1
|
Park SC, Steffan BN, Yun Lim F, Gupta R, Ayaloglu Butun F, Chen H, Ye R, Decker T, Wu CC, Kelleher NL, Woo Bok J, Keller NP. Terpenoid balance in Aspergillus nidulans unveiled by heterologous squalene synthase expression. SCIENCE ADVANCES 2024; 10:eadk7416. [PMID: 38381828 PMCID: PMC10881027 DOI: 10.1126/sciadv.adk7416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Abstract
Filamentous fungi produce numerous uncharacterized natural products (NPs) that are often challenging to characterize because of cryptic expression in laboratory conditions. Previously, we have successfully isolated novel NPs by expressing fungal artificial chromosomes (FACs) from a variety of fungal species into Aspergillus nidulans. Here, we demonstrate a twist to FAC utility wherein heterologous expression of a Pseudogymnoascus destructans FAC in A. nidulans altered endogenous terpene biosynthetic pathways. In contrast to wild type, the FAC transformant produced increased levels of squalene and aspernidine type compounds, including three new nidulenes (1- 2, and 5), and lost nearly all ability to synthesize the major A. nidulans characteristic terpene, austinol. Deletion of a squalene synthase gene in the FAC restored wild-type chemical profiles. The altered squalene to farnesyl pyrophosphate ratio leading to synthesis of nidulenes and aspernidines at the expense of farnesyl pyrophosphate-derived austinols provides unexpected insight into routes of terpene synthesis in fungi.
Collapse
Affiliation(s)
- Sung Chul Park
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, WI, USA
| | - Breanne N. Steffan
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, WI, USA
| | - Fang Yun Lim
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, WI, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Raveena Gupta
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | | | | | - Rosa Ye
- Intact Genomics Inc., St. Louis, MO, USA
| | | | | | - Neil L. Kelleher
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Jin Woo Bok
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, WI, USA
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, WI, USA
- Department of Plant Pathology, University of Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|
2
|
Park SC, Steffan BN, Lim FY, Gupta R, Butun FA, Chen H, Ye R, Decker T, Wu CC, Kelleher NL, Bok JW, Keller NP. Terpenoid balance in Aspergillus nidulans unveiled by heterologous squalene synthase expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563295. [PMID: 37905136 PMCID: PMC10614972 DOI: 10.1101/2023.10.20.563295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Filamentous fungi produce numerous uncharacterized natural products (NPs) that are often challenging to characterize due to cryptic expression in laboratory conditions. Previously, we have successfully isolated novel NPs by expressing fungal artificial chromosomes (FACs) from a variety of fungal species into Aspergillus nidulans. Here, we demonstrate a new twist to FAC utility wherein heterologous expression of a Pseudogymnoascus destructans FAC in A. nidulans altered endogenous terpene biosynthetic pathways. In contrast to wildtype, the FAC transformant produced increased levels of squalene and aspernidine type compounds, including three new nidulenes (1-2, 5), and lost nearly all ability to synthesize the major A. nidulans characteristic terpene, austinol. Deletion of a squalene synthase gene in the FAC restored wildtype chemical profiles. The altered squalene to farnesyl pyrophosphate ratio leading to synthesis of nidulenes and aspernidines at the expense of farnesyl pyrophosphate derived austinols provides unexpected insight into routes of terpene synthesis in fungi.
Collapse
Affiliation(s)
- Sung Chul Park
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, WI
| | - Breanne N. Steffan
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, WI
| | - Fang Yun Lim
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, WI
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle WA
| | - Raveena Gupta
- Department of Chemistry, Northwestern University, IL
| | | | | | | | | | | | | | - Jin Woo Bok
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, WI
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, WI
- Department of Plant Pathology, University of Wisconsin–Madison, Madison, WI
| |
Collapse
|
3
|
Wang G, Ran H, Fan J, Keller NP, Liu Z, Wu F, Yin WB. Fungal-fungal cocultivation leads to widespread secondary metabolite alteration requiring the partial loss-of-function VeA1 protein. SCIENCE ADVANCES 2022; 8:eabo6094. [PMID: 35476435 PMCID: PMC9045611 DOI: 10.1126/sciadv.abo6094] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/11/2022] [Indexed: 05/02/2023]
Abstract
Microbial communication has attracted notable attention as an indicator of microbial interactions that lead to marked alterations of secondary metabolites (SMs) in varied environments. However, the mechanisms responsible for SM regulation are not fully understood, especially in fungal-fungal interactions. Here, cocultivation of an endophytic fungus Epicoccum dendrobii with the model fungus Aspergillus nidulans and several other filamentous fungi triggered widespread alteration of SMs. Multiple silent biosynthetic gene clusters in A. nidulans were activated by transcriptome and metabolome analysis. Unprecedentedly, gene deletion and replacement proved that a partial loss-of-function VeA1 protein, but not VeA, was associated with the widespread SM changes in both A. nidulans and A. fumigatus during cocultivation. VeA1 regulation required the transcription factor SclB and the velvet complex members LaeA and VelB for producing aspernidines as representative formation of SMs in A. nidulans. This study provides new insights into the mechanism that trigger metabolic changes during fungal-fungal interactions.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Huomiao Ran
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jie Fan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zhiguo Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Fan Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
4
|
Berestetskiy A, Hu Q. The Chemical Ecology Approach to Reveal Fungal Metabolites for Arthropod Pest Management. Microorganisms 2021; 9:1379. [PMID: 34202923 PMCID: PMC8307166 DOI: 10.3390/microorganisms9071379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Biorational insecticides (for instance, avermectins, spinosins, azadirachtin, and afidopyropen) of natural origin are increasingly being used in agriculture. The review considers the chemical ecology approach for the search for new compounds with insecticidal properties (entomotoxic, antifeedant, and hormonal) produced by fungi of various ecological groups (entomopathogens, soil saprotrophs, endophytes, phytopathogens, and mushrooms). The literature survey revealed that insecticidal metabolites of entomopathogenic fungi have not been sufficiently studied, and most of the well-characterized compounds show moderate insecticidal activity. The greatest number of substances with insecticidal properties was found to be produced by soil fungi, mainly from the genera Aspergillus and Penicillium. Metabolites with insecticidal and antifeedant properties were also found in endophytic and phytopathogenic fungi. It was noted that insect pests of stored products are mostly low sensitive to mycotoxins. Mushrooms were found to be promising producers of antifeedant compounds as well as insecticidal proteins. The expansion of the number of substances with insecticidal properties detected in prospective fungal species is possible by mining fungal genomes for secondary metabolite gene clusters and secreted proteins with their subsequent activation by various methods. The efficacy of these studies can be increased with high-throughput techniques of extraction of fungal metabolites and their analysis by various methods of chromatography and mass spectrometry.
Collapse
Affiliation(s)
| | - Qiongbo Hu
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China;
| |
Collapse
|
5
|
Pfliegler WP, Pócsi I, Győri Z, Pusztahelyi T. The Aspergilli and Their Mycotoxins: Metabolic Interactions With Plants and the Soil Biota. Front Microbiol 2020; 10:2921. [PMID: 32117074 PMCID: PMC7029702 DOI: 10.3389/fmicb.2019.02921] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/04/2019] [Indexed: 01/06/2023] Open
Abstract
Species of the highly diverse fungal genus Aspergillus are well-known agricultural pests, and, most importantly, producers of various mycotoxins threatening food safety worldwide. Mycotoxins are studied predominantly from the perspectives of human and livestock health. Meanwhile, their roles are far less known in nature. However, to understand the factors behind mycotoxin production, the roles of the toxins of Aspergilli must be understood from a complex ecological perspective, taking mold-plant, mold-microbe, and mold-animal interactions into account. The Aspergilli may switch between saprophytic and pathogenic lifestyles, and the production of secondary metabolites, such as mycotoxins, may vary according to these fungal ways of life. Recent studies highlighted the complex ecological network of soil microbiotas determining the niches that Aspergilli can fill in. Interactions with the soil microbiota and soil macro-organisms determine the role of secondary metabolite production to a great extent. While, upon infection of plants, metabolic communication including fungal secondary metabolites like aflatoxins, gliotoxin, patulin, cyclopiazonic acid, and ochratoxin, influences the fate of both the invader and the host. In this review, the role of mycotoxin producing Aspergillus species and their interactions in the ecosystem are discussed. We intend to highlight the complexity of the roles of the main toxic secondary metabolites as well as their fate in natural environments and agriculture, a field that still has important knowledge gaps.
Collapse
Affiliation(s)
- Walter P. Pfliegler
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Zoltán Győri
- Institute of Nutrition, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Tünde Pusztahelyi
- Central Laboratory of Agricultural and Food Products, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
6
|
Holighaus G, Rohlfs M. Volatile and non-volatile fungal oxylipins in fungus-invertebrate interactions. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2018.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
|
8
|
Birkemoe T, Jacobsen RM, Sverdrup-Thygeson A, Biedermann PHW. Insect-Fungus Interactions in Dead Wood Systems. SAPROXYLIC INSECTS 2018. [DOI: 10.1007/978-3-319-75937-1_12] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
9
|
Takatsuka J, Nakai M, Shinoda T. A virus carries a gene encoding juvenile hormone acid methyltransferase, a key regulatory enzyme in insect metamorphosis. Sci Rep 2017; 7:13522. [PMID: 29051595 PMCID: PMC5648886 DOI: 10.1038/s41598-017-14059-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/05/2017] [Indexed: 12/29/2022] Open
Abstract
Microbial parasitism, infection, and symbiosis in animals often modulate host endocrine systems, resulting in alterations of phenotypic traits of the host that can have profound effects on the ecology and evolution of both the microorganisms and their hosts. Information about the mechanisms and genetic bases of such modulations by animal parasites is available from studies of steroid hormones. However, reports involving other hormones are scarce. We found that an insect virus, a betaentomopoxvirus, encodes a juvenile hormone acid methyltransferase that can synthesize an important insect hormone, the sesquiterpenoid juvenile hormone. Phylogenetic analysis suggested that this gene is of bacterial origin. Our study challenges the conventional view that functional enzymes in the late phase of the juvenile hormone biosynthesis pathway are almost exclusive to insects or arthropods, and shed light on juvenoid hormone synthesis beyond Eukaryota. This striking example demonstrates that even animal parasites having no metabolic pathways for molecules resembling host hormones can nevertheless influence the synthesis of such hormones, and provides a new context for studying animal parasite strategies in diverse systems such as host-parasite, host-symbiont or host-vector-parasite.
Collapse
Affiliation(s)
- Jun Takatsuka
- Forestry and Forest Products Research Institute, Forest Research and Management Organization, Tsukuba, Ibaraki, Japan.
| | - Madoka Nakai
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Tetsuro Shinoda
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| |
Collapse
|
10
|
Trienens M, Kraaijeveld K, Wertheim B. Defensive repertoire of Drosophila larvae in response to toxic fungi. Mol Ecol 2017; 26:5043-5057. [PMID: 28746736 DOI: 10.1111/mec.14254] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/30/2017] [Accepted: 07/13/2017] [Indexed: 01/12/2023]
Abstract
Chemical warfare including insecticidal secondary metabolites is a well-known strategy for environmental microbes to monopolize a food source. Insects in turn have evolved behavioural and physiological defences to eradicate or neutralize the harmful microorganisms. We studied the defensive repertoire of insects in this interference competition by combining behavioural and developmental assays with whole-transcriptome time-series analysis. Confrontation with the toxic filamentous fungus Aspergillus nidulans severely reduced the survival of Drosophila melanogaster larvae. Nonetheless, the larvae did not behaviourally avoid the fungus, but aggregated at it. Confrontation with fungi strongly affected larval gene expression, including many genes involved in detoxification (e.g., CYP, GST and UGT genes) and the formation of the insect cuticle (e.g., Tweedle genes). The most strongly upregulated genes were several members of the insect-specific gene family Osiris, and CHK-kinase-like domains were over-represented. Immune responses were not activated, reflecting the competitive rather than pathogenic nature of the antagonistic interaction. While internal microbes are widely acknowledged as important, our study emphasizes the underappreciated role of environmental microbes as fierce competitors.
Collapse
Affiliation(s)
- Monika Trienens
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.,Institute for Evolution and Biodiversity, University of Muenster, Muenster, Germany
| | - Ken Kraaijeveld
- Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.,Institute of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bregje Wertheim
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
11
|
Chen AJ, Frisvad JC, Sun BD, Varga J, Kocsubé S, Dijksterhuis J, Kim DH, Hong SB, Houbraken J, Samson RA. Aspergillus section Nidulantes (formerly Emericella): Polyphasic taxonomy, chemistry and biology. Stud Mycol 2016; 84:1-118. [PMID: 28050053 PMCID: PMC5198626 DOI: 10.1016/j.simyco.2016.10.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Aspergillus section Nidulantes includes species with striking morphological characters, such as biseriate conidiophores with brown-pigmented stipes, and if present, the production of ascomata embedded in masses of Hülle cells with often reddish brown ascospores. The majority of species in this section have a sexual state, which were named Emericella in the dual name nomenclature system. In the present study, strains belonging to subgenus Nidulantes were subjected to multilocus molecular phylogenetic analyses using internal transcribed spacer region (ITS), partial β-tubulin (BenA), calmodulin (CaM) and RNA polymerase II second largest subunit (RPB2) sequences. Nine sections are accepted in subgenus Nidulantes including the new section Cavernicolus. A polyphasic approach using morphological characters, extrolites, physiological characters and phylogeny was applied to investigate the taxonomy of section Nidulantes. Based on this approach, section Nidulantes is subdivided in seven clades and 65 species, and 10 species are described here as new. Morphological characters including colour, shape, size, and ornamentation of ascospores, shape and size of conidia and vesicles, growth temperatures are important for identifying species. Many species of section Nidulantes produce the carcinogenic mycotoxin sterigmatocystin. The most important mycotoxins in Aspergillus section Nidulantes are aflatoxins, sterigmatocystin, emestrin, fumitremorgins, asteltoxins, and paxillin while other extrolites are useful drugs or drug lead candidates such as echinocandins, mulundocandins, calbistrins, varitriols, variecolins and terrain. Aflatoxin B1 is produced by four species: A. astellatus, A. miraensis, A. olivicola, and A. venezuelensis.
Collapse
Affiliation(s)
- A J Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, PR China; CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - J C Frisvad
- Department of Systems Biology, Søltofts Plads B. 221, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - B D Sun
- China General Microbiological Culture Collection Centre, Institute of Microbiology, Chinese Academy of Sciences, Beichen West Road, Chaoyang District, Beijing, 100101, PR China
| | - J Varga
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Hungary
| | - S Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Hungary
| | - J Dijksterhuis
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - D H Kim
- Division of Forest Environment Protection, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - S-B Hong
- Korean Agricultural Culture Collection, National Institute of Agricultural Science, 166, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - J Houbraken
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - R A Samson
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
12
|
Holighaus G, Rohlfs M. Fungal allelochemicals in insect pest management. Appl Microbiol Biotechnol 2016; 100:5681-9. [PMID: 27147531 DOI: 10.1007/s00253-016-7573-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/16/2016] [Accepted: 04/19/2016] [Indexed: 12/31/2022]
Abstract
Interactions between insects and fungi are widespread, and important mediators of these interactions are fungal chemicals that can therefore be considered as allelochemicals. Numerous studies suggest that fungal chemicals can affect insects in many different ways. Here, we apply the terminology established by insect-plant ecologists for categorizing the effect of fungal allelochemicals on insects and for evaluating the application potential of these chemicals in insect pest management. Our literature survey shows that fungal volatile and non-volatile chemicals have an enormous potential to influence insect behavior and fitness. Many of them still remain to be discovered, but some recent examples of repellents and toxins could open up new ways for developing safe insect control strategies. However, we also identified shortcomings in our understanding of the chemical ecology of insect-fungus interactions and the way they have been investigated. In particular, the mode-of-action of fungal allelochemicals has often not been appropriately designated or examined, and the way in which induction by insects affects fungal chemical diversity is poorly understood. This review should raise awareness that in-depth ecological studies of insect-fungus interactions can reveal novel allelochemicals of particular benefit for the development of innovative insect pest management strategies.
Collapse
Affiliation(s)
- Gerrit Holighaus
- J.F. Blumenbach Institute of Zoology and Anthropology, Georg-August-University of Göttingen, Göttingen, Germany
- Büsgen Institute, Forest Zoology and Forest Conservation, Georg-August-University of Göttingen, Göttingen, Germany
| | - Marko Rohlfs
- J.F. Blumenbach Institute of Zoology and Anthropology, Georg-August-University of Göttingen, Göttingen, Germany.
| |
Collapse
|
13
|
Bromann K, Toivari M, Viljanen K, Ruohonen L, Nakari-Setälä T. Engineering Aspergillus nidulans for heterologous ent-kaurene and gamma-terpinene production. Appl Microbiol Biotechnol 2016; 100:6345-6359. [PMID: 27098256 DOI: 10.1007/s00253-016-7517-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 02/29/2016] [Accepted: 03/31/2016] [Indexed: 12/14/2022]
Abstract
Terpenes are a large and varied group of natural products with a wide array of bioactivities and applications. The chemical production of industrially relevant terpenes can be expensive and time-consuming due to the structural complexity of these compounds. Here, we studied Aspergillus nidulans as a heterologous host for monoterpene and diterpene production. Previously, we identified a novel diterpene gene cluster in A. nidulans and showed that overexpression of the cluster-specific transcription factor (pbcR) led to ent-pimara-8(14),15-diene (PD) production. We report further characterization of the A. nidulans PD synthase gene (pbcA). In A. nidulans, overexpression of pbcA resulted in PD production, while deletion of pbcA abolished PD production. Overexpression of Fusarium fujikuroi ent-kaurene synthase (cps/ks) and Citrus unshiu gamma-terpinene synthase resulted in ent-kaurene and gamma-terpinene production, respectively. A. nidulans is a fungal model organism and a close relative to other industrially relevant Aspergillus species. A. nidulans is a known producer of many secondary metabolites, but its ability to produce heterologous monoterpene and diterpene compounds has not been characterized. Here, we show that A. nidulans is capable of heterologous terpene production and thus has potential as a production host for industrially relevant compounds. The genetic engineering principles reported here could also be applied to other Aspergilli.
Collapse
Affiliation(s)
- Kirsi Bromann
- VTT Technical Research Centre of Finland Ltd., 02044 VTT, Espoo, Finland.
| | - Mervi Toivari
- VTT Technical Research Centre of Finland Ltd., 02044 VTT, Espoo, Finland
| | - Kaarina Viljanen
- Orion Pharma, Orion Corporation, Orionintie 1, 02200, Espoo, Finland
| | - Laura Ruohonen
- VTT Technical Research Centre of Finland Ltd., 02044 VTT, Espoo, Finland
| | | |
Collapse
|
14
|
Isopod grazing induces down-regulation of Aspergillus nidulans anti-fungivore defence marker genes. FUNGAL ECOL 2016. [DOI: 10.1016/j.funeco.2015.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Schmidt-Dannert C. Biocatalytic portfolio of Basidiomycota. Curr Opin Chem Biol 2016; 31:40-9. [PMID: 26812494 DOI: 10.1016/j.cbpa.2016.01.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/04/2016] [Accepted: 01/08/2016] [Indexed: 11/16/2022]
Abstract
Basidiomycota fungi have received little attention for applications in biocatalysis and biotechnology and remain greatly understudied despite their importance for carbon recycling, ecosystem functioning and medicinal properties. The steady influx of genome data has facilitated detailed studies aimed at understanding the evolution and function of fungal lignocellulose degradation. These studies and recent explorations into the secondary metabolomes have uncovered large portfolios of enzymes useful for biocatalysis and biosynthesis. This review will provide an overview of the biocatalytic repertoires of Basidiomycota characterized to date with the hope of motivation more research into the chemical toolkits of this diverse group of fungi.
Collapse
Affiliation(s)
- Claudia Schmidt-Dannert
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, Saint Paul, MN 55108, USA.
| |
Collapse
|
16
|
Rohlfs M. Fungal secondary metabolite dynamics in fungus-grazer interactions: novel insights and unanswered questions. Front Microbiol 2015; 5:788. [PMID: 25628619 PMCID: PMC4292314 DOI: 10.3389/fmicb.2014.00788] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/22/2014] [Indexed: 11/26/2022] Open
Abstract
In response to fungivore grazing fungi are assumed to have evolved secondary metabolite-based defense mechanisms that harm and repel grazers, and hence provide a benefit to the metabolite producer. However, since research into the ecological meaning of highly diverse fungal secondary metabolites is still in its infancy, many central questions still remain. Which components of the enormous metabolite diversity of fungi act as direct chemical defense mechanisms against grazers? Is the proposed chemical defense of fungi induced by grazer attack? Which role do volatile compounds play in communicating noxiousness to grazers? What is the relative impact of grazers and that of interactions with competing microbes on the evolution of fungal secondary metabolism? Here, I briefly summarize and discuss the results of the very few studies that have tried to tackle some of these questions by (i) using secondary metabolite mutant fungi in controlled experiments with grazers, and by (ii) investigating fungal secondary metabolism as a flexible means to adapt to grazer-rich niches.
Collapse
Affiliation(s)
- Marko Rohlfs
- Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, Georg-August-University Göttingen Göttingen, Germany
| |
Collapse
|
17
|
Fungal Secondary Metabolism in the Light of Animal–Fungus Interactions: From Mechanism to Ecological Function. Fungal Biol 2015. [DOI: 10.1007/978-1-4939-2531-5_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
18
|
Nielsen MT, Nielsen JB, Anyaogu DC, Holm DK, Nielsen KF, Larsen TO, Mortensen UH. Heterologous reconstitution of the intact geodin gene cluster in Aspergillus nidulans through a simple and versatile PCR based approach. PLoS One 2013; 8:e72871. [PMID: 24009710 PMCID: PMC3751827 DOI: 10.1371/journal.pone.0072871] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 07/19/2013] [Indexed: 01/07/2023] Open
Abstract
Fungal natural products are a rich resource for bioactive molecules. To fully exploit this potential it is necessary to link genes to metabolites. Genetic information for numerous putative biosynthetic pathways has become available in recent years through genome sequencing. However, the lack of solid methodology for genetic manipulation of most species severely hampers pathway characterization. Here we present a simple PCR based approach for heterologous reconstitution of intact gene clusters. Specifically, the putative gene cluster responsible for geodin production from Aspergillus terreus was transferred in a two step procedure to an expression platform in A. nidulans. The individual cluster fragments were generated by PCR and assembled via efficient USER fusion prior to transformation and integration via re-iterative gene targeting. A total of 13 open reading frames contained in 25 kb of DNA were successfully transferred between the two species enabling geodin synthesis in A. nidulans. Subsequently, functions of three genes in the cluster were validated by genetic and chemical analyses. Specifically, ATEG_08451 (gedC) encodes a polyketide synthase, ATEG_08453 (gedR) encodes a transcription factor responsible for activation of the geodin gene cluster and ATEG_08460 (gedL) encodes a halogenase that catalyzes conversion of sulochrin to dihydrogeodin. We expect that our approach for transferring intact biosynthetic pathways to a fungus with a well developed genetic toolbox will be instrumental in characterizing the many exciting pathways for secondary metabolite production that are currently being uncovered by the fungal genome sequencing projects.
Collapse
Affiliation(s)
- Morten Thrane Nielsen
- Department of Systems Biology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Dianna Chinyere Anyaogu
- Department of Systems Biology, Technical University of Denmark, Kgs. Lyngby, Denmark
- * E-mail: (TOL); (UHM)
| | - Dorte Koefoed Holm
- Department of Systems Biology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Kristian Fog Nielsen
- Department of Systems Biology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Thomas Ostenfeld Larsen
- Department of Systems Biology, Technical University of Denmark, Kgs. Lyngby, Denmark
- * E-mail: (TOL); (UHM)
| | - Uffe Hasbro Mortensen
- Department of Systems Biology, Technical University of Denmark, Kgs. Lyngby, Denmark
- * E-mail: (TOL); (UHM)
| |
Collapse
|