1
|
de Castro Sampaio SS, Ramalho MCC, de Souza CS, de Almeida Rodrigues B, de Mendonça GRS, Lazarini M. RHO subfamily of small GTPases in the development and function of hematopoietic cells. J Cell Physiol 2025; 240:e31469. [PMID: 39434451 DOI: 10.1002/jcp.31469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024]
Abstract
RHOA, RHOB, and RHOC comprise a subfamily of RHO GTPase proteins famed for controlling cytoskeletal dynamics. RHO proteins operate downstream of multiple signals emerging from the microenvironment, leading to diverse cell responses, such as proliferation, adhesion, and migration. Therefore, RHO signaling has been centrally placed in the regulation of blood cells. Despite their high homology, unique roles of RHOA, RHOB, and RHOC have been described in hematopoietic cells. In this article, we overview the contribution of RHO proteins in the development and function of each blood cell lineage. Additionally, we highlight the aberrations of the RHO signaling pathways found in hematological malignancies, providing clues for the identification of new therapeutic targets.
Collapse
Affiliation(s)
| | | | - Caroline Santos de Souza
- Department of Clinical and Experimental Oncology, Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Mariana Lazarini
- Department of Clinical and Experimental Oncology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Han C, Zhu M, Liu Y, Yang Y, Cheng J, Li P. Regulation of Vascular Injury and Repair by P21-Activated Kinase 1 and P21-Activated Kinase 2: Therapeutic Potential and Challenges. Biomolecules 2024; 14:1596. [PMID: 39766303 PMCID: PMC11674331 DOI: 10.3390/biom14121596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
The PAK (p21-activated kinases) family is a class of intracellular signal transduction protein kinases that regulate various cellular functions, mainly through their interactions with small GTP enzymes. PAK1 and PAK2 in the PAK kinase family are key signal transduction molecules that play important roles in various biological processes, including morphological changes, migration, proliferation, and apoptosis, and are involved in the progression of many diseases. Abnormal expression or dysregulation of PAK1 and PAK2 may be associated with several diseases, including cancer, neurological diseases, etc. The current research mainly focuses on studying the role of PAK and PAK inhibitors in the regulation of cancer progression, but relatively few reports are available that explore their potential role in cardiovascular diseases. Vascular injury and repair are complex processes involved in many cardiovascular conditions, including atherosclerosis, restenosis, and hypertension. Emerging research suggests that PAK1 and PAK2 have pivotal roles in vascular endothelial cell functions, including migration, proliferation, and angiogenesis. These kinases also modulate vascular smooth muscle relaxation, vascular permeability, and structural alterations, which are critical in the development of atherosclerosis and vascular inflammation. By targeting these activities, PAK proteins are essential for both normal vascular physiology and the pathogenesis of vascular diseases, highlighting their potential as therapeutic targets for vascular health. This review focuses on recent studies that offer experimental insights into the mechanisms by which PAK1 and PAK2 regulate the biological processes of vascular injury and repair and the therapeutic potential of the current existing PAK inhibitors in vascular-related diseases. The limitations of treatment with some PAK inhibitors and the ways that future development can overcome these challenges are also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Pengyun Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China; (C.H.); (M.Z.); (Y.L.); (Y.Y.); (J.C.)
| |
Collapse
|
3
|
Glading A. KRIT1 in vascular biology and beyond. Biosci Rep 2024; 44:BSR20231675. [PMID: 38980708 PMCID: PMC11263069 DOI: 10.1042/bsr20231675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/21/2024] [Accepted: 07/09/2024] [Indexed: 07/10/2024] Open
Abstract
KRIT1 is a 75 kDa scaffolding protein which regulates endothelial cell phenotype by limiting the response to inflammatory stimuli and maintaining a quiescent and stable endothelial barrier. Loss-of-function mutations in KRIT1 lead to the development of cerebral cavernous malformations (CCM), a disease marked by the formation of abnormal blood vessels which exhibit a loss of barrier function, increased endothelial proliferation, and altered gene expression. While many advances have been made in our understanding of how KRIT1, and the functionally related proteins CCM2 and PDCD10, contribute to the regulation of blood vessels and the vascular barrier, some important open questions remain. In addition, KRIT1 is widely expressed and KRIT1 and the other CCM proteins have been shown to play important roles in non-endothelial cell types and tissues, which may or may not be related to their role as pathogenic originators of CCM. In this review, we discuss some of the unsettled questions regarding the role of KRIT1 in vascular physiology and discuss recent advances that suggest this ubiquitously expressed protein may have a role beyond the endothelial cell.
Collapse
Affiliation(s)
- Angela J. Glading
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, U.S.A
| |
Collapse
|
4
|
Zhou W, Zhao Z, Lin A, Yang JZ, Xu J, Wilder-Romans K, Yang A, Li J, Solanki S, Speth JM, Walker N, Scott AJ, Wang L, Wen B, Andren A, Zhang L, Kothari AU, Yao Y, Peterson ER, Korimerla N, Werner CK, Ullrich A, Liang J, Jacobson J, Palavalasa S, O’Brien AM, Elaimy AL, Ferris SP, Zhao SG, Sarkaria JN, Győrffy B, Zhang S, Al-Holou WN, Umemura Y, Morgan MA, Lawrence TS, Lyssiotis CA, Peters-Golden M, Shah YM, Wahl DR. GTP Signaling Links Metabolism, DNA Repair, and Responses to Genotoxic Stress. Cancer Discov 2024; 14:158-175. [PMID: 37902550 PMCID: PMC10872631 DOI: 10.1158/2159-8290.cd-23-0437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/07/2023] [Accepted: 10/19/2023] [Indexed: 10/31/2023]
Abstract
How cell metabolism regulates DNA repair is incompletely understood. Here, we define a GTP-mediated signaling cascade that links metabolism to DNA repair and has significant therapeutic implications. GTP, but not other nucleotides, regulates the activity of Rac1, a guanine nucleotide-binding protein, which promotes the dephosphorylation of serine 323 on Abl-interactor 1 (Abi-1) by protein phosphatase 5 (PP5). Dephosphorylated Abi-1, a protein previously not known to activate DNA repair, promotes nonhomologous end joining. In patients and mouse models of glioblastoma, Rac1 and dephosphorylated Abi-1 mediate DNA repair and resistance to standard-of-care genotoxic treatments. The GTP-Rac1-PP5-Abi-1 signaling axis is not limited to brain cancer, as GTP supplementation promotes DNA repair and Abi-1-S323 dephosphorylation in nonmalignant cells and protects mouse tissues from genotoxic insult. This unexpected ability of GTP to regulate DNA repair independently of deoxynucleotide pools has important implications for normal physiology and cancer treatment. SIGNIFICANCE A newly described GTP-dependent signaling axis is an unexpected link between nucleotide metabolism and DNA repair. Disrupting this pathway can overcome cancer resistance to genotoxic therapy while augmenting it can mitigate genotoxic injury of normal tissues. This article is featured in Selected Articles from This Issue, p. 5.
Collapse
Affiliation(s)
- Weihua Zhou
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Zitong Zhao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
- Department of Oncology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shan Xi, PR China
| | - Angelica Lin
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - John Z Yang
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Jie Xu
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Kari Wilder-Romans
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Annabel Yang
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Jing Li
- Cell Signaling Technology, Inc., Danvers, MA, USA
| | - Sumeet Solanki
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer M Speth
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Natalie Walker
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Andrew J Scott
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lu Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Anthony Andren
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Li Zhang
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Ayesha U Kothari
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Yangyang Yao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
- Department of Oncology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Erik R Peterson
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Navyateja Korimerla
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Christian K Werner
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Alexander Ullrich
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Jessica Liang
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Janna Jacobson
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Sravya Palavalasa
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Alexandra M O’Brien
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Ameer L Elaimy
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Sean P Ferris
- Department of Pathology, Division of Neuropathology, University of Michigan, Ann Arbor, MI, USA
| | - Shuang G Zhao
- Department of Human Oncology, University of Wisconsin Madison, WI, USA
| | | | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary; and TTK Cancer Biomarker Research Group, Institute of Enzymology, Budapest, Hungary
| | - Shuqun Zhang
- Department of Oncology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shan Xi, PR China
| | - Wajd N Al-Holou
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | - Yoshie Umemura
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Meredith A Morgan
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Costas A Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology and Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Marc Peters-Golden
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yatrik M Shah
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Daniel R Wahl
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
- Lead contact
| |
Collapse
|
5
|
Uwamichi M, Miura Y, Kamiya A, Imoto D, Sawai S. Random walk and cell morphology dynamics in Naegleria gruberi. Front Cell Dev Biol 2023; 11:1274127. [PMID: 38020930 PMCID: PMC10646312 DOI: 10.3389/fcell.2023.1274127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Amoeboid cell movement and migration are wide-spread across various cell types and species. Microscopy-based analysis of the model systems Dictyostelium and neutrophils over the years have uncovered generality in their overall cell movement pattern. Under no directional cues, the centroid movement can be quantitatively characterized by their persistence to move in a straight line and the frequency of re-orientation. Mathematically, the cells essentially behave as a persistent random walker with memory of two characteristic time-scale. Such quantitative characterization is important from a cellular-level ethology point of view as it has direct connotation to their exploratory and foraging strategies. Interestingly, outside the amoebozoa and metazoa, there are largely uncharacterized species in the excavate taxon Heterolobosea including amoeboflagellate Naegleria. While classical works have shown that these cells indeed show typical amoeboid locomotion on an attached surface, their quantitative features are so far unexplored. Here, we analyzed the cell movement of Naegleria gruberi by employing long-time phase contrast imaging that automatically tracks individual cells. We show that the cells move as a persistent random walker with two time-scales that are close to those known in Dictyostelium and neutrophils. Similarities were also found in the shape dynamics which are characterized by the appearance, splitting and annihilation of the curvature waves along the cell edge. Our analysis based on the Fourier descriptor and a neural network classifier point to importance of morphology features unique to Naegleria including complex protrusions and the transient bipolar dumbbell morphologies.
Collapse
Affiliation(s)
- Masahito Uwamichi
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Yusuke Miura
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Ayako Kamiya
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daisuke Imoto
- Second Department of Forensic Science, National Research Institute of Police Science, Chiba, Japan
| | - Satoshi Sawai
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Research Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Zhou W, Zhao Z, Lin A, Yang J, Xu J, Kari WR, Yang A, Li J, Solanki S, Speth J, Walker N, Scott AJ, Kothari AU, Yao Y, Peterson ER, Korimerla N, Werner CK, Liang J, Jacobson J, Palavalasa S, Obrien AM, Elaimy AL, Ferris SP, Zhao SG, Sarkaria JN, Győrffy B, Zhang S, Al-Holou WN, Umemura Y, Morgan MA, Lawrence TS, Lyssiotis CA, Peters-Golden M, Shah YM, Wahl DR. GTP signaling links metabolism, DNA repair, and responses to genotoxic stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536297. [PMID: 37090571 PMCID: PMC10120670 DOI: 10.1101/2023.04.12.536297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
How cell metabolism regulates DNA repair is incompletely understood. Here, we define a GTP-mediated signaling cascade that links metabolism to DNA repair and has significant therapeutic implications. GTP, but not other nucleotides, regulates the activity of Rac1, a G protein, that promotes the dephosphorylation of serine 323 on Abl-interactor 1 (Abi-1) by protein phosphatase 5 (PP5). Dephosphorylated Abi-1, a protein previously not known to activate DNA repair, promotes non-homologous end joining. In patients and mouse models of glioblastoma, Rac1 and dephosphorylated Abi-1 mediate DNA repair and resistance to standard of care genotoxic treatments. The GTP-Rac1-PP5-Abi-1 signaling axis is not limited to brain cancer, as GTP supplementation promotes DNA repair and Abi-1-S323 dephosphorylation in non-malignant cells and protects mouse tissues from genotoxic insult. This unexpected ability of GTP to regulate DNA repair independently of deoxynucleotide pools has important implications for normal physiology and cancer treatment.
Collapse
|
7
|
Nobiletti N, Liu J, Glading AJ. KRIT1-mediated regulation of neutrophil adhesion and motility. FEBS J 2023; 290:1078-1095. [PMID: 36107440 PMCID: PMC9957810 DOI: 10.1111/febs.16627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/31/2022] [Accepted: 09/12/2022] [Indexed: 12/01/2022]
Abstract
Loss of Krev interaction-trapped-1 (KRIT1) expression leads to the development of cerebral cavernous malformations (CCM), a disease in which abnormal blood vessel formation compromises the structure and function of the blood-brain barrier. The role of KRIT1 in regulating endothelial function is well-established. However, several studies have suggested that KRIT1 could also play a role in regulating nonendothelial cell types and, in particular, immune cells. In this study, we generated a mouse model with neutrophil-specific deletion of KRIT1 in order to investigate the effect of KRIT1 deficiency on neutrophil function. Neutrophils isolated from adult Ly6Gtm2621(cre)Arte Krit1flox/flox mice had a reduced ability to attach and spread on the extracellular matrix protein fibronectin and exhibited a subsequent increase in migration. However, adhesion to and migration on ICAM-1 was unchanged. In addition, we used a monomeric, fluorescently-labelled fragment of fibronectin to show that integrin activation is reduced in the absence of KRIT1 expression, though β1 integrin expression appears unchanged. Finally, neutrophil migration in response to lipopolysaccharide-induced inflammation in the lung was decreased, as shown by reduced cell number and myeloperoxidase activity in lavage samples from Krit1PMNKO mice. Altogether, we show that KRIT1 regulates neutrophil adhesion and migration, likely through regulation of integrin activation, which can lead to altered inflammatory responses in vivo.
Collapse
Affiliation(s)
- Nicholas Nobiletti
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, NY, USA
| | - Jing Liu
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, NY, USA
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, NY, USA
| | - Angela J. Glading
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, NY, USA
| |
Collapse
|
8
|
Prichard A, Khuu L, Whitmore LC, Irimia D, Allen LAH. Helicobacter pylori-infected human neutrophils exhibit impaired chemotaxis and a uropod retraction defect. Front Immunol 2022; 13:1038349. [PMID: 36341418 PMCID: PMC9630475 DOI: 10.3389/fimmu.2022.1038349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
Helicobacter pylori is a major human pathogen that colonizes the gastric mucosa and plays a causative role in development of peptic ulcers and gastric cancer. Neutrophils are heavily infected with this organism in vivo and play a prominent role in tissue destruction and disease. Recently, we demonstrated that H. pylori exploits neutrophil plasticity as part of its virulence strategy eliciting N1-like subtype differentiation that is notable for profound nuclear hypersegmentation. We undertook this study to test the hypothesis that hypersegmentation may enhance neutrophil migratory capacity. However, EZ-TAXIScan™ video imaging revealed a previously unappreciated and progressive chemotaxis defect that was apparent prior to hypersegmentation onset. Cell speed and directionality were significantly impaired to fMLF as well as C5a and IL-8. Infected cells oriented normally in chemotactic gradients, but speed and direction were impaired because of a uropod retraction defect that led to cell elongation, nuclear lobe trapping in the contracted rear and progressive narrowing of the leading edge. In contrast, chemotactic receptor abundance, adhesion, phagocytosis and other aspects of cell function were unchanged. At the molecular level, H. pylori phenocopied the effects of Blebbistatin as indicated by aberrant accumulation of F-actin and actin spikes at the uropod together with enhanced ROCKII-mediated phosphorylation of myosin IIA regulatory light chains at S19. At the same time, RhoA and ROCKII disappeared from the cell rear and accumulated at the leading edge whereas myosin IIA was enriched at both cell poles. These data suggest that H. pylori inhibits the dynamic changes in myosin IIA contractility and front-to-back polarity that are essential for chemotaxis. Taken together, our data advance understanding of PMN plasticity and H. pylori pathogenesis.
Collapse
Affiliation(s)
- Allan Prichard
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
| | - Lisa Khuu
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
| | - Laura C. Whitmore
- Department of Medicine, Division of Infectious Diseases, University of Iowa, Iowa City, IA, United States
| | - Daniel Irimia
- Department of Surgery, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Lee-Ann H. Allen
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
- Department of Medicine, Division of Infectious Diseases, University of Iowa, Iowa City, IA, United States
- Iowa City VA Healthcare System, Iowa City, IA, United States
- Harry S. Truman Memorial VA Hospital, Columbia, MO, United States
- *Correspondence: Lee-Ann H. Allen,
| |
Collapse
|
9
|
Consalvo KM, Kirolos SA, Sestak CE, Gomer RH. Sex-Based Differences in Human Neutrophil Chemorepulsion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:354-367. [PMID: 35793910 PMCID: PMC9283293 DOI: 10.4049/jimmunol.2101103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/02/2022] [Indexed: 05/25/2023]
Abstract
A considerable amount is known about how eukaryotic cells move toward an attractant, and the mechanisms are conserved from Dictyostelium discoideum to human neutrophils. Relatively little is known about chemorepulsion, where cells move away from a repellent signal. We previously identified pathways mediating chemorepulsion in Dictyostelium, and here we show that these pathways, including Ras, Rac, protein kinase C, PTEN, and ERK1 and 2, are required for human neutrophil chemorepulsion, and, as with Dictyostelium chemorepulsion, PI3K and phospholipase C are not necessary, suggesting that eukaryotic chemorepulsion mechanisms are conserved. Surprisingly, there were differences between male and female neutrophils. Inhibition of Rho-associated kinases or Cdc42 caused male neutrophils to be more repelled by a chemorepellent and female neutrophils to be attracted to the chemorepellent. In the presence of a chemorepellent, compared with male neutrophils, female neutrophils showed a reduced percentage of repelled neutrophils, greater persistence of movement, more adhesion, less accumulation of PI(3,4,5)P3, and less polymerization of actin. Five proteins associated with chemorepulsion pathways are differentially abundant, with three of the five showing sex dimorphism in protein localization in unstimulated male and female neutrophils. Together, this indicates a fundamental difference in a motility mechanism in the innate immune system in men and women.
Collapse
Affiliation(s)
| | - Sara A Kirolos
- Department of Biology, Texas A&M University, College Station, TX
| | - Chelsea E Sestak
- Department of Biology, Texas A&M University, College Station, TX
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX
| |
Collapse
|
10
|
Rai NK, Singh V, Li L, Willard B, Tripathi A, Dutta R. Comparative Proteomic Profiling Identifies Reciprocal Expression of Mitochondrial Proteins Between White and Gray Matter Lesions From Multiple Sclerosis Brains. Front Neurol 2022; 12:779003. [PMID: 35002930 PMCID: PMC8740228 DOI: 10.3389/fneur.2021.779003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/29/2021] [Indexed: 12/27/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disease of the central nervous system, where ongoing demyelination and remyelination failure are the major factors for progressive neurological disability. In this report, we employed a comprehensive proteomic approach and immunohistochemical validation to gain insight into the pathobiological mechanisms that may be associated with the progressive phase of MS. Isolated proteins from myelinated regions, demyelinated white-matter lesions (WMLs), and gray-matter lesions (GMLs) from well-characterized progressive MS brain tissues were subjected to label-free quantitative mass spectrometry. Using a system-biology approach, we detected increased expression of proteins belonging to mitochondrial electron transport complexes and oxidative phosphorylation pathway in WMLs. Intriguingly, many of these proteins and pathways had opposite expression patterns and were downregulated in GMLs of progressive MS brains. A comparison to the human MitoCarta database mapped the mitochondrial proteins to mitochondrial subunits in both WMLs and GMLs. Taken together, we provide evidence of opposite expression of mitochondrial proteins in response to demyelination of white- and gray-matter regions in progressive MS brain.
Collapse
Affiliation(s)
- Nagendra Kumar Rai
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, United States
| | - Vaibhav Singh
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, United States
| | - Ling Li
- Proteomic Core Facility, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Belinda Willard
- Proteomic Core Facility, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.,Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, United States
| | - Ajai Tripathi
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, United States
| | - Ranjan Dutta
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, United States.,Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
11
|
Kirolos SA, Gomer RH. A chemorepellent inhibits local Ras activation to inhibit pseudopod formation to bias cell movement away from the chemorepellent. Mol Biol Cell 2021; 33:ar9. [PMID: 34788129 PMCID: PMC8886819 DOI: 10.1091/mbc.e20-10-0656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability of cells to sense chemical gradients is essential during development, morphogenesis, and immune responses. Although much is known about chemoattraction, chemorepulsion remains poorly understood. Proliferating Dictyostelium cells secrete a chemorepellent protein called AprA. AprA prevents pseudopod formation at the region of the cell closest to the source of AprA, causing the random movement of cells to be biased away from the AprA. Activation of Ras proteins in a localized sector of a cell cortex helps to induce pseudopod formation, and Ras proteins are needed for AprA chemorepulsion. Here we show that AprA locally inhibits Ras cortical activation through the G protein–coupled receptor GrlH, the G protein subunits Gβ and Gα8, Ras protein RasG, protein kinase B, the p21-activated kinase PakD, and the extracellular signal–regulated kinase Erk1. Diffusion calculations and experiments indicate that in a colony of cells, high extracellular concentrations of AprA in the center can globally inhibit Ras activation, while a gradient of AprA that naturally forms at the edge of the colony allows cells to activate Ras at sectors of the cell other than the sector of the cell closest to the center of the colony, effectively inducing both repulsion from the colony and cell differentiation. Together, these results suggest that a pathway that inhibits local Ras activation can mediate chemorepulsion.
Collapse
Affiliation(s)
- Sara A Kirolos
- Department of Biology, Texas A&M University, 301 Old Main Drive, College Station, Texas, 77843-3474 USA
| | - Richard H Gomer
- Department of Biology, Texas A&M University, 301 Old Main Drive, College Station, Texas, 77843-3474 USA
| |
Collapse
|
12
|
Knockdown of PAK1 Inhibits the Proliferation and Invasion of Non-Small Cell Lung Cancer Cells Through the ERK Pathway. Appl Immunohistochem Mol Morphol 2021; 28:602-610. [PMID: 31394555 DOI: 10.1097/pai.0000000000000803] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The p21-activated kinase (PAK) family of serine/threonine kinases plays a pivotal role in various human tumors, as supported by our previous report on the overexpressed PAK isoforms in non-small cell lung cancer (NSCLC). To better understand the role of PAKs in tumorigenesis, the authors examined PAK1 expression patterns and its significance in NSCLC. It was demonstrated by immunohistochemical staining that PAK1 was increased and localized in the cytoplasm in 151 of 207 cases. High levels of PAK1 expression correlated with a histologic type of tumor (squamous cell carcinoma), tumor node metastasis stage, and lymph nodal status. We also examined the biological role of PAK1 in lung cancer cell lines transfected with PAK1-small interfering RNA. Decreased expression of PAK1 inhibited lung cancer cell proliferation and invasion, which is the major cause of lung cancer malignancy. Downregulated expression of PAK1 hampered rapidly accelerated fibrosarcoma/mitogen-activated extracellular signal-regulated kinase/extracellular signal-regulated kinase pathway activity but did not affect Wnt/β-catenin signaling. Our findings suggest that PAK1 is an important oncogene in NSCLC, as decreased expression of PAK1 inhibited the proliferation and invasion of NSCLC cells by blocking the ERK pathway. These results provide evidence for using PAK1 inhibition as potential anticancer therapy.
Collapse
|
13
|
Gao M, Guo G, Huang J, Hou X, Ham H, Kim W, Zhao F, Tu X, Zhou Q, Zhang C, Zhu Q, Liu J, Yan Y, Xu Z, Yin P, Luo K, Weroha J, Deng M, Billadeau DD, Lou Z. DOCK7 protects against replication stress by promoting RPA stability on chromatin. Nucleic Acids Res 2021; 49:3322-3337. [PMID: 33704464 PMCID: PMC8034614 DOI: 10.1093/nar/gkab134] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/21/2021] [Accepted: 03/02/2021] [Indexed: 02/05/2023] Open
Abstract
RPA is a critical factor for DNA replication and replication stress response. Surprisingly, we found that chromatin RPA stability is tightly regulated. We report that the GDP/GTP exchange factor DOCK7 acts as a critical replication stress regulator to promote RPA stability on chromatin. DOCK7 is phosphorylated by ATR and then recruited by MDC1 to the chromatin and replication fork during replication stress. DOCK7-mediated Rac1/Cdc42 activation leads to the activation of PAK1, which subsequently phosphorylates RPA1 at S135 and T180 to stabilize chromatin-loaded RPA1 and ensure proper replication stress response. Moreover, DOCK7 is overexpressed in ovarian cancer and depleting DOCK7 sensitizes cancer cells to camptothecin. Taken together, our results highlight a novel role for DOCK7 in regulation of the replication stress response and highlight potential therapeutic targets to overcome chemoresistance in cancer.
Collapse
Affiliation(s)
- Ming Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.,Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Guijie Guo
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.,Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jinzhou Huang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.,Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaonan Hou
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hyoungjun Ham
- Department of Biochemistry and Molecular Biology, Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Wootae Kim
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.,Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Fei Zhao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.,Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xinyi Tu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.,Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Qin Zhou
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.,Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Chao Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.,Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Qian Zhu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.,Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jiaqi Liu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.,Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Yuanliang Yan
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.,Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhijie Xu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.,Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ping Yin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.,Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kuntian Luo
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.,Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - John Weroha
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Min Deng
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.,Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel D Billadeau
- Department of Biochemistry and Molecular Biology, Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhenkun Lou
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.,Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
14
|
Zheng TJ, Lofurno ER, Melrose AR, Lakshmanan HHS, Pang J, Phillips KG, Fallon ME, Kohs TCL, Ngo ATP, Shatzel JJ, Hinds MT, McCarty OJT, Aslan JE. Assessment of the effects of Syk and BTK inhibitors on GPVI-mediated platelet signaling and function. Am J Physiol Cell Physiol 2021; 320:C902-C915. [PMID: 33689480 PMCID: PMC8163578 DOI: 10.1152/ajpcell.00296.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/25/2022]
Abstract
Spleen tyrosine kinase (Syk) and Bruton's tyrosine kinase (BTK) play critical roles in platelet physiology, facilitating intracellular immunoreceptor tyrosine-based activation motif (ITAM)-mediated signaling downstream of platelet glycoprotein VI (GPVI) and GPIIb/IIIa receptors. Small molecule tyrosine kinase inhibitors (TKIs) targeting Syk and BTK have been developed as antineoplastic and anti-inflammatory therapeutics and have also gained interest as antiplatelet agents. Here, we investigate the effects of 12 different Syk and BTK inhibitors on GPVI-mediated platelet signaling and function. These inhibitors include four Syk inhibitors, Bay 61-3606, R406 (fostamatinib), entospletinib, TAK-659; four irreversible BTK inhibitors, ibrutinib, acalabrutinib, ONO-4059 (tirabrutinib), AVL-292 (spebrutinib); and four reversible BTK inhibitors, CG-806, BMS-935177, BMS-986195, and fenebrutinib. In vitro, TKIs targeting Syk or BTK reduced platelet adhesion to collagen, dense granule secretion, and alpha granule secretion in response to the GPVI agonist cross-linked collagen-related peptide (CRP-XL). Similarly, these TKIs reduced the percentage of activated integrin αIIbβ3 on the platelet surface in response to CRP-XL, as determined by PAC-1 binding. Although all TKIs tested inhibited phospholipase C γ2 (PLCγ2) phosphorylation following GPVI-mediated activation, other downstream signaling events proximal to phosphoinositide 3-kinase (PI3K) and PKC were differentially affected. In addition, reversible BTK inhibitors had less pronounced effects on GPIIb/IIIa-mediated platelet spreading on fibrinogen and differentially altered the organization of PI3K around microtubules during platelets spreading on fibrinogen. Select TKIs also inhibited platelet aggregate formation on collagen under physiological flow conditions. Together, our results suggest that TKIs targeting Syk or BTK inhibit central platelet functional responses but may differentially affect protein activities and organization in critical systems downstream of Syk and BTK in platelets.
Collapse
Affiliation(s)
- Tony J Zheng
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| | - Elizabeth R Lofurno
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| | - Alexander R Melrose
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | | | - Jiaqing Pang
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| | | | - Meghan E Fallon
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| | - Tia C L Kohs
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| | - Anh T P Ngo
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| | - Joseph J Shatzel
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
- Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, Oregon
| | - Monica T Hinds
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
- Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, Oregon
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Joseph E Aslan
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
15
|
Functional and Therapeutic Relevance of Rho GTPases in Innate Immune Cell Migration and Function during Inflammation: An In Silico Perspective. Mediators Inflamm 2021; 2021:6655412. [PMID: 33628114 PMCID: PMC7896857 DOI: 10.1155/2021/6655412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/23/2021] [Accepted: 02/01/2021] [Indexed: 12/17/2022] Open
Abstract
Systematic regulation of leukocyte migration to the site of infection is a vital step during immunological responses. Improper migration and localization of immune cells could be associated with disease pathology as seen in systemic inflammation. Rho GTPases act as molecular switches during inflammatory cell migration by cycling between Rho-GDP (inactive) to Rho-GTP (active) forms and play an essential role in the precise regulation of actin cytoskeletal dynamics as well as other immunological functions of leukocytes. Available reports suggest that the dysregulation of Rho GTPase signaling is associated with various inflammatory diseases ranging from mild to life-threatening conditions. Therefore, it is crucial to understand the step-by-step activation and inactivation of GTPases and the functioning of different Guanine Nucleotide Exchange Factors (GEFs) and GTPase-Activating Proteins (GAPs) that regulate the conversion of GDP to GTP and GTP to GDP exchange reactions, respectively. Here, we describe the molecular organization and activation of various domains of crucial elements associated with the activation of Rho GTPases using solved PDB structures. We will also present the latest evidence available on the relevance of Rho GTPases in the migration and function of innate immune cells during inflammation. This knowledge will help scientists design promising drug candidates against the Rho-GTPase-centric regulatory molecules regulating inflammatory cell migration.
Collapse
|
16
|
Xu S, Lei SL, Liu KJ, Yi SG, Yang ZL, Yao HL. circSFMBT1 promotes pancreatic cancer growth and metastasis via targeting miR-330-5p/PAK1 axis. Cancer Gene Ther 2020; 28:234-249. [PMID: 32855541 DOI: 10.1038/s41417-020-00215-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/28/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022]
Abstract
Pancreatic cancer (PC) is one of the most common and lethal cancers that affects millions of people around the world. The prognosis of PC is poor with very limited effective treatments. Here, we fully investigated the function and underlying mechanism of circSFMBT1 (hsa_circ_0066147) in PC. Real-time quantitative PCR, Western blotting, and immunohistochemistry were used to examine levels of circSFMBT1, miR-330-5p, PAK1 (p21-activated kinase 1), or proliferation/metastasis-related proteins. Colony formation assay, flow cytometry, and transwell assay detected the roles of circSFMBT1 and miR-330-5p in cell apoptosis, proliferation, migration, and invasion of PC cells, respectively. Dual luciferase assay and RNA immunoprecipitation were used to validate the interactions of circSFMBT1/miR-330-5p and miR-330-5p/PAK1. Fluorescence in situ hybridization was performed to examine the subcellular localization of circSFMBT1 and miR-330-5p. Subcutaneous tumor growth was monitored in nude mice and in vivo metastasis was examined as well following injection of PC cells into the tail vein. This study demonstrated that circSFMBT1 and PAK1 were up-regulated in PC tissues and cells, while miR-330-5p was down-regulated. circSFMBT1 directly bound miR-330-5p and inhibited its expression. In addition, circSFMBT1 promoted proliferation, migration, and invasion of PC cells through up-regulating proliferation-related proteins and down-regulating apoptosis-related proteins via miR-330-5p. miR-330-5p directly bound PAK1 mRNA and suppressed proliferation, migration, invasion, and epithelial-mesenchymal transition process via targeting PAK1 in PC cells. Further, knockdown circSFMBT1 increased miR-330-5p level, but decreased PAK1 expression and repressed tumor growth and metastasis in vivo. Taken together, circSFMBT1 promotes proliferation and metastasis of PC via regulating miR-330-5p/PAK1 pathway as a miR-330-5p sponge.
Collapse
Affiliation(s)
- Shu Xu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, PR China
| | - San-Lin Lei
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, PR China
| | - Kui-Jie Liu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, PR China
| | - Shen-Gen Yi
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, PR China
| | - Zhu-Lin Yang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, PR China.
| | - Hong-Liang Yao
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, PR China.
| |
Collapse
|
17
|
Arrington ME, Temple B, Schaefer A, Campbell SL. The molecular basis for immune dysregulation by the hyperactivated E62K mutant of the GTPase RAC2. J Biol Chem 2020; 295:12130-12142. [PMID: 32636302 PMCID: PMC7443499 DOI: 10.1074/jbc.ra120.012915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/02/2020] [Indexed: 12/20/2022] Open
Abstract
The RAS-related C3 botulinum toxin substrate 2 (RAC2) is a member of the RHO subclass of RAS superfamily GTPases required for proper immune function. An activating mutation in a key switch II region of RAC2 (RAC2E62K) involved in recognizing modulatory factors and effectors has been identified in patients with common variable immune deficiency. To better understand how the mutation dysregulates RAC2 function, we evaluated the structure and stability, guanine nucleotide exchange factor (GEF) and GTPase-activating protein (GAP) activity, and effector binding of RAC2E62K Our findings indicate the E62K mutation does not alter RAC2 structure or stability. However, it does alter GEF specificity, as RAC2E62K is activated by the DOCK GEF, DOCK2, but not by the Dbl homology GEF, TIAM1, both of which activate the parent protein. Our previous data further showed that the E62K mutation impairs GAP activity for RAC2E62K As this disease mutation is also found in RAS GTPases, we assessed GAP-stimulated GTP hydrolysis for KRAS and observed a similar impairment, suggesting that the mutation plays a conserved role in GAP activation. We also investigated whether the E62K mutation alters effector binding, as activated RAC2 binds effectors to transmit signaling through effector pathways. We find that RAC2E62K retains binding to an NADPH oxidase (NOX2) subunit, p67phox, and to the RAC-binding domain of p21-activated kinase, consistent with our earlier findings. Taken together, our findings indicate that the RAC2E62K mutation promotes immune dysfunction by promoting RAC2 hyperactivation, altering GEF specificity, and impairing GAP function yet retaining key effector interactions.
Collapse
Affiliation(s)
- Megan E Arrington
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Brenda Temple
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA; R. L. Juliano Structural Bioinformatics Core Facility, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Antje Schaefer
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sharon L Campbell
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA.
| |
Collapse
|
18
|
Lee JS, Mukherjee S, Lee JY, Saha A, Chodosh J, Painter DF, Rajaiya J. Entry of Epidemic Keratoconjunctivitis-Associated Human Adenovirus Type 37 in Human Corneal Epithelial Cells. Invest Ophthalmol Vis Sci 2020; 61:50. [PMID: 32852546 PMCID: PMC7453050 DOI: 10.1167/iovs.61.10.50] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/27/2020] [Indexed: 12/22/2022] Open
Abstract
Purpose Ocular infection by human adenovirus species D type 37 (HAdV-D37) causes epidemic keratoconjunctivitis, a severe, hyperacute condition. The corneal component of epidemic keratoconjunctivitis begins upon infection of corneal epithelium, and the mechanism of viral entry dictates subsequent proinflammatory gene expression. Therefore, it is important to understand the specific pathways of adenoviral entry in these cells. Methods Transmission electron microscopy of primary and tert-immortalized human corneal epithelial cells infected with HAdV-D37 was performed to identify the means of viral entry. Confocal microscopy was used to determine intracellular trafficking. The results of targeted small interfering RNA and specific chemical inhibitors were analyzed by quantitative PCR, and Western blot. Results By transmission electron microscopy, HAdV-D37 was seen to enter by both clathrin-coated pits and macropinocytosis; however, entry was both pH and dynamin 2 independent. Small interfering RNA against clathrin, AP2A1, and lysosome-associated membrane protein 1, but not early endosome antigen 1, decreased early viral gene expression. Ethyl-isopropyl amiloride, which blocks micropinocytosis, did not affect HAdV-D37 entry, but IPA, an inhibitor of p21-activated kinase, and important to actin polymerization, decreased viral entry in a dose-dependent manner. Conclusions HAdV-D37 enters human corneal epithelial cells by a noncanonical clathrin-mediated pathway involving lysosome-associated membrane protein 1 and PAK1, independent of pH, dynamin, and early endosome antigen 1. We showed earlier that HAdV-D37 enters human keratocytes through caveolae. Therefore, epidemic keratoconjunctivitis-associated viruses enter different corneal cell types via disparate pathways, which could account for a relative paucity of proinflammatory gene expression upon infection of corneal epithelial cells compared with keratocytes, as seen in prior studies.
Collapse
Affiliation(s)
- Ji Sun Lee
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Santanu Mukherjee
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Jeong Yoon Lee
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Amrita Saha
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - James Chodosh
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - David F. Painter
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Jaya Rajaiya
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
19
|
Phosphorylation-dependent activity-based conformational changes in P21-activated kinase family members and screening of novel ATP competitive inhibitors. PLoS One 2019; 14:e0225132. [PMID: 31738805 PMCID: PMC6860928 DOI: 10.1371/journal.pone.0225132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/29/2019] [Indexed: 12/04/2022] Open
Abstract
P21-activated kinases (PAKs) are serine/threonine protein kinases that are subdivided into two groups on the basis of their domain architecture: group-I (PAK1–3) and group-II (PAK4–6). PAKs are considered as attractive drug targets that play vital role in cell proliferation, survival, motility, angiogenesis and cytoskeletal dynamics. In current study, molecular dynamics simulation-based comparative residual contributions and differential transitions were monitored in both active and inactive states of human PAK homologs for therapeutic intervention. Due to their involvement in cancer, infectious diseases, and neurological disorders, it is inevitable to develop novel therapeutic strategies that specifically target PAKs on the basis of their activity pattern. In order to isolate novel inhibitors that are able to bind at the active sites of PAK1 and PAK4, high throughput structure-based virtual screening was performed. Multiple lead compounds were proposed on the basis of their binding potential and targeting region either phosphorylated (active) or unphosphorylated PAK isoform (inactive). Thus, ATP-competitive inhibitors may prove ideal therapeutic choice against PAK family members. The detailed conformational readjustements occurring in the PAKs upon phosphorylation-dephosphorylation events may serve as starting point for devising novel drug molecules that are able to target on activity basis. Overall, the observations of current study may add valuable contribution in the inventory of novel inhibitors that may serve as attractive lead compounds for targeting PAK family members on the basis of activity-based conformational changes.
Collapse
|
20
|
Bros M, Haas K, Moll L, Grabbe S. RhoA as a Key Regulator of Innate and Adaptive Immunity. Cells 2019; 8:cells8070733. [PMID: 31319592 PMCID: PMC6678964 DOI: 10.3390/cells8070733] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/04/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
RhoA is a ubiquitously expressed cytoplasmic protein that belongs to the family of small GTPases. RhoA acts as a molecular switch that is activated in response to binding of chemokines, cytokines, and growth factors, and via mDia and the ROCK signaling cascade regulates the activation of cytoskeletal proteins, and other factors. This review aims to summarize our current knowledge on the role of RhoA as a general key regulator of immune cell differentiation and function. The contribution of RhoA for the primary functions of innate immune cell types, namely neutrophils, macrophages, and conventional dendritic cells (DC) to (i) get activated by pathogen-derived and endogenous danger signals, (ii) migrate to sites of infection and inflammation, and (iii) internalize pathogens has been fairly established. In activated DC, which constitute the most potent antigen-presenting cells of the immune system, RhoA is also important for the presentation of pathogen-derived antigen and the formation of an immunological synapse between DC and antigen-specific T cells as a prerequisite to induce adaptive T cell responses. In T cells and B cells as the effector cells of the adaptive immune system Rho signaling is pivotal for activation and migration. More recently, mutations of Rho and Rho-modulating factors have been identified to predispose for autoimmune diseases and as causative for hematopoietic malignancies.
Collapse
Affiliation(s)
- Matthias Bros
- University Medical Center Mainz, Department of Dermatology, Langenbeckstraße 1, 55131 Mainz, Germany.
| | - Katharina Haas
- University Medical Center Mainz, Department of Dermatology, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Lorna Moll
- University Medical Center Mainz, Department of Dermatology, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Stephan Grabbe
- University Medical Center Mainz, Department of Dermatology, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
21
|
Lo PC, Maeda A, Kodama T, Takakura C, Yoneyama T, Sakai R, Noguchi Y, Matsuura R, Eguchi H, Matsunami K, Okuyama H, Miyagawa S. The novel immunosuppressant prenylated quinolinecarboxylic acid-18 (PQA-18) suppresses macrophage differentiation and cytotoxicity in xenotransplantation. Immunobiology 2019; 224:575-584. [PMID: 30967296 DOI: 10.1016/j.imbio.2019.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 12/12/2022]
Abstract
Innate immunity plays a major role in xenograft rejection. However, the majority of immunosuppressants focus on inhibiting acquired immunity and not innate immunity. Therefore, a novel immunosuppressant suitable for use in conjunction with xenografts continues to be needed. It has been reported that prenylated quinolinecarboxylic acid-18 (PQA-18), a p21-activated kinase 2 (PAK2) inhibitor, exerts an immunosuppressive function on T cells. Hence, the possibility exists that PQA-18 might be used in conjunction with xenografts, which prompted us to investigate the efficacy of PQA-18 on macrophages compared with Tofacitinib, a janus kinase (JAK) inhibitor. Initial experiments confirmed that PQA-18 is non-toxic to swine endothelial cells (SECs) and human monocytes. Both PQA-18 and Tofacitinib suppressed macrophage-mediated cytotoxicity in both the differentiation and effector phases. Both PQA-18 and tofacitinib suppressed the expression of HLA-ABC by macrophages. However, contrary to Tofacitinib, PQA-18 also significantly suppressed the expression of CD11b, HLA-DR and CD40 on macrophages. PQA-18 significantly suppressed CCR7 expression on day 3 and on day 6, but Tofacitinib-induced suppression only on day 6. In a mixed lymphocyte reaction (MLR) assay, PQA-18 was found to suppress Interleukin-2 (IL-2)-stimulated T cell proliferation to a lesser extent than Tofacitinib. However, PQA-18 suppressed xenogeneic-induced T cell proliferation more strongly than Tofacitinib on day 3 and the suppression was similar on day 7. In conclusion, PQA-18 has the potential to function as an immunosuppressant for xenotransplantation.
Collapse
Affiliation(s)
- Pei-Chi Lo
- Department of Surgery, Osaka University Graduate School of Medicine Japan
| | - Akira Maeda
- Department of Surgery, Osaka University Graduate School of Medicine Japan.
| | - Tasuku Kodama
- Department of Surgery, Osaka University Graduate School of Medicine Japan
| | - Chihiro Takakura
- Department of Surgery, Osaka University Graduate School of Medicine Japan
| | - Tomohisa Yoneyama
- Department of Surgery, Osaka University Graduate School of Medicine Japan
| | - Rieko Sakai
- Department of Surgery, Osaka University Graduate School of Medicine Japan
| | - Yuki Noguchi
- Department of Surgery, Osaka University Graduate School of Medicine Japan
| | - Rei Matsuura
- Department of Surgery, Osaka University Graduate School of Medicine Japan
| | - Hiroshi Eguchi
- Department of Surgery, Osaka University Graduate School of Medicine Japan
| | | | - Hiroomi Okuyama
- Department of Surgery, Osaka University Graduate School of Medicine Japan
| | - Shuji Miyagawa
- Department of Surgery, Osaka University Graduate School of Medicine Japan
| |
Collapse
|
22
|
Modulation of store-operated calcium entry and nascent adhesion by p21-activated kinase 1. Exp Mol Med 2018; 50:1-10. [PMID: 29780159 PMCID: PMC5960643 DOI: 10.1038/s12276-018-0093-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 02/13/2018] [Accepted: 03/13/2018] [Indexed: 01/30/2023] Open
Abstract
Calcium mobilization is necessary for cell movement during embryonic development, lymphocyte synapse formation, wound healing, and cancer cell metastasis. Depletion of calcium in the lumen of the endoplasmic reticulum using inositol triphosphate (IP3) or thapsigargin (TG) is known to induce oligomerization and cytoskeleton-mediated translocation of stromal interaction molecule 1 (STIM1) to the plasma membrane, where it interacts with the calcium release-activated calcium channel Orai1 to mediate calcium influx; this process is referred to as store-operated calcium entry (SOCE). Furthermore, aberrant STIM1 or SOCE regulation is associated with cancer cell motility and metastasis. The p21-activated kinases (PAKs), which are downstream effectors of GTPases, reportedly regulate cytoskeletal organization, protrusive activity, and cell migration. Although cytoskeletal remodeling apparently contributes to calcium mobilization via SOCE, and vice versa, the mechanisms by which they regulate each other remain unclear. In this study, we aimed to characterize whether PAK1 modulates calcium mobilization and STIM1 localization. Our data demonstrate that PAK1 interacts with STIM1 in vitro and that this interaction was enhanced by treatment with a nascent adhesion inducer, such as phorbol 12,13-dibutyrate (PDBu). Under basal conditions, both proteins appeared to primarily colocalize in the cytosol, whereas treatment with PDBu induced their colocalization to vinculin-positive peripheral adhesions. Downregulation of PAK1 activity via chemical inhibitors or by PAK1 shDNA expression impaired STIM1-mediated calcium mobilization via SOCE. Based on these findings, we propose that PAK1 interacts with STIM1 to regulate calcium mobilization and the formation of cellular adhesions. A molecular mechanism underlying cell movement may contribute to the aggressive migration of metastatic tumor cells. A team led by Ki-Duk Song at Chonbuk National University, Jeonju-si, and Joong-Kook Choi at Chungbuk National University, Cheongju in South Korea investigated the function of a protein called p21-activated kinase 1 (PAK1). PAK1 is known to contribute to the reorganization of cellular structure. The researchers determined that it directly interacts with molecular machinery that controls the storage and release of stockpiled calcium ions at the periphery of the cell where migration takes place. These ions play an important role in enabling cell movement and attachment, and the researchers showed that they could disrupt cellular calcium ion accumulation by switching off the gene encoding PAK1. They now aim to investigate how this mechanism contributes to cancer cell migration.
Collapse
|
23
|
Lyons J, Brubaker DK, Ghazi PC, Baldwin KR, Edwards A, Boukhali M, Strasser SD, Suarez-Lopez L, Lin YJ, Yajnik V, Kissil JL, Haas W, Lauffenburger DA, Haigis KM. Integrated in vivo multiomics analysis identifies p21-activated kinase signaling as a driver of colitis. Sci Signal 2018; 11:eaan3580. [PMID: 29487189 PMCID: PMC6719711 DOI: 10.1126/scisignal.aan3580] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic disorder of the gastrointestinal tract that has limited treatment options. To gain insight into the pathogenesis of chronic colonic inflammation (colitis), we performed a multiomics analysis that integrated RNA microarray, total protein mass spectrometry (MS), and phosphoprotein MS measurements from a mouse model of the disease. Because we collected all three types of data from individual samples, we tracked information flow from RNA to protein to phosphoprotein and identified signaling molecules that were coordinately or discordantly regulated and pathways that had complex regulation in vivo. For example, the genes encoding acute-phase proteins were expressed in the liver, but the proteins were detected by MS in the colon during inflammation. We also ascertained the types of data that best described particular facets of chronic inflammation. Using gene set enrichment analysis and trans-omics coexpression network analysis, we found that each data set provided a distinct viewpoint on the molecular pathogenesis of colitis. Combining human transcriptomic data with the mouse multiomics data implicated increased p21-activated kinase (Pak) signaling as a driver of colitis. Chemical inhibition of Pak1 and Pak2 with FRAX597 suppressed active colitis in mice. These studies provide translational insights into the mechanisms contributing to colitis and identify Pak as a potential therapeutic target in IBD.
Collapse
Affiliation(s)
- Jesse Lyons
- Cancer Research Institute and Department of Medicine, Beth-Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Douglas K Brubaker
- Cancer Research Institute and Department of Medicine, Beth-Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Phaedra C Ghazi
- Cancer Research Institute and Department of Medicine, Beth-Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Katherine R Baldwin
- Cancer Research Institute and Department of Medicine, Beth-Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Pediatric Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Amanda Edwards
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Myriam Boukhali
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Samantha Dale Strasser
- Cancer Research Institute and Department of Medicine, Beth-Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lucia Suarez-Lopez
- Cancer Research Institute and Department of Medicine, Beth-Israel Deaconess Medical Center, Boston, MA 02215, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yi-Jang Lin
- Cancer Research Institute and Department of Medicine, Beth-Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Vijay Yajnik
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Joseph L Kissil
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Wilhelm Haas
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kevin M Haigis
- Cancer Research Institute and Department of Medicine, Beth-Israel Deaconess Medical Center, Boston, MA 02215, USA.
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Harvard Digestive Disease Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
24
|
MicroRNA-126 inhibits colon cancer cell proliferation and invasion by targeting the chemokine (C-X-C motif) receptor 4 and Ras homolog gene family, member A, signaling pathway. Oncotarget 2018; 7:60230-60244. [PMID: 27517626 PMCID: PMC5312381 DOI: 10.18632/oncotarget.11176] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 07/26/2016] [Indexed: 12/21/2022] Open
Abstract
MicroRNA-126 (miR-126) suppresses the migration, proliferation and invasion of colon cancer cells. However, the underlying mechanisms of miR-126 in colon cancer have not been fully elucidated. In this study, in vivo experiments revealed that miR-126 inhibits colon cancer growth and metastasis. Furthermore, miR-126 was down-regulated in human colon cancer tissue, and its expression was inversely correlated with TNM stage and metastasis of patients. Low level of miR-126 identified patients with poor prognosis. And we found that miR-126 expression was negatively correlated with the expression levels of chemokine (C-X-C motif) receptor 4 (CXCR4) and components of signaling pathway of Ras homolog gene family, member A (RhoA) in vitro and in vivo. Moreover, we verified that miR-126 negatively regulated CXCR4 and RhoA signaling in vitro. In addition, either in miR-126-overexpressing or in miR- 126-silenced colon cancer cells, the restoration of CXCR4 could significantly reverse the proliferation and invasion, as well as abolish the effects of miR-126 on RhoA signaling pathway. Collectively, these results demonstrated that miR-126 acts as a tumor suppressor by inactivating RhoA signaling via CXCR4 in colon cancer. And miR-126 may serve as a prognostic marker for monitoring and treating colon cancer.
Collapse
|
25
|
Civiero L, Greggio E. PAKs in the brain: Function and dysfunction. Biochim Biophys Acta Mol Basis Dis 2017; 1864:444-453. [PMID: 29129728 DOI: 10.1016/j.bbadis.2017.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/31/2017] [Accepted: 11/06/2017] [Indexed: 12/17/2022]
Abstract
p21-Activated kinases (PAKs) comprise a family of proteins covering a central role in signal transduction. They are downstream effectors of Rho GTPases and can affect a variety of processes in different cell types and tissues by remodeling the cytoskeleton and by promoting gene transcription and cell survival. Given the relevance of cytoskeletal organization in neuronal development as well as synaptic function and the importance of pro-survival signals in controlling neuronal cell fate, accumulating studies investigated the role of PAKs in the nervous system. In this review, we provide a critical overview of the role of PAKs in the nervous system, both in neuronal and non-neuronal cells, and discuss their potential link with neurodegenerative diseases.
Collapse
|
26
|
Abstract
During an innate immune response, myeloid cells undergo complex morphological adaptations in response to inflammatory cues, which allow them to exit the vasculature, enter the tissues, and destroy invading pathogens. The actin and microtubule cytoskeletons are central to many of the most essential cellular functions including cell division, cell morphology, migration, intracellular trafficking, and signaling. Cytoskeletal structure and regulation are crucial for many myeloid cell functions, which require rapid and dynamic responses to extracellular signals. In this chapter, we review the roles of the actin and microtubule cytoskeletons in myeloid cells, focusing primarily on their roles in chemotaxis and phagocytosis. The role of myeloid cell cytoskeletal defects in hematological disorders is highlighted throughout.
Collapse
|
27
|
Gomes BS, Neto BPS, Lopes EM, Cunha FVM, Araújo AR, Wanderley CWS, Wong DVT, Júnior RCPL, Ribeiro RA, Sousa DP, Venes R Medeiros J, Oliveira RCM, Oliveira FA. Anti-inflammatory effect of the monoterpene myrtenol is dependent on the direct modulation of neutrophil migration and oxidative stress. Chem Biol Interact 2017; 273:73-81. [PMID: 28559105 DOI: 10.1016/j.cbi.2017.05.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 05/15/2017] [Accepted: 05/19/2017] [Indexed: 12/27/2022]
Abstract
Myrtenol is a bicyclic monoterpene with anti-inflammatory properties. However, the mechanisms involved are partially unknown. Here, we investigated the effect of myrtenol during experimental chronic arthritis and the possible modulating activity of oxidative stress and neutrophil migration. Complete Freund's Adjuvant (CFA)-sensitized rats were treated with vehicle (1 mL/kg, po), myrtenol (12.5, 25 or 50 mg/kg, po), indomethacin (10 mg/kg, po) or dexamethasone (0.4 mg/kg) followed by intra-articular injection of CFA (0.5 mg/mL, 50 μL per joint). Then, paw edema and articular incapacitation (paw elevation time) were evaluated for 14 days. On the last day, a blood concentration superoxide dismutase (SOD) and nitrite was determined. In another experimental setting, human neutrophils were incubated with vehicle (sterile saline, 1 mL) or myrtenol (10-100 ng/mL) and the in vitro chemotaxis to N-formylmethionine-leucyl-phenylalanine (fMLP) (10-7 M/well) was evaluated. In addition, antiinflammatory effect of myrtenol was investigated in carrageenan-induced peritonitis. We found that CFA induced a prominent paw swelling and incapacitation of the joint, which were significantly prevented by myrtenol (P < 0.05). In addition, blood accumulation nitrite was attenuated by myrtenol when compared with vehicle-treated CFA group (P < 0.05). Furthermore, plasma levels of SOD were significantly increased by myrtenol versus vehicle-treated CFA group (P < 0.05). Moreover, fMLP-triggered neutrophil chemotaxis and carrageenan-induced peritonitis were markedly prevented by myrtenol (P < 0.05). Therefore, myrtenol showed anti-inflammatory and antinociceptive effects on experimental chronic arthritis, which seems to be related to the direct modulation of neutrophil migration and antioxidant activity.
Collapse
Affiliation(s)
- Bruno S Gomes
- Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí, Brazil.
| | - Benedito P S Neto
- Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Everton M Lopes
- Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Francisco V M Cunha
- Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Alyne R Araújo
- Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Carlos W S Wanderley
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Deysi V T Wong
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Roberto César P L Júnior
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Ronaldo A Ribeiro
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Damião P Sousa
- Department of Pharmaceutical Sciences, Federal University of Parnaíba, João Pessoa, Paraíba, Brazil
| | - Jand Venes R Medeiros
- Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Rita C M Oliveira
- Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Francisco A Oliveira
- Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí, Brazil
| |
Collapse
|
28
|
Healy LD, Puy C, Fernández JA, Mitrugno A, Keshari RS, Taku NA, Chu TT, Xu X, Gruber A, Lupu F, Griffin JH, McCarty OJT. Activated protein C inhibits neutrophil extracellular trap formation in vitro and activation in vivo. J Biol Chem 2017; 292:8616-8629. [PMID: 28408624 DOI: 10.1074/jbc.m116.768309] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/11/2017] [Indexed: 12/11/2022] Open
Abstract
Activated protein C (APC) is a multifunctional serine protease with anticoagulant, cytoprotective, and anti-inflammatory activities. In addition to the cytoprotective effects of APC on endothelial cells, podocytes, and neurons, APC cleaves and detoxifies extracellular histones, a major component of neutrophil extracellular traps (NETs). NETs promote pathogen clearance but also can lead to thrombosis; the pathways that negatively regulate NETosis are largely unknown. Thus, we studied whether APC is capable of directly inhibiting NETosis via receptor-mediated cell signaling mechanisms. Here, by quantifying extracellular DNA or myeloperoxidase, we demonstrate that APC binds human leukocytes and prevents activated platelet supernatant or phorbol 12-myristate 13-acetate (PMA) from inducing NETosis. Of note, APC proteolytic activity was required for inhibiting NETosis. Moreover, antibodies against the neutrophil receptors endothelial protein C receptor (EPCR), protease-activated receptor 3 (PAR3), and macrophage-1 antigen (Mac-1) blocked APC inhibition of NETosis. Select mutations in the Gla and protease domains of recombinant APC caused a loss of NETosis. Interestingly, pretreatment of neutrophils with APC prior to induction of NETosis inhibited platelet adhesion to NETs. Lastly, in a nonhuman primate model of Escherichia coli-induced sepsis, pretreatment of animals with APC abrogated release of myeloperoxidase from neutrophils, a marker of neutrophil activation. These findings suggest that the anti-inflammatory function of APC at therapeutic concentrations may include the inhibition of NETosis in an EPCR-, PAR3-, and Mac-1-dependent manner, providing additional mechanistic insight into the diverse functions of neutrophils and APC in disease states including sepsis.
Collapse
Affiliation(s)
- Laura D Healy
- From the Departments of Cell, Developmental & Cancer Biology and
| | - Cristina Puy
- Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97230
| | - José A Fernández
- the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, and
| | - Annachiara Mitrugno
- Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97230
| | - Ravi S Keshari
- the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Nyiawung A Taku
- Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97230
| | - Tiffany T Chu
- Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97230
| | - Xiao Xu
- the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, and
| | - András Gruber
- Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97230
| | - Florea Lupu
- the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - John H Griffin
- the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, and
| | - Owen J T McCarty
- From the Departments of Cell, Developmental & Cancer Biology and.,Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97230
| |
Collapse
|
29
|
Inoue K, Patterson EK, Capretta A, Lawendy AR, Fraser DD, Cepinskas G. Carbon Monoxide-Releasing Molecule-401 Suppresses Polymorphonuclear Leukocyte Migratory Potential by Modulating F-Actin Dynamics. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1121-1133. [PMID: 28320610 DOI: 10.1016/j.ajpath.2016.12.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 12/23/2016] [Accepted: 12/27/2016] [Indexed: 01/13/2023]
Abstract
Carbon monoxide-releasing molecules (CORMs) suppress inflammation by reducing polymorphonuclear leukocyte (PMN) recruitment to the affected organs. We investigated modulation of PMN-endothelial cell adhesive interactions by water-soluble CORM-401 using an experimental model of endotoxemia in vitro. Human umbilical vein endothelial cells (HUVEC) grown on laminar-flow perfusion channels were stimulated with 1 μg/mL lipopolysaccharide for 6 hours and perfused with 100 μmol/L CORM-401 (or inactive compound iCORM-401)-pretreated PMN for 5 minutes in the presence of 1.0 dyn/cm2 shear stress. HUVEC PMN co-cultures were perfused for additional 15 minutes with PMN-free medium containing CORM-401/inactive CORM-401. The experiments were videorecorded (phase-contrast microscopy), and PMN adhesion/migration were assessed off-line. In parallel, CORM-401-dependent modulation of PMN chemotaxis, F-actin expression/distribution, and actin-regulating pathways [eg, p21-activated protein kinases (PAK1/2) and extracellular signal-regulated kinase (ERK)/C-Jun N-terminal kinase (JNK) mitogen-activated protein kinases (MAPK)] were assessed in response to N-formyl-methionyl-leucyl-phenylalanine (fMLP) stimulation. Pretreating PMN with CORM-401 did not suppress PMN adhesion to HUVEC, but significantly reduced PMN transendothelial migration (P < 0.0001) and fMLP-induced PMN chemotaxis (ie, migration directionality and velocity). These changes were associated with CORM-401-dependent suppression of F-actin levels/cellular distribution and fMLP-induced phosphorylation of PAK1/2 and ERK/JNK MAPK (P < 0.05). CORM-401 had no effect on p38 MAPK activation. In summary, this study demonstrates, for the first time, CORM-401-dependent suppression of neutrophil migratory potential associated with modulation of PAK1/2 and ERK/JNK MAPK signaling and F-actin dynamics.
Collapse
Affiliation(s)
- Ken Inoue
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada
| | - Eric K Patterson
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada
| | - Alfredo Capretta
- Department of Chemistry, McMaster University, Hamilton, Ontario, Canada
| | - Abdel R Lawendy
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada; Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Douglas D Fraser
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada; Department of Paediatrics, University of Western Ontario, London, Ontario, Canada
| | - Gediminas Cepinskas
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada; Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
30
|
Ngo ATP, Thierheimer MLD, Babur Ö, Rocheleau AD, Huang T, Pang J, Rigg RA, Mitrugno A, Theodorescu D, Burchard J, Nan X, Demir E, McCarty OJT, Aslan JE. Assessment of roles for the Rho-specific guanine nucleotide dissociation inhibitor Ly-GDI in platelet function: a spatial systems approach. Am J Physiol Cell Physiol 2017; 312:C527-C536. [PMID: 28148498 PMCID: PMC5407014 DOI: 10.1152/ajpcell.00274.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 12/29/2022]
Abstract
On activation at sites of vascular injury, platelets undergo morphological alterations essential to hemostasis via cytoskeletal reorganizations driven by the Rho GTPases Rac1, Cdc42, and RhoA. Here we investigate roles for Rho-specific guanine nucleotide dissociation inhibitor proteins (RhoGDIs) in platelet function. We find that platelets express two RhoGDI family members, RhoGDI and Ly-GDI. Whereas RhoGDI localizes throughout platelets in a granule-like manner, Ly-GDI shows an asymmetric, polarized localization that largely overlaps with Rac1 and Cdc42 as well as microtubules and protein kinase C (PKC) in platelets adherent to fibrinogen. Antibody interference and platelet spreading experiments suggest a specific role for Ly-GDI in platelet function. Intracellular signaling studies based on interactome and pathways analyses also support a regulatory role for Ly-GDI, which is phosphorylated at PKC substrate motifs in a PKC-dependent manner in response to the platelet collagen receptor glycoprotein (GP) VI-specific agonist collagen-related peptide. Additionally, PKC inhibition diffuses the polarized organization of Ly-GDI in spread platelets relative to its colocalization with Rac1 and Cdc42. Together, our results suggest a role for Ly-GDI in the localized regulation of Rho GTPases in platelets and hypothesize a link between the PKC and Rho GTPase signaling systems in platelet function.
Collapse
Affiliation(s)
- Anh T P Ngo
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| | - Marisa L D Thierheimer
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon.,School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, Oregon; and
| | - Özgün Babur
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon.,Computational Biology Program, Oregon Health & Science University, Portland, Oregon
| | - Anne D Rocheleau
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| | - Tao Huang
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| | - Jiaqing Pang
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| | - Rachel A Rigg
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| | - Annachiara Mitrugno
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| | - Dan Theodorescu
- Department of Surgery, Department of Pharmacology, and Comprehensive Cancer Center University of Colorado, Aurora, Colorado
| | - Julja Burchard
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon
| | - Xiaolin Nan
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| | - Emek Demir
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon.,Computational Biology Program, Oregon Health & Science University, Portland, Oregon
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon.,Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, Oregon.,Division of Hematology & Medical Oncology, Oregon Health & Science University, Portland, Oregon
| | - Joseph E Aslan
- Knight Cardiovascular Institute, School of Medicine, Oregon Health & Science University, Portland, Oregon;
| |
Collapse
|
31
|
Arshid S, Tahir M, Fontes B, Montero EFS, Castro MS, Sidoli S, Schwämmle V, Roepstorff P, Fontes W. Neutrophil proteomic analysis reveals the participation of antioxidant enzymes, motility and ribosomal proteins in the prevention of ischemic effects by preconditioning. J Proteomics 2016; 151:162-173. [PMID: 27208787 DOI: 10.1016/j.jprot.2016.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/05/2016] [Accepted: 05/14/2016] [Indexed: 12/13/2022]
Abstract
Intestinal ischemia and reperfusion injury are widely used models, which result into tissue injury and multiple organ failure also observed after trauma and surgery. Ischemic preconditioning (IPC) preceding ischemia and reperfusion (IR) was shown to attenuate this injury and has a potential therapeutic application; however the exact underlying mechanism is not clear. Neutrophils play an important role in the mechanism of injuries caused by ischemia and reperfusion while IPC led to a decrease in neutrophil stimulation and activation. The effect of preconditioning on the neutrophil proteome is unclear. Proteomic analysis has been ratified as an appropriate tool for studying complex systems. In order to evaluate the effect of IPC preceding 45min of ischemia on the proteome of neutrophils we used Wistar rats divided in four experimental groups: Control, sham laparotomy, intestinal ischemia reperfusion and ischemic preconditioning. After neutrophil separation, proteins were extracted, trypsin digested and the resulting peptides were iTRAQ labeled followed by HILIC fractionation and nLC-MS/MS analysis. After database searches, normalization and statistical analysis our proteomic analysis resulted in the identification of 2437 protein groups that were assigned to five different clusters based on the relative abundance profiles among the experimental groups. The clustering followed by statistical analysis led to the identification of significantly up and downregulated proteins in IR and IPC. Cluster based KEGG pathways analysis revealed up- regulation of actin cytoskeleton, metabolism, Fc gamma R mediated phagocytosis, chemokine signaling, focal adhesion and leukocyte transendothelial migration whereas downregulation in ribosome, spliceosome, RNA transport, protein processing in endoplasmic reticulum and proteasome, after intestinal ischemic preconditioning. Furthermore, enzyme prediction analysis revealed the regulation of some important antioxidant enzymes and having their role in reactive oxygen species production. To our knowledge, this work describes the most comprehensive and detailed quantitative proteomic study of the neutrophil showing the beneficial role of ischemic preconditioning and its effects on the neutrophil proteome. This data will be helpful to understand the effect of underlying protective mechanisms modulating the role of PMNs after IPC and provide a trustworthy basis for future studies. BIOLOGICAL SIGNIFICANCE Preconditioning is a relevant strategy to overcome clinical implications from ischemia and reperfusion. Such implications have the neutrophil as a major player. Although many publications describe specific biochemical and physiological roles of the neutrophil in such conditions, there is no report of a proteomic study providing a broader view of this scenario. Here we describe a group of proteins significantly regulated by ischemia and reperfusion being such regulation prevented by preconditioning. Such finding may provide relevant information for a deeper understanding of the mechanisms involved, as well as serve as basis for future biomarker or drug target assays.
Collapse
Affiliation(s)
- S Arshid
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, DF, Brazil; Laboratory of Surgical Physiopathology (LIM-62), Faculty of Medicine, University of São Paulo, Brazil
| | - M Tahir
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, DF, Brazil; Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - B Fontes
- Laboratory of Surgical Physiopathology (LIM-62), Faculty of Medicine, University of São Paulo, Brazil
| | - E F S Montero
- Laboratory of Surgical Physiopathology (LIM-62), Faculty of Medicine, University of São Paulo, Brazil
| | - M S Castro
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, DF, Brazil
| | - S Sidoli
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark; Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - V Schwämmle
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - P Roepstorff
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - W Fontes
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, DF, Brazil.
| |
Collapse
|
32
|
Peng X, He Q, Li G, Ma J, Zhong TP. Rac1-PAK2 pathway is essential for zebrafish heart regeneration. Biochem Biophys Res Commun 2016; 472:637-42. [PMID: 26966072 DOI: 10.1016/j.bbrc.2016.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/05/2016] [Indexed: 01/08/2023]
Abstract
P-21 activated kinases, or PAKs, are serine-threonine kinases that play important roles in diverse heart functions include heart development, cardiovascular development and function in a range of models; however, the mechanisms by which PAKs mediate heart regeneration are unknown. Here, we demonstrate that PAK2 and PAK4 expression is induced in cardiomyocytes and vessels, respectively, following zebrafish heart injury. Inhibition of PAK2 and PAK4 using a specific small molecule inhibitor impedes cardiomyocyte proliferation/dedifferentiation and cardiovascular regeneration, respectively. Cdc42 is specifically expressed in the ventricle and may function upstream of PAK2 but not PAK4 under normal conditions and that cardiomyocyte proliferentation during heart regeneration relies on Rac1-mediated activation of Pak2. Our results indicate that PAKs play a key role in heart regeneration.
Collapse
Affiliation(s)
- Xiangwen Peng
- State Key Laboratory of Genetic Engineering, Department of Genetics, School of Life Sciences, Fudan University, Shanghai 201203, China
| | - Quanze He
- Center for Reproduction and Genetics, Suzhou Municipal Hospital, Jiangsu 215002, China
| | - Guobao Li
- State Key Laboratory of Genetic Engineering, Department of Genetics, School of Life Sciences, Fudan University, Shanghai 201203, China
| | - Jinmin Ma
- State Key Laboratory of Genetic Engineering, Department of Genetics, School of Life Sciences, Fudan University, Shanghai 201203, China
| | - Tao P Zhong
- State Key Laboratory of Genetic Engineering, Department of Genetics, School of Life Sciences, Fudan University, Shanghai 201203, China; Department of Medicine, Vanderbilt University School of Medicine, TN 37232, USA.
| |
Collapse
|
33
|
p21-activated kinase 2 regulates HSPC cytoskeleton, migration, and homing via CDC42 activation and interaction with β-Pix. Blood 2016; 127:1967-75. [PMID: 26932803 DOI: 10.1182/blood-2016-01-693572] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/19/2016] [Indexed: 12/13/2022] Open
Abstract
Cytoskeletal remodeling of hematopoietic stem and progenitor cells (HSPCs) is essential for homing to the bone marrow (BM). The Ras-related C3 botulinum toxin substrate (Rac)/cell division control protein 42 homolog (CDC42) effector p21-activated kinase (Pak2) has been implicated in HSPC homing and engraftment. However, the molecular pathways mediating Pak2 functions in HSPCs are unknown. Here, we demonstrate that both Pak2 kinase activity and its interaction with the PAK-interacting exchange factor-β (β-Pix) are required to reconstitute defective ITALIC! Pak2 (ITALIC! Δ/Δ)HSPC homing to the BM. Pak2 serine/threonine kinase activity is required for stromal-derived factor-1 (SDF1α) chemokine-induced HSPC directional migration, whereas Pak2 interaction with β-Pix is required to regulate the velocity of HSPC migration and precise F-actin assembly. Lack of SDF1α-induced filopodia and associated abnormal cell protrusions seen in ITALIC! Pak2 (ITALIC! Δ/Δ)HSPCs were rescued by wild-type (WT) Pak2 but not by a Pak2-kinase dead mutant (KD). Expression of a β-Pix interaction-defective mutant of Pak2 rescued filopodia formation but led to abnormal F-actin bundles. Although CDC42 has previously been considered an upstream regulator of Pak2, we found a paradoxical decrease in baseline activation of CDC42 in ITALIC! Pak2 (ITALIC! Δ/Δ)HSPCs, which was rescued by expression of Pak2-WT but not by Pak2-KD; defective homing of ITALIC! Pak2-deleted HSPCs was rescued by constitutive active CDC42. These data demonstrate that both Pak2 kinase activity and its interaction with β-Pix are essential for HSPC filopodia formation, cytoskeletal integrity, and homing via activation of CDC42. Taken together, we provide mechanistic insights into the role of Pak2 in HSPC migration and homing.
Collapse
|
34
|
Wessels DJ, Lusche DF, Kuhl S, Scherer A, Voss E, Soll DR. Quantitative Motion Analysis in Two and Three Dimensions. Methods Mol Biol 2016; 1365:265-92. [PMID: 26498790 DOI: 10.1007/978-1-4939-3124-8_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This chapter describes 2D quantitative methods for motion analysis as well as 3D motion analysis and reconstruction methods. Emphasis is placed on the analysis of dynamic cell shape changes that occur through extension and retraction of force generating structures such as pseudopodia and lamellipodia. Quantitative analysis of these structures is an underutilized tool in the field of cell migration. Our intent, therefore, is to present methods that we developed in an effort to elucidate mechanisms of basic cell motility, directed cell motion during chemotaxis, and metastasis. We hope to demonstrate how application of these methods can more clearly define alterations in motility that arise due to specific mutations or disease and hence, suggest mechanisms or pathways involved in normal cell crawling and treatment strategies in the case of disease. In addition, we present a 4D tumorigenesis model for high-resolution analysis of cancer cells from cell lines and human cancer tissue in a 3D matrix. Use of this model led to the discovery of the coalescence of cancer cell aggregates and unique cell behaviors not seen in normal cells or normal tissue. Graphic illustrations to visually display and quantify cell shape are presented along with algorithms and formulae for calculating select 2D and 3D motion analysis parameters.
Collapse
Affiliation(s)
- Deborah J Wessels
- W.M. Keck Dynamic Image Analysis Facility, Department of Biological Sciences, University of Iowa, 302 BBE, Iowa City, IA, 52242, USA
| | - Daniel F Lusche
- W.M. Keck Dynamic Image Analysis Facility, Department of Biological Sciences, University of Iowa, 302 BBE, Iowa City, IA, 52242, USA
| | - Spencer Kuhl
- W.M. Keck Dynamic Image Analysis Facility, Department of Biological Sciences, University of Iowa, 302 BBE, Iowa City, IA, 52242, USA
| | - Amanda Scherer
- W.M. Keck Dynamic Image Analysis Facility, Department of Biological Sciences, University of Iowa, 302 BBE, Iowa City, IA, 52242, USA
| | - Edward Voss
- W.M. Keck Dynamic Image Analysis Facility, Department of Biological Sciences, University of Iowa, 302 BBE, Iowa City, IA, 52242, USA
| | - David R Soll
- W.M. Keck Dynamic Image Analysis Facility, Department of Biological Sciences, University of Iowa, 302 BBE, Iowa City, IA, 52242, USA.
| |
Collapse
|
35
|
Zheng CJ, Yang XY, Qi ZP, Xia P, Hou TT, Li DY. Characteristics of mRNA dynamic expression related to spinal cord ischemia/reperfusion injury: a transcriptomics study. Neural Regen Res 2016; 11:480-6. [PMID: 27127490 PMCID: PMC4829016 DOI: 10.4103/1673-5374.179067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Following spinal cord ischemia/reperfusion injury, an endogenous damage system is immediately activated and participates in a cascade reaction. It is difficult to interpret dynamic changes in these pathways, but the examination of the transcriptome may provide some information. The transcriptome reflects highly dynamic genomic and genetic information and can be seen as a precursor for the proteome. We used DNA microarrays to measure the expression levels of dynamic evolution-related mRNA after spinal cord ischemia/reperfusion injury in rats. The abdominal aorta was blocked with a vascular clamp for 90 minutes and underwent reperfusion for 24 and 48 hours. The simple ischemia group and sham group served as controls. After rats had regained consciousness, hindlimbs showed varying degrees of functional impairment, and gradually improved with prolonged reperfusion in spinal cord ischemia/reperfusion injury groups. Hematoxylin-eosin staining demonstrated that neuronal injury and tissue edema were most severe in the 24-hour reperfusion group, and mitigated in the 48-hour reperfusion group. There were 8,242 differentially expressed mRNAs obtained by Multi-Class Dif in the simple ischemia group, 24-hour and 48-hour reperfusion groups. Sixteen mRNA dynamic expression patterns were obtained by Serial Test Cluster. Of them, five patterns were significant. In the No. 28 pattern, all differential genes were detected in the 24-hour reperfusion group, and their expressions showed a trend in up-regulation. No. 11 pattern showed a decreasing trend in mRNA whereas No. 40 pattern showed an increasing trend in mRNA from ischemia to 48 hours of reperfusion, and peaked at 48 hours. In the No. 25 and No. 27 patterns, differential expression appeared only in the 24-hour and 48-hour reperfusion groups. Among the five mRNA dynamic expression patterns, No. 11 and No. 40 patterns could distinguish normal spinal cord from pathological tissue. No. 25 and No. 27 patterns could distinguish simple ischemia from ischemia/reperfusion. No. 28 pattern could analyze the need for inducing reperfusion injury. The study of specific pathways and functions for different dynamic patterns can provide a theoretical basis for clinical differential diagnosis and treatment of spinal cord ischemia/reperfusion injury.
Collapse
|
36
|
Kim MO, Ryu JM, Suh HN, Park SH, Oh YM, Lee SH, Han HJ. cAMP Promotes Cell Migration Through Cell Junctional Complex Dynamics and Actin Cytoskeleton Remodeling: Implications in Skin Wound Healing. Stem Cells Dev 2015; 24:2513-24. [PMID: 26192163 DOI: 10.1089/scd.2015.0130] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Stem cells have attracted great interest for their therapeutic capacity in tissue regeneration. Cyclic adenosine 3',5'-monophosphate (cAMP), existing in high concentration at wound sites, mediated various signaling pathways such as cytoskeleton dynamics, cell adhesion, and cell migration in stem cells, which suggest the critical roles of cAMP in the wound healing process through functional regulation of stem cells. However, the mechanisms behind the effect of cAMP on mouse embryonic stem cell (mESC) motility and its roles on skin wound healing remain to be fully elucidated. In the present study, 8-Bromo cAMP-treated mESCs showed significant wound closure and improved neovascularization. Moreover, 8-Bromo cAMP stimulated mESC migration into the wound bed. 8-Bromo cAMP also increased ESC motility in in vitro migration assay. 8-Bromo cAMP induced myosin light chain phosphorylation through Rac1 and Cdc42 signaling, which were involved in 8-Bromo cAMP-induced decrease in expression of junction proteins (connexin 43, E-cadherin, and occludin) at the plasma membrane. Subsequently, 8-Bromo cAMP induced the disruption of cell junctions (including gap junctions, adherens junctions, and tight junctions), which reduced the function of the gap junctions and cell adhesion. In addition, 8-Bromo cAMP-induced Rac1 and Cdc42 activation increased Arp3, TOCA, PAK, and N-WASP expression, but decreased cofilin phosphorylation level, which elicited actin cytoskeleton remodeling. In contrast to the control, 8-Bromo cAMP evoked a substantial migration of cells into the denuded area, which was blocked by the small interfering RNAs of the signaling pathway-related molecules or by inhibitors. In conclusion, cAMP enhanced the migration of mESCs through effective coordination of junctional disruption and actin cytoskeleton remodeling, which increased the wound healing capacity of ESCs.
Collapse
Affiliation(s)
- Mi Ok Kim
- 1 Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University , Seoul, Republic of Korea.,2 BK21 PLUS Creative Veterinary Research Center, Seoul National University , Seoul, Republic of Korea
| | - Jung Min Ryu
- 1 Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University , Seoul, Republic of Korea.,2 BK21 PLUS Creative Veterinary Research Center, Seoul National University , Seoul, Republic of Korea
| | - Han Na Suh
- 1 Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University , Seoul, Republic of Korea.,2 BK21 PLUS Creative Veterinary Research Center, Seoul National University , Seoul, Republic of Korea
| | - Soo Hyun Park
- 3 College of Veterinary Medicine, Chonnam National University , Gwangju, Republic of Korea
| | - Yeon-Mok Oh
- 4 Department of Pulmonary and Critical Care Medicine, and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Republic of Korea
| | - Sang Hun Lee
- 5 Medical Science Research Institute, Soonchunhyang University Seoul Hospital , Seoul, Republic of Korea
| | - Ho Jae Han
- 1 Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University , Seoul, Republic of Korea.,2 BK21 PLUS Creative Veterinary Research Center, Seoul National University , Seoul, Republic of Korea
| |
Collapse
|
37
|
Baker-Groberg SM, Phillips KG, Healy LD, Itakura A, Porter JE, Newton PK, Nan X, McCarty OJT. Critical behavior of subcellular density organization during neutrophil activation and migration. Cell Mol Bioeng 2015; 8:543-552. [PMID: 26640599 DOI: 10.1007/s12195-015-0400-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Physical theories of active matter continue to provide a quantitative understanding of dynamic cellular phenomena, including cell locomotion. Although various investigations of the rheology of cells have identified important viscoelastic and traction force parameters for use in these theoretical approaches, a key variable has remained elusive both in theoretical and experimental approaches: the spatiotemporal behavior of the subcellular density. The evolution of the subcellular density has been qualitatively observed for decades as it provides the source of image contrast in label-free imaging modalities (e.g., differential interference contrast, phase contrast) used to investigate cellular specimens. While these modalities directly visualize cell structure, they do not provide quantitative access to the structures being visualized. We present an established quantitative imaging approach, non-interferometric quantitative phase microscopy, to elucidate the subcellular density dynamics in neutrophils undergoing chemokinesis following uniform bacterial peptide stimulation. Through this approach, we identify a power law dependence of the neutrophil mean density on time with a critical point, suggesting a critical density is required for motility on 2D substrates. Next we elucidate a continuum law relating mean cell density, area, and total mass that is conserved during neutrophil polarization and migration. Together, our approach and quantitative findings will enable investigators to define the physics coupling cytoskeletal dynamics with subcellular density dynamics during cell migration.
Collapse
Affiliation(s)
- Sandra M Baker-Groberg
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239
| | - Kevin G Phillips
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239
| | - Laura D Healy
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239
| | - Asako Itakura
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239
| | - Juliana E Porter
- Viterbi School of Engineering, Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089
| | - Paul K Newton
- Viterbi School of Engineering, Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089 ; Department of Mathematics, University of Southern California, Los Angeles, CA 90089 ; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089
| | - Xiaolin Nan
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239 ; Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239 ; Division of Hematology and Medical Oncology, School of Medicine, Oregon Health & Science University, Portland, OR 97239
| |
Collapse
|
38
|
Verma NK, Kelleher D. Adaptor regulation of LFA-1 signaling in T lymphocyte migration: Potential druggable targets for immunotherapies? Eur J Immunol 2014; 44:3484-99. [PMID: 25251823 DOI: 10.1002/eji.201344428] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 09/16/2014] [Accepted: 09/22/2014] [Indexed: 01/24/2023]
Abstract
The integrin lymphocyte function associated antigen-1 (LFA-1) plays a key role in leukocyte trafficking and in adaptive immune responses through interactions with adhesive ligands, such as ICAM-1. Specific blockade of these interactions has validated LFA-1 as a therapeutic target in many chronic inflammatory diseases, however LFA-1 antagonists have not been clinically successful due to the development of a general immunosuppression, causing fatal side effects. Growing evidence has now established that LFA-1 mediates an array of intracellular signaling pathways by triggering a number of downstream molecules. In this context, a class of multimodular domain-containing proteins capable of recruiting two or more effector molecules, collectively known as "adaptor proteins," has emerged as important mediators in LFA-1 signal transduction. Here, we provide an overview of the adaptor proteins involved in the intracellular signaling cascades by which LFA-1 regulates T-cell motility and immune responses. The complexity of the LFA-1-associated signaling delineated in this review suggests that it may be an important and challenging focus for future research, enabling the identification of "tunable" targets for the development of immunotherapies.
Collapse
Affiliation(s)
- Navin K Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Singapore Eye Research Institute, Singapore, Singapore
| | | |
Collapse
|
39
|
Wanderley CWS, Silva CMS, Wong DVT, Ximenes RM, Morelo DFC, Cosker F, Aragão KS, Fernandes C, Palheta-Júnior RC, Havt A, Brito GAC, Cunha FQ, Ribeiro RA, Lima-Júnior RCP. Bothrops jararacussu snake venom-induces a local inflammatory response in a prostanoid- and neutrophil-dependent manner. Toxicon 2014; 90:134-47. [PMID: 25127849 DOI: 10.1016/j.toxicon.2014.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/29/2014] [Accepted: 08/05/2014] [Indexed: 12/16/2022]
Abstract
Local tissue reactions provoked by Bothrops venoms are characterized by edema, hemorrhage, pain, and inflammation; however, the mechanisms of tissue damage vary depending upon the species of snake. Here, we investigated the mechanisms involved in the local inflammatory response induced by the Bothrops jararacussu venom (BjcuV). Female Swiss mice were injected with either saline, BjcuV (0.125-8 μg/paw) or loratadine (an H1 receptor antagonist), compound 48/80 (for mast cell depletion), capsaicin (for C-fiber desensitization), infliximab (an anti-TNF-α antibody), indomethacin (a non-specific COX inhibitor), celecoxib (a selective COX-2 inhibitor) or fucoidan (a P- and L-selectins modulator) given before BjcuV injection. Paw edema was measured by plethysmography. In addition, paw tissues were collected for the measurement of myeloperoxidase activity, TNF-α and IL-1 levels, and COX-2 immunoexpression. The direct chemotactic effect of BjcuV and the in vitro calcium dynamic in neutrophils were also investigated. BjcuV caused an edematogenic response with increased local production of TNF-α and IL-1β as well as COX-2 expression. Both edema and neutrophil migration were prevented by pretreatment with indomethacin, celecoxib or fucoidan. Furthermore, BjcuV induced a direct in vitro neutrophil chemotaxis by increasing intracellular calcium. Therefore, BjcuV induces an early onset edema dependent upon prostanoid production and neutrophil migration.
Collapse
Affiliation(s)
- C W S Wanderley
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil
| | - C M S Silva
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil
| | - D V T Wong
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil
| | - R M Ximenes
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil
| | - D F C Morelo
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | - F Cosker
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil
| | - K S Aragão
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil
| | - C Fernandes
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil
| | - R C Palheta-Júnior
- College of Veterinary Medicine, Federal University of Vale do São Francisco, Brazil
| | - A Havt
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil
| | - G A C Brito
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Brazil
| | - F Q Cunha
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | - R A Ribeiro
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil
| | - R C P Lima-Júnior
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil.
| |
Collapse
|
40
|
Han K, Zhou Y, Gan ZH, Qi WX, Zhang JJ, Fen T, Meng W, Jiang L, Shen Z, Min DL. p21-activated kinase 7 is an oncogene in human osteosarcoma. Cell Biol Int 2014; 38:1394-402. [PMID: 25052921 PMCID: PMC4410679 DOI: 10.1002/cbin.10351] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 05/26/2014] [Indexed: 01/22/2023]
Abstract
p21-activated kinase 7 (PAK7), also named as PAK5, is a member of Rac/Cdc42-associated Ser/Thr protein kinases. It is overexpressed in some types of cancer such as colorectal and pancreatic cancers. However, the expression status and biological function of PAK7 in osteosarcoma are still ambiguous. To evaluate the expression levels of PAK7 in osteosarcoma tissues and cell lines, immunohistochemistry was used. To investigate the role of PAK7 in cell proliferation, apoptosis and tumorigenicity in vitro and vivo, a recombinant lentivirus expressing PAK7 short hairpin RNA (Lv-shPAK7) was developed and transfected into Saos-2 cells. The silencing effect of PAK7 was confirmed by quantitative real-time PCR (qRT-PCR) and Western blot technique. PAK7 was overexpressed in osteosarcoma tissue and cell line. By knocking-down of PAK7, the proliferation and colony formation of Saos-2 cells were inhibited and apoptosis enhanced significantly. The in vivo tumorigenic ability in xenograft model of Saos-2 cells was also notably inhibited when PAK7 was knocked down. Our results imply that PAK7 promotes cell proliferation and tumorigenesis and may be an attractive candidate for the therapeutic target of osteosarcoma.
Collapse
Affiliation(s)
- Kun Han
- Department of Medical Oncology, The Affiliated 6th People's Hospital of Shanghai Jiaotong University, Shanghai, 200233, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Filina JV, Gabdoulkhakova AG, Safronova VG. RhoA/ROCK downregulates FPR2-mediated NADPH oxidase activation in mouse bone marrow granulocytes. Cell Signal 2014; 26:2138-46. [PMID: 24880063 DOI: 10.1016/j.cellsig.2014.05.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 05/15/2014] [Accepted: 05/23/2014] [Indexed: 12/16/2022]
Abstract
Polymorphonuclear neutrophils (PMNs) express the high and low affinity receptors to formylated peptides (mFPR1 and mFPR2 in mice, accordingly). RhoA/ROCK (Rho activated kinase) pathway is crucial for cell motility and oxidase activity regulated via FPRs. There are contradictory data on RhoA-mediated regulation of NADPH oxidase activity in phagocytes. We have shown divergent Rho GTPases signaling via mFPR1 and mFPR2 to NADPH oxidase in PMNs from inflammatory site. The present study was aimed to find out the role of RhoA/ROCK in the respiratory burst activated via mFPR1 and mFPR2 in the bone marrow PMNs. Different kinetics of RhoA activation were detected with 0.1μM fMLF and 1μM WKYMVM operating via mFPR1 and mFPR2, accordingly. RhoA was translocated in fMLF-activated cells towards the cell center and juxtamembrane space versus uniform allocation in the resting cells. Specific inhibition of RhoA by CT04, Rho inhibitor I, weakly depressed the respiratory burst induced via mFPR1, but significantly increased the one induced via mFPR2. Inhibition of ROCK, the main effector of RhoA, by Y27632 led to the same effect on the respiratory burst. Regulation of mFPR2-induced respiratory response by ROCK was impossible under the cytoskeleton disruption by cytochalasin D, whereas it persisted in the case of mFPR1 activation. Thus we suggest RhoA to be one of the regulatory and signal transduction components in the respiratory burst through FPRs in the mouse bone marrow PMNs. Both mFPR1 and mFPR2 binding with a ligand trigger the activation of RhoA. FPR1 signaling through RhoA/ROCK increases NADPH-oxidase activity. But in FPR2 action RhoA/ROCK together with cytoskeleton-linked systems down-regulates NADPH-oxidase. This mechanism could restrain the reactive oxygen species dependent damage of own tissues during the chemotaxis of PMNs and in the resting cells.
Collapse
Affiliation(s)
- Julia V Filina
- Kazan State Medical Academy, 11 Moushtary St, 420012 Kazan, Russian Federation.
| | | | - Valentina G Safronova
- Institute of Cell Biophysics, Russian Academy of Sciences, 3 Institutskaya St, 142290, Pushchino, Russian Federation.
| |
Collapse
|
42
|
Moving towards a paradigm: common mechanisms of chemotactic signaling in Dictyostelium and mammalian leukocytes. Cell Mol Life Sci 2014; 71:3711-47. [PMID: 24846395 DOI: 10.1007/s00018-014-1638-8] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/24/2014] [Accepted: 04/29/2014] [Indexed: 12/31/2022]
Abstract
Chemotaxis, or directed migration of cells along a chemical gradient, is a highly coordinated process that involves gradient sensing, motility, and polarity. Most of our understanding of chemotaxis comes from studies of cells undergoing amoeboid-type migration, in particular the social amoeba Dictyostelium discoideum and leukocytes. In these amoeboid cells the molecular events leading to directed migration can be conceptually divided into four interacting networks: receptor/G protein, signal transduction, cytoskeleton, and polarity. The signal transduction network occupies a central position in this scheme as it receives direct input from the receptor/G protein network, as well as feedback from the cytoskeletal and polarity networks. Multiple overlapping modules within the signal transduction network transmit the signals to the actin cytoskeleton network leading to biased pseudopod protrusion in the direction of the gradient. The overall architecture of the networks, as well as the individual signaling modules, is remarkably conserved between Dictyostelium and mammalian leukocytes, and the similarities and differences between the two systems are the subject of this review.
Collapse
|
43
|
Taglieri DM, Ushio-Fukai M, Monasky MM. P21-activated kinase in inflammatory and cardiovascular disease. Cell Signal 2014; 26:2060-9. [PMID: 24794532 DOI: 10.1016/j.cellsig.2014.04.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 04/27/2014] [Indexed: 02/09/2023]
Abstract
P-21 activated kinases, or PAKs, are serine-threonine kinases that serve a role in diverse biological functions and organ system diseases. Although PAK signaling has been the focus of many investigations, still our understanding of the role of PAK in inflammation is incomplete. This review consolidates what is known about PAK1 across several cell types, highlighting the role of PAK1 and PAK2 in inflammation in relation to NADPH oxidase activation. This review explores the physiological functions of PAK during inflammation, the role of PAK in several organ diseases with an emphasis on cardiovascular disease, and the PAK signaling pathway, including activators and targets of PAK. Also, we discuss PAK1 as a pharmacological anti-inflammatory target, explore the potentials and the limitations of the current pharmacological tools to regulate PAK1 activity during inflammation, and provide indications for future research. We conclude that a vast amount of evidence supports the idea that PAK is a central molecule in inflammatory signaling, thus making PAK1 itself a promising prospective pharmacological target.
Collapse
Affiliation(s)
- Domenico M Taglieri
- Department of Anesthesia and General Intensive Care Unit, Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 (Milano), Italy.
| | - Masuko Ushio-Fukai
- Department of Pharmacology, Center for Lung and Vascular Biology, Center for Cardiovascular Research, University of Illinois at Chicago, 835 S. Wolcott Ave. E403 MSB, M/C868, Chicago, IL 60612, USA.
| | - Michelle M Monasky
- Cardiovascular Research Center, Humanitas Research Hospital, Via Manzoni 113, Rozzano, 20089 (Milano), Italy.
| |
Collapse
|