1
|
Nagy GÁ, Tombácz D, Prazsák I, Csabai Z, Dörmő Á, Gulyás G, Kemenesi G, Tóth GE, Holoubek J, Růžek D, Kakuk B, Boldogkői Z. Exploring the transcriptomic profile of human monkeypox virus via CAGE and native RNA sequencing approaches. mSphere 2024; 9:e0035624. [PMID: 39191390 PMCID: PMC11423596 DOI: 10.1128/msphere.00356-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
In this study, we employed short- and long-read sequencing technologies to delineate the transcriptional architecture of the human monkeypox virus and to identify key regulatory elements that govern its gene expression. Specifically, we conducted a transcriptomic analysis to annotate the transcription start sites (TSSs) and transcription end sites (TESs) of the virus by utilizing Cap Analysis of gene expression sequencing on the Illumina platform and direct RNA sequencing on the Oxford Nanopore technology device. Our investigations uncovered significant complexity in the use of alternative TSSs and TESs in viral genes. In this research, we also detected the promoter elements and poly(A) signals associated with the viral genes. Additionally, we identified novel genes in both the left and right variable regions of the viral genome.IMPORTANCEGenerally, gaining insight into how the transcription of a virus is regulated offers insights into the key mechanisms that control its life cycle. The recent outbreak of the human monkeypox virus has underscored the necessity of understanding the basic biology of its causative agent. Our results are pivotal for constructing a comprehensive transcriptomic atlas of the human monkeypox virus, providing valuable resources for future studies.
Collapse
Affiliation(s)
- Gergely Ármin Nagy
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Dóra Tombácz
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - István Prazsák
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Zsolt Csabai
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ákos Dörmő
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gábor Gulyás
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gábor Kemenesi
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Gábor E Tóth
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany
| | - Jiří Holoubek
- Veterinary Research Institute, Brno, Czechia
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Daniel Růžek
- Veterinary Research Institute, Brno, Czechia
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Balázs Kakuk
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Zsolt Boldogkői
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| |
Collapse
|
2
|
Atay C, Medina-Echeverz J, Hochrein H, Suter M, Hinterberger M. Armored modified vaccinia Ankara in cancer immunotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 379:87-142. [PMID: 37541728 DOI: 10.1016/bs.ircmb.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Cancer immunotherapy relies on unleashing the patient´s immune system against tumor cells. Cancer vaccines aim to stimulate both the innate and adaptive arms of immunity to achieve durable clinical responses. Some roadblocks for a successful cancer vaccine in the clinic include the tumor antigen of choice, the adjuvants employed to strengthen antitumor-specific immune responses, and the risks associated with enhancing immune-related adverse effects in patients. Modified vaccinia Ankara (MVA) belongs to the family of poxviruses and is a versatile vaccine platform that combines several attributes crucial for cancer therapy. First, MVA is an excellent inducer of innate immune responses leading to type I interferon secretion and induction of T helper cell type 1 (Th1) immune responses. Second, it elicits robust and durable humoral and cellular immunity against vector-encoded heterologous antigens. Third, MVA has enormous genomic flexibility, which allows for the expression of multiple antigenic and costimulatory entities. And fourth, its replication deficit in human cells ensures a excellent safety profile. In this review, we summarize the current understanding of how MVA induces innate and adaptive immune responses. Furthermore, we will give an overview of the tumor-associated antigens and immunomodulatory molecules that have been used to armor MVA and describe their clinical use. Finally, the route of MVA immunization and its impact on therapeutic efficacy depending on the immunomodulatory molecules expressed will be discussed.
Collapse
Affiliation(s)
- Cigdem Atay
- Bavarian Nordic GmbH, Fraunhoferstr.13, Planegg, Germany
| | | | | | - Mark Suter
- Prof. em. University of Zurich, Switzerland
| | | |
Collapse
|
3
|
Hinterberger M, Endt K, Bathke B, Habjan M, Heiseke A, Schweneker M, Von Rohrscheidt J, Atay C, Chaplin P, Kalla M, Hausmann J, Schmittwolf C, Lauterbach H, Volkmann A, Hochrein H, Medina-Echeverz J. Preclinical development of a first-in-class vaccine encoding HER2, Brachyury and CD40L for antibody enhanced tumor eradication. Sci Rep 2023; 13:5162. [PMID: 36997583 PMCID: PMC10060934 DOI: 10.1038/s41598-023-32060-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
The induction of antiviral innate immunity by systemic immunization with live virus can be employed to positively impact the response to therapeutic vaccination. We previously demonstrated that systemic immunization with a non-replicating MVA encoding CD40 ligand (CD40L) enhances innate immune cell activation and function, and triggers potent antitumor CD8+ T cell responses in different murine tumor models. Antitumor efficacy was increased when combined with tumor targeting antibodies. Here we report the development of TAEK-VAC-HerBy (TVH), a first-in-class human tumor antibody enhanced killing (TAEK) vaccine based on the non-replicating MVA-BN viral vector. It encodes the membrane bound form of human CD40L, HER2 and the transcription factor Brachyury. TVH is designed for therapeutic use in HER2- or Brachyury-expressing cancer patients in combination with tumor targeting antibodies. To preclude possible oncogenic activities in infected cells and to prevent binding of vaccine-encoded HER2 by monoclonal antibodies trastuzumab and pertuzumab, genetic modifications of HER2 were introduced in the vaccine. Brachyury was genetically modified to prevent nuclear localization of the protein thereby inhibiting its transcriptional activity. CD40L encoded in TVH enhanced human leukocyte activation and cytokine secretion in vitro. Lastly, TVH intravenous administration to non-human primates was proven immunogenic and safe in a repeat-dose toxicity study. Nonclinical data presented here highlight TVH as a first-in-class immunotherapeutic vaccine platform currently under clinical investigation.
Collapse
Affiliation(s)
| | - Kathrin Endt
- Bavarian Nordic GmbH, Fraunhoferstr.13, 82152, Planegg, Germany
| | - Barbara Bathke
- Bavarian Nordic GmbH, Fraunhoferstr.13, 82152, Planegg, Germany
| | - Matthias Habjan
- Bavarian Nordic GmbH, Fraunhoferstr.13, 82152, Planegg, Germany
| | - Alexander Heiseke
- Bavarian Nordic GmbH, Fraunhoferstr.13, 82152, Planegg, Germany
- GlaxoSmithKline GmbH, Prinzregentenpl. 9, 81675, Munich, Germany
| | - Marc Schweneker
- Bavarian Nordic GmbH, Fraunhoferstr.13, 82152, Planegg, Germany
| | - Julia Von Rohrscheidt
- Bavarian Nordic GmbH, Fraunhoferstr.13, 82152, Planegg, Germany
- Origenis GmbH, Am Klopferspitz 19A, 82152, Planegg, Germany
| | - Cigdem Atay
- Bavarian Nordic GmbH, Fraunhoferstr.13, 82152, Planegg, Germany
| | - Paul Chaplin
- Bavarian Nordic GmbH, Fraunhoferstr.13, 82152, Planegg, Germany
| | - Markus Kalla
- Bavarian Nordic GmbH, Fraunhoferstr.13, 82152, Planegg, Germany
| | - Jürgen Hausmann
- Bavarian Nordic GmbH, Fraunhoferstr.13, 82152, Planegg, Germany
| | | | - Henning Lauterbach
- Bavarian Nordic GmbH, Fraunhoferstr.13, 82152, Planegg, Germany
- Hookipa Pharma Inc, 350 Fifth Avenue, Room/Suite 7240, New York City, NY, USA
| | - Ariane Volkmann
- Bavarian Nordic GmbH, Fraunhoferstr.13, 82152, Planegg, Germany
| | | | - José Medina-Echeverz
- Bavarian Nordic GmbH, Fraunhoferstr.13, 82152, Planegg, Germany
- Affimed, Im Neuenheimer Feld 582, 69120, Heidelberg, Germany
| |
Collapse
|
4
|
Alharbi NK, Aljamaan F, Aljami HA, Alenazi MW, Albalawi H, Almasoud A, Alharthi FJ, Azhar EI, Barhoumi T, Bosaeed M, Gilbert SC, Hashem AM. Immunogenicity of High-Dose MVA-Based MERS Vaccine Candidate in Mice and Camels. Vaccines (Basel) 2022; 10:vaccines10081330. [PMID: 36016218 PMCID: PMC9413082 DOI: 10.3390/vaccines10081330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
The Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic pathogen that can transmit from dromedary camels to humans, causing severe pneumonia, with a 35% mortality rate. Vaccine candidates have been developed and tested in mice, camels, and humans. Previously, we developed a vaccine based on the modified vaccinia virus Ankara (MVA) viral vector, encoding a full-length spike protein of MERS-CoV, MVA-MERS. Here, we report the immunogenicity of high-dose MVA-MERS in prime–boost vaccinations in mice and camels. Methods: Three groups of mice were immunised with MVA wild-type (MVA-wt) and MVA-MERS (MVA-wt/MVA-MERS), MVA-MERS/MVA-wt, or MVA-MERS/MVA-MERS. Camels were immunised with two doses of PBS, MVA-wt, or MVA-MERS. Antibody (Ab) responses were evaluated using ELISA and MERS pseudovirus neutralisation assays. Results: Two high doses of MVA-MERS induced strong Ab responses in both mice and camels, including neutralising antibodies. Anti-MVA Ab responses did not affect the immune responses to the vaccine antigen (MERS-CoV spike). Conclusions: MVA-MERS vaccine, administered in a homologous prime–boost regimen, induced high levels of neutralising anti-MERS-CoV antibodies in mice and camels. This could be considered for further development and evaluation as a dromedary vaccine to reduce MERS-CoV transmission to humans.
Collapse
Affiliation(s)
- Naif Khalaf Alharbi
- Vaccine Development Unit, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia
- Correspondence:
| | - Fahad Aljamaan
- Animal Facilities, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
| | - Haya A. Aljami
- Vaccine Development Unit, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
| | - Mohammed W. Alenazi
- Vaccine Development Unit, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
| | - Hind Albalawi
- Vaccine Development Unit, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
| | - Abdulrahman Almasoud
- Vaccine Development Unit, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
| | - Fatima J. Alharthi
- Vaccine Development Unit, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
| | - Esam I. Azhar
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 22254, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Tlili Barhoumi
- Vaccine Development Unit, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia
| | - Mohammad Bosaeed
- Vaccine Development Unit, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia
- Department of Medicine, King Abdulaziz Medical City, Riyadh 12746, Saudi Arabia
| | | | - Anwar M. Hashem
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 22254, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| |
Collapse
|
5
|
Talbot-Cooper C, Pantelejevs T, Shannon JP, Cherry CR, Au MT, Hyvönen M, Hickman HD, Smith GL. Poxviruses and paramyxoviruses use a conserved mechanism of STAT1 antagonism to inhibit interferon signaling. Cell Host Microbe 2022; 30:357-372.e11. [PMID: 35182467 PMCID: PMC8912257 DOI: 10.1016/j.chom.2022.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/29/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022]
Abstract
The induction of interferon (IFN)-stimulated genes by STATs is a critical host defense mechanism against virus infection. Here, we report that a highly expressed poxvirus protein, 018, inhibits IFN-induced signaling by binding to the SH2 domain of STAT1, thereby preventing the association of STAT1 with an activated IFN receptor. Despite encoding other inhibitors of IFN-induced signaling, a poxvirus mutant lacking 018 was attenuated in mice. The 2.0 Å crystal structure of the 018:STAT1 complex reveals a phosphotyrosine-independent mode of 018 binding to the SH2 domain of STAT1. Moreover, the STAT1-binding motif of 018 shows similarity to the STAT1-binding proteins from Nipah virus, which, similar to 018, block the association of STAT1 with an IFN receptor. Overall, these results uncover a conserved mechanism of STAT1 antagonism that is employed independently by distinct virus families.
Collapse
Affiliation(s)
- Callum Talbot-Cooper
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Teodors Pantelejevs
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - John P Shannon
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK; Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, NIAD, NIH, Bethesda, MD 20852, USA
| | - Christian R Cherry
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, NIAD, NIH, Bethesda, MD 20852, USA
| | - Marcus T Au
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Heather D Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, NIAD, NIH, Bethesda, MD 20852, USA
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| |
Collapse
|
6
|
Lopera-Madrid J, Medina-Magües LG, Gladue DP, Borca MV, Osorio JE. Optimization in the expression of ASFV proteins for the development of subunit vaccines using poxviruses as delivery vectors. Sci Rep 2021; 11:23476. [PMID: 34873256 PMCID: PMC8648923 DOI: 10.1038/s41598-021-02949-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/23/2021] [Indexed: 11/09/2022] Open
Abstract
African swine fever virus (ASFV) causes a highly contagious hemorrhagic disease that affects domestic pig and Eurasian wild boar populations. To date, no safe and efficacious treatment or vaccine against ASF is available. Nevertheless, there are several reports of protection elicited by experimental vaccines based on live attenuated ASFV and some levels of protection and reduced viremia in other approaches such as DNA, adenovirus, baculovirus, and vaccinia-based vaccines. Current ASF subunit vaccine research focuses mainly on delivering protective antigens and antigen discovery within the ASFV genome. However, due to the complex nature of ASFV, expression vectors need to be optimized to improve their immunogenicity. Therefore, in the present study, we constructed several recombinant MVA vectors to evaluate the efficiency of different promoters and secretory signal sequences in the expression and immunogenicity of the p30 protein from ASFV. Overall, the natural poxvirus PrMVA13.5L promoter induced high levels of both p30 mRNA and specific anti-p30 antibodies in mice. In contrast, the synthetic PrS5E promoter and the S E/L promoter linked to a secretory signal showed lower mRNA levels and antibodies. These findings indicate that promoter selection may be as crucial as the antigen used to develop ASFV subunit vaccines using MVA as the delivery vector.
Collapse
Affiliation(s)
- Jaime Lopera-Madrid
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Lex G Medina-Magües
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Douglas P Gladue
- Plum Island Animal Disease Center, Agricultural Research Service (ARS), Greenport, NY, 11944, USA
| | - Manuel V Borca
- Plum Island Animal Disease Center, Agricultural Research Service (ARS), Greenport, NY, 11944, USA
| | - Jorge E Osorio
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
7
|
Pelin A, Boulton S, Tamming LA, Bell JC, Singaravelu R. Engineering vaccinia virus as an immunotherapeutic battleship to overcome tumor heterogeneity. Expert Opin Biol Ther 2020; 20:1083-1097. [PMID: 32297534 DOI: 10.1080/14712598.2020.1757066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Immunotherapy is a rapidly evolving area of cancer therapeutics aimed at driving a systemic immune response to fight cancer. Oncolytic viruses (OVs) are at the cutting-edge of innovation in the immunotherapy field. Successful OV platforms must be effective in reshaping the tumor microenvironment and controlling tumor burden, but also be highly specific to avoid off-target side effects. Large DNA viruses, like vaccinia virus (VACV), have a large coding capacity, enabling the encoding of multiple immunostimulatory transgenes to reshape the tumor immune microenvironment. VACV-based OVs have shown promising results in both pre-clinical and clinical studies, including safe and efficient intravenous delivery to metastatic tumors. AREA COVERED This review summarizes attenuation strategies to generate a recombinant VACV with optimal tumor selectivity and immunogenicity. In addition, we discuss immunomodulatory transgenes that have been introduced into VACV and summarize their effectiveness in controlling tumor burden. EXPERT OPINION VACV encodes several immunomodulatory genes which aid the virus in overcoming innate and adaptive immune responses. Strategic deletion of these virulence factors will enable an optimal balance between viral persistence and immunogenicity, robust tumor-specific expression of payloads and promotion of a systemic anti-cancer immune response. Rational selection of therapeutic transgenes will maximize the efficacy of OVs and their synergy in combinatorial immunotherapy schemes.
Collapse
Affiliation(s)
- Adrian Pelin
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute , Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa , Ottawa, Ontario, Canada
| | - Stephen Boulton
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute , Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa , Ottawa, Ontario, Canada
| | - Levi A Tamming
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute , Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa , Ottawa, Ontario, Canada
| | - John C Bell
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute , Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa , Ottawa, Ontario, Canada
| | - Ragunath Singaravelu
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute , Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa , Ottawa, Ontario, Canada
| |
Collapse
|
8
|
Pérez P, Marín MQ, Lázaro-Frías A, Sorzano CÓS, Di Pilato M, Gómez CE, Esteban M, García-Arriaza J. An MVA Vector Expressing HIV-1 Envelope under the Control of a Potent Vaccinia Virus Promoter as a Promising Strategy in HIV/AIDS Vaccine Design. Vaccines (Basel) 2019; 7:vaccines7040208. [PMID: 31817622 PMCID: PMC6963416 DOI: 10.3390/vaccines7040208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 01/12/2023] Open
Abstract
Highly attenuated poxviral vectors, such as modified vaccinia virus ankara (MVA), are promising vaccine candidates against several infectious diseases. One of the approaches developed to enhance the immunogenicity of poxvirus vectors is increasing the promoter strength and accelerating during infection production levels of heterologous antigens. Here, we have generated and characterized the biology and immunogenicity of an optimized MVA-based vaccine candidate against HIV/AIDS expressing HIV-1 clade B gp120 protein under the control of a novel synthetic late/early optimized (LEO) promoter (LEO160 promoter; with a spacer length of 160 nucleotides), termed MVA-LEO160-gp120. In infected cells, MVA-LEO160-gp120 significantly increased the expression levels of HIV-1 gp120 mRNA and protein, compared to the clinical vaccine MVA-B vector expressing HIV-1 gp120 under the control of the commonly used synthetic early/late promoter. When mice were immunized with a heterologous DNA-prime/MVA-boost protocol, the immunization group DNA-gp120/MVA-LEO160-gp120 induced an enhancement in the magnitude of gp120-specific CD4+ and CD8+ T-cell responses, compared to DNA-gp120/MVA-B; with most of the responses being mediated by the CD8+ T-cell compartment, with a T effector memory phenotype. DNA-gp120/MVA-LEO160-gp120 also elicited a trend to a higher magnitude of gp120-specific CD4+ T follicular helper cells, and modest enhanced levels of antibodies against HIV-1 gp120. These findings revealed that this new optimized vaccinia virus promoter could be considered a promising strategy in HIV/AIDS vaccine design, confirming the importance of early expression of heterologous antigen and its impact on the antigen-specific immunogenicity elicited by poxvirus-based vectors.
Collapse
Affiliation(s)
- Patricia Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (P.P.); (M.Q.M.); (A.L.-F.); (C.E.G.)
| | - María Q. Marín
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (P.P.); (M.Q.M.); (A.L.-F.); (C.E.G.)
| | - Adrián Lázaro-Frías
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (P.P.); (M.Q.M.); (A.L.-F.); (C.E.G.)
| | - Carlos Óscar S. Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
| | - Mauro Di Pilato
- Infection and Immunity Group, Istituto di Ricerca in Biomedicina (IRB), Università Della Svizzera Italiana, CH-6500 Bellinzona, Switzerland;
| | - Carmen E. Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (P.P.); (M.Q.M.); (A.L.-F.); (C.E.G.)
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (P.P.); (M.Q.M.); (A.L.-F.); (C.E.G.)
- Correspondence: (M.E.); (J.G.-A.); Tel.: +34-915-854-553 (M.E.); +34-915-854-560 (J.G.-A.)
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (P.P.); (M.Q.M.); (A.L.-F.); (C.E.G.)
- Correspondence: (M.E.); (J.G.-A.); Tel.: +34-915-854-553 (M.E.); +34-915-854-560 (J.G.-A.)
| |
Collapse
|
9
|
Tao S, Tao R, Busch DH, Widera M, Schaal H, Drexler I. Sequestration of Late Antigens Within Viral Factories Impairs MVA Vector-Induced Protective Memory CTL Responses. Front Immunol 2019; 10:2850. [PMID: 31867011 PMCID: PMC6904312 DOI: 10.3389/fimmu.2019.02850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/20/2019] [Indexed: 01/22/2023] Open
Abstract
Cytotoxic CD8+ T cell (CTL) responses play an essential role in antiviral immunity. Here, we focused on the activation of CTL which recognize epitopes derived from viral or recombinant antigens with either early or late expression kinetics after infection with Modified Vaccinia Virus Ankara (MVA). Late antigens but not early antigens failed to efficiently stimulate murine CTL lines in vitro and were unable to activate and expand protective memory T cell responses in mice in vivo. The reduced or absent presentation of late antigens was not due to impaired antigen presentation or delayed protein synthesis, but was caused by sequestration of late antigens within viral factories (VFs). Additionally, the trapping of late antigens in VFs conflicts with antigen processing and presentation as proteasomal activity was strongly reduced or absent in VFs, suggesting inefficient antigen degradation. This study gives for the first time a mechanistic explanation for the weak immunogenicity of late viral antigens for memory CTL activation. Since MVA is preferentially used as a boost vector in heterologous prime/boost vaccinations, this is an important information for future vaccine design.
Collapse
Affiliation(s)
- Sha Tao
- Institute for Virology, Düsseldorf University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ronny Tao
- Institute for Virology, Düsseldorf University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Dirk H Busch
- Institute of Microbiology, Immunology and Hygiene, Technical University Munich, Munich, Germany
| | - Marek Widera
- Institute for Virology, Düsseldorf University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Heiner Schaal
- Institute for Virology, Düsseldorf University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ingo Drexler
- Institute for Virology, Düsseldorf University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
10
|
Steigerwald R, Brake DA, Barrera J, Schutta CJ, Kalla M, Wennier ST, Volkmann A, Hurtle W, Clark BA, Zurita M, Pisano M, Kamicker BJ, Puckette MC, Rasmussen MV, Neilan JG. Evaluation of modified Vaccinia Ankara-based vaccines against foot-and-mouth disease serotype A24 in cattle. Vaccine 2019; 38:769-778. [PMID: 31718901 DOI: 10.1016/j.vaccine.2019.10.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/23/2019] [Accepted: 10/31/2019] [Indexed: 10/25/2022]
Abstract
To prepare foot-and-mouth disease (FMD) recombinant vaccines in response to newly emerging FMD virus (FMDV) field strains, we evaluated Modified Vaccinia virus Ankara-Bavarian Nordic (MVA-BN®) as an FMD vaccine vector platform. The MVA-BN vector has the capacity to carry and express numerous foreign genes and thereby has the potential to encode antigens from multiple FMDV strains. Moreover, this vector has an extensive safety record in humans. All MVA-BN-FMD constructs expressed the FMDV A24 Cruzeiro P1 capsid polyprotein as antigen and the FMDV 3C protease required for processing of the polyprotein. Because the FMDV wild-type 3C protease is detrimental to mammalian cells, one of four FMDV 3C protease variants were utilized: wild-type, or one of three previously reported mutants intended to dampen protease activity (C142T, C142L) or to increase specificity and thereby reduce adverse effects (L127P). These 3C coding sequences were expressed under the control of different promoters selected to reduce 3C protease expression. Four MVA-BN-FMD constructs were evaluated in vitro for acceptable vector stability, FMDV P1 polyprotein expression, processing, and the potential for vaccine scale-up production. Two MVA-BN FMD constructs met the in vitro selection criteria to qualify for clinical studies: MVA-mBN360B (carrying a C142T mutant 3C protease and an HIV frameshift for reduced expression) and MVA-mBN386B (carrying a L127P mutant 3C protease). Both vaccines were safe in cattle and elicited low to moderate serum neutralization titers to FMDV following multiple dose administrations. Following FMDV homologous challenge, both vaccines conferred 100% protection against clinical FMD and viremia using single dose or prime-boost immunization regimens. The MVA-BN FMD vaccine platform was capable of differentiating infected from vaccinated animals (DIVA). The demonstration of the successful application of MVA-BN as an FMD vaccine vector provides a platform for further FMD vaccine development against more epidemiologically relevant FMDV strains.
Collapse
Affiliation(s)
- Robin Steigerwald
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, D-82152 Martinsried, Germany.
| | - David A Brake
- BioQuest Associates, LLC, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, United States.
| | - José Barrera
- Leidos, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, United States.
| | - Christopher J Schutta
- U.S. Department of Homeland Security Science and Technology Directorate, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, United States.
| | - Markus Kalla
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, D-82152 Martinsried, Germany.
| | - Sonia T Wennier
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, D-82152 Martinsried, Germany.
| | - Ariane Volkmann
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, D-82152 Martinsried, Germany.
| | - William Hurtle
- U.S. Department of Homeland Security Science and Technology Directorate, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, United States.
| | - Benjamin A Clark
- Leidos, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, United States.
| | - Mariceny Zurita
- Leidos, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, United States.
| | - Melia Pisano
- Leidos, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, United States.
| | - Barbara J Kamicker
- Leidos, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, United States.
| | - Michael C Puckette
- U.S. Department of Homeland Security Science and Technology Directorate, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, United States.
| | - Max V Rasmussen
- U.S. Department of Homeland Security Science and Technology Directorate, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, United States.
| | - John G Neilan
- U.S. Department of Homeland Security Science and Technology Directorate, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, United States.
| |
Collapse
|
11
|
Interference with SAMHD1 Restores Late Gene Expression of Modified Vaccinia Virus Ankara in Human Dendritic Cells and Abrogates Type I Interferon Expression. J Virol 2019; 93:JVI.01097-19. [PMID: 31462561 DOI: 10.1128/jvi.01097-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/21/2019] [Indexed: 12/13/2022] Open
Abstract
Attenuated poxviruses like modified vaccinia virus Ankara (MVA) are promising vectors for vaccines against infectious diseases and cancer. However, host innate immune responses interfere with the viral life cycle and also influence the immunogenicity of vaccine vectors. Sterile alpha motif (SAM) domain and histidine-aspartate (HD) domain-containing protein 1 (SAMHD1) is a phosphohydrolase and reduces cellular deoxynucleoside triphosphate (dNTP) concentrations, which impairs poxviral DNA replication in human dendritic cells (DCs). Human immunodeficiency virus type 2 (HIV-2) and simian immunodeficiency virus (SIV) encode an accessory protein called viral protein X (Vpx) that promotes proteasomal degradation of SAMHD1, leading to a rapid increase in cellular dNTP concentrations. To study the function of SAMHD1 during MVA infection of human DCs, the SIV vpx gene was introduced into the MVA genome (resulting in recombinant MVA-vpx). Infection of human DCs with MVA-vpx led to SAMHD1 protein degradation and enabled MVA-vpx to replicate its DNA genome and to express genes controlled by late promoters. Late gene expression by MVA-vpx might improve its vaccine vector properties; however, type I interferon expression was unexpectedly blocked by Vpx-expressing MVA. MVA-vpx can be used as a tool to study poxvirus-host interactions and vector safety.IMPORTANCE SAMHD1 is a phosphohydrolase and reduces cellular dNTP concentrations, which impairs poxviral DNA replication. The simian SIV accessory protein Vpx promotes degradation of SAMHD1, leading to increased cellular dNTP concentrations. Vpx addition enables poxviral DNA replication in human dendritic cells (DCs), as well as the expression of viral late proteins, which is normally blocked. SAMHD1 function during modified vaccinia virus Ankara (MVA) infection of human DCs was studied with recombinant MVA-vpx expressing Vpx. Infection of human DCs with MVA-vpx decreased SAMHD1 protein amounts, enabling MVA DNA replication and expression of late viral genes. Unexpectedly, type I interferon expression was blocked after MVA-vpx infection. MVA-vpx might be a good tool to study SAMHD1 depletion during poxviral infections and to provide insights into poxvirus-host interactions.
Collapse
|
12
|
Genomic Characterization of Orf Virus Strain D1701-V ( Parapoxvirus) and Development of Novel Sites for Multiple Transgene Expression. Viruses 2019; 11:v11020127. [PMID: 30704093 PMCID: PMC6409557 DOI: 10.3390/v11020127] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 02/06/2023] Open
Abstract
The Orf virus (ORFV; Parapoxvirus) strain D1701 with an attenuated phenotype and excellent immunogenic capacity is successfully used for the generation of recombinant vaccines against different viral infections. Adaption for growth in Vero cells was accompanied by additional major genomic changes resulting in ORFV strain variant D1701-V. In this study, restriction enzyme mapping, blot hybridization and DNA sequencing of the deleted region s (A, AT and D) in comparison to the predecessor strain D1701-B revealed the loss of 7 open reading frames (ORF008, ORF101, ORF102, ORF114, ORF115, ORF116, ORF117). The suitability of deletion site D for expression of foreign genes is demonstrated using novel synthetic early promoter eP1 and eP2. Comparison of promoter strength showed that the original vegf-e promoter Pv as well as promoter eP2 display an up to 11-fold stronger expression than promoter eP1, irrespective of the insertion site. Successful integration and expression of the fluorescent marker genes is demonstrated by gene- and insertion-site specific PCR assays, fluorescence microscopy and flow cytometry. For the first time ORFV recombinants are generated simultaneously expressing transgenes in two different insertion loci. That allows production of polyvalent vaccines containing several antigens against one or different pathogens in a single vectored ORFV vaccine.
Collapse
|
13
|
Alharbi NK. Poxviral promoters for improving the immunogenicity of MVA delivered vaccines. Hum Vaccin Immunother 2018; 15:203-209. [PMID: 30148692 DOI: 10.1080/21645515.2018.1513439] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Modified vaccinia virus Ankara (MVA) is a replication-deficient poxvirus, attenuated in chick embryo fibroblast primary cells. It has been utilised as a viral vector to develop many vaccines against cancer and infectious diseases such as malaria, HIV/AIDS, influenza, and tuberculosis, MERS-CoV, and Ebola virus infection. There is accumulating data from many preclinical and clinical studies that highlights the excellent safety and immunogenicity of MVA. However, due to the complex nature of many pathogens and their pathogenicity, MVA vectored vaccine candidates need to be optimised to improve their immunogenicity. One of the main approaches to improve MVA immunogenicity focuses on optimising poxviral promoters that drive recombinant vaccine antigens, encoded within recombinant MVA vector genome. A number of promoters were described or optimised to improve the development of MVA based vaccines such as p7.5, pF11, and mH5 promoters. This review focuses on poxviral promoters, their optimisation, genetic stability, and clinical use.
Collapse
Affiliation(s)
- Naif Khalaf Alharbi
- a Infectious Disease Research Department , King Abdullah International Medical Research Center (KAIMRC) , Riyadh , Saudi Arabia
| |
Collapse
|
14
|
Hu WG, Steigerwald R, Kalla M, Volkmann A, Noll D, Nagata LP. Protective efficacy of monovalent and trivalent recombinant MVA-based vaccines against three encephalitic alphaviruses. Vaccine 2018; 36:5194-5203. [DOI: 10.1016/j.vaccine.2018.06.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 06/24/2018] [Accepted: 06/27/2018] [Indexed: 12/17/2022]
|
15
|
Nagata LP, Irwin CR, Hu WG, Evans DH. Vaccinia-based vaccines to biothreat and emerging viruses. Biotechnol Genet Eng Rev 2018; 34:107-121. [PMID: 29779454 PMCID: PMC9491131 DOI: 10.1080/02648725.2018.1471643] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The past few years have seen a rash of emerging viral diseases, including the Ebola crisis in West Africa, the pandemic spread of chikungunya, and the recent explosion of Zika in South America. Vaccination is the most reliable and cost-effective method of control of infectious diseases, however, there is often a long delay in production and approval in getting new vaccines to market. Vaccinia was the first vaccine developed for the successful eradication of smallpox and has properties that make it attractive as a universal vaccine vector. Vaccinia can cause severe complications, particularly in immune suppressed recipients that would limit its utility, but nonreplicating and attenuated strains have been developed. Modified vaccinia Ankara is nonreplicating in human cells and can be safely given to immune suppressed individuals. Vaccinia has recently been modified for use as an oncolytic treatment for cancer therapy. These new vaccinia vectors are replicating; but have been attenuated and could prove useful as a universal vaccine carrier as many of these are in clinical trials for cancer therapy. This article reviews the development of a universal vaccinia vaccine platform for emerging diseases or biothreat agents, based on nonreplicating or live attenuated vaccinia viruses.
Collapse
Affiliation(s)
- Les P Nagata
- a Biothreat Defence Section, Defence R&D Canada , Suffield Research Centre , Ralston , Canada.,b Medical Microbiology and Immunology , University of Alberta , Edmonton , Canada
| | - Chad R Irwin
- b Medical Microbiology and Immunology , University of Alberta , Edmonton , Canada
| | - Wei-Gang Hu
- a Biothreat Defence Section, Defence R&D Canada , Suffield Research Centre , Ralston , Canada
| | - David H Evans
- b Medical Microbiology and Immunology , University of Alberta , Edmonton , Canada
| |
Collapse
|
16
|
Wang Q, Wu Z, Zhang J, Firrman J, Wei H, Zhuang Z, Liu L, Miao L, Hu Y, Li D, Diao Y, Xiao W. A Robust System for Production of Superabundant VP1 Recombinant AAV Vectors. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 7:146-156. [PMID: 29255740 PMCID: PMC5721209 DOI: 10.1016/j.omtm.2017.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 01/31/2023]
Abstract
Recombinant adeno-associated viral (rAAV) vectors have been widely used in human gene therapy. One major impediment to its broad application is the inability to produce high-quality vectors in mass quantity. Here, an efficient and scalable suspension cell culture system for the production of rAAV vectors is described. In this system, the AAV trans factors, Rep78, Rep52, VP1, VP2, and VP3, were stably integrated into a single vaccinia virus carrier by maximizing the use of alternative codons between genes with identical amino acids, and the cis rAAV genome was carried by an E1/E3 gene-deleted adenovirus. Infection of improved, E1 integrated, suspension-cultured cells with these two viral vectors resulted in the robust production of rAAV vectors. The newly enhanced system can consistently produce ∼1 × 1015 genome containing rAAV vectors per liter of suspension cells. Moreover, the capsid composition of rAAV vectors produced by this system is markedly different from those produced using the traditional system in that the VP1 protein is more abundant than the VP2 protein (19:1 versus 1:1). The unique VP1 superabundant rAAV vectors produced in this new system exhibited improved transduction in vivo after intravitreal injection.
Collapse
Affiliation(s)
- Qizhao Wang
- School of Biomedical Sciences, Huaqiao University, Quanzhou, Fujian, China.,Sol Sherry Thrombosis Research Center, Temple University, Philadelphia, PA, USA.,Byers Eye Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Zhongren Wu
- Sol Sherry Thrombosis Research Center, Temple University, Philadelphia, PA, USA
| | - Junping Zhang
- Sol Sherry Thrombosis Research Center, Temple University, Philadelphia, PA, USA
| | - Jenni Firrman
- Department of Microbiology and Immunology, Temple University, Philadelphia, PA, USA.,United States Department of Agriculture, ARS, ERRC, Wyndmoor, PA, USA
| | - Hongying Wei
- Sol Sherry Thrombosis Research Center, Temple University, Philadelphia, PA, USA
| | - Zhengjing Zhuang
- School of Biomedical Sciences, Huaqiao University, Quanzhou, Fujian, China
| | - LinShu Liu
- United States Department of Agriculture, ARS, ERRC, Wyndmoor, PA, USA
| | - Linqing Miao
- Shriners Hospital Pediatric Research Center, Temple University, Philadelphia, PA, USA
| | - Yang Hu
- Byers Eye Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Dong Li
- Department of Clinical Laboratory, Tongji Hospital of Tongji University, Shanghai, China
| | - Yong Diao
- School of Biomedical Sciences, Huaqiao University, Quanzhou, Fujian, China
| | - Weidong Xiao
- School of Biomedical Sciences, Huaqiao University, Quanzhou, Fujian, China.,Sol Sherry Thrombosis Research Center, Temple University, Philadelphia, PA, USA.,Department of Microbiology and Immunology, Temple University, Philadelphia, PA, USA.,Cardiovascular Research Center, Temple University, Philadelphia, PA, USA.,Department of Clinical Laboratory, Tongji Hospital of Tongji University, Shanghai, China
| |
Collapse
|
17
|
Okeke MI, Okoli AS, Diaz D, Offor C, Oludotun TG, Tryland M, Bøhn T, Moens U. Hazard Characterization of Modified Vaccinia Virus Ankara Vector: What Are the Knowledge Gaps? Viruses 2017; 9:v9110318. [PMID: 29109380 PMCID: PMC5707525 DOI: 10.3390/v9110318] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/21/2017] [Accepted: 10/26/2017] [Indexed: 12/17/2022] Open
Abstract
Modified vaccinia virus Ankara (MVA) is the vector of choice for human and veterinary applications due to its strong safety profile and immunogenicity in vivo. The use of MVA and MVA-vectored vaccines against human and animal diseases must comply with regulatory requirements as they pertain to environmental risk assessment, particularly the characterization of potential adverse effects to humans, animals and the environment. MVA and recombinant MVA are widely believed to pose low or negligible risk to ecosystem health. However, key aspects of MVA biology require further research in order to provide data needed to evaluate the potential risks that may occur due to the use of MVA and MVA-vectored vaccines. The purpose of this paper is to identify knowledge gaps in the biology of MVA and recombinant MVA that are of relevance to its hazard characterization and discuss ongoing and future experiments aimed at providing data necessary to fill in the knowledge gaps. In addition, we presented arguments for the inclusion of uncertainty analysis and experimental investigation of verifiable worst-case scenarios in the environmental risk assessment of MVA and recombinant MVA. These will contribute to improved risk assessment of MVA and recombinant MVA vaccines.
Collapse
Affiliation(s)
- Malachy I Okeke
- Genome Editing Research Group, GenØk-Center for Biosafety, Siva Innovation Center, N-9294 Tromso, Norway.
| | - Arinze S Okoli
- Genome Editing Research Group, GenØk-Center for Biosafety, Siva Innovation Center, N-9294 Tromso, Norway.
| | - Diana Diaz
- Molecular Inflammation Research Group, Institute of Medical Biology, University i Tromsø (UiT)-The Arctic University of Norway, N-9037 Tromso, Norway.
| | - Collins Offor
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences Piaristengasse 1, A-3500 Krems, Austria.
| | - Taiwo G Oludotun
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences Piaristengasse 1, A-3500 Krems, Austria.
| | - Morten Tryland
- Genome Editing Research Group, GenØk-Center for Biosafety, Siva Innovation Center, N-9294 Tromso, Norway.
- Artic Infection Biology, Department of Artic and Marine Biology, UIT-The Artic University of Norway, N-9037 Tromso, Norway.
| | - Thomas Bøhn
- Genome Editing Research Group, GenØk-Center for Biosafety, Siva Innovation Center, N-9294 Tromso, Norway.
| | - Ugo Moens
- Molecular Inflammation Research Group, Institute of Medical Biology, University i Tromsø (UiT)-The Arctic University of Norway, N-9037 Tromso, Norway.
| |
Collapse
|
18
|
Recombinant Modified Vaccinia Virus Ankara Generating Ebola Virus-Like Particles. J Virol 2017; 91:JVI.00343-17. [PMID: 28331098 DOI: 10.1128/jvi.00343-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/12/2017] [Indexed: 12/29/2022] Open
Abstract
There are currently no approved therapeutics or vaccines to treat or protect against the severe hemorrhagic fever and death caused by Ebola virus (EBOV). Ebola virus-like particles (EBOV VLPs) consisting of the matrix protein VP40, the glycoprotein (GP), and the nucleoprotein (NP) are highly immunogenic and protective in nonhuman primates against Ebola virus disease (EVD). We have constructed a modified vaccinia virus Ankara-Bavarian Nordic (MVA-BN) recombinant coexpressing VP40 and GP of EBOV Mayinga and the NP of Taï Forest virus (TAFV) (MVA-BN-EBOV-VLP) to launch noninfectious EBOV VLPs as a second vaccine modality in the MVA-BN-EBOV-VLP-vaccinated organism. Human cells infected with either MVA-BN-EBOV-VLP or MVA-BN-EBOV-GP showed comparable GP expression levels and transport of complex N-glycosylated GP to the cell surface. Human cells infected with MVA-BN-EBOV-VLP produced large amounts of EBOV VLPs that were decorated with GP spikes but excluded the poxviral membrane protein B5, thus resembling authentic EBOV particles. The heterologous TAFV NP enhanced EBOV VP40-driven VLP formation with efficiency similar to that of the homologous EBOV NP in a transient-expression assay, and both NPs were incorporated into EBOV VLPs. EBOV GP-specific CD8 T cell responses were comparable between MVA-BN-EBOV-VLP- and MVA-BN-EBOV-GP-immunized mice. The levels of EBOV GP-specific neutralizing and binding antibodies, as well as GP-specific IgG1/IgG2a ratios induced by the two constructs, in mice were also similar, raising the question whether the quality rather than the quantity of the GP-specific antibody response might be altered by an EBOV VLP-generating MVA recombinant.IMPORTANCE The recent outbreak of Ebola virus (EBOV), claiming more than 11,000 lives, has underscored the need to advance the development of safe and effective filovirus vaccines. Virus-like particles (VLPs), as well as recombinant viral vectors, have proved to be promising vaccine candidates. Modified vaccinia virus Ankara-Bavarian Nordic (MVA-BN) is a safe and immunogenic vaccine vector with a large capacity to accommodate multiple foreign genes. In this study, we combined the advantages of VLPs and the MVA platform by generating a recombinant MVA-BN-EBOV-VLP that would produce noninfectious EBOV VLPs in the vaccinated individual. Our results show that human cells infected with MVA-BN-EBOV-VLP indeed formed and released EBOV VLPs, thus producing a highly authentic immunogen. MVA-BN-EBOV-VLP efficiently induced EBOV-specific humoral and cellular immune responses in vaccinated mice. These results are the basis for future advancements, e.g., by including antigens from various filoviral species to develop multivalent VLP-producing MVA-based filovirus vaccines.
Collapse
|
19
|
Volz A, Sutter G. Modified Vaccinia Virus Ankara: History, Value in Basic Research, and Current Perspectives for Vaccine Development. Adv Virus Res 2016; 97:187-243. [PMID: 28057259 PMCID: PMC7112317 DOI: 10.1016/bs.aivir.2016.07.001] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Safety tested Modified Vaccinia virus Ankara (MVA) is licensed as third-generation vaccine against smallpox and serves as a potent vector system for development of new candidate vaccines against infectious diseases and cancer. Historically, MVA was developed by serial tissue culture passage in primary chicken cells of vaccinia virus strain Ankara, and clinically used to avoid the undesirable side effects of conventional smallpox vaccination. Adapted to growth in avian cells MVA lost the ability to replicate in mammalian hosts and lacks many of the genes orthopoxviruses use to conquer their host (cell) environment. As a biologically well-characterized mutant virus, MVA facilitates fundamental research to elucidate the functions of poxvirus host-interaction factors. As extremely safe viral vectors MVA vaccines have been found immunogenic and protective in various preclinical infection models. Multiple recombinant MVA currently undergo clinical testing for vaccination against human immunodeficiency viruses, Mycobacterium tuberculosis or Plasmodium falciparum. The versatility of the MVA vector vaccine platform is readily demonstrated by the swift development of experimental vaccines for immunization against emerging infections such as the Middle East Respiratory Syndrome. Recent advances include promising results from the clinical testing of recombinant MVA-producing antigens of highly pathogenic avian influenza virus H5N1 or Ebola virus. This review summarizes our current knowledge about MVA as a unique strain of vaccinia virus, and discusses the prospects of exploiting this virus as research tool in poxvirus biology or as safe viral vector vaccine to challenge existing and future bottlenecks in vaccinology.
Collapse
Affiliation(s)
- A Volz
- German Center for Infection Research (DZIF), Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Munich, Germany
| | - G Sutter
- German Center for Infection Research (DZIF), Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Munich, Germany.
| |
Collapse
|
20
|
García-Arriaza J, Esteban M. Enhancing poxvirus vectors vaccine immunogenicity. Hum Vaccin Immunother 2015; 10:2235-44. [PMID: 25424927 DOI: 10.4161/hv.28974] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Attenuated recombinant poxvirus vectors expressing heterologous antigens from pathogens are currently at various stages in clinical trials with the aim to establish their efficacy. This is because these vectors have shown excellent safety profiles, significant immunogenicity against foreign expressed antigens and are able to induce protective immune responses. In view of the limited efficacy triggered by some poxvirus strains used in clinical trials (i.e, ALVAC in the RV144 phase III clinical trial for HIV), and of the restrictive replication capacity of the highly attenuated vectors like MVA and NYVAC, there is a consensus that further improvements of these vectors should be pursuit. In this review we considered several strategies that are currently being implemented, as well as new approaches, to improve the immunogenicity of the poxvirus vectors. This includes heterologous prime/boost protocols, use of co-stimulatory molecules, deletion of viral immunomodulatory genes still present in the poxvirus genome, enhancing virus promoter strength, enhancing vector replication capacity, optimizing expression of foreign heterologous sequences, and the combined use of adjuvants. An optimized poxvirus vector triggering long-lasting immunity with a high protective efficacy against a selective disease should be sought.
Collapse
Affiliation(s)
- Juan García-Arriaza
- a Department of Molecular and Cellular Biology; Centro Nacional de Biotecnología; Consejo Superior de Investigaciones Científicas (CSIC); Madrid, Spain
| | | |
Collapse
|
21
|
Di Pilato M, Sánchez-Sampedro L, Mejías-Pérez E, Sorzano COS, Esteban M. Modification of promoter spacer length in vaccinia virus as a strategy to control the antigen expression. J Gen Virol 2015; 96:2360-2371. [PMID: 25972354 DOI: 10.1099/vir.0.000183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Vaccinia viruses (VACVs) with distinct early promoters have been developed to enhance antigen expression and improve antigen-specific CD8 T-cell responses. It has not been demonstrated how the length of the spacer between the coding region of the gene and its regulatory early promoter motif influences antigen expression, and whether the timing of gene expression can modify the antigen-specific CD4 T-cell response. We generated several recombinant VACVs based on the attenuated modified vaccinia Ankara (MVA) strain, which express GFP or the Leishmania LACK antigen under the control of an optimized promoter, using different spacer lengths. Longer spacer length increased GFP and LACK early expression, which correlated with an enhanced LACK-specific memory CD4 and CD8 T-cell response. These results show the importance of promoter spacer length for early antigen expression by VACV and provide alternative strategies for the design of poxvirus-based vaccines.
Collapse
Affiliation(s)
- Mauro Di Pilato
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Lucas Sánchez-Sampedro
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Ernesto Mejías-Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | | | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
22
|
Sánchez-Sampedro L, Perdiguero B, Mejías-Pérez E, García-Arriaza J, Di Pilato M, Esteban M. The evolution of poxvirus vaccines. Viruses 2015; 7:1726-803. [PMID: 25853483 PMCID: PMC4411676 DOI: 10.3390/v7041726] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/16/2015] [Accepted: 03/27/2015] [Indexed: 02/07/2023] Open
Abstract
After Edward Jenner established human vaccination over 200 years ago, attenuated poxviruses became key players to contain the deadliest virus of its own family: Variola virus (VARV), the causative agent of smallpox. Cowpox virus (CPXV) and horsepox virus (HSPV) were extensively used to this end, passaged in cattle and humans until the appearance of vaccinia virus (VACV), which was used in the final campaigns aimed to eradicate the disease, an endeavor that was accomplished by the World Health Organization (WHO) in 1980. Ever since, naturally evolved strains used for vaccination were introduced into research laboratories where VACV and other poxviruses with improved safety profiles were generated. Recombinant DNA technology along with the DNA genome features of this virus family allowed the generation of vaccines against heterologous diseases, and the specific insertion and deletion of poxvirus genes generated an even broader spectrum of modified viruses with new properties that increase their immunogenicity and safety profile as vaccine vectors. In this review, we highlight the evolution of poxvirus vaccines, from first generation to the current status, pointing out how different vaccines have emerged and approaches that are being followed up in the development of more rational vaccines against a wide range of diseases.
Collapse
MESH Headings
- Animals
- History, 18th Century
- History, 19th Century
- History, 20th Century
- History, 21st Century
- Humans
- Poxviridae/immunology
- Poxviridae/isolation & purification
- Smallpox/prevention & control
- Smallpox Vaccine/history
- Smallpox Vaccine/immunology
- Smallpox Vaccine/isolation & purification
- Vaccines, Attenuated/history
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/isolation & purification
- Vaccines, Synthetic/history
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/isolation & purification
Collapse
Affiliation(s)
- Lucas Sánchez-Sampedro
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Ernesto Mejías-Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain
| | - Mauro Di Pilato
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| |
Collapse
|
23
|
Croft NP, de Verteuil DA, Smith SA, Wong YC, Schittenhelm RB, Tscharke DC, Purcell AW. Simultaneous Quantification of Viral Antigen Expression Kinetics Using Data-Independent (DIA) Mass Spectrometry. Mol Cell Proteomics 2015; 14:1361-72. [PMID: 25755296 DOI: 10.1074/mcp.m114.047373] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Indexed: 11/06/2022] Open
Abstract
The generation of antigen-specific reagents is a significant bottleneck in the study of complex pathogens that express many hundreds to thousands of different proteins or to emerging or new strains of viruses that display potential pandemic qualities and therefore require rapid investigation. In these instances the development of antibodies for example can be prohibitively expensive to cover the full pathogen proteome, or the lead time may be unacceptably long in urgent cases where new highly pathogenic viral strains may emerge. Because genomic information on such pathogens can be rapidly acquired this opens up avenues using mass spectrometric approaches to study pathogen antigen expression, host responses and for screening the utility of therapeutics. In particular, data-independent acquisition (DIA) modalities on high-resolution mass spectrometers generate spectral information on all components of a complex sample providing depth of coverage hitherto only seen in genomic deep sequencing. The spectral information generated by DIA can be iteratively interrogated for potentially any protein of interest providing both evidence of protein expression and quantitation. Here we apply a solely DIA mass spectrometry based methodology to profile the viral antigen expression in cells infected with vaccinia virus up to 9 h post infection without the need for antigen specific antibodies or other reagents. We demonstrate deep coverage of the vaccinia virus proteome using a SWATH-MS acquisition approach, extracting quantitative kinetics of 100 virus proteins within a single experiment. The results highlight the complexity of vaccinia protein expression, complementing what is known at the transcriptomic level, and provide a valuable resource and technique for future studies of viral infection and replication kinetics. Furthermore, they highlight the utility of DIA and mass spectrometry in the dissection of host-pathogen interactions.
Collapse
Affiliation(s)
- Nathan P Croft
- From the ‡Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3141, Australia
| | - Danielle A de Verteuil
- From the ‡Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3141, Australia
| | - Stewart A Smith
- §Research School of Biology, The Australian National University, Canberra, ACT, 0200, Australia
| | - Yik Chun Wong
- §Research School of Biology, The Australian National University, Canberra, ACT, 0200, Australia
| | - Ralf B Schittenhelm
- From the ‡Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3141, Australia
| | - David C Tscharke
- §Research School of Biology, The Australian National University, Canberra, ACT, 0200, Australia
| | - Anthony W Purcell
- From the ‡Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3141, Australia;
| |
Collapse
|