. 0.77 and 0.74 vs. 0.68 for LC and RFS, respectively, p < 0.0001 for both). CONCLUSION ΔADCmean at mid-RT is a strong predictor of oncologic outcomes in HNC. Patients with no significant increase of primary tumor ADC at mid-RT are at high risk of disease relapse.
Collapse
Affiliation(s)
- Abdallah S R Mohamed
- Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| | - Abdelrahman Abusaif
- Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Renjie He
- Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Kareem A Wahid
- Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Vivian Salama
- Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Sara Youssef
- Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Brigid A McDonald
- Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Mohamed Naser
- Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Yao Ding
- Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Travis C Salzillo
- Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Moamen A AboBakr
- Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Jihong Wang
- Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Stephen Y Lai
- Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA; Department of Head and Neck Surgery, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| | - Clifton D Fuller
- Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
3
|
Romeo V, Stanzione A, Ugga L, Cuocolo R, Cocozza S, Quarantelli M, Chawla S, Farina D, Golay X, Parker G, Shukla-Dave A, Thoeny H, Vidiri A, Brunetti A, Surlan-Popovic K, Bisdas S. Clinical indications and acquisition protocol for the use of dynamic contrast-enhanced MRI in head and neck cancer squamous cell carcinoma: recommendations from an expert panel. Insights Imaging 2022; 13:198. [PMID: 36528678 PMCID: PMC9759606 DOI: 10.1186/s13244-022-01317-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/19/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The clinical role of perfusion-weighted MRI (PWI) in head and neck squamous cell carcinoma (HNSCC) remains to be defined. The aim of this study was to provide evidence-based recommendations for the use of PWI sequence in HNSCC with regard to clinical indications and acquisition parameters. METHODS Public databases were searched, and selected papers evaluated applying the Oxford criteria 2011. A questionnaire was prepared including statements on clinical indications of PWI as well as its acquisition technique and submitted to selected panelists who worked in anonymity using a modified Delphi approach. Each panelist was asked to rate each statement using a 7-point Likert scale (1 = strongly disagree, 7 = strongly agree). Statements with scores equal or inferior to 5 assigned by at least two panelists were revised and re-submitted for the subsequent Delphi round to reach a final consensus. RESULTS Two Delphi rounds were conducted. The final questionnaire consisted of 6 statements on clinical indications of PWI and 9 statements on the acquisition technique of PWI. Four of 19 (21%) statements obtained scores equal or inferior to 5 by two panelists, all dealing with clinical indications. The Delphi process was considered concluded as reasons entered by panelists for lower scores were mainly related to the lack of robust evidence, so that no further modifications were suggested. CONCLUSIONS Evidence-based recommendations on the use of PWI have been provided by an independent panel of experts worldwide, encouraging a standardized use of PWI across university and research centers to produce more robust evidence.
Collapse
Affiliation(s)
- Valeria Romeo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Renato Cuocolo
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
- Interdepartmental Research Center on Management and Innovation in Healthcare - CIRMIS, University of Naples Federico II, Naples, Italy
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Mario Quarantelli
- Biostructure and Bioimaging Institute, National Research Council, Naples, Italy
| | - Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, PA, USA
| | - Davide Farina
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Xavier Golay
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
- Lysholm Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College Hospitals NHS Trust, London, UK
| | - Geoff Parker
- Department of Computer Science, Centre for Medical Image Computing, Queen Square Institute of Neurology, University College London, London, UK
| | - Amita Shukla-Dave
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Departments of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Harriet Thoeny
- Department of Radiology, Cantonal Hospital Fribourg, University of Fribourg, Fribourg, Switzerland
| | - Antonello Vidiri
- Department of Radiology and Diagnostic Imaging, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | | | - Sotirios Bisdas
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK.
- Lysholm Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College Hospitals NHS Trust, London, UK.
| |
Collapse
|
4
|
Prognostic Value of 18F-Fluorodeoxyglucose–Positron Emission Tomography/Magnetic Resonance Imaging in Patients With Hypopharyngeal Squamous Cell Carcinoma. J Comput Assist Tomogr 2022; 46:968-977. [DOI: 10.1097/rct.0000000000001365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Baba A, Kurokawa R, Rawie E, Kurokawa M, Ota Y, Srinivasan A. Normalized Parameters of Dynamic Contrast-Enhanced Perfusion MRI and DWI-ADC for Differentiation between Posttreatment Changes and Recurrence in Head and Neck Cancer. AJNR Am J Neuroradiol 2022; 43:1184-1189. [PMID: 35835592 PMCID: PMC9575415 DOI: 10.3174/ajnr.a7567] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/22/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND PURPOSE Differentiating recurrence from benign posttreatment changes has clinical importance in the imaging follow-up of head and neck cancer. This study aimed to investigate the utility of normalized dynamic contrast-enhanced MR imaging and ADC for their differentiation. MATERIALS AND METHODS This study included 51 patients with a history of head and neck cancer who underwent follow-up dynamic contrast-enhanced MR imaging with DWI-ADC, of whom 25 had recurrences and 26 had benign posttreatment changes. Quantitative and semiquantitative dynamic contrast-enhanced MR imaging parameters and ADC of the ROI and reference region were analyzed. Normalized dynamic contrast-enhanced MR imaging parameters and normalized DWI-ADC parameters were calculated by dividing the ROI by the reference region. RESULTS Normalized plasma volume, volume transfer constant between extravascular extracellular space and blood plasma per minute (K trans), area under the curve, and wash-in were significantly higher in patients with recurrence than in those with benign posttreatment change (P = .003 to <.001). The normalized mean ADC was significantly lower in patients with recurrence than in those with benign posttreatment change (P < .001). The area under the receiver operating characteristic curve of the combination of normalized dynamic contrast-enhanced MR imaging parameters with significance (normalized plasma volume, normalized extravascular extracellular space volume per unit tissue volume, normalized K trans, normalized area under the curve, and normalized wash-in) and normalized mean ADC was 0.97 (95% CI, 0.93-1). CONCLUSIONS Normalized dynamic contrast-enhanced MR imaging parameters, normalized mean ADC, and their combination were effective in differentiating recurrence and benign posttreatment changes in head and neck cancer.
Collapse
Affiliation(s)
- A Baba
- From the Division of Neuroradiology (A.B., R.K., M.K., Y.O., A.S.), Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - R Kurokawa
- From the Division of Neuroradiology (A.B., R.K., M.K., Y.O., A.S.), Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - E Rawie
- Department of Radiology (E.R.), Brooke Army Medical Center, San Antonio, Texas
| | - M Kurokawa
- From the Division of Neuroradiology (A.B., R.K., M.K., Y.O., A.S.), Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Y Ota
- From the Division of Neuroradiology (A.B., R.K., M.K., Y.O., A.S.), Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - A Srinivasan
- From the Division of Neuroradiology (A.B., R.K., M.K., Y.O., A.S.), Department of Radiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
6
|
de Ridder M, Raaijmakers CPJ, Pameijer FA, de Bree R, Reinders FCJ, Doornaert PAH, Terhaard CHJ, Philippens MEP. Target Definition in MR-Guided Adaptive Radiotherapy for Head and Neck Cancer. Cancers (Basel) 2022; 14:3027. [PMID: 35740691 PMCID: PMC9220977 DOI: 10.3390/cancers14123027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
In recent years, MRI-guided radiotherapy (MRgRT) has taken an increasingly important position in image-guided radiotherapy (IGRT). Magnetic resonance imaging (MRI) offers superior soft tissue contrast in anatomical imaging compared to computed tomography (CT), but also provides functional and dynamic information with selected sequences. Due to these benefits, in current clinical practice, MRI is already used for target delineation and response assessment in patients with head and neck squamous cell carcinoma (HNSCC). Because of the close proximity of target areas and radiosensitive organs at risk (OARs) during HNSCC treatment, MRgRT could provide a more accurate treatment in which OARs receive less radiation dose. With the introduction of several new radiotherapy techniques (i.e., adaptive MRgRT, proton therapy, adaptive cone beam computed tomography (CBCT) RT, (daily) adaptive radiotherapy ensures radiation dose is accurately delivered to the target areas. With the integration of a daily adaptive workflow, interfraction changes have become visible, which allows regular and fast adaptation of target areas. In proton therapy, adaptation is even more important in order to obtain high quality dosimetry, due to its susceptibility for density differences in relation to the range uncertainty of the protons. The question is which adaptations during radiotherapy treatment are oncology safe and at the same time provide better sparing of OARs. For an optimal use of all these new tools there is an urgent need for an update of the target definitions in case of adaptive treatment for HNSCC. This review will provide current state of evidence regarding adaptive target definition using MR during radiotherapy for HNSCC. Additionally, future perspectives for adaptive MR-guided radiotherapy will be discussed.
Collapse
Affiliation(s)
- Mischa de Ridder
- Department of Radiotherapy, University Medical Center Utrecht, 3584 Utrecht, The Netherlands; (C.P.J.R.); (F.C.J.R.); (P.A.H.D.); (C.H.J.T.); (M.E.P.P.)
| | - Cornelis P. J. Raaijmakers
- Department of Radiotherapy, University Medical Center Utrecht, 3584 Utrecht, The Netherlands; (C.P.J.R.); (F.C.J.R.); (P.A.H.D.); (C.H.J.T.); (M.E.P.P.)
| | - Frank A. Pameijer
- Department of Radiology, University Medical Center Utrecht, 3584 Utrecht, The Netherlands;
| | - Remco de Bree
- Department of Head and Neck Surgical Oncology, University Medical Center Utrecht, 3584 Utrecht, The Netherlands;
| | - Floris C. J. Reinders
- Department of Radiotherapy, University Medical Center Utrecht, 3584 Utrecht, The Netherlands; (C.P.J.R.); (F.C.J.R.); (P.A.H.D.); (C.H.J.T.); (M.E.P.P.)
| | - Patricia A. H. Doornaert
- Department of Radiotherapy, University Medical Center Utrecht, 3584 Utrecht, The Netherlands; (C.P.J.R.); (F.C.J.R.); (P.A.H.D.); (C.H.J.T.); (M.E.P.P.)
| | - Chris H. J. Terhaard
- Department of Radiotherapy, University Medical Center Utrecht, 3584 Utrecht, The Netherlands; (C.P.J.R.); (F.C.J.R.); (P.A.H.D.); (C.H.J.T.); (M.E.P.P.)
| | - Marielle E. P. Philippens
- Department of Radiotherapy, University Medical Center Utrecht, 3584 Utrecht, The Netherlands; (C.P.J.R.); (F.C.J.R.); (P.A.H.D.); (C.H.J.T.); (M.E.P.P.)
| |
Collapse
|
7
|
Luo X, Zhu Y, Zhang Y, Zhang Q, Wang X, Deng X. Parameters of MR perfusion-weighted imaging predict the response and prognosis to high-dose methotrexate-based chemotherapy in immunocompetent patients with primary central nervous system lymphoma. J Clin Neurosci 2022; 95:151-158. [DOI: 10.1016/j.jocn.2021.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/26/2021] [Accepted: 12/07/2021] [Indexed: 01/04/2023]
|
8
|
Lobo R, Turk S, Bapuraj JR, Srinivasan A. Advanced CT and MR Imaging of the Posttreatment Head and Neck. Neuroimaging Clin N Am 2021; 32:133-144. [PMID: 34809834 DOI: 10.1016/j.nic.2021.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Advances in MR and computed tomography (CT) techniques have resulted in greater fidelity in the assessment of treatment response and residual tumor on one hand and the assessment of recurrent head and neck malignancies on the other hand. The advances in MR techniques primarily are related to diffusion and perfusion imaging which rely on the intrinsic architecture of the tissues and organ systems. The techniques exploit the density of the cellular architecture; and the vascularity of benign and malignant lesions which in turn affect the changes in the passage of contrast through the vascular bed. Dual-energy CT and CT perfusion are the major advances in CT techniques that have found significant applications in the assessment of treatment response and tumor recurrence.
Collapse
Affiliation(s)
- Remy Lobo
- Neuroradiology Division, Radiology, Michigan Medicine, 1500 E Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Sevcan Turk
- Neuroradiology Division, Radiology, Michigan Medicine, 1500 E Medical Center Drive, Ann Arbor, MI 48109, USA
| | - J Rajiv Bapuraj
- Neuroradiology Division, Radiology, Michigan Medicine, 1500 E Medical Center Drive, B2A209, Ann Arbor, MI 48109, USA
| | - Ashok Srinivasan
- Neuroradiology Division, Radiology, Michigan Medicine, 1500 E Medical Center Drive, B2A209, Ann Arbor, MI 48109, USA.
| |
Collapse
|
9
|
Bos P, van der Hulst HJ, van den Brekel MWM, Schats W, Jasperse B, Beets-Tan RGH, Castelijns JA. Prognostic functional MR imaging parameters in head and neck squamous cell carcinoma: A systematic review. Eur J Radiol 2021; 144:109952. [PMID: 34562743 DOI: 10.1016/j.ejrad.2021.109952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/10/2021] [Accepted: 08/31/2021] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Functional MR imaging has demonstrated potential for predicting treatment response. This systematic review gives an extensive overview of the current level of evidence for pre-treatment MR-based perfusion and diffusion imaging parameters that are prognostic for treatment outcome in head and neck squamous cell carcinoma (HNSCC) (PROSPERO registrationCRD42020210689). MATERIALS AND METHODS According to the PRISMA statements, Medline, Embase and Scopus were queried for articles with a maximum date of October 19th, 2020. Studies investigating the predictive performance of pre-treatment MR-based perfusion and/or diffusion imaging parameters in HNSCC treatment response were included. All prognosticators were extracted from the primary tumor. Risk of bias was assessed using the QUIPS tool. Results were summarized in tables and forest plots. RESULTS 31 unique studies met the inclusion criteria; among them, 11 articles described perfusion (n = 529 patients) and 28 described diffusion (n = 1626 patients) MR-imaging, eight studies were included in both categories. Higher Ktrans and Kep were associated with better treatment response for OS and DFS, respectively. Study findings for Vp and Ve were inconsistent or not significant. High-level controversy was observed between studies examining the MR diffusion parameters mean and median ADC. CONCLUSION For HNSCC patients, the accurate and consistent results of pre-treatment MR-based perfusion parameters Ktrans and Kep are potential for clinical applicability predictive of OS and DFS and treatment decision guidance. Significant heterogeneity in study designs might affect high discrepancy in study results for parameters extracted from diffusion imaging. Furthermore, recommendations for future research were summarized.
Collapse
Affiliation(s)
- Paula Bos
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, Amsterdam, the Netherlands; GROW School for Oncology and Developmental Biology - University of Maastricht, Maastricht, the Netherlands.
| | - Hedda J van der Hulst
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, Amsterdam, the Netherlands; GROW School for Oncology and Developmental Biology - University of Maastricht, Maastricht, the Netherlands
| | - Michiel W M van den Brekel
- Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Oral and Maxillofacial Surgery, Amsterdam University Medical Center (AUMC), Amsterdam, the Netherlands
| | - Winnie Schats
- Scientific Information Service, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Bas Jasperse
- Department of Radiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Regina G H Beets-Tan
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; GROW School for Oncology and Developmental Biology - University of Maastricht, Maastricht, the Netherlands; Department of Regional Health Research, University of Southern Denmark, Denmark
| | - Jonas A Castelijns
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
10
|
MRI Dynamic Contrast Imaging of Oral Cavity and Oropharyngeal Tumors. Top Magn Reson Imaging 2021; 30:97-104. [PMID: 33828061 DOI: 10.1097/rmr.0000000000000283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT In the past decade, dynamic contrast-enhanced magnetic resonance imaging has had an increasing role in assessing the microvascular characteristics of various tumors, including head and neck cancer. Dynamic contrast-enhanced magnetic resonance imaging allows noninvasive assessment of permeability and blood flow, both important parametric features of tumor hypoxia, which is in turn a marker for treatment resistance for head and neck cancer.In this article we will provide a comprehensive review technique in evaluating tumor proliferation and application of its parameters in differentiating between various tumor types of the oral cavity and how its parameters can correlate between epidermal growth factor receptor and human papillomavirus which can have an implication in patient's overall survival rates.We will also review how the parameters of this method can predict local tumor control after treatment and compare its efficacy with other imaging modalities. Lastly, we will review how its parameters can be used prospectively to identify early complications from treatment.
Collapse
|
11
|
Guo W, Zhang Y, Luo D, Yuan H. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for pretreatment prediction of neoadjuvant chemotherapy response in locally advanced hypopharyngeal cancer. Br J Radiol 2020; 93:20200751. [PMID: 32915647 DOI: 10.1259/bjr.20200751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective:The aim of this study was to predict response to neoadjuvant chemotherapy (NAC) in patients with locally advanced hypopharyngeal cancer by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI).Methods:A retrospective study enrolled 46 diagnosed locally advanced hypopharyngeal cancer. DCE-MRI were performed prior to and after two cycles of NAC. The volume transfer constant (Ktrans), extracellular extravascular volume fraction (Ve), and plasma volume fraction (Kep) were computed from primary tumors. DCE-MRI parameters were used to measure tumor response according to the Response Evaluation Criteria in Solid Tumors criteria (RECIST).Results:After 2 NAC cycles, 30 out of 46 patients were categorized into the responder group, whereas the other 16 were categorized into non-responder group. Compared with the pretreatment value, the post-treatment Ktrans and Kep was significantly lower (P < 0.05), but no significant change in Ve (P > 0.05). Compared with non-responders, a notably higher pretreatment Ktrans, Kep, lower post-treatment Ktrans, higher ΔKtrans and ΔKep were observed in responders (all P < 0.05). While the pretreatment Ve, post-treatment Ve, and ΔVe did not differ significantly (P>0.05) between the two groups. The receiver operating characteristic curve analysis revealed that pretreatment Ktrans of 0.202/min is the most optimal cut-off in predicting response to chemotherapy, resulting in an AUC of 0.837 and corresponding sensitivity and specificity of 76.7%, and 81.1%, respectively.Conclusion:DCE-MRI especially pretreatment Ktrans can potentially predict the treatment response to neoadjuvant chemotherapy for hypopharyngeal cancer.Advances in knowledge:Few studies of DCE-MRI on hypopharyngeal cancer treated with chemoradiation reported. The results demonstrate that DCE-MRI especially pretreatment Ktrans may be more potential value in predicting the treatment response to neoadjuvant chemotherapy for hypopharyngeal cancer.
Collapse
Affiliation(s)
- Wei Guo
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China
| | - Ya Zhang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dehong Luo
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Huishu Yuan
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China
| |
Collapse
|
12
|
Wang J, Kong D, Zhu L, Wang S, Sun X. Human Bone Marrow Mesenchymal Stem Cells Modified Hybrid Baculovirus-Adeno-Associated Viral Vectors Targeting 131I Therapy of Hypopharyngeal Carcinoma. Hum Gene Ther 2020; 31:1300-1311. [PMID: 32940055 DOI: 10.1089/hum.2020.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hypopharyngeal carcinoma is one of the most aggressive subtypes of squamous cell carcinoma of the head and neck. Although significant progress has been made in surgical techniques, radiotherapy, and chemotherapy, the prognosis is still poor. Mesenchymal stem cells (MSCs) have attracted substantial attention as tumor-targeted cellular carriers for cancer gene therapy. We have previously shown that recombinant baculovirus-adeno-associated vectors (BV-AAV) possessed high efficiency for multi-gene coexpression in human bone marrow MSCs (BMSCs) and BV-AAV-engineered BMSCs could effectively target hypopharyngeal cancer tissues in vivo. However, it was not clear whether BV-AAV-engineered BMSCs as cellular vehicles, mediating the expression of the sodium iodide symporter (NIS), would be effective in controlling the growth of hypopharyngeal carcinoma by radioiodine therapy. We constructed a hybrid BV-AAV containing the Luc-P2A-eGFP fusion or NIS sequence to modify BMSCs (BMSCs-Bac-Luc-P2A-eGFP or BMSCs-Bac-NIS). The 125I uptake of BMSCs-Bac-NIS was analyzed by an automatic gamma counter in vitro and micro-single-photon emission computed tomography (SPECT)/computed tomography (CT) imaging in vivo. The value of radioiodine therapy for hypopharyngeal carcinoma was evaluated by measuring tumor volume, glucose metabolism (via 2-deoxy-2-[18F] glucose [18F-FDG] positron emission tomography/CT), and proliferation of tumor cells. We demonstrated that 125I uptake of BMSCs-Bac-NIS persists over long-term in vitro (at least 8 h). Radioactive uptake could be detected by SPECT/CT 1 h after 125I injection in the BMSCs-Bac-NIS group, showing that this strategy allows for the tracking of real-time migration and transgene expression of BMSCs. Radioiodine therapy resulted in a significant reduction in tumor growth (386.93 ± 249.23 mm3 vs 816.56 ± 213.87 mm3 in controls), increased survival, and decreased SUVmax of 18F-FDG. The hybrid BV-AAV that can provide a variety of genes and regulatory elements, as a novel gene therapy strategy opens the prospect of NIS-mediated radionuclide therapy of hypopharyngeal carcinoma after MSC-mediated gene delivery.
Collapse
Affiliation(s)
- Jun Wang
- Departments of Otolaryngology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dedi Kong
- Department of Otolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Liying Zhu
- Departments of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shili Wang
- Departments of Otolaryngology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingmei Sun
- Departments of Otolaryngology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Multiparametric functional MRI and 18F-FDG-PET for survival prediction in patients with head and neck squamous cell carcinoma treated with (chemo)radiation. Eur Radiol 2020; 31:616-628. [PMID: 32851444 PMCID: PMC7813703 DOI: 10.1007/s00330-020-07163-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/17/2020] [Accepted: 08/06/2020] [Indexed: 12/02/2022]
Abstract
Objectives To assess (I) correlations between diffusion-weighted (DWI), intravoxel incoherent motion (IVIM), dynamic contrast-enhanced (DCE) MRI, and 18F-FDG-PET/CT imaging parameters capturing tumor characteristics and (II) their predictive value of locoregional recurrence-free survival (LRFS) and overall survival (OS) in patients with head and neck squamous cell carcinoma (HNSCC) treated with (chemo)radiotherapy. Methods Between 2014 and 2018, patients with histopathologically proven HNSCC, planned for curative (chemo) radiotherapy, were prospectively included. Pretreatment clinical, anatomical, and functional imaging parameters (obtained by DWI/IVIM, DCE-MRI, and 18F-FDG-PET/CT) were extracted for primary tumors (PT) and lymph node metastases. Correlations and differences between parameters were assessed. The predictive value of LRFS and OS was assessed, performing univariable, multivariable Cox and CoxBoost regression analyses. Results In total, 70 patients were included. Significant correlations between 18F-FDG-PET parameters and DWI-/DCE volume parameters were found (r > 0.442, p < 0.002). The combination of HPV (HR = 0.903), intoxications (HR = 1.065), PT ADCGTV (HR = 1.252), Ktrans (HR = 1.223), and Ve (HR = 1.215) was predictive for LRFS (C-index = 0.546; p = 0.023). N-stage (HR = 1.058), HPV positivity (HR = 0.886), hypopharyngeal tumor location (HR = 1.111), ADCGTV (HR = 1.102), ADCmean (HR = 1.137), D* (HR = 0.862), Ktrans (HR = 1.106), Ve (HR = 1.195), SUVmax (HR = 1.094), and TLG (HR = 1.433) were predictive for OS (C-index = 0.664; p = 0.046). Conclusions Functional imaging parameters, performing DWI/IVIM, DCE-MRI, and 18F-FDG-PET/CT, yielded complementary value in capturing tumor characteristics. More specific, intoxications, HPV-negative status, large tumor volume-related parameters, high permeability (Ktrans), and high extravascular extracellular space (Ve) parameters were predictive for adverse locoregional recurrence-free survival and adverse overall survival. Low cellularity (high ADC) and high metabolism (high SUV) were additionally predictive for decreased overall survival. These different predictive factors added to estimated locoregional and overall survival. Key Points • Parameters of DWI/IVIM, DCE-MRI, and 18F-FDG-PET/CT were able to capture complementary tumor characteristics. • Multivariable analysis revealed that intoxications, HPV negativity, large tumor volume and high vascular permeability (Ktrans), and extravascular extracellular space (Ve) were complementary predictive for locoregional recurrence. • In addition to predictive parameters for locoregional recurrence, also high cellularity (low ADC) and high metabolism (high SUV) were complementary predictive for overall survival. Electronic supplementary material The online version of this article (10.1007/s00330-020-07163-3) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
Yuan H, Li X, Tian X, Ji K, Liu F. Comparison of Angio-CT and cone-beam CT-guided immediate radiofrequency ablation after transcatheter arterial chemoembolization for large hepatocellular carcinoma. Abdom Radiol (NY) 2020; 45:2585-2592. [PMID: 32107583 DOI: 10.1007/s00261-020-02462-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE To evaluate the rapeutic effectiveness of Angio-CT or cone-beam CT (CBCT)-guided immediate radiofrequency ablation (RFA) after transcatheter arterial chemoembolization (TACE) for large hepatocellular carcinoma (HCC). METHODS 117 large HCC patients (mean maximum diameter: 9.3 cm; range 5.3-17.7 cm) were retrospective studied and divided into Angio-CT group (n = 66 cases), CBCT group (n = 21 cases), and single TACE group (n = 30 cases) according to treatment (Angio-CT/CBCT-guided immediate RFA after TACE, single TACE, respectively). The operative time, effective radiation dose, local-regional tumor responses, overall survival (OS), and progression‑free survival (PFS) time and complications were recorded. RESULTS The operative time and effective radiation dose of Angio-CT group and CBCT group were higher than those of TACE group (P < 0.01). The local-regional tumor responses on 1-month follow-up MRI (complete response + partial response) of Angio-CT group and CBCT group were 100%, which were significantly higher than that of single TACE group (76.7%, P < 0.05). There was no significant difference in local-regional tumor responses of 1-month follow-up between Angio-CT group and CBCT group (P = 0.831). The median PFS and OS time of Angio-CT group were 14.7 ± 1.43 months and 18.21 ± 0.88 months, CBCT group were 13.9 ± 1.53 months and 17.87 ± 1.78 months, TACE group were 10.4 ± 1.21 months and 12.87 ± 0.91 months, respectively. No procedure-related major complications occurred. CONCLUSIONS MIYABI Angio-CT or CBCT-guided immediate RFA after TACE for large HCC both have more effective than single TACE. The former is worth popularizing, due to its advantages of convenience, shorter operative time, and less radiation dose for doctors.
Collapse
|
15
|
The role of diffusion-weighted and dynamic contrast enhancement perfusion-weighted imaging in the evaluation of salivary glands neoplasms. Radiol Med 2020; 125:851-863. [PMID: 32266692 DOI: 10.1007/s11547-020-01182-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 03/23/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To evaluate the association of magnetic resonance diffusion-weighted imaging (DwI) and dynamic contrast-enhanced perfusion-weighted imaging (DCE-PwI) with a temporal resolution of 5 s, wash-in < 120 s, and wash-out ratio > 30% in the evaluation of salivary glands neoplasms. METHODS DwI and DCE-PwI of 92 salivary glands neoplasms were assessed. The apparent diffusion coefficient (ADC) was calculated by drawing three regions of interest with an average area of 0.30-0.40 cm2 on three contiguous axial sections. The time/intensity curve was generated from DCE-PwI images by drawing a region of interest that included at least 50% of the largest lesion section. Vessels, calcifications, and necrotic/haemorrhagic or cystic areas within solid components were excluded. The association of ADC ≥ 1.4 × 10-3 mm2/s with type A curves (progressive wash-in) and ADC 0.9-1.4 × 10-3 mm2/s with type C curves (rapid wash-in/slow wash-out) were tested as parameters of benignity and malignancy, respectively. Type B curve (rapid wash-in/rapid wash-out) was not used as a reference parameter. RESULTS ADC ≥ 1.4 × 10-3 mm2/s and type A curves were observed only in benign neoplasms. ADC of 0.9-1.4 × 10-3 mm2/s and type C curves association showed specificity of 94.9% and positive predictive value of 81.8% for epithelial malignancies. The association of ADC < 0.9 × 10-3 mm2/s with type B and C curves showed diagnostic accuracy of 94.6% and 100% for Warthin tumour and lymphoma, respectively. CONCLUSIONS ADC ≥ 1.4 × 10-3 mm2/s and type A curves association was indicative of benignity. Lymphomas exhibited ADC < 0.7 × 10-3 mm2/s and type C curves. The association of ADC < 0.9 × 10-3 mm2/s and type B and C curves had accuracy 94.6% and 88.5% for Warthin tumour and epithelial malignancies, respectively.
Collapse
|
16
|
Stieb S, Kiser K, van Dijk L, Livingstone NR, Elhalawani H, Elgohari B, McDonald B, Ventura J, Mohamed ASR, Fuller CD. Imaging for Response Assessment in Radiation Oncology: Current and Emerging Techniques. Hematol Oncol Clin North Am 2019; 34:293-306. [PMID: 31739950 DOI: 10.1016/j.hoc.2019.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Imaging in radiation oncology is essential for the evaluation of treatment response in tumors and organs at risk. This influences further treatment decisions and could possibly be used to adapt therapy. This review article focuses on the currently used imaging modalities for response assessment in radiation oncology and gives an overview of new and promising techniques within this field.
Collapse
Affiliation(s)
- Sonja Stieb
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Kendall Kiser
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Lisanne van Dijk
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Nadia Roxanne Livingstone
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Hesham Elhalawani
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Baher Elgohari
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Brigid McDonald
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Juan Ventura
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Abdallah Sherif Radwan Mohamed
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Clifton David Fuller
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
17
|
PET and MRI based RT treatment planning: Handling uncertainties. Cancer Radiother 2019; 23:753-760. [PMID: 31427076 DOI: 10.1016/j.canrad.2019.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/03/2019] [Indexed: 12/11/2022]
Abstract
Imaging provides the basis for radiotherapy. Multi-modality images are used for target delineation (primary tumor and nodes, boost volume) and organs at risk, treatment guidance, outcome prediction, and treatment assessment. Next to anatomical information, more and more functional imaging is being used. The current paper provides a brief overview of the different applications of imaging techniques used in the radiotherapy process, focusing on uncertainties and QA. The paper mainly focuses on PET and MRI, but also provides a short discussion on DCE-CT. A close collaboration between radiology, nuclear medicine and radiotherapy departments provides the key to improve the quality of radiotherapy. Jointly developed imaging protocols (RT position setup, immobilization tools, lasers, flat table…), and QA programs are mandatory. For PET, suitable windowing in consultation with a Nuclear Medicine Physician is crucial (differentiation benign/malignant lesions, artifacts…). A basic knowledge of MRI sequences is required, in such a way that geometrical distortions are easily recognized by all members the RT and RT physics team. If this is not the case, then the radiologist should be introduced systematically in the delineation process and multidisciplinary meetings need to be organized regularly. For each image modality and each image registration process, the associated uncertainties need to be determined and integrated in the PTV margin. When using functional information for dose painting, response assessment or outcome prediction, collaboration between the different departments is even more important. Limitations of imaging based biomarkers (specificity, sensitivity) should be known.
Collapse
|
18
|
Wong CK, Chan SC, Ng SH, Hsieh CH, Cheng NM, Yen TC, Liao CT. Textural features on 18F-FDG PET/CT and dynamic contrast-enhanced MR imaging for predicting treatment response and survival of patients with hypopharyngeal carcinoma. Medicine (Baltimore) 2019; 98:e16608. [PMID: 31415354 PMCID: PMC6831375 DOI: 10.1097/md.0000000000016608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The utility of multimodality molecular imaging for predicting treatment response and survival of patients with hypopharyngeal carcinoma remains unclear. Here, we sought to investigate whether the combination of different molecular imaging parameters may improve outcome prediction in this patient group.Patients with pathologically proven hypopharyngeal carcinoma scheduled to undergo chemoradiotherapy (CRT) were deemed eligible. Besides clinical data, parameters obtained from pretreatment 2-deoxy-2-[fluorine-18]fluoro-D-glucose positron emission tomography/computed tomography (F-FDG PET/CT), dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI), and diffusion-weighted MRI were analyzed in relation to treatment response, recurrence-free survival (RFS), and overall survival (OS).A total of 61 patients with advanced-stage disease were examined. After CRT, 36% of the patients did not achieve a complete response. Total lesion glycolysis (TLG) and texture feature entropy were found to predict treatment response. The transfer constant (K), TLG, and entropy were associated with RFS, whereas K, blood plasma volume (Vp), standardized uptake value (SUV), and entropy were predictors of OS. Different scoring systems based on the sum of PET- or MRI-derived prognosticators enabled patient stratification into distinct prognostic groups (P <.0001). The complete response rate of patients with a score of 2 was significantly lower than those of patients with a score 1 or 0 (14.7% vs 58.9% vs 75.7%, respectively, P = .007, respectively). The combination of PET- and DCE-MRI-derived independent risk factors allowed a better survival stratification than the TNM staging system (P <.0001 vs .691, respectively).Texture features on F-FDG PET/CT and DCE-MRI are clinically useful to predict treatment response and survival in patients with hypopharyngeal carcinoma. Their combined use in prognostic scoring systems may help these patients benefit from tailored treatment and obtain better oncological results.
Collapse
Affiliation(s)
| | - Sheng-Chieh Chan
- Department of Nuclear Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien
| | | | - Chia-Hsun Hsieh
- Division of Medical Oncology, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan
| | - Nai-Ming Cheng
- Department of Nuclear Medicine, Keelung Chang Gung Memorial Hospital, Keelung
| | | | - Chun-Ta Liao
- Department of Otorhinolaryngology, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
19
|
Técnicas avanzadas de resonancia magnética en patología tumoral de cabeza y cuello. RADIOLOGIA 2019; 61:191-203. [DOI: 10.1016/j.rx.2018.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/11/2018] [Accepted: 12/20/2018] [Indexed: 11/19/2022]
|
20
|
|
21
|
Garbajs M, Strojan P, Surlan-Popovic K. Prognostic role of diffusion weighted and dynamic contrast-enhanced MRI in loco-regionally advanced head and neck cancer treated with concomitant chemoradiotherapy. Radiol Oncol 2019; 53:39-48. [PMID: 30840595 PMCID: PMC6411028 DOI: 10.2478/raon-2019-0010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 02/04/2019] [Indexed: 02/08/2023] Open
Abstract
Background In the study, the value of pre-treatment dynamic contrast-enhanced (DCE) and diffusion weighted (DW) MRI-derived parameters as well as their changes early during treatment was evaluated for predicting disease-free survival (DFS) and overall survival (OS) in patients with locoregionally advanced head and neck squamous carcinoma (HNSCC) treated with concomitant chemoradiotherapy (cCRT) with cisplatin. Patients and methods MRI scans were performed in 20 patients with locoregionally advanced HNSCC at baseline and after 10 Grays (Gy) of cCRT. Tumour apparent diffusion coefficient (ADC) and DCE parameters (volume transfer constant [Ktrans], extracellular extravascular volume fraction [ve], and plasma volume fraction [Vp]) were measured. Relative changes in parameters from baseline to 10 Gy were calculated. Univariate and multivariate Cox regression analysis were conducted. Receiver operating characteristic (ROC) curve analysis was employed to identify parameters with the best diagnostic performance. Results None of the parameters was identified to predict for DFS. On univariate analysis of OS, lower pre-treatment ADC (p = 0.012), higher pre-treatment Ktrans (p = 0.026), and higher reduction in Ktrans (p = 0.014) from baseline to 10 Gy were identified as significant predictors. Multivariate analysis identified only higher pre-treatment Ktrans (p = 0.026; 95% CI: 0.000-0.132) as an independent predictor of OS. At ROC curve analysis, pre-treatment Ktrans yielded an excellent diagnostic accuracy (area under curve [AUC] = 0.95, sensitivity 93.3%; specificity 80 %). Conclusions In our group of HNSCC patients treated with cisplatin-based cCRT, pre-treatment Ktrans was found to be a good predictor of OS.
Collapse
Affiliation(s)
- Manca Garbajs
- Institute of Clinical Radiology, University Medical CentreLjubljana, Slovenia
- Manca Garbajs, M.D., Institute of Clinical Radiology, University Medical Centre, Zaloška c. 7, SI-1000 Ljubljana, Slovenia.
Phone: + 386 40 212 226
| | - Primoz Strojan
- Division of Radiation Oncology, Institute of Oncology, Ljubljana, Slovenia
| | | |
Collapse
|
22
|
Sun NN, Liu C, Ge XL, Wang J. Dynamic contrast-enhanced MRI for advanced esophageal cancer response assessment after concurrent chemoradiotherapy. ACTA ACUST UNITED AC 2018; 24:195-202. [PMID: 30091709 DOI: 10.5152/dir.2018.17369] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE We aimed to evaluate the treatment response of patients with esophageal cancer after concurrent chemoradiation therapy (CRT) using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). METHODS This retrospective study included 59 patients with histologically confirmed esophageal squamous cell carcinoma. The patients underwent DCE-MRI before and 4 weeks after CRT. Patients with complete response were defined as the CR group; partial response, stable disease, and progressive disease patients were defined as the non-CR group. DCE-MRI parameters (Ktrans, Ve, and Kep) were measured and compared between pre- and post-CRT in the CR and non-CR groups, respectively. Pre-CRT and post-CRT parameters were used to calculate the absolute change and the ratio of change. DCE-MRI parameters were compared between the CR and non-CR groups. Receiver operating characteristic (ROC) curves were used to verify diagnostic performance. RESULTS Patients with higher T-stage esophageal cancer might present with poorer response. After CRT, the Ktrans and Kep values significantly decreased in the CR group, whereas only Kep value decreased in the non-CR group. The post-Ktrans and post-Kep values were observed to be significantly lower in the CR group than in the non-CR group. The absolute change and ratio of change of both Ktrans and Kep were higher in the CR group than in the non-CR group. Based on ROC analysis, the ratio of change in Ktrans was the best parameter to assess treatment response (AUC= 0.840). CONCLUSION DCE-MRI parameters are valuable in predicting and assessing concurrent CRT response for advanced esophageal cancer.
Collapse
Affiliation(s)
- Na-Na Sun
- Departments of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chang Liu
- Departments of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Lin Ge
- Departments of Radiotherapy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Wang
- Departments of Radiotherapy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
23
|
Winter RM, Leibfarth S, Schmidt H, Zwirner K, Mönnich D, Welz S, Schwenzer NF, la Fougère C, Nikolaou K, Gatidis S, Zips D, Thorwarth D. Assessment of image quality of a radiotherapy-specific hardware solution for PET/MRI in head and neck cancer patients. Radiother Oncol 2018; 128:485-491. [PMID: 29747873 PMCID: PMC6141811 DOI: 10.1016/j.radonc.2018.04.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/29/2018] [Accepted: 04/18/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND PURPOSE Functional PET/MRI has great potential to improve radiotherapy planning (RTP). However, data integration requires imaging with radiotherapy-specific patient positioning. Here, we investigated the feasibility and image quality of radiotherapy-customized PET/MRI in head-and-neck cancer (HNC) patients using a dedicated hardware setup. MATERIAL AND METHODS Ten HNC patients were examined with simultaneous PET/MRI before treatment, with radiotherapy and diagnostic scan setup, respectively. We tested feasibility of radiotherapy-specific patient positioning and compared the image quality between both setups by pairwise image analysis of 18F-FDG-PET, T1/T2-weighted and diffusion-weighted MRI. For image quality assessment, similarity measures including average symmetric surface distance (ASSD) of PET and MR-based tumor contours, MR signal-to-noise ratio (SNR) and mean apparent diffusion coefficient (ADC) value were used. RESULTS PET/MRI in radiotherapy position was feasible - all patients were successfully examined. ASSD (median/range) of PET and MR contours was 0.6 (0.4-1.2) and 0.9 (0.5-1.3) mm, respectively. For T2-weighted MRI, a reduced SNR of -26.2% (-39.0--11.7) was observed with radiotherapy setup. No significant difference in mean ADC was found. CONCLUSIONS Simultaneous PET/MRI in HNC patients using radiotherapy positioning aids is clinically feasible. Though SNR was reduced, the image quality obtained with a radiotherapy setup meets RTP requirements and the data can thus be used for personalized RTP.
Collapse
Affiliation(s)
- René M Winter
- Department of Radiation Oncology, Section for Biomedical Physics, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany.
| | - Sara Leibfarth
- Department of Radiation Oncology, Section for Biomedical Physics, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - Holger Schmidt
- Department of Diagnostic and Interventional Radiology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - Kerstin Zwirner
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - David Mönnich
- Department of Radiation Oncology, Section for Biomedical Physics, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany; German Cancer Consortium (DKTK), partner site Tübingen; and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Welz
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - Nina F Schwenzer
- Department of Diagnostic and Interventional Radiology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - Christian la Fougère
- Department of Nuclear Medicine, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany; German Cancer Consortium (DKTK), partner site Tübingen; and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Konstantin Nikolaou
- Department of Diagnostic and Interventional Radiology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany; German Cancer Consortium (DKTK), partner site Tübingen; and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sergios Gatidis
- Department of Diagnostic and Interventional Radiology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - Daniel Zips
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany; German Cancer Consortium (DKTK), partner site Tübingen; and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniela Thorwarth
- Department of Radiation Oncology, Section for Biomedical Physics, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany; German Cancer Consortium (DKTK), partner site Tübingen; and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
24
|
Baker LCJ, Sikka A, Price JM, Boult JKR, Lepicard EY, Box G, Jamin Y, Spinks TJ, Kramer-Marek G, Leach MO, Eccles SA, Box C, Robinson SP. Evaluating Imaging Biomarkers of Acquired Resistance to Targeted EGFR Therapy in Xenograft Models of Human Head and Neck Squamous Cell Carcinoma. Front Oncol 2018; 8:271. [PMID: 30083516 PMCID: PMC6064942 DOI: 10.3389/fonc.2018.00271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 07/02/2018] [Indexed: 01/18/2023] Open
Abstract
Background: Overexpression of EGFR is a negative prognostic factor in head and neck squamous cell carcinoma (HNSCC). Patients with HNSCC who respond to EGFR-targeted tyrosine kinase inhibitors (TKIs) eventually develop acquired resistance. Strategies to identify HNSCC patients likely to benefit from EGFR-targeted therapies, together with biomarkers of treatment response, would have clinical value. Methods: Functional MRI and 18F-FDG PET were used to visualize and quantify imaging biomarkers associated with drug response within size-matched EGFR TKI-resistant CAL 27 (CALR) and sensitive (CALS) HNSCC xenografts in vivo, and pathological correlates sought. Results: Intrinsic susceptibility, oxygen-enhanced and dynamic contrast-enhanced MRI revealed significantly slower baseline R 2 ∗ , lower hyperoxia-induced Δ R 2 ∗ and volume transfer constant Ktrans in the CALR tumors which were associated with significantly lower Hoechst 33342 uptake and greater pimonidazole-adduct formation. There was no difference in oxygen-induced ΔR1 or water diffusivity between the CALR and CALS xenografts. PET revealed significantly higher relative uptake of 18F-FDG in the CALR cohort, which was associated with significantly greater Glut-1 expression. Conclusions: CALR xenografts established from HNSCC cells resistant to EGFR TKIs are more hypoxic, poorly perfused and glycolytic than sensitive CALS tumors. MRI combined with PET can be used to non-invasively assess HNSCC response/resistance to EGFR inhibition.
Collapse
Affiliation(s)
- Lauren C. J. Baker
- Division of Radiotherapy & Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Arti Sikka
- Division of Radiotherapy & Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Jonathan M. Price
- Division of Radiotherapy & Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Jessica K. R. Boult
- Division of Radiotherapy & Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Elise Y. Lepicard
- Division of Radiotherapy & Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Gary Box
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Yann Jamin
- Division of Radiotherapy & Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Terry J. Spinks
- Division of Radiotherapy & Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Gabriela Kramer-Marek
- Division of Radiotherapy & Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Martin O. Leach
- Division of Radiotherapy & Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Suzanne A. Eccles
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Carol Box
- Division of Radiotherapy & Imaging, The Institute of Cancer Research, London, United Kingdom
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Simon P. Robinson
- Division of Radiotherapy & Imaging, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
25
|
Zuo TY, Liu FY, Wang MQ, Chen XX. Transcatheter Arterial Chemoembolization Combined with Simultaneous Computed Tomography-guided Radiofrequency Ablation for Large Hepatocellular Carcinomas. Chin Med J (Engl) 2018; 130:2666-2673. [PMID: 29133753 PMCID: PMC5695050 DOI: 10.4103/0366-6999.218002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Currently, the treatment of large hepatocellular carcinoma (HCC) is still a challenging problem. Transcatheter arterial chemoembolization (TACE) is the main treatment for intermediate end-stage HCC, while it is only a palliative and not a curative treatment due to the existence of residual tumors, and radiofrequency ablation (RFA) has limitations in complete ablation of large HCC. We hypothesized that TACE combined with simultaneous RFA (herein referred to as TACE + RFA) could improve the efficacy and survival of large HCC. This study aimed to investigate the feasibility, efficacy, and safety of TACE + RFA on single large HCC. METHODS A total of 66 patients with single large HCC (≥5 cm in diameter) were recruited between February 2010 and June 2016. TACE was first performed and computed tomography was performed immediately after TACE, and the lesions with poor lipiodol deposition were subjected to simultaneous RFA. The success rate, technique-related complications, liver and kidney functions, serum alpha-fetoprotein (AFP) levels, progression-free survival (PFS), median survival time (MST), focal control rate, and long-term survival rate were evaluated. RESULTS TACE + RFA were performed smoothly in all the patients with the success rate of 100%. Intra- and post-operative severe complications were not observed. There were no marked differences in mean alanine transaminase or aspartate transaminase before TACE + RFA compared with 7 days after TACE + RFA (all P > 0.05). In 57 AFP-positive patients, the levels of serum AFP were reduced by 100.0%, 100.0%, and 94.7% at 1, 3, and 6 months after TACE + RFA, respectively; the tumor control rates (complete remission + partial remission) were 100.0% (66/66), 92.4% (61/66), 87.9% (58/66), and 70.1% (39/55) at 1, 3, 6, and 12 months after TACE + RFA, respectively. Patients were followed up for 7-82 months after TACE + RFA. The MST was 18.3 months, PFS was 14.2 ± 6.2 months, and the 1-, 3-, and 5-year survival rates were 93.2% (55/59), 42.5% (17/40), and 27.2% (9/33), respectively. CONCLUSION TACE + RFA is safe, feasible, and effective in enhancing the focal control rate and survival rate of patients with large HCC.
Collapse
Affiliation(s)
- Tai-Yang Zuo
- Department of Interventional Radiology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Feng-Yong Liu
- Department of Interventional Radiology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Mao-Qiang Wang
- Department of Interventional Radiology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Xian-Xian Chen
- Department of Interventional Radiology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| |
Collapse
|
26
|
Surov A, Meyer HJ, Leifels L, Höhn AK, Richter C, Winter K. Histogram analysis parameters of dynamic contrast-enhanced magnetic resonance imaging can predict histopathological findings including proliferation potential, cellularity, and nucleic areas in head and neck squamous cell carcinoma. Oncotarget 2018; 9:21070-21077. [PMID: 29765520 PMCID: PMC5940412 DOI: 10.18632/oncotarget.24920] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/06/2018] [Indexed: 02/07/2023] Open
Abstract
Our purpose was to analyze possible associations between histogram analysis parameters of dynamic contrast-enhanced magnetic resonance imaging DCE MRI and histopathological findings like proliferation index, cell count and nucleic areas in head and neck squamous cell carcinoma (HNSCC). 30 patients (mean age 57.0 years) with primary HNSCC were included in the study. In every case, histogram analysis parameters of Ktrans, Ve, and Kep were estimated using a mathlab based software. Tumor proliferation index, cell count, and nucleic areas were estimated on Ki 67 antigen stained specimens. Spearman's non-parametric rank sum correlation coefficients were calculated between DCE and different histopathological parameters. KI 67 correlated with Ktrans min (p = −0.386, P = 0.043) and s Ktrans skewness (p = 0.382, P = 0.045), Ve min (p = −0.473, P = 0.011), Ve entropy (p = 0.424, P = 0.025), and Kep entropy (p = 0.464, P = 0.013). Cell count correlated with Ktrans kurtosis (p = 0.40, P = 0.034), Ve entropy (p = 0.475, P = 0.011). Total nucleic area correlated with Ve max (p = 0.386, P = 0.042) and Ve entropy (p = 0.411, P = 0.030). In G1/2 tumors, only Ktrans entropy correlated well with total (P =0.78, P =0.013) and average nucleic areas (p = 0.655, P = 0.006). In G3 tumors, KI 67 correlated with Ve min (p = −0.552, P = 0.022) and Ve entropy (p = 0.524, P = 0.031). Ve max correlated with total nucleic area (p = 0.483, P = 0.049). Kep max correlated with total area (p = −0.51, P = 0.037), and Kep entropy with KI 67 (p = 0.567, P = 0.018). We concluded that histogram-based parameters skewness, kurtosis and entropy of Ktrans, Ve, and Kep can be used as markers for proliferation activity, cellularity and nucleic content in HNSCC. Tumor grading influences significantly associations between perfusion and histopathological parameters.
Collapse
Affiliation(s)
- Alexey Surov
- Department of Diagnostic and Interventional Radiology, University Hospital of Leipzig, 04103 Leipzig, Germany
| | - Hans Jonas Meyer
- Department of Diagnostic and Interventional Radiology, University Hospital of Leipzig, 04103 Leipzig, Germany
| | - Leonard Leifels
- Department of Diagnostic and Interventional Radiology, University Hospital of Leipzig, 04103 Leipzig, Germany
| | - Anne-Kathrin Höhn
- Department of Pathology University Hospital of Leipzig, 04103 Leipzig, Germany
| | - Cindy Richter
- Institute of Anatomy, University Hospital of Leipzig, 04103 Leipzig, Germany
| | - Karsten Winter
- Institute of Anatomy, University Hospital of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
27
|
Gainey M, Carles M, Mix M, Meyer PT, Bock M, Grosu AL, Baltas D. Biological imaging for individualized therapy in radiation oncology: part I physical and technical aspects. Future Oncol 2018. [PMID: 29521520 DOI: 10.2217/fon-2017-0464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recently, there has been an increase in the imaging modalities available for radiotherapy planning and radiotherapy prognostic outcome: dual energy computed tomography (CT), dynamic contrast enhanced CT, dynamic contrast enhanced magnetic resonance imaging (MRI), diffusion-weighted MRI, positron emission tomography-CT, dynamic contrast enhanced ultrasound, MR spectroscopy and positron emission tomography-MR. These techniques enable more precise gross tumor volume definition than CT alone and moreover allow subvolumes within the gross tumor volume to be defined which may be given a boost dose or an individual voxelized dose prescription may be derived. With increased plan complexity care must be taken to immobilize the patient in an accurate and reproducible manner. Moreover the physical and technical limitations of the entire treatment planning chain need to be well characterized and understood, interdisciplinary collaboration ameliorated (physicians and physicists within nuclear medicine, radiology and radiotherapy) and image protocols standardized.
Collapse
Affiliation(s)
- Mark Gainey
- Department of Radiation Oncology, Faculty of Medicine, Medical Center, University of Freiburg, D-79106 Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DFKZ), Heidelberg, D-69120 Germany
| | - Montserrat Carles
- Department of Radiation Oncology, Faculty of Medicine, Medical Center, University of Freiburg, D-79106 Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DFKZ), Heidelberg, D-69120 Germany
| | - Michael Mix
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DFKZ), Heidelberg, D-69120 Germany.,Department of Nuclear Medicine, Faculty of Medicine, Medical Center, University of Freiburg, D-79106 Germany
| | - Philipp T Meyer
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DFKZ), Heidelberg, D-69120 Germany.,Department of Nuclear Medicine, Faculty of Medicine, Medical Center, University of Freiburg, D-79106 Germany
| | - Michael Bock
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DFKZ), Heidelberg, D-69120 Germany.,Radiology - Medical Physics, Department of Radiology, Faculty of Medicine, Medical Center, University of Freiburg, D-79106 Germany
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, Faculty of Medicine, Medical Center, University of Freiburg, D-79106 Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DFKZ), Heidelberg, D-69120 Germany
| | - Dimos Baltas
- Department of Radiation Oncology, Faculty of Medicine, Medical Center, University of Freiburg, D-79106 Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DFKZ), Heidelberg, D-69120 Germany
| |
Collapse
|
28
|
Kabadi SJ, Fatterpekar GM, Anzai Y, Mogen J, Hagiwara M, Patel SH. Dynamic Contrast-Enhanced MR Imaging in Head and Neck Cancer. Magn Reson Imaging Clin N Am 2018; 26:135-149. [DOI: 10.1016/j.mric.2017.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Nooij RP, Hof JJ, van Laar PJ, van der Hoorn A. Functional MRI for Treatment Evaluation in Patients with Head and Neck Squamous Cell Carcinoma: A Review of the Literature from a Radiologist Perspective. CURRENT RADIOLOGY REPORTS 2018; 6:2. [PMID: 29416951 PMCID: PMC5778171 DOI: 10.1007/s40134-018-0262-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW To show the role of functional MRI in patients treated for head and neck squamous cell carcinoma. RECENT FINDINGS MRI is commonly used for treatment evaluation in patients with head and neck tumors. However, anatomical MRI has its limits in differentiating between post-treatment effects and tumor recurrence. Recent studies showed promising results of functional MRI for response evaluation. SUMMARY This review analyzes possibilities and limitations of functional MRI sequences separately to obtain insight in the post-therapy setting. Diffusion, perfusion and spectroscopy show promise, especially when utilized complimentary to each other. These functional MRI sequences aid in the early detection which might improve survival by increasing effectiveness of salvage therapy. Future multicenter longitudinal prospective studies are needed to provide standardized guidelines for the use of functional MRI in daily clinical practice.
Collapse
Affiliation(s)
- Roland P. Nooij
- Department of Radiology, Medical Spectrum Twente, Enschede, The Netherlands
| | - Jan J. Hof
- Department of Radiology, Medical Spectrum Twente, Enschede, The Netherlands
| | - Peter Jan van Laar
- Department of Radiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, P. O. Box 30.001, 9700 RB Groningen, The Netherlands
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anouk van der Hoorn
- Department of Radiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, P. O. Box 30.001, 9700 RB Groningen, The Netherlands
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
30
|
Teng F, Aryal M, Lee J, Lee C, Shen X, Hawkins PG, Mierzwa M, Eisbruch A, Cao Y. Adaptive Boost Target Definition in High-Risk Head and Neck Cancer Based on Multi-imaging Risk Biomarkers. Int J Radiat Oncol Biol Phys 2017; 102:969-977. [PMID: 29428251 DOI: 10.1016/j.ijrobp.2017.12.269] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 12/06/2017] [Accepted: 12/14/2017] [Indexed: 11/19/2022]
Abstract
PURPOSE Positron emission tomography with 18F-deoxyglucose (FDG), dynamic contrast-enhanced magnetic resonance imaging (MRI), and diffusion-weighted MRI each identify unique risk factors for treatment outcomes in head and neck cancer (HNC). Clinical trials in HNC largely rely on a single imaging modality to define targets for boosting. This study aimed to investigate the spatial correspondence of FDG uptake, perfusion, and the apparent diffusion coefficient (ADC) in HNC and their response to chemoradiation therapy (CRT) and to determine the implications of this overlap or lack thereof for adaptive boosting. METHODS AND MATERIALS Forty patients with HNC enrolled in a clinical trial underwent FDG positron emission tomography-computed tomography before CRT and underwent dynamic contrast-enhanced and diffusion-weighted MRI scans before and during CRT. The gross tumor volume (GTV) of the primary tumor was contoured on post-gadolinium T1-weighted images. Tumor subvolumes with high FDG uptake, low blood volume (BV), and low ADC were created by using previously established thresholds. Spatial correspondences between subvolumes were analyzed using the Dice coefficient, and those between each pair of image parameters at voxel level were analyzed by Spearman rank correlation coefficients. RESULTS Prior to CRT, the median subvolumes of high FDG, low BV, and low ADC relative to the primary GTV were 20%, 21%, and 45%, respectively. Spearman correlation coefficients between BV and ADC varied from -0.47 to 0.22; between BV and FDG, from -0.08 to 0.59; and between ADC and FDG, from -0.68 to 0.25. Dice coefficients between subvolumes of FDG and BV, FDG and ADC, and BV and ADC were 10%, 46%, and 15%, respectively. The union of the 3 parameters was 64% of the GTV. The union of the subvolumes of BV and ADC was 56% of the GTV before CRT but was reduced significantly by 57% after 10 fractions of radiation therapy. CONCLUSIONS High FDG uptake, low BV, and low ADC as imaging risk biomarkers of HNC identify largely distinct tumor characteristics. A single imaging modality may not define the boosting target adequately.
Collapse
Affiliation(s)
- Feifei Teng
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Madhava Aryal
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Jae Lee
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Choonik Lee
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Xioajin Shen
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Peter G Hawkins
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Michelle Mierzwa
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan; Department of Radiation Oncology, Ann Arbor VA Hospital, Ann Arbor, Michigan
| | - Avraham Eisbruch
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Yue Cao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan; Department of Radiology, University of Michigan, Ann Arbor, Michigan; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
31
|
Yeh CH, Lin G, Wang JJ, Lin CY, Tsai SY, Lin YC, Wu YM, Ko SF, Wang HM, Chan SC, Yen TC, Liao CT, Ng SH. Predictive value of 1H MR spectroscopy and 18F-FDG PET/CT for local control of advanced oropharyngeal and hypopharyngeal squamous cell carcinoma receiving chemoradiotherapy: a prospective study. Oncotarget 2017; 8:115513-115525. [PMID: 29383178 PMCID: PMC5777790 DOI: 10.18632/oncotarget.23306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 12/05/2017] [Indexed: 01/30/2023] Open
Abstract
Purpose To determine whether pretreatment in vivo 1H magnetic resonance (MR) spectroscopy at 3 Tesla (T) and 18F-FDG PET/CT can offer predictive power regarding the local control of oropharyngeal or hypopharyngeal squamous cell carcinoma (OHSCC) patients. Materials and Methods 1H MR spectroscopy was performed in addition to conventional MR imaging before definitive chemoradiotherapy in 58 patients with advanced OHSCC. The relationship of local control with the 1H MR spectroscopy and 18F-FDG PET/CT parameters was analyzed. Results With a median follow-up of 17.6 months, 13 (22.4%) patients exhibited local failure; whereas the remaining 45 achieved local control. Kaplan-Meier analysis identified age > 60 years, creatine level on MRS ≦ 6.02 mM, glutamine and glutamate (Glx) level on MRS > 3.31 mM, and total lesion glycolysis (TLG) on 18F-FDG PET/CT > 217.18 g/mL × mL as significant adverse predictors for 2-year local control. Multivariate Cox regression analysis showed that age (p=0.017), Glx level on MRS (p=0.021), and TLG on 18F-FDG PET/CT (p=0.028) retained their independent prognostic significance. A scoring system was constructed based on the sum of these three factors. We found that patients with scores of 2-3 had significantly poorer local control rates than patients with scores of 0-1 (33.3% versus 86.8%, p=0.003). Conclusion We conclude that Glx on 1H MR spectroscopy at 3 T was the independent prognostic factor for local control of OHSCC patients treated with chemoradiotherapy, and its combination with age and TLG may help identify a subgroup of patients at high risk for developing local failure.
Collapse
Affiliation(s)
- Chih-Hua Yeh
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou, Chang Gung University, Taoyuan, Taiwan.,Molecular Imaging Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Gigin Lin
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou, Chang Gung University, Taoyuan, Taiwan.,Molecular Imaging Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan.,Clinical Phenome Center and Imaging Core Lab, Institute for Radiological Research, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Jiun-Jie Wang
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan.,Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chien-Yu Lin
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Shang-Yueh Tsai
- Graduate Institute of Applied Physics, National Chengchi University, Taipei, Taiwan
| | - Yu-Chun Lin
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou, Chang Gung University, Taoyuan, Taiwan.,Molecular Imaging Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Ming Wu
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou, Chang Gung University, Taoyuan, Taiwan.,Molecular Imaging Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Sheung-Fat Ko
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan.,Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Hung-Ming Wang
- Department of Medical Oncology, Chang Gung Memorial Hospital, Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Sheng-Chieh Chan
- Molecular Imaging Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Department of Nuclear Medicine, Chang Gung Memorial Hospital, Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Tzu-Chen Yen
- Molecular Imaging Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Department of Nuclear Medicine, Chang Gung Memorial Hospital, Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Ta Liao
- Department of Otorhinolaryngology, Head and Neck Surgery, Chang Gung Memorial Hospital, Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Shu-Hang Ng
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou, Chang Gung University, Taoyuan, Taiwan.,Molecular Imaging Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
32
|
Kuno H, Qureshi MM, Chapman MN, Li B, Andreu-Arasa VC, Onoue K, Truong MT, Sakai O. CT Texture Analysis Potentially Predicts Local Failure in Head and Neck Squamous Cell Carcinoma Treated with Chemoradiotherapy. AJNR Am J Neuroradiol 2017; 38:2334-2340. [PMID: 29025727 DOI: 10.3174/ajnr.a5407] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/16/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND PURPOSE The accurate prediction of prognosis and failure is crucial for optimizing treatment strategies for patients with cancer. The purpose of this study was to assess the performance of pretreatment CT texture analysis for the prediction of treatment failure in primary head and neck squamous cell carcinoma treated with chemoradiotherapy. MATERIALS AND METHODS This retrospective study included 62 patients diagnosed with primary head and neck squamous cell carcinoma who underwent contrast-enhanced CT examinations for staging, followed by chemoradiotherapy. CT texture features of the whole primary tumor were measured using an in-house developed Matlab-based texture analysis program. Histogram, gray-level co-occurrence matrix, gray-level run-length, gray-level gradient matrix, and Laws features were used for texture feature extraction. Receiver operating characteristic analysis was used to identify the optimal threshold of any significant texture parameter. We used multivariate Cox proportional hazards models to examine the association between the CT texture parameter and local failure, adjusting for age, sex, smoking, primary tumor stage, primary tumor volume, and human papillomavirus status. RESULTS Twenty-two patients (35.5%) developed local failure, and the remaining 40 (64.5%) showed local control. Multivariate analysis revealed that 3 histogram features (geometric mean [hazard ratio = 4.68, P = .026], harmonic mean [hazard ratio = 8.61, P = .004], and fourth moment [hazard ratio = 4.56, P = .048]) and 4 gray-level run-length features (short-run emphasis [hazard ratio = 3.75, P = .044], gray-level nonuniformity [hazard ratio = 5.72, P = .004], run-length nonuniformity [hazard ratio = 4.15, P = .043], and short-run low gray-level emphasis [hazard ratio = 5.94, P = .035]) were significant predictors of outcome after adjusting for clinical variables. CONCLUSIONS Independent primary tumor CT texture analysis parameters are associated with local failure in patients with head and neck squamous cell carcinoma treated with chemoradiotherapy.
Collapse
Affiliation(s)
- H Kuno
- From the Departments of Radiology (H.K., M.M.Q., M.N.C., B.L., V.C.A.A., K.O., M.T.T., O.S.).,Department of Diagnostic Radiology (H.K.), National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - M M Qureshi
- From the Departments of Radiology (H.K., M.M.Q., M.N.C., B.L., V.C.A.A., K.O., M.T.T., O.S.).,Radiation Oncology (M.M.Q., M.T.T., O.S.)
| | - M N Chapman
- From the Departments of Radiology (H.K., M.M.Q., M.N.C., B.L., V.C.A.A., K.O., M.T.T., O.S.)
| | - B Li
- From the Departments of Radiology (H.K., M.M.Q., M.N.C., B.L., V.C.A.A., K.O., M.T.T., O.S.)
| | - V C Andreu-Arasa
- From the Departments of Radiology (H.K., M.M.Q., M.N.C., B.L., V.C.A.A., K.O., M.T.T., O.S.)
| | - K Onoue
- From the Departments of Radiology (H.K., M.M.Q., M.N.C., B.L., V.C.A.A., K.O., M.T.T., O.S.)
| | - M T Truong
- From the Departments of Radiology (H.K., M.M.Q., M.N.C., B.L., V.C.A.A., K.O., M.T.T., O.S.).,Radiation Oncology (M.M.Q., M.T.T., O.S.)
| | - O Sakai
- From the Departments of Radiology (H.K., M.M.Q., M.N.C., B.L., V.C.A.A., K.O., M.T.T., O.S.) .,Radiation Oncology (M.M.Q., M.T.T., O.S.).,Otolaryngology-Head and Neck Surgery (O.S.), Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
33
|
Chan SC, Cheng NM, Hsieh CH, Ng SH, Lin CY, Yen TC, Hsu CL, Wan HM, Liao CT, Chang KP, Wang JJ. Multiparametric imaging using 18F-FDG PET/CT heterogeneity parameters and functional MRI techniques: prognostic significance in patients with primary advanced oropharyngeal or hypopharyngeal squamous cell carcinoma treated with chemoradiotherapy. Oncotarget 2017; 8:62606-62621. [PMID: 28977973 PMCID: PMC5617533 DOI: 10.18632/oncotarget.15904] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 02/20/2017] [Indexed: 01/22/2023] Open
Abstract
Background In this study, PET heterogeneity was combined with functional MRI techniques to refine the prediction of prognosis in patients with oropharyngeal or hypopharyngeal squamous cell carcinoma (OHSCC). Methods A total of 124 patients with primary advanced OHSCC who underwent pretreatment 18F-FDG PET/CT, dynamic contrast-enhanced MR imaging (DCE-MRI), and diffusion-weighted MR imaging (DWI) were enrolled. Conventional and heterogeneity parameters from 18F-FDG PET as well as perfusion parameters from DCE-MRI and diffusion parameter from DWI of primary tumors were analyzed in relation to recurrence-free survival (RFS) and overall survival (OS). Results Multivariate analysis identified hypopharyngeal tumors (P = 0.038), alcohol drinking (P = 0.006), Ktrans ≤ 0.5512 (P = 0.017), and Kep ≤ 0.8872 (P = 0.005) as adverse prognostic factors for RFS. Smoking (p = 0.009), Ktrans ≤ 0.5512 (P = 0.0002), Kep ≤ 0.8872 (P = 0.004), and the PET heterogeneity parameter uniformity ≤ 0.00381 (P = 0.028) were independent predictors of poor OS. The combination of PET uniformity with DCE-MRI parameters and smoking allowed distinguishing four prognostic groups, with 3-year OS rates of 100%, 76.6%, 57.4%, and 7.1%, respectively (P < 0.0001). This prognostic system appeared superior to both the TNM staging system (P = 0.186) and the combination of conventional PET parameters with DCE-MRI (P = 0.004). Conclusions Multiparametric imaging based on PET heterogeneity and DCE-MRI parameters combined with clinical risk factors is superior to the concomitant use of functional MRI coupled with conventional PET parameters. This approach may improve the prognostic stratification of OHSCC patients.
Collapse
Affiliation(s)
- Sheng-Chieh Chan
- Department of Nuclear Medicine, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan.,Molecular Imaging Center, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Nai-Ming Cheng
- Molecular Imaging Center, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan.,Department of Nuclear Medicine, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Chia-Hsun Hsieh
- Department of Internal Medicine, Division of Medical Oncology, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Shu-Hang Ng
- Department of Diagnostic Radiology, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan.,Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Chien-Yu Lin
- Department of Radiation Oncology, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Tzu-Chen Yen
- Molecular Imaging Center, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan.,Department of Nuclear Medicine, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Lung Hsu
- Department of Internal Medicine, Division of Medical Oncology, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Hung-Ming Wan
- Department of Internal Medicine, Division of Medical Oncology, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Chun-Ta Liao
- Department of Otorhinolaryngology, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Kai-Ping Chang
- Department of Otorhinolaryngology, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Jiun-Jie Wang
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
34
|
Dickerson E, Srinivasan A. Advanced Imaging Techniques of the Skull Base. Radiol Clin North Am 2017; 55:189-200. [DOI: 10.1016/j.rcl.2016.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
35
|
Surov A, Meyer HJ, Gawlitza M, Höhn AK, Boehm A, Kahn T, Stumpp P. Correlations Between DCE MRI and Histopathological Parameters in Head and Neck Squamous Cell Carcinoma. Transl Oncol 2016; 10:17-21. [PMID: 27888709 PMCID: PMC5124350 DOI: 10.1016/j.tranon.2016.10.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 10/11/2016] [Accepted: 10/11/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND: Dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) can characterize perfusion and vascularization of tissues. DCE MRI parameters can differentiate between malignant and benign lesions and predict tumor grading. The purpose of this study was to correlate DCE MRI findings and various histopathological parameters in head and neck squamous cell carcinoma (HNSCC). PATIENTS AND METHODS: Sixteen patients with histologically proven HNSCC (11 cases primary tumors and in 5 patients with local tumor recurrence) were included in the study. DCE imaging was performed in all cases and the following parameters were estimated: Ktrans, Ve, Kep, and iAUC. The tumor proliferation index was estimated on Ki 67 antigen stained specimens. Microvessel density parameters (stained vessel area, total vessel area, number of vessels, and mean vessel diameter) were estimated on CD31 antigen stained specimens. Spearman's non-parametric rank sum correlation coefficients were calculated between DCE and different histopathological parameters. RESULTS: The mean values of DCE perfusion parameters were as follows: Ktrans 0.189 ± 0.056 min−1, Kep 0.390 ± 0.160 min−1, Ve 0.548 ± 0.119%, and iAUC 22.40 ± 12.57. Significant correlations were observed between Kep and stained vessel areas (r = 0.51, P = .041) and total vessel areas (r = 0.5118, P = .043); between Ve and mean vessel diameter (r = −0.59, P = .017). Cell count had a tendency to correlate with Ve (r = −0.48, P = .058). In an analysis of the primary HNSCC only, a significant inverse correlation between Ktrans and KI 67 was identified (r = −0.62, P = .041). Our analysis showed significant correlations between DCE parameters and histopathological findings in HNSCC.
Collapse
Affiliation(s)
- Alexey Surov
- Department of Diagnostic and Interventional Radiology, University Hospital of Leipzig, Liebigstrasse 20, 04103 Leipzig, Germany.
| | - Hans Jonas Meyer
- Department of Radiology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06097 Halle, Germany
| | - Matthias Gawlitza
- Department of Diagnostic and Interventional Radiology, University Hospital of Leipzig, Liebigstrasse 20, 04103 Leipzig, Germany
| | - Anne-Kathrin Höhn
- Department of Pathology, University Hospital of Leipzig, Liebigstrasse 20, 04103 Leipzig, Germany
| | - Andreas Boehm
- ENT Department, University Hospital of Leipzig, Liebigstrasse 10-14, 04103 Leipzig, Germany
| | - Thomas Kahn
- Department of Diagnostic and Interventional Radiology, University Hospital of Leipzig, Liebigstrasse 20, 04103 Leipzig, Germany
| | - Patrick Stumpp
- Department of Diagnostic and Interventional Radiology, University Hospital of Leipzig, Liebigstrasse 20, 04103 Leipzig, Germany
| |
Collapse
|
36
|
Xu XQ, Choi YJ, Sung YS, Yoon RG, Jang SW, Park JE, Heo YJ, Baek JH, Lee JH. Intravoxel Incoherent Motion MR Imaging in the Head and Neck: Correlation with Dynamic Contrast-Enhanced MR Imaging and Diffusion-Weighted Imaging. Korean J Radiol 2016; 17:641-9. [PMID: 27587952 PMCID: PMC5007390 DOI: 10.3348/kjr.2016.17.5.641] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 05/17/2016] [Indexed: 12/25/2022] Open
Abstract
Objective To investigate the correlation between perfusion- and diffusion-related parameters from intravoxel incoherent motion (IVIM) and those from dynamic contrast-enhanced MR imaging (DCE-MRI) and diffusion-weighted imaging in tumors and normal muscles of the head and neck. Materials and Methods We retrospectively enrolled 20 consecutive patients with head and neck tumors with MR imaging performed using a 3T MR scanner. Tissue diffusivity (D), pseudo-diffusion coefficient (D*), and perfusion fraction (f) were derived from bi-exponential fitting of IVIM data obtained with 14 different b-values in three orthogonal directions. We investigated the correlation between D, f, and D* and model-free parameters from the DCE-MRI (wash-in, Tmax, Emax, initial AUC60, whole AUC) and the apparent diffusion coefficient (ADC) value in the tumor and normal masseter muscle using a whole volume-of-interest approach. Pearson's correlation test was used for statistical analysis. Results No correlation was found between f or D* and any of the parameters from the DCE-MRI in all patients or in patients with squamous cell carcinoma (p > 0.05). The ADC was significantly correlated with D values in the tumors (p < 0.001, r = 0.980) and muscles (p = 0.013, r = 0.542), despite its significantly higher value than D. The difference between ADC and D showed significant correlation with f values in the tumors (p = 0.017, r = 0.528) and muscles (p = 0.003, r = 0.630), but no correlation with D* (p > 0.05, respectively). Conclusion Intravoxel incoherent motion shows no significant correlation with model-free perfusion parameters derived from the DCE-MRI but is feasible for the analysis of diffusivity in both tumors and normal muscles of the head and neck.
Collapse
Affiliation(s)
- Xiao Quan Xu
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea.; Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Young Jun Choi
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Yu Sub Sung
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Ra Gyoung Yoon
- Department of Radiology, Catholic Kwandong University International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon 22711, Korea
| | - Seung Won Jang
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Ji Eun Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Young Jin Heo
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea.; Department of Radiology, Busan Paik Hospital, Inje University College of Medicine, Busan 47392, Korea
| | - Jung Hwan Baek
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Jeong Hyun Lee
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| |
Collapse
|
37
|
King AD, Thoeny HC. Functional MRI for the prediction of treatment response in head and neck squamous cell carcinoma: potential and limitations. Cancer Imaging 2016; 16:23. [PMID: 27542718 PMCID: PMC4992206 DOI: 10.1186/s40644-016-0080-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 08/02/2016] [Indexed: 12/27/2022] Open
Abstract
Pre-treatment or early intra-treatment prediction of patients with head and neck squamous cell carcinomas (HNSCC) who are likely to have tumours that are resistant to chemoradiotherapy (CRT) would enable treatment regimens to be changed at an early time point, or allow patients at risk of residual disease to be targeted for more intensive post-treatment investigation. Research into the potential advantages of using functional-based magnetic resonance imaging (MRI) sequences before or during cancer treatments to predict treatment response has been ongoing for several years. In regard to HNSCC, the reported results from functional MRI research are promising but they have yet to be transferred to the clinical domain. This article will review the functional MRI literature in HNSCC to determine the current status of the research and try to identify areas that are close to application in clinical practice. This review will focus on diffusion-weighted imaging (DWI) and dynamic contrast-enhanced MRI (DCE–MRI) and briefly include proton magnetic resonance spectroscopy (1H-MRS)and blood oxygen level dependent (BOLD) MRI.
Collapse
Affiliation(s)
- Ann D King
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, 30-32 Ngan Shing Street, Shatin, New Territories, Hong Kong S.A.R. China.
| | - Harriet C Thoeny
- Department of Radiology, Neuroradiology and Nuclear Medicine, Inselspital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland
| |
Collapse
|
38
|
Comparison of CT and MRI in Diagnosis of Laryngeal Carcinoma with Anterior Vocal Commissure Involvement. Sci Rep 2016; 6:30353. [PMID: 27480073 PMCID: PMC4969597 DOI: 10.1038/srep30353] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/04/2016] [Indexed: 02/02/2023] Open
Abstract
This study aimed to compare the accuracy of CT and MRI in determining the invasion of thyroid cartilage by and the T staging of laryngeal carcinoma with anterior vocal commissure (AVC) involvement. A total of 26 cases of laryngeal carcinomas with AVC involvement from May 2012 to January 2014 underwent enhanced CT and MRI scan, out of whom 6 patients also underwent diffusion-weighted magnetic resonance imaging(DWI). T staging and thyroid cartilage involvement were evaluated. All the surgical specimens underwent serial section and were reviewed by two senior pathologists independently. When compared with pathologic staging, the accuracy was 88.46% (23/26) of MRI scan (with a 95% confidence interval 37~77%) and 57.69% (15/26) of CT scan (with a 95% confidence interval 70~98%), respectively (P < 0.01). We also reported three cases who were misdiagnosed on CT or MRI about either the thyroid cartilage was involved or not, and one case of preliminary study of DWI. Compared to CT, MRI exhibited a higher accuracy rate on T staging of laryngeal carcinomas with AVC involvement. Combined utility of CT and MRI could help improve the accuracy of assessment of thyroid cartilage involvement and T staging of laryngeal carcinomas with AVC involvement.
Collapse
|
39
|
Yuan J, Lo G, King AD. Functional magnetic resonance imaging techniques and their development for radiation therapy planning and monitoring in the head and neck cancers. Quant Imaging Med Surg 2016; 6:430-448. [PMID: 27709079 PMCID: PMC5009093 DOI: 10.21037/qims.2016.06.11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 05/27/2016] [Indexed: 01/05/2023]
Abstract
Radiation therapy (RT), in particular intensity-modulated radiation therapy (IMRT), is becoming a more important nonsurgical treatment strategy in head and neck cancer (HNC). The further development of IMRT imposes more critical requirements on clinical imaging, and these requirements cannot be fully fulfilled by the existing radiotherapeutic imaging workhorse of X-ray based imaging methods. Magnetic resonance imaging (MRI) has increasingly gained more interests from radiation oncology community and holds great potential for RT applications, mainly due to its non-ionizing radiation nature and superior soft tissue image contrast. Beyond anatomical imaging, MRI provides a variety of functional imaging techniques to investigate the functionality and metabolism of living tissue. The major purpose of this paper is to give a concise and timely review of some advanced functional MRI techniques that may potentially benefit conformal, tailored and adaptive RT in the HNC. The basic principle of each functional MRI technique is briefly introduced and their use in RT of HNC is described. Limitation and future development of these functional MRI techniques for HNC radiotherapeutic applications are discussed. More rigorous studies are warranted to translate the hypotheses into credible evidences in order to establish the role of functional MRI in the clinical practice of head and neck radiation oncology.
Collapse
Affiliation(s)
- Jing Yuan
- Department of Medical Physics and Research, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong SAR, China
| | - Gladys Lo
- Department of Diagnostic & Interventional Radiology, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong SAR, China
| | - Ann D. King
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
40
|
Lai YL, Wu CY, Chao KSC. Biological imaging in clinical oncology: radiation therapy based on functional imaging. Int J Clin Oncol 2016; 21:626-632. [PMID: 27384183 DOI: 10.1007/s10147-016-1000-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 05/29/2016] [Indexed: 12/25/2022]
Abstract
Radiation therapy is one of the most effective tools for cancer treatment. In recent years, intensity-modulated radiation therapy has become increasingly popular in that target dose-escalation can be done while sparing adjacent normal tissues. For this reason, the development of measures to pave the way for accurate target delineation is of great interest. With the integration of functional information obtained by biological imaging with radiotherapy, strategies using advanced biological imaging to visualize metabolic pathways and to improve therapeutic index and predict treatment response are discussed in this article.
Collapse
Affiliation(s)
- Yo-Liang Lai
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chun-Yi Wu
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - K S Clifford Chao
- China Medical University, 91 Hsueh-Shih Road, Taichung, 40402, Taiwan.
| |
Collapse
|
41
|
Ng SH, Liao CT, Lin CY, Chan SC, Lin YC, Yen TC, Chang JTC, Ko SF, Fan KH, Wang HM, Yang LY, Wang JJ. Dynamic contrast-enhanced MRI, diffusion-weighted MRI and 18F-FDG PET/CT for the prediction of survival in oropharyngeal or hypopharyngeal squamous cell carcinoma treated with chemoradiation. Eur Radiol 2016; 26:4162-4172. [PMID: 26911889 DOI: 10.1007/s00330-016-4276-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 02/03/2016] [Accepted: 02/08/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVES We prospectively investigated the roles of pretreatment dynamic contrast-enhanced MR imaging (DCE-MRI), diffusion-weighted MR imaging (DWI) and 18F-fluorodeoxyglucose-positron emission tomography (18F-FDG PET)/CT for predicting survival of oropharyngeal or hypopharyngeal squamous cell carcinoma (OHSCC) patients treated with chemoradiation. METHODS Patients with histologically proven OHSCC and neck nodal metastases scheduled for chemoradiation were eligible. Clinical variables as well as DCE-MRI-, DWI- and 18F-FDG PET/CT-derived parameters of the primary tumours and metastatic neck nodes were analysed in relation to 3-year progression-free survival (PFS) and overall survival (OS) rates. RESULTS Eighty-six patients were available for analysis. Multivariate analysis identified the efflux rate constant (K ep)-tumour < 3.79 min-1 (P = 0.001), relative volume of extracellular extravascular space (V e)-node < 0.23 (P = 0.004) and SUVmax-tumour > 19.44 (P = 0.025) as independent risk factors for both PFS and OS. A scoring system based upon the sum of each of the three imaging parameters allowed stratification of our patients into three groups (patients with 0/1 factor, patients with 2 factors and patients with 3 factors, respectively) with distinct PFS (3-year rates = 72 %, 38 % and 0 %, P < 0.0001) and OS (3-year rates = 81 %, 46 % and 20 %, P < 0.0001). CONCLUSIONS K ep-tumour, V e-node and SUVmax-tumour were independent prognosticators for OHSCC treated with chemoradiation. Their combination helped survival stratification. KEY POINTS • K ep -tumour, V e -node and SUV max -tumour are independent predictors of survival rates. • The combination of these three prognosticators may help stratification of survival. • MRI and FDG-PET/CT play complementary roles in prognostication of head and neck cancer.
Collapse
Affiliation(s)
- Shu-Hang Ng
- Molecular Imaging Center, Chang Gung Memorial Hospital, Chang Gung University, Kueishan, Taoyuan, Taiwan
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Chang Gung University, Kueishan, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chang Gung Memorial Hospital, Chang Gung University, 259 Wen Hua 1st Road, Kueishan, Taoyuan, 333, Taiwan
| | - Chun-Ta Liao
- Department of Otorhinolaryngology, Head and Neck Surgery, Chang Gung Memorial Hospital, Chang Gung University, Kueishan, Taoyuan, Taiwan
| | - Chien-Yu Lin
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Chang Gung University, Kueishan, Taoyuan, Taiwan
| | - Sheng-Chieh Chan
- Molecular Imaging Center, Chang Gung Memorial Hospital, Chang Gung University, Kueishan, Taoyuan, Taiwan
- Department of Nuclear Medicine, Chang Gung Memorial Hospital, Chang Gung University, Kueishan, Taoyuan, Taiwan
| | - Yu-Chun Lin
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Chang Gung University, Kueishan, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chang Gung Memorial Hospital, Chang Gung University, 259 Wen Hua 1st Road, Kueishan, Taoyuan, 333, Taiwan
| | - Tzu-Chen Yen
- Molecular Imaging Center, Chang Gung Memorial Hospital, Chang Gung University, Kueishan, Taoyuan, Taiwan
- Department of Nuclear Medicine, Chang Gung Memorial Hospital, Chang Gung University, Kueishan, Taoyuan, Taiwan
| | - Joseph Tung-Chieh Chang
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Chang Gung University, Kueishan, Taoyuan, Taiwan
| | - Sheung-Fat Ko
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Chang Gung University, Kueishan, Taoyuan, Taiwan
| | - Kang-Hsing Fan
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Chang Gung University, Kueishan, Taoyuan, Taiwan
| | - Hung-Ming Wang
- Department of Medical Oncology, Chang Gung Memorial Hospital, Chang Gung University, Kueishan, Taoyuan, Taiwan
| | - Lan-Yan Yang
- Biostatistics and Informatics Unit, Chang Gung Memorial Hospital, Chang Gung University, Kueishan, Taoyuan, Taiwan
| | - Jiun-Jie Wang
- Department of Medical Imaging and Radiological Sciences, Chang Gung Memorial Hospital, Chang Gung University, 259 Wen Hua 1st Road, Kueishan, Taoyuan, 333, Taiwan.
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Keelung, Taiwan.
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University / Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.
| |
Collapse
|
42
|
King AD, Chow SKK, Yu KH, Mo FKF, Yeung DKW, Yuan J, Law BKH, Bhatia KS, Vlantis AC, Ahuja AT. DCE-MRI for Pre-Treatment Prediction and Post-Treatment Assessment of Treatment Response in Sites of Squamous Cell Carcinoma in the Head and Neck. PLoS One 2015; 10:e0144770. [PMID: 26657972 PMCID: PMC4684338 DOI: 10.1371/journal.pone.0144770] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 11/23/2015] [Indexed: 12/17/2022] Open
Abstract
Background and Purpose It is important to identify patients with head and neck squamous cell carcinoma (SCC) who fail to respond to chemoradiotherapy so that they can undergo post-treatment salvage surgery while the disease is still operable. This study aimed to determine the diagnostic performance of dynamic contrast enhanced (DCE)-MRI using a pharmacokinetic model for pre-treatment predictive imaging, as well as post-treatment diagnosis, of residual SCC at primary and nodal sites in the head and neck. Material and Methods Forty-nine patients with 83 SCC sites (primary and/or nodal) underwent pre-treatment DCE-MRI, and 43 patients underwent post-treatment DCE-MRI, of which 33 SCC sites had a residual mass amenable to analysis. Pre-treatment, post-treatment and % change in the mean Ktrans, kep, ve and AUGC were obtained from SCC sites. Logistic regression was used to correlate DCE parameters at each SCC site with treatment response at the same site, based on clinical outcome at that site at a minimum of two years. Results None of the pre-treatment DCE-MRI parameters showed significant correlations with SCC site failure (SF) (29/83 sites) or site control (SC) (54/83 sites). Post-treatment residual masses with SF (14/33) had significantly higher kep (p = 0.05), higher AUGC (p = 0.02), and lower % reduction in AUGC (p = 0.02), than residual masses with SC (19/33), with the % change in AUGC remaining significant on multivariate analysis. Conclusion Pre-treatment DCE-MRI did not predict which SCC sites would fail treatment, but post-treatment DCE-MRI showed potential for identifying residual masses that had failed treatment.
Collapse
Affiliation(s)
- Ann D. King
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong S.A.R., China
- * E-mail:
| | - Steven Kwok Keung Chow
- School of Physics, Faculty of Engineering and Information Sciences, University of Wollongong, Australia
| | | | - Frankie Kwok Fai Mo
- Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong S.A.R., China
| | - David K. W. Yeung
- Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong S.A.R., China
| | - Jing Yuan
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Hong Kong S.A.R., China
| | - Benjamin King Hong Law
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong S.A.R., China
| | - Kunwar S. Bhatia
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong S.A.R., China
| | - Alexander C. Vlantis
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong S.A.R. China
| | - Anil T. Ahuja
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong S.A.R., China
| |
Collapse
|
43
|
Han M, Kim SY, Lee SJ, Choi JW. The Correlations Between MRI Perfusion, Diffusion Parameters, and 18F-FDG PET Metabolic Parameters in Primary Head-and-Neck Cancer: A Cross-Sectional Analysis in Single Institute. Medicine (Baltimore) 2015; 94:e2141. [PMID: 26632740 PMCID: PMC5059009 DOI: 10.1097/md.0000000000002141] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This study aimed to investigate the relationships among parameters from dynamic contrast-enhanced (DCE) MRI, diffusion-weighted MRI (DWI), and F-fluorodeoxyglucose (F-FDG) PET in patients with primary head-and-neck squamous cell carcinoma (HNSCC).A total of 34 patients with primary HNSCC underwent DCE-MRI, DWI, and F-FDG PET before treatment. The perfusion parameters (Ktrans, Ktransmax, Kep, Ve, Vp, and AUC60) from DCE-MRI and ADC (ADCmean, ADCmin) values from DWI were calculated within the manually placed ROI around the main tumor. Standardized uptake value (SUVmax, SUVmean), metabolic tumor volume (MTV), and total lesion glycolysis (TLG = SUVmean × MTV) were calculated with thresholds of 3.0 SUV. The associations between parameters were evaluated by Pearson correlation analysis.Significant correlations were identified between Ktrans and Kep (r = 0.631), Ktrans and Ve (r = 0.603), Ktrans and ADCmean (r = 0.438), Ktransmax and Kep (r = 0.667), Ktransmax and Vp (r = 0.351), Ve and AUC60 (r = 0.364), Ve and ADCmean (r = 0.590), and Ve and ADCmin (r = 0.361). ADCmin was reversely correlated with TLG (r = -0.347). Tumor volume was significantly associated with Ktransmax (r = 0.348).The demonstrated relationships among parameters from DCE, DWI, and F-FDG PET suggest complex interactions among tumor biologic characteristics. Each diagnostic technique may provide complementary information for HNSCC.
Collapse
Affiliation(s)
- Miran Han
- From the Department of Radiology (MH, SYK, JWC), and Nuclear Medicine (SJL), Ajou University School of Medicine, Ajou University Medical Center, Suwon, Republic of Korea
| | | | | | | |
Collapse
|
44
|
Gawlitza M, Purz S, Kubiessa K, Boehm A, Barthel H, Kluge R, Kahn T, Sabri O, Stumpp P. In Vivo Correlation of Glucose Metabolism, Cell Density and Microcirculatory Parameters in Patients with Head and Neck Cancer: Initial Results Using Simultaneous PET/MRI. PLoS One 2015; 10:e0134749. [PMID: 26270054 PMCID: PMC4536035 DOI: 10.1371/journal.pone.0134749] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/30/2015] [Indexed: 12/20/2022] Open
Abstract
Objective To demonstrate the feasibility of simultaneous acquisition of 18F-FDG-PET, diffusion-weighted imaging (DWI) and T1-weighted dynamic contrast-enhanced MRI (T1w-DCE) in an integrated simultaneous PET/MRI in patients with head and neck squamous cell cancer (HNSCC) and to investigate possible correlations between these parameters. Methods 17 patients that had given informed consent (15 male, 2 female) with biopsy-proven HNSCC underwent simultaneous 18F-FDG-PET/MRI including DWI and T1w-DCE. SUVmax, SUVmean, ADCmean, ADCmin and Ktrans, kep and ve were measured for each tumour and correlated using Spearman’s ρ. Results Significant correlations were observed between SUVmean and Ktrans (ρ = 0.43; p ≤ 0.05); SUVmean and kep (ρ = 0.44; p ≤ 0.05); Ktrans and kep (ρ = 0.53; p ≤ 0.05); and between kep and ve (ρ = -0.74; p ≤ 0.01). There was a trend towards statistical significance when correlating SUVmax and ADCmin (ρ = -0.35; p = 0.08); SUVmax and Ktrans (ρ = 0.37; p = 0.07); SUVmax and kep (ρ = 0.39; p = 0.06); and ADCmean and ve (ρ = 0.4; p = 0.06). Conclusion Simultaneous 18F-FDG-PET/MRI including DWI and T1w-DCE in patients with HNSCC is feasible and allows depiction of complex interactions between glucose metabolism, microcirculatory parameters and cellular density.
Collapse
Affiliation(s)
- Matthias Gawlitza
- Department of Diagnostic and Interventional Radiology, University Hospital of Leipzig, Liebigstraße 20, 04103 Leipzig, Germany
- * E-mail:
| | - Sandra Purz
- Department of Nuclear Medicine, University Hospital of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| | - Klaus Kubiessa
- Department of Diagnostic and Interventional Radiology, University Hospital of Leipzig, Liebigstraße 20, 04103 Leipzig, Germany
| | - Andreas Boehm
- ENT-Department, University Hospital of Leipzig, Liebigstraße 10–14, 04103 Leipzig, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, University Hospital of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| | - Regine Kluge
- Department of Nuclear Medicine, University Hospital of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| | - Thomas Kahn
- Department of Diagnostic and Interventional Radiology, University Hospital of Leipzig, Liebigstraße 20, 04103 Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University Hospital of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| | - Patrick Stumpp
- Department of Diagnostic and Interventional Radiology, University Hospital of Leipzig, Liebigstraße 20, 04103 Leipzig, Germany
| |
Collapse
|
45
|
Thorwarth D. Functional imaging for radiotherapy treatment planning: current status and future directions-a review. Br J Radiol 2015; 88:20150056. [PMID: 25827209 PMCID: PMC4628531 DOI: 10.1259/bjr.20150056] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In recent years, radiotherapy (RT) has been subject to a number of technological innovations. Today, RT is extremely flexible, allowing irradiation of tumours with high doses, whilst also sparing normal tissues from doses. To make use of these additional degrees of freedom, integration of functional image information may play a key role (i) for better staging and tumour detection, (ii) for more accurate RT target volume delineation, (iii) to assess functional information about biological characteristics and individual radiation resistance and (iv) to apply personalized dose prescriptions. In this article, we discuss the current status and future directions of different clinically available functional imaging modalities; CT, MRI, positron emission tomography (PET) as well as the hybrid imaging techniques PET/CT and PET/MRI and their potential for individualized RT.
Collapse
Affiliation(s)
- D Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
46
|
Ng SH, Lin CY, Chan SC, Lin YC, Yen TC, Liao CT, Chang JTC, Ko SF, Wang HM, Chang CJ, Wang JJ. Clinical utility of multimodality imaging with dynamic contrast-enhanced MRI, diffusion-weighted MRI, and 18F-FDG PET/CT for the prediction of neck control in oropharyngeal or hypopharyngeal squamous cell carcinoma treated with chemoradiation. PLoS One 2014; 9:e115933. [PMID: 25531391 PMCID: PMC4274121 DOI: 10.1371/journal.pone.0115933] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 11/27/2014] [Indexed: 11/21/2022] Open
Abstract
The clinical usefulness of pretreatment imaging techniques for predicting neck control in patients with oropharyngeal or hypopharyngeal squamous cell carcinoma (OHSCC) treated with chemoradiation remains unclear. In this prospective study, we investigated the role of pretreatment dynamic contrast-enhanced perfusion MR imaging (DCE-PWI), diffusion-weighted MR imaging (DWI), and [18F]fluorodeoxyglucose-positron emission tomography (18F-FDG PET)/CT derived imaging markers for the prediction of neck control in OHSCC patients treated with chemoradiation. Patients with untreated OHSCC scheduled for chemoradiation between August, 2010 and July, 2012 were eligible for the study. Clinical variables and the following imaging parameters of metastatic neck lymph nodes were examined in relation to neck control: transfer constant, volume of blood plasma, and volume of extracellular extravascular space (Ve) on DCE-PWI; apparent diffusion coefficient (ADC) on DWI; maximum standardized uptake value, metabolic tumor volume, and total lesion glycolysis on 18F-FDG PET/CT. There were 69 patients (37 with oropharynx SCC and 32 with hypopharynx SCC) with successful pretreatment DCE-PWI and DWI available for analysis. After a median follow-up of 31 months, 25 (36.2%) participants had neck failure. Multivariate analysis identified hemoglobin level <14.3 g/dL (P = 0.019), Ve <0.23 (P = 0.040), and ADC >1.14×10−3 mm2/s (P = 0.003) as independent prognostic factors for 3-year neck control. A prognostic scoring system was formulated by summing up the three significant predictors of neck control. Patients with scores of 2–3 had significantly poorer neck control and overall survival rates than patients with scores of 0–1. We conclude that hemoglobin levels, Ve, and ADC are independent pretreatment prognostic factors for neck control in OHSCC treated with chemoradiation. Their combination may identify a subgroup of patients at high risk of developing neck failure.
Collapse
Affiliation(s)
- Shu-Hang Ng
- Molecular Imaging Center, Chang Gung Memorial Hospital, Chang Gung University, Kueishan, Taoyuan, Taiwan
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Chang Gung University, Kueishan, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chang Gung Memorial Hospital, Chang Gung University, Kueishan, Taoyuan, Taiwan
| | - Chien-Yu Lin
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Chang Gung University, Kueishan, Taoyuan, Taiwan
| | - Sheng-Chieh Chan
- Molecular Imaging Center, Chang Gung Memorial Hospital, Chang Gung University, Kueishan, Taoyuan, Taiwan
- Department of Nuclear Medicine, Chang Gung Memorial Hospital, Chang Gung University, Kueishan, Taoyuan, Taiwan
| | - Yu-Chun Lin
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Chang Gung University, Kueishan, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chang Gung Memorial Hospital, Chang Gung University, Kueishan, Taoyuan, Taiwan
| | - Tzu-Chen Yen
- Molecular Imaging Center, Chang Gung Memorial Hospital, Chang Gung University, Kueishan, Taoyuan, Taiwan
- Department of Nuclear Medicine, Chang Gung Memorial Hospital, Chang Gung University, Kueishan, Taoyuan, Taiwan
| | - Chun-Ta Liao
- Department of Otorhinolaryngology, Head and Neck Surgery, Chang Gung Memorial Hospital, Chang Gung University, Kueishan, Taoyuan, Taiwan
| | - Joseph Tung-Chieh Chang
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Chang Gung University, Kueishan, Taoyuan, Taiwan
| | - Sheung-Fat Ko
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Chang Gung University, Kueishan, Taoyuan, Taiwan
| | - Hung- Ming Wang
- Department of medical Oncology, Chang Gung Memorial Hospital, Chang Gung University, Kueishan, Taoyuan, Taiwan
| | - Chee-Jen Chang
- Clinical Informatics and Medical Statistics Research Center, Chang Gung Memorial Hospital, Chang Gung University, Kueishan, Taoyuan, Taiwan
| | - Jiun-Jie Wang
- Department of Medical Imaging and Radiological Sciences, Chang Gung Memorial Hospital, Chang Gung University, Kueishan, Taoyuan, Taiwan
- * E-mail:
| |
Collapse
|
47
|
Noij DP, de Jong MC, Mulders LGM, Marcus JT, de Bree R, Lavini C, de Graaf P, Castelijns JA. Contrast-enhanced perfusion magnetic resonance imaging for head and neck squamous cell carcinoma: a systematic review. Oral Oncol 2014; 51:124-38. [PMID: 25467775 DOI: 10.1016/j.oraloncology.2014.10.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/26/2014] [Accepted: 10/29/2014] [Indexed: 12/21/2022]
Abstract
This systematic review gives an extensive overview of the current state of perfusion-weighted magnetic resonance imaging (MRI) for head and neck squamous cell carcinoma (HNSCC). Pubmed and Embase were searched for literature until July 2014 assessing the diagnostic and prognostic performance of perfusion-weighted MRI in HNSCC. Twenty-one diagnostic and 12 prognostic studies were included for qualitative analysis. Four studies used a T2(∗) sequence for dynamic susceptibility (DSC)-MRI, 29 studies used T1-based sequences for dynamic contrast enhanced (DCE)-MRI. Included studies suffered from a great deal of heterogeneity in study methods showing a wide range of diagnostic and prognostic performance. Therefore we could not perform any useful meta-analysis. Perfusion-weighted MRI shows potential in some aspects of diagnosing HNSCC and predicting prognosis. Three studies reported significant correlations between hypoxia and tumor heterogeneity in perfusion parameters (absolute correlation coefficient |ρ|>0.6, P<0.05). Two studies reported synergy between perfusion-weighted MRI and positron emission tomography (PET) parameters. Four studies showed a promising role for response prediction early after the start of chemoradiotherapy. In two studies perfusion-weighted MRI was useful in the detection of residual disease. However more research with uniform study and analysis protocols with larger sample sizes is needed before perfusion-weighted MRI can be used in clinical practice.
Collapse
Affiliation(s)
- Daniel P Noij
- Department of Radiology and Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, PO Box 7057, 1007 MB Amsterdam, The Netherlands.
| | - Marcus C de Jong
- Department of Radiology and Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, PO Box 7057, 1007 MB Amsterdam, The Netherlands.
| | - Lieven G M Mulders
- Department of Radiology and Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, PO Box 7057, 1007 MB Amsterdam, The Netherlands.
| | - Johannes T Marcus
- Department of Physics and Medical Technology, VU University Medical Center, De Boelelaan 1117, PO Box 7057, 1007 MB Amsterdam, The Netherlands.
| | - Remco de Bree
- Department of Otolaryngology - Head and Neck Surgery, VU University Medical Center, De Boelelaan 1117, PO Box 7057, 1007 MB Amsterdam, The Netherlands.
| | - Cristina Lavini
- Department of Radiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | - Pim de Graaf
- Department of Radiology and Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, PO Box 7057, 1007 MB Amsterdam, The Netherlands.
| | - Jonas A Castelijns
- Department of Radiology and Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, PO Box 7057, 1007 MB Amsterdam, The Netherlands.
| |
Collapse
|