1
|
DNA methylation profile of liver of mice conceived by in vitro fertilization. J Dev Orig Health Dis 2021; 13:358-366. [PMID: 34121654 DOI: 10.1017/s2040174421000313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Offspring generated by in vitro fertilization (IVF) are believed to be healthy but display a possible predisposition to chronic diseases, like hypertension and glucose intolerance. Since epigenetic changes are believed to underlie such phenotype, this study aimed at describing global DNA methylation changes in the liver of adult mice generated by natural mating (FB group) or by IVF. Embryos were generated by IVF or natural mating. At 30 weeks of age, mice were sacrificed. The liver was removed, and global DNA methylation was assessed using whole-genome bisulfite sequencing (WGBS). Genomic Regions for Enrichment Analysis Tool (GREAT) and G:Profilerβ were used to identify differentially methylated regions (DMRs) and for functional enrichment analysis. Overrepresented gene ontology terms were summarized with REVIGO, while canonical pathways (CPs) were identified with Ingenuity® Pathway Analysis. Overall, 2692 DMRs (4.91%) were different between the groups. The majority of DMRs (84.92%) were hypomethylated in the IVF group. Surprisingly, only 0.16% of CpG islands were differentially methylated and only a few DMRs were located on known gene promoters (n = 283) or enhancers (n = 190). Notably, the long-interspersed element (LINE), short-interspersed element (SINE), and long terminal repeat (LTR1) transposable elements showed reduced methylation (P < 0.05) in IVF livers. Cellular metabolic process, hepatic fibrosis, and insulin receptor signaling were some of the principal biological processes and CPs modified by IVF. In summary, IVF modifies the DNA methylation signature in the adult liver, resulting in hypomethylation of genes involved in metabolism and gene transcription regulation. These findings may shed light on the mechanisms underlying the developmental origin of health and disease.
Collapse
|
2
|
Ruggeri E, Lira-Albarrán S, Grow EJ, Liu X, Harner R, Maltepe E, Ramalho-Santos M, Donjacour A, Rinaudo P. Sex-specific epigenetic profile of inner cell mass of mice conceived in vivo or by IVF. Mol Hum Reprod 2020; 26:866-878. [PMID: 33010164 PMCID: PMC7821709 DOI: 10.1093/molehr/gaaa064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
The preimplantation stage of development is exquisitely sensitive to environmental stresses, and changes occurring during this developmental phase may have long-term health effects. Animal studies indicate that IVF offspring display metabolic alterations, including hypertension, glucose intolerance and cardiac hypertrophy, often in a sexual dimorphic fashion. The detailed nature of epigenetic changes following in-vitro culture is, however, unknown. This study was performed to evaluate the epigenetic (using whole-genome bisulfite sequencing (WGBS) and assay for transposase-accessible chromatin using sequencing (ATAC-seq)) and transcriptomic changes (using RNA-seq) occurring in the inner cell mass (ICM) of male or female mouse embryos generated in vivo or by IVF. We found that the ICM of IVF embryos, compared to the in-vivo ICM, differed in 3% of differentially methylated regions (DMRs), of which 0.1% were located on CpG islands. ATAC-seq revealed that 293 regions were more accessible and 101 were less accessible in IVF embryos, while RNA-seq revealed that 21 genes were differentially regulated in IVF embryos. Functional enrichment analysis revealed that stress signalling (STAT and NF-kB signalling), developmental processes and cardiac hypertrophy signalling showed consistent changes in WGBS and ATAC-seq platforms. In contrast, male and female embryos showed minimal changes. Male ICM had an increased number of significantly hyper-methylated DMRs, while only 27 regions showed different chromatin accessibility and only one gene was differentially expressed. In summary, this study provides the first comprehensive analysis of DNA methylation, chromatin accessibility and RNA expression changes induced by IVF in male and female ICMs. This dataset can be of value to all researchers interested in the developmental origin of health and disease (DOHaD) hypothesis and might lead to a better understanding of how early embryonic manipulation may affect adult health.
Collapse
Affiliation(s)
- Elena Ruggeri
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA
- San Diego Zoo Global, Institute for Conservation Research, Reproductive Sciences, Escondido, CA, 92027, USA
| | - Saúl Lira-Albarrán
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA
| | - Edward J Grow
- Department of Oncological Sciences and Huntsman Cancer Institute, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Xiaowei Liu
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA
| | - Royce Harner
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA
| | - Emin Maltepe
- Department of Pediatrics, University of California, San Francisco, CA, 94143, USA
| | - Miguel Ramalho-Santos
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA
- Lunenfeld-Tanenbaum Research Institute, University of Toronto, ON, M5G1X5, Canada
- Department of Molecular Genetics, University of Toronto, ON, M5S1A8, Canada
| | - Annemarie Donjacour
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA
| | - Paolo Rinaudo
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA
| |
Collapse
|
3
|
Chen X, Shen LH, Gui LX, Yang F, Li J, Cao SZ, Zuo ZC, Ma XP, Deng JL, Ren ZH, Chen ZX, Yu SM. Genome-wide DNA methylation profile of prepubertal porcine testis. Reprod Fertil Dev 2018; 30:349-358. [PMID: 28727982 DOI: 10.1071/rd17067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/17/2017] [Indexed: 12/11/2022] Open
Abstract
The biological structure and function of the mammalian testis undergo important developmental changes during prepuberty and DNA methylation is dynamically regulated during testis development. In this study, we generated the first genome-wide DNA methylation profile of prepubertal porcine testis using methyl-DNA immunoprecipitation (MeDIP) combined with high-throughput sequencing (MeDIP-seq). Over 190 million high-quality reads were generated, containing 43642 CpG islands. There was an overall downtrend of methylation during development, which was clear in promoter regions but less so in gene-body regions. We also identified thousands of differentially methylated regions (DMRs) among the three prepubertal time points (1 month, T1; 2 months, T2; 3 months, T3), the majority of which showed decreasing methylation levels over time. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that many genes in the DMRs were linked with cell proliferation and some important pathways in porcine testis development. Our data suggest that DNA methylation plays an important role in prepubertal development of porcine testis, with an obvious downtrend of methylation levels from T1 to T3. Overall, our study provides a foundation for future studies and gives new insights into mammalian testis development.
Collapse
Affiliation(s)
- Xi Chen
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Liu-Hong Shen
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Li-Xuan Gui
- OnMath Science and Technology Limited Company, No. 500 Tianfu Road, Chengdu, Sichuan, 611130, China
| | - Fang Yang
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Jie Li
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Sui-Zhong Cao
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Zhi-Cai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Xiao-Ping Ma
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Jun-Liang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Zhi-Hua Ren
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Zhong-Xu Chen
- OnMath Science and Technology Limited Company, No. 500 Tianfu Road, Chengdu, Sichuan, 611130, China
| | - Shu-Min Yu
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| |
Collapse
|
4
|
Roost MS, Slieker RC, Bialecka M, van Iperen L, Gomes Fernandes MM, He N, Suchiman HED, Szuhai K, Carlotti F, de Koning EJP, Mummery CL, Heijmans BT, Chuva de Sousa Lopes SM. DNA methylation and transcriptional trajectories during human development and reprogramming of isogenic pluripotent stem cells. Nat Commun 2017; 8:908. [PMID: 29030611 PMCID: PMC5640655 DOI: 10.1038/s41467-017-01077-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 08/16/2017] [Indexed: 01/05/2023] Open
Abstract
Determining cell identity and maturation status of differentiated pluripotent stem cells (PSCs) requires knowledge of the transcriptional and epigenetic trajectory of organs during development. Here, we generate a transcriptional and DNA methylation atlas covering 21 organs during human fetal development. Analysis of multiple isogenic organ sets shows that organ-specific DNA methylation patterns are highly dynamic between week 9 (W9) and W22 of gestation. We investigate the impact of reprogramming on organ-specific DNA methylation by generating human induced pluripotent stem cell (hiPSC) lines from six isogenic organs. All isogenic hiPSCs acquire DNA methylation patterns comparable to existing hPSCs. However, hiPSCs derived from fetal brain retain brain-specific DNA methylation marks that seem sufficient to confer higher propensity to differentiate to neural derivatives. This systematic analysis of human fetal organs during development and associated isogenic hiPSC lines provides insights in the role of DNA methylation in lineage commitment and epigenetic reprogramming in humans.While DNA methylation and gene expression data are widely available for animal models, comprehensive data from human development is rarer. Here, the authors generated transcriptional and DNA methylation data from 21 organs during human development and 6 isogenic induced pluripotent stem cell lines.
Collapse
Affiliation(s)
- Matthias S Roost
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Roderick C Slieker
- Molecular Epidemiology Section, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Monika Bialecka
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Liesbeth van Iperen
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Maria M Gomes Fernandes
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Nannan He
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - H Eka D Suchiman
- Molecular Epidemiology Section, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Karoly Szuhai
- Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Françoise Carlotti
- Department of Nephrology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Eelco J P de Koning
- Department of Nephrology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.,Hubrecht Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Bastiaan T Heijmans
- Molecular Epidemiology Section, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Susana M Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands. .,Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium.
| |
Collapse
|
5
|
Deng J, Liang H, Ying G, Dong Q, Zhang R, Yu J, Fan D, Hao X. Poor survival is associated with the methylated degree of zinc-finger protein 545 (ZNF545) DNA promoter in gastric cancer. Oncotarget 2015; 6:4482-95. [PMID: 25714013 PMCID: PMC4414205 DOI: 10.18632/oncotarget.2916] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 12/11/2014] [Indexed: 12/31/2022] Open
Abstract
Zinc-finger protein 545 (ZNF545) was identified as a gastric tumour suppressor and potentially independent prognostic factor. At the present study, we found that lower expression of ZNF545 was specific in gastric cancer (GC) tissues, and the inconsistently methylated levels of ZNF545 promoter were identified in the gastric cancer tissues. In the methylation-specific PCR (MSP) analysis cohort, we found that GC patients with hypermethylated ZNF545 promoter exhibited significantly shorter median OS than those with unmethylated ZNF545 promoter and those with hypomethylated ZNF545 promoter. In the other cohort, we also demonstrated that GC patients with three or more methylated CpG sites in the ZNF545 promoter were significantly associated with poor survival by using the bisulphite gene sequencing (BGS). The methylated degrees of five CpG sites (−232, −214, −176, −144 and −116) could also provide distinct survival discrimination of patients with GC. These findings indicated that the methylated CpG sites of the ZNF545 promoter could be used for the clinical prediction of the prognosis of GC.
Collapse
Affiliation(s)
- Jingyu Deng
- Department of Gastroenterology, Tianjin Medical University Cancer Hospital, City Key Laboratory of Tianjin Cancer Center and National Clinical Research Center for Cancer, Tianjin, China
| | - Han Liang
- Department of Gastroenterology, Tianjin Medical University Cancer Hospital, City Key Laboratory of Tianjin Cancer Center and National Clinical Research Center for Cancer, Tianjin, China
| | - Guoguang Ying
- Central Laboratory, Tianjin Medical University Cancer Hospital, City Key Laboratory of Tianjin Cancer Center and National Clinical Research Center for Cancer, Tianjin, China
| | - Qiuping Dong
- Central Laboratory, Tianjin Medical University Cancer Hospital, City Key Laboratory of Tianjin Cancer Center and National Clinical Research Center for Cancer, Tianjin, China
| | - Rupeng Zhang
- Department of Gastroenterology, Tianjin Medical University Cancer Hospital, City Key Laboratory of Tianjin Cancer Center and National Clinical Research Center for Cancer, Tianjin, China
| | - Jun Yu
- Institute of Digestive Disease, Li Ka Shing Institute of Health Science, Chinese University of HongKong, Shatin, HongKong
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xishan Hao
- Department of Gastroenterology, Tianjin Medical University Cancer Hospital, City Key Laboratory of Tianjin Cancer Center and National Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
6
|
Abstract
The increasing incidence of obesity is a serious global public health challenge. Although the obesity epidemic is largely fueled by poor nutrition and lack of exercise, certain chemicals have been shown to potentially have a role in its aetiology. A substantial body of evidence suggests that a subclass of endocrine-disrupting chemicals (EDCs), which interfere with endocrine signalling, can disrupt hormonally regulated metabolic processes, especially if exposure occurs during early development. These chemicals, so-called 'obesogens' might predispose some individuals to gain weight despite their efforts to limit caloric intake and increase levels of physical activity. This Review discusses the role of EDCs in the obesity epidemic, the latest research on the obesogen concept, epidemiological and experimental findings on obesogens, and their modes of action. The research reviewed here provides knowledge that health scientists can use to inform their research and decision-making processes.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Division of Extramural Research and Training, Population Health Branch, National Institute of Environmental Sciences, PO Box 12233, Research Triangle Park, NC 27709, USA
| | - Retha Newbold
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences/National Institutes of Health, PO Box 12233, Research Triangle Park, NC 27709, USA
| | - Thaddeus T Schug
- Division of Extramural Research and Training, Population Health Branch, National Institute of Environmental Sciences, PO Box 12233, Research Triangle Park, NC 27709, USA
| |
Collapse
|
7
|
Slieker RC, Roost MS, van Iperen L, Suchiman HED, Tobi EW, Carlotti F, de Koning EJP, Slagboom PE, Heijmans BT, Chuva de Sousa Lopes SM. DNA Methylation Landscapes of Human Fetal Development. PLoS Genet 2015; 11:e1005583. [PMID: 26492326 PMCID: PMC4619663 DOI: 10.1371/journal.pgen.1005583] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/16/2015] [Indexed: 12/14/2022] Open
Abstract
Remodelling the methylome is a hallmark of mammalian development and cell differentiation. However, current knowledge of DNA methylation dynamics in human tissue specification and organ development largely stems from the extrapolation of studies in vitro and animal models. Here, we report on the DNA methylation landscape using the 450k array of four human tissues (amnion, muscle, adrenal and pancreas) during the first and second trimester of gestation (9,18 and 22 weeks). We show that a tissue-specific signature, constituted by tissue-specific hypomethylated CpG sites, was already present at 9 weeks of gestation (W9). Furthermore, we report large-scale remodelling of DNA methylation from W9 to W22. Gain of DNA methylation preferentially occurred near genes involved in general developmental processes, whereas loss of DNA methylation mapped to genes with tissue-specific functions. Dynamic DNA methylation was associated with enhancers, but not promoters. Comparison of our data with external fetal adrenal, brain and liver revealed striking similarities in the trajectory of DNA methylation during fetal development. The analysis of gene expression data indicated that dynamic DNA methylation was associated with the progressive repression of developmental programs and the activation of genes involved in tissue-specific processes. The DNA methylation landscape of human fetal development provides insight into regulatory elements that guide tissue specification and lead to organ functionality.
Collapse
Affiliation(s)
- Roderick C. Slieker
- Molecular Epidemiology Section, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias S. Roost
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Liesbeth van Iperen
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - H. Eka D. Suchiman
- Molecular Epidemiology Section, Leiden University Medical Center, Leiden, The Netherlands
| | - Elmar W. Tobi
- Molecular Epidemiology Section, Leiden University Medical Center, Leiden, The Netherlands
| | - Françoise Carlotti
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eelco J. P. de Koning
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
- Hubrecht Institute, Utrecht, The Netherlands
| | - P. Eline Slagboom
- Molecular Epidemiology Section, Leiden University Medical Center, Leiden, The Netherlands
| | - Bastiaan T. Heijmans
- Molecular Epidemiology Section, Leiden University Medical Center, Leiden, The Netherlands
| | - Susana M. Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
- Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
8
|
Deng J, Liang H, Zhang R, Dong Q, Hou Y, Yu J, Fan D, Hao X. Applicability of the methylated CpG sites of paired box 5 (PAX5) promoter for prediction the prognosis of gastric cancer. Oncotarget 2015; 5:7420-30. [PMID: 25277182 PMCID: PMC4202133 DOI: 10.18632/oncotarget.1973] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Paired box gene 5 (PAX5), a member of the paired box gene family, is involved in control of organ development and tissue differentiation. In previous study, PAX5 promoter methylation was found in gastric cancer (GC) cells and tissues. At present study, we found that the inconsistently methylated levels of PAX5 promoter were identified in the different GC tissues. The methylated CpG site count and the methylated statuses of four CpG sites (-236, -183, -162, and -152) were significantly associated with the survival of 460 GC patients, respectively. Ultimately, the methylated CpG -236 was the optimal prognostic predictor of patients identified by using the Cox regression with AIC value calculation. These findings indicated that the methylated CpG -236 of PAX5 promoter has the potential applicability for clinical evaluation the prognosis of GC.
Collapse
Affiliation(s)
- Jingyu Deng
- Department of Gastroenterology, Tianjin Medical University Cancer Hospital, City Key Laboratory of Tianjin Cancer Center and National Clinical Research Center for Cancer, Tianjin, China
| | - Han Liang
- Department of Gastroenterology, Tianjin Medical University Cancer Hospital, City Key Laboratory of Tianjin Cancer Center and National Clinical Research Center for Cancer, Tianjin, China
| | - Rupeng Zhang
- Department of Gastroenterology, Tianjin Medical University Cancer Hospital, City Key Laboratory of Tianjin Cancer Center and National Clinical Research Center for Cancer, Tianjin, China
| | - Qiuping Dong
- Central laboratory, Tianjin Medical University Cancer Hospital, City Key Laboratory of Tianjin Cancer Center and National Clinical Research Center for Cancer, Tianjin, China
| | - Yachao Hou
- Department of Gastroenterology, Tianjin Medical University Cancer Hospital, City Key Laboratory of Tianjin Cancer Center and National Clinical Research Center for Cancer, Tianjin, China
| | - Jun Yu
- Institute of Digestive Disease, Li Ka Shing Institute of Health Science, Chinese University of HongKong, Shatin, HongKong
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xishan Hao
- Department of Gastroenterology, Tianjin Medical University Cancer Hospital, City Key Laboratory of Tianjin Cancer Center and National Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
9
|
Soubry A. Epigenetic inheritance and evolution: A paternal perspective on dietary influences. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 118:79-85. [DOI: 10.1016/j.pbiomolbio.2015.02.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/18/2015] [Accepted: 02/23/2015] [Indexed: 12/23/2022]
|
10
|
Fontana L, Partridge L. Promoting health and longevity through diet: from model organisms to humans. Cell 2015; 161:106-118. [PMID: 25815989 DOI: 10.1016/j.cell.2015.02.020] [Citation(s) in RCA: 837] [Impact Index Per Article: 83.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/20/2015] [Accepted: 01/20/2015] [Indexed: 12/19/2022]
Abstract
Reduced food intake, avoiding malnutrition, can ameliorate aging and aging-associated diseases in invertebrate model organisms, rodents, primates, and humans. Recent findings indicate that meal timing is crucial, with both intermittent fasting and adjusted diurnal rhythm of feeding improving health and function, in the absence of changes in overall intake. Lowered intake of particular nutrients rather than of overall calories is also key, with protein and specific amino acids playing prominent roles. Nutritional modulation of the microbiome can also be important, and there are long-term, including inter-generational, effects of diet. The metabolic, molecular, and cellular mechanisms that mediate both improvement in health during aging to diet and genetic variation in the response to diet are being identified. These new findings are opening the way to specific dietary and pharmacological interventions to recapture the full potential benefits of dietary restriction, which humans can find difficult to maintain voluntarily.
Collapse
Affiliation(s)
- Luigi Fontana
- Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Clinical and Experimental Science, Brescia University, 25123 Brescia, Italy; CEINGE Biotecnologie Avanzate, 80145 Napoli, Italy.
| | - Linda Partridge
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany; Institute of Healthy Ageing and Department of Genetics, Environment, and Evolution, University College London, London WC1E 6BT, UK.
| |
Collapse
|
11
|
Loke YJ, Hannan AJ, Craig JM. The Role of Epigenetic Change in Autism Spectrum Disorders. Front Neurol 2015; 6:107. [PMID: 26074864 PMCID: PMC4443738 DOI: 10.3389/fneur.2015.00107] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 04/28/2015] [Indexed: 12/14/2022] Open
Abstract
Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental disorders characterized by problems with social communication, social interaction, and repetitive or restricted behaviors. ASD are comorbid with other disorders including attention deficit hyperactivity disorder, epilepsy, Rett syndrome, and Fragile X syndrome. Neither the genetic nor the environmental components have been characterized well enough to aid diagnosis or treatment of non-syndromic ASD. However, genome-wide association studies have amassed evidence suggesting involvement of hundreds of genes and a variety of associated genetic pathways. Recently, investigators have turned to epigenetics, a prime mediator of environmental effects on genomes and phenotype, to characterize changes in ASD that constitute a molecular level on top of DNA sequence. Though in their infancy, such studies have the potential to increase our understanding of the etiology of ASD and may assist in the development of biomarkers for its prediction, diagnosis, prognosis, and eventually in its prevention and intervention. This review focuses on the first few epigenome-wide association studies of ASD and discusses future directions.
Collapse
Affiliation(s)
- Yuk Jing Loke
- Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne , Parkville, VIC , Australia
| | - Anthony John Hannan
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne , Parkville, VIC , Australia
| | - Jeffrey Mark Craig
- Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne , Parkville, VIC , Australia
| |
Collapse
|
12
|
Heindel JJ, Vandenberg LN. Developmental origins of health and disease: a paradigm for understanding disease cause and prevention. Curr Opin Pediatr 2015; 27:248-53. [PMID: 25635586 PMCID: PMC4535724 DOI: 10.1097/mop.0000000000000191] [Citation(s) in RCA: 257] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW Although diseases may appear clinically throughout the lifespan, it is clear that many diseases have origins during development. Altered nutrition, as well as exposure to environmental chemicals, drugs, infections, or stress during specific times of development, can lead to functional changes in tissues, predisposing those tissues to diseases that manifest later in life. This review will focus on the role of altered nutrition and exposures to environmental chemicals during development in the role of disease and dysfunction. RECENT FINDINGS The effects of altered nutrition or exposure to environmental chemicals during development are likely because of altered programming of epigenetic marks, which persist across the lifespan. Indeed some changes can be transmitted to future generations. SUMMARY The evidence in support of the developmental origins of the health and disease paradigm is sufficiently robust and repeatable across species, including humans, to suggest a need for greater emphasis in the clinical area. As a result of these data, obesity, diabetes, cardiovascular morbidity, and neuropsychiatric diseases can all be considered pediatric diseases. Disease prevention must start with improved nutrition and reduced exposure to environmental chemicals during development.
Collapse
Affiliation(s)
- Jerrold J Heindel
- aDivision of Extramural Research and Training, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina bDivision of Environmental Health Sciences, School of Public Health, University of Massachusetts, Amherst, Massachusetts, USA
| | | |
Collapse
|
13
|
Deng J, Liang H, Dong Q, Hou Y, Xie X, Yu J, Fan D, Hao X. The survival decrease in gastric cancer is associated with the methylation of B-cell CLL/lymphoma 6 member B promoter. Open Biol 2015; 4:rsob.140067. [PMID: 25008234 PMCID: PMC4118602 DOI: 10.1098/rsob.140067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The methylation of B-cell CLL/lymphoma 6 member B (BCL6B) DNA promoter was detected in several malignancies. Here, we quantitatively detect the methylated status of CpG sites of BCL6B DNA promoter of 459 patients with gastric cancer (GC) by using bisulfite gene sequencing. We show that patients with three or more methylated CpG sites in the BCL6B promoter were significantly associated with poor survival. Furthermore, by using the Akaike information criterion value calculation, we show that the methylated count of BCL6B promoter was identified to be the optimal prognostic predictor of GC patients.
Collapse
Affiliation(s)
- Jingyu Deng
- Department of Gastroenterology, Tianjin Medical University Cancer Hospital, City Key Laboratory of Tianjin Cancer Center and National Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Han Liang
- Department of Gastroenterology, Tianjin Medical University Cancer Hospital, City Key Laboratory of Tianjin Cancer Center and National Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Qiuping Dong
- Central Laboratory, Tianjin Medical University Cancer Hospital, City Key Laboratory of Tianjin Cancer Center and National Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Yachao Hou
- Department of Gastroenterology, Tianjin Medical University Cancer Hospital, City Key Laboratory of Tianjin Cancer Center and National Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Xingming Xie
- Department of Gastroenterology, Tianjin Medical University Cancer Hospital, City Key Laboratory of Tianjin Cancer Center and National Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Jun Yu
- Institute of Digestive Disease, Li Ka Shing Institute of Health Science, Chinese University of HongKong, Shatin, Hong Kong
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xishan Hao
- Department of Gastroenterology, Tianjin Medical University Cancer Hospital, City Key Laboratory of Tianjin Cancer Center and National Clinical Research Center for Cancer, Tianjin, People's Republic of China
| |
Collapse
|
14
|
Deng J, Liang H, Zhang R, Ying G, Xie X, Yu J, Fan D, Hao X. Methylated CpG site count of dapper homolog 1 (DACT1) promoter prediction the poor survival of gastric cancer. Am J Cancer Res 2014; 4:518-527. [PMID: 25232493 PMCID: PMC4163616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 08/17/2014] [Indexed: 06/03/2023] Open
Abstract
OBJECTIVE To elucidate the clinical significance of the methylated status of CpG sites of dapper homolog 1 (DACT1) promoter in the survival prediction in gastric cancer (GC). METHODS The large scale GC patients (n=459) were analyzed for the quantitatively methylated status of CpG sites of DACT1 DNA promoter with the bisulphite sequencing PCR (BSP). With gene sequencing analysis, the methylated statuses of 12 cytosine-phosphate-guanine (CpG) sites in DACT1 promoter were detected to supply detailed information for the precisely prognostic prediction. Associations between molecular, clinicopathologic, and survival data were analyzed. RESULTS With the MSP detection, different methylated levels of DACT1 promoter were identified in the 25 GC tissues, while none of 25 normal gastric mucosal tissues were found to be methylated. DACT1 promoter methylation was found in 28.32% in 459 patients. GC patients with 4 or more methylated CpG sites of DACT1 promoter was significantly associated with the poorer survival (P=0.19). The methylated statuses of CpG -515, CpG -435, and CpG -430 sites were also identified to provide the elaborate survival discrimination for 459 GC patients, respectively (P=0.049, =0.006, and =0.037). In addition, we demonstrated that the methylated CpG site count had smallest AIC and BIC values than other three methylated status of CpG sites for prediction the survival of 459 GC patients. CONCLUSIONS The methylated CpG site count of DACT1 promoter had the significant applicability for clinical evaluation the prognosis of GC.
Collapse
Affiliation(s)
- Jingyu Deng
- Department of Gastroenterology, Tianjin Medical University Cancer Hospital, City Key Laboratory of Tianjin Cancer Center and National Clinical Research Center for CancerTianjin, China
| | - Han Liang
- Department of Gastroenterology, Tianjin Medical University Cancer Hospital, City Key Laboratory of Tianjin Cancer Center and National Clinical Research Center for CancerTianjin, China
| | - Rupeng Zhang
- Department of Gastroenterology, Tianjin Medical University Cancer Hospital, City Key Laboratory of Tianjin Cancer Center and National Clinical Research Center for CancerTianjin, China
| | - Guoguang Ying
- Central Laboratory, Tianjin Medical University Cancer Hospital, City Key Laboratory of Tianjin Cancer Center and National Clinical Research Center for CancerTianjin, China
| | - Xingmin Xie
- Department of Gastroenterology, Tianjin Medical University Cancer Hospital, City Key Laboratory of Tianjin Cancer Center and National Clinical Research Center for CancerTianjin, China
| | - Jun Yu
- Institute of Digestive Disease, Li Ka Shing Institute of Health Science, Chinese University of Hong KongShatin, Hong Kong
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical UniversityXi’an China
| | - Xishan Hao
- Department of Gastroenterology, Tianjin Medical University Cancer Hospital, City Key Laboratory of Tianjin Cancer Center and National Clinical Research Center for CancerTianjin, China
| |
Collapse
|
15
|
Deng J, Liang H, Ying G, Dong Q, Zhang L, Yu J, Fan D, Hao X. Clinical significance of the methylated cytosine-phosphate-guanine sites of protocadherin-10 promoter for evaluating the prognosis of gastric cancer. J Am Coll Surg 2014; 219:904-13. [PMID: 25260683 DOI: 10.1016/j.jamcollsurg.2014.06.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/23/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND Protocadherin-10 (PCDH10) has been identified as a tumor suppressor gene in multiple carcinomas. In this study, we intended to elucidate the clinical applicability of the methylation of CpG sites of PCDH10 promoter for prognostic prediction in gastric cancer (GC). STUDY DESIGN Qualitative and quantitative detections of PCDH10 promoter methylation were performed with methylation-specific polymerase chain reaction (MSP) and bisulphite genomic sequencing, respectively. The methylated statuses of 27 cytosine-phosphate-guanine (CpG) sites in PCDH10 promoter were detected in a series of 458 GC tissues to supply precise information of prognostic prediction. Associations between molecular, clinicopathologic, and survival data were analyzed. RESULTS Protocadherin-10 promoter methylation was found in 91.92% in all patients. Gastric cancer patients with 5 or more methylated CpG sites of PCDH10 promoter was significantly associated with poorer survival (p = 0.038). Meanwhile, methylation of combined CpG (-115, -108, -13, and +3) sites was also identified to provide elaborate survival discrimination for GC patients (p = 0.044). On multivariate survival analysis, methylation of combined CpG (-115, -108, -13, and +3) sites (hazard ratio [HR] = 1.255; p = 0.049) was identified to be an independent prognostic indicator of GC, as were N stage and T stage. Additionally, the methylation of combined CpG (-115, -108, -13, and +3) sites had smaller Akaike information criterion (AIC) and Bayesian information criterion (BIC) values than the other 2 independent predictors of the survival. Ultimately, we demonstrated that the methylation of combined CpG (-115, -108, -13, and +3) sites was negatively associated with PCDH10 expression in GC tissues. CONCLUSIONS The methylated CpG sites of PCDH10 promoter had significant applicability for clinical evaluation of the prognosis of GC.
Collapse
Affiliation(s)
- Jingyu Deng
- Department of Gastroenterology, Tianjin Medical University Cancer Hospital, City Key Laboratory of Tianjin Cancer Center and National Clinical Research Center for Cancer, Tianjin, China
| | - Han Liang
- Department of Gastroenterology, Tianjin Medical University Cancer Hospital, City Key Laboratory of Tianjin Cancer Center and National Clinical Research Center for Cancer, Tianjin, China
| | - Guoguang Ying
- Central Laboratory, Tianjin Medical University Cancer Hospital, City Key Laboratory of Tianjin Cancer Center and National Clinical Research Center for Cancer, Tianjin, China
| | - Qiuping Dong
- Central Laboratory, Tianjin Medical University Cancer Hospital, City Key Laboratory of Tianjin Cancer Center and National Clinical Research Center for Cancer, Tianjin, China
| | - Li Zhang
- Department of Gastroenterology, Tianjin Medical University Cancer Hospital, City Key Laboratory of Tianjin Cancer Center and National Clinical Research Center for Cancer, Tianjin, China
| | - Jun Yu
- Institute of Digestive Disease, Li Ka Shing Institute of Health Science, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xishan Hao
- Department of Gastroenterology, Tianjin Medical University Cancer Hospital, City Key Laboratory of Tianjin Cancer Center and National Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|