1
|
Fiz-López A, De Prado Á, Arribas-Rodríguez E, García-Alonso FJ, Izquierdo S, Martín-Muñoz Á, Garrote JA, Arranz E, Barrio J, Fernández-Salazar L, Bernardo D. Biological variability of human intraepithelial lymphocytes throughout the human gastrointestinal tract in health and coeliac disease. Eur J Clin Invest 2024; 54:e14304. [PMID: 39210517 DOI: 10.1111/eci.14304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Intraepithelial lymphocytes are the first line of defence of the human intestinal immune system. Besides, their composition is altered on patients with coeliac disease (CD), so they are considered as biomarkers with utility on their diagnose and/or monitoring. Our aim is to address their variability through the human gastrointestinal tract in health and characterized them in further depth in the coeliac duodenum. METHODS Intraepithelial lymphocytes were isolated from human gastric, duodenal, ileal and colonic biopsies, then stained with specific antibodies and acquired by flow cytometry. RESULTS Our results confirmed that the profile of Intraepithelial lymphocytes change through the length of the human gastrointestinal tract. Besides and given the central role that Interleukin-15 (IL-15) elicits on CD pathogenesis; we also assessed the expression of its receptor revealing that there was virtually no functional IL-15 receptor on duodenal Intraepithelial lymphocytes. Nevertheless and contrary to our expectations, the active IL-15 receptor was not increased either on Intraepithelial lymphocytes from CD patients. CONCLUSIONS IL-15 might require additional stimulus to activate intraepithelial lymphocytes. These findings may provide novel tools to aid on a CD diagnosis and/or monitoring, at the time that provide the bases to perform functional studies in order of getting a deeper insight in the specific function that Intraepithelial lymphocytes elicit on CD pathogenesis.
Collapse
Affiliation(s)
- Aida Fiz-López
- Mucosal Immunology Lab, Unidad de Excelencia Instituto Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Ángel De Prado
- Mucosal Immunology Lab, Unidad de Excelencia Instituto Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, Valladolid, Spain
- Servicio de Gastroenterología, Hospital Universitario Río Hortega, Valladolid, Spain
| | - Elisa Arribas-Rodríguez
- Mucosal Immunology Lab, Unidad de Excelencia Instituto Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, Valladolid, Spain
| | | | - Sandra Izquierdo
- Servicio de Gastroenterología, Hospital Clínico Universitario, Valladolid, Spain
| | - Álvaro Martín-Muñoz
- Cytometry Facility, Unidad de Excelencia Instituto Biomedicina y Genética Molecular (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
| | - José A Garrote
- Mucosal Immunology Lab, Unidad de Excelencia Instituto Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Eduardo Arranz
- Mucosal Immunology Lab, Unidad de Excelencia Instituto Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Jesús Barrio
- Servicio de Gastroenterología, Hospital Universitario Río Hortega, Valladolid, Spain
| | - Luis Fernández-Salazar
- Servicio de Gastroenterología, Hospital Clínico Universitario, Valladolid, Spain
- Departamento de Medicina, Dermatología y Toxicología, Universidad de Valladolid, Valladolid, Spain
| | - David Bernardo
- Mucosal Immunology Lab, Unidad de Excelencia Instituto Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, Valladolid, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| |
Collapse
|
2
|
Rahmani S, Galipeau HJ, Clarizio AV, Wang X, Hann A, Rueda GH, Kirtikar UN, Constante M, Wulczynski M, Su HM, Burchett R, Bramson JL, Pinto-Sanchez MI, Stefanolo JP, Niveloni S, Surette MG, Murray JA, Anderson RP, Bercik P, Caminero A, Chirdo FG, F Didar T, Verdu EF. Gluten-Dependent Activation of CD4 + T Cells by MHC Class II-Expressing Epithelium. Gastroenterology 2024; 167:1113-1128. [PMID: 39128638 DOI: 10.1053/j.gastro.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND & AIMS Intestinal epithelial cell (IEC) damage is a hallmark of celiac disease (CeD); however, its role in gluten-dependent T-cell activation is unknown. We investigated IEC-gluten-T-cell interactions in organoid monolayers expressing human major histocompatibility complex class II (HLA-DQ2.5), which facilitates gluten antigen recognition by CD4+ T cells in CeD. METHODS Epithelial major histocompatibility complex class II (MHCII) was determined in active and treated CeD, and in nonimmunized and gluten-immunized DR3-DQ2.5 transgenic mice, lacking mouse MHCII molecules. Organoid monolayers from DR3-DQ2.5 mice were treated with or without interferon (IFN)-γ, and MHCII expression was evaluated by flow cytometry. Organoid monolayers and CD4+ T-cell co-cultures were incubated with gluten, predigested, or not by elastase-producing Pseudomonas aeruginosa or its lasB mutant. T-cell function was assessed based on proliferation, expression of activation markers, and cytokine release in the co-culture supernatants. RESULTS Patients with active CeD and gluten-immunized DR3-DQ2.5 mice demonstrated epithelial MHCII expression. Organoid monolayers derived from gluten-immunized DR3-DQ2.5 mice expressed MHCII, which was upregulated by IFN-γ. In organoid monolayer T-cell co-cultures, gluten increased the proliferation of CD4+ T cells, expression of T-cell activation markers, and the release of interleukin-2, IFN-γ, and interleukin-15 in co-culture supernatants. Gluten metabolized by P aeruginosa, but not the lasB mutant, enhanced CD4+ T-cell proliferation and activation. CONCLUSIONS Gluten antigens are efficiently presented by MHCII-expressing IECs, resulting in the activation of gluten-specific CD4+ T cells, which is enhanced by gluten predigestion with microbial elastase. Therapeutics directed at IECs may offer a novel approach for modulating both adaptive and innate immunity in patients with CeD.
Collapse
Affiliation(s)
- Sara Rahmani
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Heather J Galipeau
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Alexandra V Clarizio
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Xuanyu Wang
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Amber Hann
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gaston H Rueda
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Utkarshini N Kirtikar
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Marco Constante
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Mark Wulczynski
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Hsuan-Ming Su
- Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Rebecca Burchett
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | - Maria Ines Pinto-Sanchez
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | - Michael G Surette
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Joseph A Murray
- Division of Gastroenterology and Hepatology, Department of Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | | | - Premysl Bercik
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Alberto Caminero
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Fernando G Chirdo
- Instituto de Estudios Inmunológicos y Fisiopatológicos - IIFP (UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada.
| | - Elena F Verdu
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
3
|
Wei L, Xiang Z, Zou Y. The Role of NKG2D and Its Ligands in Autoimmune Diseases: New Targets for Immunotherapy. Int J Mol Sci 2023; 24:17545. [PMID: 38139373 PMCID: PMC10744089 DOI: 10.3390/ijms242417545] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Natural killer (NK) cells and CD8+ T cells can clear infected and transformed cells and generate tolerance to themselves, which also prevents autoimmune diseases. Natural killer group 2 member D (NKG2D) is an important activating immune receptor that is expressed on NK cells, CD8+ T cells, γδ T cells, and a very small percentage of CD4+ T cells. In contrast, the NKG2D ligand (NKG2D-L) is generally not expressed on normal cells but is overexpressed under stress. Thus, the inappropriate expression of NKG2D-L leads to the activation of self-reactive effector cells, which can trigger or exacerbate autoimmunity. In this review, we discuss the role of NKG2D and NKG2D-L in systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), multiple sclerosis (MS), type I diabetes (T1DM), inflammatory bowel disease (IBD), and celiac disease (CeD). The data suggest that NKG2D and NKG2D-L play a pathogenic role in some autoimmune diseases. Therefore, the development of strategies to block the interaction of NKG2D and NKG2D-L may have therapeutic effects in some autoimmune diseases.
Collapse
Affiliation(s)
| | | | - Yizhou Zou
- Department of Immunology, School of Basic Medical, Central South University, Changsha 410083, China; (L.W.); (Z.X.)
| |
Collapse
|
4
|
Mackay S, Frazer LC, Bailey GK, Miller CM, Gong Q, Dewitt ON, Singh DK, Good M. Identification of serum biomarkers for necrotizing enterocolitis using aptamer-based proteomics. Front Pediatr 2023; 11:1184940. [PMID: 37325361 PMCID: PMC10264655 DOI: 10.3389/fped.2023.1184940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction Necrotizing enterocolitis (NEC) is a potentially fatal intestinal disease primarily affecting preterm infants. Early diagnosis of neonates with NEC is crucial to improving outcomes; however, traditional diagnostic tools remain inadequate. Biomarkers represent an opportunity to improve the speed and accuracy of diagnosis, but they are not routinely used in clinical practice. Methods In this study, we utilized an aptamer-based proteomic discovery assay to identify new serum biomarkers of NEC. We compared levels of serum proteins in neonates with and without NEC and identified ten differentially expressed serum proteins between these groups. Results We detected two proteins, C-C motif chemokine ligand 16 (CCL16) and immunoglobulin heavy constant alpha 1 and 2 heterodimer (IGHA1 IGHA2), that were significantly increased during NEC and eight that were significantly decreased. Generation of receiver operating characteristic (ROC) curves revealed that alpha-fetoprotein (AUC = 0.926), glucagon (AUC = 0.860), and IGHA1 IGHA2 (AUC = 0.826) were the proteins that best differentiated patients with and without NEC. Discussion These findings indicate that further investigation into these serum proteins as a biomarker for NEC is warranted. In the future, laboratory tests incorporating these differentially expressed proteins may improve the ability of clinicians to diagnose infants with NEC rapidly and accurately.
Collapse
Affiliation(s)
- Stephen Mackay
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, The University of North Carolina at Chapel Hill, NC, United States
| | - Lauren C. Frazer
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, The University of North Carolina at Chapel Hill, NC, United States
| | - Grace K. Bailey
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, The University of North Carolina at Chapel Hill, NC, United States
| | - Claire M. Miller
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, The University of North Carolina at Chapel Hill, NC, United States
| | - Qingqing Gong
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Olivia N. Dewitt
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Dhirendra K. Singh
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, The University of North Carolina at Chapel Hill, NC, United States
| | - Misty Good
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, The University of North Carolina at Chapel Hill, NC, United States
| |
Collapse
|
5
|
Dore MP, Errigo A, Bibbò S, Manca A, Pes GM. High Frequency of Glucose-6-Phosphate Dehydrogenase Deficiency in Patients Diagnosed with Celiac Disease. Nutrients 2022; 14:1815. [PMID: 35565779 PMCID: PMC9099929 DOI: 10.3390/nu14091815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 01/13/2023] Open
Abstract
Celiac disease (CD) is characterized by a proinflammatory state associated with the production of reactive oxygen species, i.e., a condition of oxidative stress. In this study, we tested the hypothesis that the inherited deficiency of glucose-6-phosphate dehydrogenase (G6PD), by causing impaired antioxidant defense, may increase the risk of CD. METHODS A retrospective monocentric case-control study was performed using the clinical records of 8338 outpatients (64.6% women) scheduled for upper endoscopy between 2002 and 2021 in Northern Sardinia. Overall, 627 were found to have CD (7.5%), and 1027 resulted to be G6PD-deficiency carriers (12.3%). Since randomization was impractical, the potential covariates imbalance between cases and controls was minimized using a 1:2 propensity-score-matched (PSM) analysis. RESULTS Overall, G6PD deficiency was associated with increased risk of CD (odds ratio (OR) 1.50; 95% confidence interval (CI) 1.19-1.90). The PSM procedure identified 1027 G6PD-deficient and 2054 normal patients. Logistic regression including the propensity score detected for G6PD deficiency an OR of 1.48 (95%CI 1.13-1.95; p = 0.004). CONCLUSIONS Our findings show that the enzyme defect was significantly and positively associated with CD, in line with the pro-oxidant impact of the enzyme defect observed in animal models and humans.
Collapse
Affiliation(s)
- Maria Pina Dore
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy; (S.B.); (A.M.); (G.M.P.)
- Baylor College of Medicine, One Baylor Plaza Blvd, Houston, TX 77030, USA
| | - Alessandra Errigo
- Dipartimento di Scienze Biomediche, University of Sassari, Viale San Pietro 43B, 07100 Sassari, Italy;
| | - Stefano Bibbò
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy; (S.B.); (A.M.); (G.M.P.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy
| | - Alessandra Manca
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy; (S.B.); (A.M.); (G.M.P.)
| | - Giovanni Mario Pes
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy; (S.B.); (A.M.); (G.M.P.)
- Sardinia Longevity Blue Zone Observatory, 08040 Nuoro, Italy
| |
Collapse
|
6
|
Iacob S, Cicinnati V, Kabar I, Hüsing-Kabar A, Radtke A, Iacob R, Baba H, Schmidt HH, Paul A, Beckebaum S. Prediction of late allograft dysfunction following liver transplantation by immunological blood biomarkers. Transpl Immunol 2021; 69:101448. [PMID: 34391882 DOI: 10.1016/j.trim.2021.101448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 02/09/2023]
Abstract
BACKGROUND An accelerated course of hepatic fibrosis may occur in liver transplantation (LT) patients despite normal or slightly abnormal liver blood tests. AIM To identify screening tools based on blood biomarkers to predict late allograft dysfunction in LT recipients. METHODS 174 LT recipients were enrolled. Liver biopsy, liver functional tests, cytokine quantitation in serum, as well as soluble MHC class I polypeptide-related sequence A and B (sMICA/sMICB) and soluble UL16 binding protein 2 (sULBP2) were performed. RESULTS Patients with late graft dysfunction had a significantly higher donor age, lower albumin level, higher alanine (ALT) and aspartate aminotransferase (AST), gamma-glutamyl transpeptidase (GGT), total bilirubin and alkaline phosphatase (ALP), higher sMICA, sULBP2, higher interleukin (IL) 6, interferon γ and lower IL10 in serum as compared to recipients without allograft dysfunction. In order to provide a better statistical accuracy for discriminating 5-year allograft dysfunction from other less progressive subtype of allograft injury, we established a predictive model, based on 7 parameters (serum ALP, ALT, AST, GGT, sMICA, IL6 and albumin) which provided an Area Under the Receiver Operating Characteristics (AUROC) curve of 0.905. CONCLUSIONS Blood-based biomarkers can significantly improve prediction of late liver allograft outcome in LT patients. The new developed score comprising serum parameters, with an excellent AUROC, can be reliably used for diagnosing late allograft dysfunction in transplanted patients.
Collapse
Affiliation(s)
- Speranta Iacob
- Center for Digestive Diseases and Liver Transplantation, Fundeni Clinical Institute, Bucharest, Romania; Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.
| | - Vito Cicinnati
- Department of Medicine B for Gastroenterology and Hepatology, University Hospital Muenster, 48149 Muenster, Germany
| | - Iyad Kabar
- Department of Medicine B for Gastroenterology and Hepatology, University Hospital Muenster, 48149 Muenster, Germany
| | - Anna Hüsing-Kabar
- Department of Medicine B for Gastroenterology and Hepatology, University Hospital Muenster, 48149 Muenster, Germany
| | - Arnold Radtke
- Department of General, Visceral and Transplant Surgery, Comprehensive Cancer Center, University of Tübingen, 72076 Tübingen, Germany
| | - Razvan Iacob
- Center for Digestive Diseases and Liver Transplantation, Fundeni Clinical Institute, Bucharest, Romania; Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Hideo Baba
- Institute for Pathology, University Hospital Essen, 45147 Essen, Germany
| | - Hartmut H Schmidt
- Department of Medicine B for Gastroenterology and Hepatology, University Hospital Muenster, 48149 Muenster, Germany
| | - Andreas Paul
- Department of General, Visceral and Transplantation Surgery, University Hospital Essen, 45147 Essen, Germany
| | - Susanne Beckebaum
- Department of Medicine B for Gastroenterology and Hepatology, University Hospital Muenster, 48149 Muenster, Germany
| |
Collapse
|
7
|
Hernández C, Toledo-Stuardo K, García-González P, Garrido-Tapia M, Kramm K, Rodríguez-Siza JA, Hermoso M, Ribeiro CH, Molina MC. Heat-killed Helicobacter pylori upregulates NKG2D ligands expression on gastric adenocarcinoma cells via Toll-like receptor 4. Helicobacter 2021; 26:e12812. [PMID: 33928707 DOI: 10.1111/hel.12812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/14/2021] [Accepted: 04/03/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Natural killer (NK) cells are paramount for immunity against infectious agents and tumors. Their cytokine and cytolytic responses can be mediated by natural killer group 2, member D (NKG2D), an activating receptor whose ligands (NKG2DL) expression is induced in conditions of cell stress and malignant transformation. Since sustained expression of NKG2DL MICA is related to lower survival rates in gastric adenocarcinoma patients, and Helicobacter pylori infection contributes to tumorigenesis; we asked whether H. pylori stimulus could promote NKG2DL expression on human gastric adenocarcinoma cells. METHODS Heat-killed H. pylori (HKHP) was used to stimulate MKN45 cells before analysis of NKG2DL and Toll-like receptor 4 (TLR4) protein levels by flow cytometry and transcripts by real-time PCR. LPS from Rhodobacter sphaeroides and inhibitory peptide Pepinh MYD were used to inhibit TLR4/MyD88 signaling pathway to assess its participation on NKG2DL expression. NK cell-mediated cytotoxicity was measured by lactate dehydrogenase (LDH) and CD107a mobilization assays. RESULTS Stimulation of MKN45 cells with HKHP increased MICA, ULBP4 (another NKG2DL), and TLR4 at the protein and transcriptional levels. MICA, but not ULBP4 expression, was upregulated in a TLR4/MyD88-dependent manner. Furthermore, the presence of NKG2DL on the surface of HKHP-stimulated MKN45 cells enabled NK cell cytotoxic activation. CONCLUSIONS Our data indicate that induction of NKG2DL expression on gastric adenocarcinoma cells by H. pylori promotes an immune response that may ultimately contribute to either gastric tissue damage, as a consequence of persistent activation of immunity, or tumor immune evasion due to chronic NKG2DL expression.
Collapse
Affiliation(s)
- Carolina Hernández
- Faculty of Medicine, Immunology Program, Biomedical Sciences Institute (ICBM), University of Chile, Santiago de Chile, Chile
| | - Karen Toledo-Stuardo
- Faculty of Medicine, Immunology Program, Biomedical Sciences Institute (ICBM), University of Chile, Santiago de Chile, Chile
| | - Paulina García-González
- Faculty of Medicine, Immunology Program, Biomedical Sciences Institute (ICBM), University of Chile, Santiago de Chile, Chile
| | - Macarena Garrido-Tapia
- Faculty of Medicine, Immunology Program, Biomedical Sciences Institute (ICBM), University of Chile, Santiago de Chile, Chile
| | - Karina Kramm
- Faculty of Medicine, Immunology Program, Biomedical Sciences Institute (ICBM), University of Chile, Santiago de Chile, Chile
| | - José Alejandro Rodríguez-Siza
- Faculty of Medicine, Immunology Program, Biomedical Sciences Institute (ICBM), University of Chile, Santiago de Chile, Chile
| | - Marcela Hermoso
- Faculty of Medicine, Immunology Program, Biomedical Sciences Institute (ICBM), University of Chile, Santiago de Chile, Chile
| | - Carolina H Ribeiro
- Faculty of Medicine, Immunology Program, Biomedical Sciences Institute (ICBM), University of Chile, Santiago de Chile, Chile
| | - María Carmen Molina
- Faculty of Medicine, Immunology Program, Biomedical Sciences Institute (ICBM), University of Chile, Santiago de Chile, Chile.,Centro de InmunoBiotecnología, Immunology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago de Chile, Chile
| |
Collapse
|
8
|
Programmed Cell Death in the Small Intestine: Implications for the Pathogenesis of Celiac Disease. Int J Mol Sci 2021; 22:ijms22147426. [PMID: 34299046 PMCID: PMC8306608 DOI: 10.3390/ijms22147426] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022] Open
Abstract
The small intestine has a high rate of cell turnover under homeostatic conditions, and this increases further in response to infection or damage. Epithelial cells mostly die by apoptosis, but recent studies indicate that this may also involve pro-inflammatory pathways of programmed cell death, such as pyroptosis and necroptosis. Celiac disease (CD), the most prevalent immune-based enteropathy, is caused by loss of oral tolerance to peptides derived from wheat, rye, and barley in genetically predisposed individuals. Although cytotoxic cells and gluten-specific CD4+ Th1 cells are the central players in the pathology, inflammatory pathways induced by cell death may participate in driving and sustaining the disease through the release of alarmins. In this review, we summarize the recent literature addressing the role of programmed cell death pathways in the small intestine, describing how these mechanisms may contribute to CD and discussing their potential implications.
Collapse
|
9
|
Toledo-Stuardo K, Ribeiro CH, Canals A, Morales M, Gárate V, Rodríguez-Siza J, Tello S, Bustamante M, Armisen R, Matthies DJ, Zapata-Torres G, González-Hormazabal P, Molina MC. Major Histocompatibility Complex Class I-Related Chain A (MICA) Allelic Variants Associate With Susceptibility and Prognosis of Gastric Cancer. Front Immunol 2021; 12:645528. [PMID: 33868281 PMCID: PMC8045969 DOI: 10.3389/fimmu.2021.645528] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer (GC) is the fifth most prevalent type of cancer worldwide. Gastric tumor cells express MICA protein, a ligand to NKG2D receptor that triggers natural killer (NK) cells effector functions for early tumor elimination. MICA gene is highly polymorphic, thus originating alleles that encode protein variants with a controversial role in cancer. The main goal of this work was to study MICA gene polymorphisms and their relationship with the susceptibility and prognosis of GC. Fifty patients with GC and 50 healthy volunteers were included in this study. MICA alleles were identified using Sanger sequencing methods. The analysis of MICA gene sequence revealed 13 MICA sequences and 5 MICA-short tandem repeats (STR) alleles in the studied cohorts We identified MICA*002 (*A9) as the most frequent allele in both, patients and controls, followed by MICA*008 allele (*A5.1). MICA*009/049 allele was significantly associated with increased risk of GC (OR: 5.11 [95% CI: 1.39–18.74], p = 0.014). The analysis of MICA-STR alleles revealed a higher frequency of MICA*A5 in healthy individuals than GC patients (OR = 0.34 [95% CI: 0.12–0.98], p = 0.046). Survival analysis after gastrectomy showed that patients with MICA*002/002 or MICA*002/004 alleles had significantly higher survival rates than those patients bearing MICA*002/008 (p = 0.014) or MICA*002/009 (MICA*002/049) alleles (p = 0.040). The presence of threonine in the position MICA-181 (MICA*009/049 allele) was more frequent in GC patients than controls (p = 0.023). Molecular analysis of MICA-181 showed that the presence of threonine provides greater mobility to the protein than arginine in the same position (MICA*004), which could explain, at least in part, some immune evasion mechanisms developed by the tumor. In conclusion, our findings suggest that the study of MICA alleles is crucial to search for new therapeutic approaches and may be useful for the evaluation of risk and prognosis of GC and personalized therapy.
Collapse
Affiliation(s)
- Karen Toledo-Stuardo
- Immunology Program, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile
| | - Carolina H Ribeiro
- Immunology Program, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile
| | - Andrea Canals
- Biostatistics Program, School of Public Health, University of Chile, Santiago, Chile.,Academic Direction, Clínica Santa María, Santiago, Chile
| | - Marcela Morales
- Immunology Program, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile
| | - Valentina Gárate
- Immunology Program, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile
| | - Jose Rodríguez-Siza
- Immunology Program, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile
| | - Samantha Tello
- Immunology Program, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile
| | - Marco Bustamante
- Department of Surgery (Oriente), Hospital del Salvador, University of Chile, Santiago, Chile
| | - Ricardo Armisen
- Center of Genetics and Genomics, Faculty of Medicine Clínica Alemana, Institute for Sciences and Innovations in Medicine (ICIM), Universidad del Desarrollo, Santiago, Chile
| | - Douglas J Matthies
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Gerald Zapata-Torres
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | | | - María Carmen Molina
- Immunology Program, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile
| |
Collapse
|
10
|
Xing S, Ferrari de Andrade L. NKG2D and MICA/B shedding: a 'tag game' between NK cells and malignant cells. Clin Transl Immunology 2020; 9:e1230. [PMID: 33363734 PMCID: PMC7754731 DOI: 10.1002/cti2.1230] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/02/2020] [Accepted: 12/05/2020] [Indexed: 12/20/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes with cytotoxic functions and recognise target cells with the NK group 2D (NKG2D) receptor. Tumor cells are marked for NK‐cell‐mediated destruction upon expression of MICA and MICB (MICA/B), which are NKG2D ligands upregulated by many human cancers in response to cellular stress pathways associated with malignant transformation such as DNA damage and accumulation of misfolded proteins. However, MICA/B proteins are downregulated by tumor cells via intriguing molecular mechanisms, such as post‐translational modifications in which the external domains of MICA/B are proteolytically cleaved by surface proteases and shed into the extracellular space. MICA/B shedding by cancer cells causes effective escape from NKG2D recognition and allows the development of cancers. Patients frequently have increased concentrations of soluble MICA/B molecules shed in the blood plasmas and sera, thus indicating that MICA/B shedding is a therapeutic target in immune‐oncology. Here, we review the clinical significance of MICA/B shedding in cancer as well as novel immunotherapeutic approaches that aim to restore NKG2D‐mediated surveillance. We also briefly discuss potential roles of MICA/B shedding beyond oncology, such as in viral infections and immune tolerance. This review will help to inform the future developments of NKG2D‐based immunotherapies.
Collapse
Affiliation(s)
| | - Lucas Ferrari de Andrade
- Precision Immunology Institute New York NY USA.,Department of Oncological Sciences New York NY USA.,The Tisch Cancer Institute of the Icahn School of Medicine at Mount Sinai New York NY USA
| |
Collapse
|
11
|
Chirdo FG, Auricchio S, Troncone R, Barone MV. The gliadin p31-43 peptide: Inducer of multiple proinflammatory effects. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 358:165-205. [PMID: 33707054 DOI: 10.1016/bs.ircmb.2020.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Coeliac disease (CD) is the prototype of an inflammatory chronic disease induced by food. In this context, gliadin p31-43 peptide comes into the spotlight as an important player of the inflammatory/innate immune response to gliadin in CD. The p31-43 peptide is part of the p31-55 peptide from α-gliadins that remains undigested for a long time, and can be present in the small intestine after ingestion of a gluten-containing diet. Different biophysical methods and molecular dynamic simulations have shown that p31-43 spontaneously forms oligomeric nanostructures, whereas experimental approaches using in vitro assays, mouse models, and human duodenal tissues have shown that p31-43 is able to induce different forms of cellular stress by driving multiple inflammatory pathways. Increased proliferative activity of the epithelial cells in the crypts, enterocyte stress, activation of TG2, induction of Ca2+, IL-15, and NFκB signaling, inhibition of CFTR, alteration of vesicular trafficking, and activation of the inflammasome platform are some of the biological effects of p31-43, which, in the presence of appropriate genetic susceptibility and environmental factors, may act together to drive CD.
Collapse
Affiliation(s)
- Fernando Gabriel Chirdo
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Instituto de Estudios Inmunológicos y Fisiopatológicos-IIFP (UNLP-CONICET), La Plata, Argentina.
| | - Salvatore Auricchio
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University Federico II, Naples, Italy
| | - Riccardo Troncone
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University Federico II, Naples, Italy; Department of Translational Medical Science, University Federico II, Naples, Italy
| | - Maria Vittoria Barone
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University Federico II, Naples, Italy; Department of Translational Medical Science, University Federico II, Naples, Italy
| |
Collapse
|
12
|
Association of Major Histocompatibility Complex Class I Related Chain A/B Positive Microparticles with Acute Myocardial Infarction and Disease Severity. Diagnostics (Basel) 2020; 10:diagnostics10100766. [PMID: 33003303 PMCID: PMC7656305 DOI: 10.3390/diagnostics10100766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Various cell types undergo activation and stress during atherosclerosis resulting in the development of acute myocardial infarction (AMI) in coronary artery disease (CAD). Major histocompatibility complex class I related chain A and B (MICA/B) can be expressed on the surface of activated and stressed cells and released into blood circulation in several forms including microparticles (MICA/B+ MPs) from various cell types. We aimed to investigate the association of these MICA/B+ MPs with the presence of AMI. Fifty-one AMI and 46 age-matched control subjects were recruited. Methods: Levels of MICA/B+ MPs derived from various parent cells including endothelial cells, platelets, monocytes, neutrophils, and T lymphocytes were determined by flow cytometry. Results: The levels and proportion of MICA/B+ MPs from all types of cell origin were significantly increased in AMI patients compared to those of the controls. A multivariate regression model showed an independent association between MICA/B+ MPs and AMI (OR = 11.6; 95% CI = 2.8, 47.3). Interestingly, based on the disease severity, we found that the levels of MICA/B+ MPs were significantly elevated in the ST-segment elevation myocardial infarction (STEMI) compared to the non-STEMI (NSTEMI) patients. Moreover, an independent association of MICA/B+ MPs with the occurrence of STEMI was also demonstrated (OR = 4.1; 95% CI = 1.5, 16.7). Conclusions: These results suggest that MICA/B+ MPs are associated with AMI and disease severity. They may act as mediators contributing to the pathological process of AMI. Alternatively, they are the results of various cell activations contributing to AMI.
Collapse
|
13
|
Dunne MR, Byrne G, Chirdo FG, Feighery C. Coeliac Disease Pathogenesis: The Uncertainties of a Well-Known Immune Mediated Disorder. Front Immunol 2020; 11:1374. [PMID: 32733456 PMCID: PMC7360848 DOI: 10.3389/fimmu.2020.01374] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/28/2020] [Indexed: 12/21/2022] Open
Abstract
Coeliac disease is a common small bowel enteropathy arising in genetically predisposed individuals and caused by ingestion of gluten in the diet. Great advances have been made in understanding the role of the adaptive immune system in response to gluten peptides. Despite detailed knowledge of these adaptive immune mechanisms, the complete series of pathogenic events responsible for development of the tissue lesion remains less certain. This review contributes to the field by discussing additional mechanisms which may also contribute to pathogenesis. These include the production of cytokines such as interleukin-15 by intestinal epithelial cells and local antigen presenting cells as a pivotal event in the disease process. A subset of unconventional T cells called gamma/delta T cells are also persistently expanded in the coeliac disease (CD) small intestinal epithelium and recent analysis has shown that these cells contribute to pathogenic inflammation. Other unconventional T cell subsets may play a local immunoregulatory role and require further study. It has also been suggested that, in addition to activation of pathogenic T helper cells by gluten peptides, other peptides may directly interact with the intestinal mucosa, further contributing to the disease process. We also discuss how myofibroblasts, a major source of tissue transglutaminase and metalloproteases, may play a key role in intestinal tissue remodeling. Contribution of each of these factors to pathogenesis is discussed to enhance our view of this complex disorder and to contribute to a wider understanding of chronic immune-mediated disease.
Collapse
Affiliation(s)
- Margaret R. Dunne
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Greg Byrne
- School of Biological & Health Sciences, Technological University, Dublin, Ireland
| | - Fernando G. Chirdo
- Instituto de Estudios Inmunologicos y Fisiopatologicos - IIFP (UNLP-CONICET), National University of La Plata, La Plata, Argentina
| | - Conleth Feighery
- Department of Immunology, Trinity College Dublin and St. James's Hospital, Dublin, Ireland
| |
Collapse
|
14
|
Lania G, Nanayakkara M, Maglio M, Auricchio R, Porpora M, Conte M, De Matteis MA, Rizzo R, Luini A, Discepolo V, Troncone R, Auricchio S, Barone MV. Constitutive alterations in vesicular trafficking increase the sensitivity of cells from celiac disease patients to gliadin. Commun Biol 2019; 2:190. [PMID: 31123714 PMCID: PMC6527696 DOI: 10.1038/s42003-019-0443-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 04/19/2019] [Indexed: 02/06/2023] Open
Abstract
Celiac Disease (CD) is an autoimmune disease characterized by inflammation of the intestinal mucosa due to an immune response to wheat gliadins. Some gliadin peptides (e.g., A-gliadin P57-68) induce an adaptive Th1 pro-inflammatory response. Other gliadin peptides (e.g., A-gliadin P31-43) induce a stress/innate immune response involving interleukin 15 (IL15) and interferon α (IFN-α). In the present study, we describe a stressed/inflamed celiac cellular phenotype in enterocytes and fibroblasts probably due to an alteration in the early-recycling endosomal system. Celiac cells are more sensitive to the gliadin peptide P31-43 and IL15 than controls. This phenotype is reproduced in control cells by inducing a delay in early vesicular trafficking. This constitutive lesion might mediate the stress/innate immune response to gliadin, which can be one of the triggers of the gliadin-specific T-cell response.
Collapse
Affiliation(s)
- Giuliana Lania
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Merlin Nanayakkara
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Mariantonia Maglio
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Renata Auricchio
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Monia Porpora
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Mariangela Conte
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Maria Antonietta De Matteis
- Department of Molecular Medicine and Medical Biotechnology, University of Napoli Federico II, Via S. Pansini 5, 80131 Naples, Italy
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Riccardo Rizzo
- Institute of Protein Biochemistry—IBP-CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Alberto Luini
- Institute of Protein Biochemistry—IBP-CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Valentina Discepolo
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Riccardo Troncone
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Salvatore Auricchio
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Maria Vittoria Barone
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| |
Collapse
|
15
|
Lutter L, Hoytema van Konijnenburg DP, Brand EC, Oldenburg B, van Wijk F. The elusive case of human intraepithelial T cells in gut homeostasis and inflammation. Nat Rev Gastroenterol Hepatol 2018; 15:637-649. [PMID: 29973676 DOI: 10.1038/s41575-018-0039-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The epithelial barrier of the gastrointestinal tract is home to numerous intraepithelial T cells (IETs). IETs are functionally adapted to the mucosal environment and are among the first adaptive immune cells to encounter microbial and dietary antigens. They possess hallmark features of tissue-resident T cells: they are long-lived nonmigratory cells capable of rapidly responding to antigen challenges independent of T cell recruitment from the periphery. Gut-resident T cells have been implicated in the relapsing and remitting course and persisting low-grade inflammation of chronic gastrointestinal diseases, including IBD and coeliac disease. So far, most data IETs have been derived from experimental animal models; however, IETs and the environmental makeup differ between mice and humans. With advances in techniques, the number of human studies has grown exponentially in the past 5 years. Here, we review the literature on the involvement of human IETs in gut homeostasis and inflammation, and how these cells are influenced by the microbiota and dietary antigens. Finally, targeting of IETs in therapeutic interventions is discussed. Broad insight into the function and role of human IETs in gut homeostasis and inflammation is essential to identify future diagnostic, prognostic and therapeutic strategies.
Collapse
Affiliation(s)
- Lisanne Lutter
- Laboratory of Translational Immunology, Department of Pediatric Immunology, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - David P Hoytema van Konijnenburg
- Laboratory of Translational Immunology, Department of Pediatric Immunology, University Medical Center Utrecht, Utrecht, Netherlands.,Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Eelco C Brand
- Laboratory of Translational Immunology, Department of Pediatric Immunology, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Bas Oldenburg
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Femke van Wijk
- Laboratory of Translational Immunology, Department of Pediatric Immunology, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
16
|
Hosomi S, Grootjans J, Huang YH, Kaser A, Blumberg RS. New Insights Into the Regulation of Natural-Killer Group 2 Member D (NKG2D) and NKG2D-Ligands: Endoplasmic Reticulum Stress and CEA-Related Cell Adhesion Molecule 1. Front Immunol 2018; 9:1324. [PMID: 29973929 PMCID: PMC6020765 DOI: 10.3389/fimmu.2018.01324] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/28/2018] [Indexed: 01/02/2023] Open
Abstract
Natural-killer group 2 member D (NKG2D) is a well-characterized activating receptor expressed by natural killer (NK) cells, NKT cells, activated CD8+ T cells, subsets of γδ+ T cells, and innate-like T cells. NKG2D recognizes multiple ligands (NKG2D-ligands) to mount an innate immune response against stressed, transformed, or infected cells. NKG2D-ligand surface expression is tightly restricted on healthy cells through transcriptional and post-transcriptional mechanisms, while transformed or infected cells express the ligands as a danger signal. Recent studies have revealed that unfolded protein response pathways during endoplasmic reticulum (ER) stress result in upregulation of ULBP-related protein via the protein kinase RNA-like ER kinase-activating factor 4-C/EBP homologous protein (PERK-ATF4-CHOP) pathway, which can be linked to the pathogenesis of autoimmune diseases. Transformed cells, however, possess mechanisms to escape NKG2D-mediated immune surveillance, such as upregulation of carcinoembryonic antigen (CEA)-related cell adhesion molecule 1 (CEACAM1), a negative regulator of NKG2D-ligands. In this review, we discuss mechanisms of NKG2D-ligand regulation, with a focus on newly discovered mechanisms that promote NKG2D-ligand expression on epithelial cells, including ER stress, and mechanisms that suppress NKG2D-ligand-mediated killing of cancer cells, namely by co-expression of CEACAM1.
Collapse
Affiliation(s)
- Shuhei Hosomi
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Joep Grootjans
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Gastroenterology and Hepatology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Yu-Hwa Huang
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Arthur Kaser
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Richard S Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
17
|
Stojanovic A, Correia MP, Cerwenka A. The NKG2D/NKG2DL Axis in the Crosstalk Between Lymphoid and Myeloid Cells in Health and Disease. Front Immunol 2018; 9:827. [PMID: 29740438 PMCID: PMC5924773 DOI: 10.3389/fimmu.2018.00827] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022] Open
Abstract
Natural killer group 2, member D (NKG2D) receptor is a type II transmembrane protein expressed by both innate and adaptive immune cells, including natural killer (NK) cells, CD8+ T cells, invariant NKT cells, γδ T cells, and some CD4+ T cells under certain pathological conditions. NKG2D is an activating NK receptor that induces cytotoxicity and production of cytokines by effector cells and supports their proliferation and survival upon engagement with its ligands. In both innate and T cell populations, NKG2D can costimulate responses induced by other receptors, such as TCR in T cells or NKp46 in NK cells. NKG2D ligands (NKG2DLs) are remarkably diverse. Initially, NKG2DL expression was typically attributed to stressed, infected, or transformed cells, thus signaling “dysregulated-self.” However, many reports indicated their expression under homeostatic conditions, usually in the context of cell activation and/or proliferation. Myeloid cells, including macrophages and dendritic cells (DCs), are among the first cells sensing and responding to pathogens and tissue damage. By secreting a plethora of soluble mediators, by presenting antigens to T cells and by expressing costimulatory molecules, myeloid cells play vital roles in inducing and supporting responses of other immune cells in lymphoid organs and tissues. When activated, both macrophages and DCs upregulate NKG2DLs, thereby enabling them with additional mechanisms for regulating lymphocyte responses. In this review, we will focus on the expression of NKG2D by innate and adaptive lymphocytes, the regulation of NKG2DL expression on myeloid cells, and the contribution of the NKG2D/NKG2DL axis to the crosstalk of myeloid cells with NKG2D-expressing lymphocytes. In addition, we will highlight pathophysiological conditions associated with NKG2D/NKG2DL dysregulation and discuss the putative involvement of the NKG2D/NKG2DL axis in the lymphocyte/myeloid cell crosstalk in these diseases.
Collapse
Affiliation(s)
- Ana Stojanovic
- Innate Immunity (D080), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Immunobiochemistry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Margareta P Correia
- Innate Immunity (D080), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Immunobiochemistry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Adelheid Cerwenka
- Innate Immunity (D080), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Immunobiochemistry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
18
|
Antonangeli F, Soriani A, Cerboni C, Sciumè G, Santoni A. How Mucosal Epithelia Deal with Stress: Role of NKG2D/NKG2D Ligands during Inflammation. Front Immunol 2017; 8:1583. [PMID: 29209320 PMCID: PMC5701928 DOI: 10.3389/fimmu.2017.01583] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/03/2017] [Indexed: 01/22/2023] Open
Abstract
Mucosal epithelia encounter both physicochemical and biological stress during their life and have evolved several mechanisms to deal with them, including regulation of immune cell functions. Stressed and damaged cells need to be cleared to control local inflammation and trigger tissue healing. Engagement of the activating NKG2D receptor is one of the most direct mechanisms involved in the recognition of stressed cells by the immune system. Indeed, injured cells promptly express NKG2D ligands that in turn mediate the activation of lymphocytes of both innate and adaptive arms of the immune system. This review focuses on different conditions that are able to modulate NKG2D ligand expression on the epithelia. Special attention is given to the mechanisms of immunosurveillance mediated by natural killer cells, which are finely tuned by NKG2D. Different types of stress, including viral and bacterial infections, chronic inflammation, and cigarette smoke exposure, are discussed as paradigmatic conditions for NKG2D ligand modulation, and the implications for tissue homeostasis are discussed.
Collapse
Affiliation(s)
- Fabrizio Antonangeli
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Alessandra Soriani
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Cristina Cerboni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Giuseppe Sciumè
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy.,Neuromed I.R.C.C.S. - Istituto Neurologico Mediterraneo, Pozzilli, Italy
| |
Collapse
|
19
|
Anti-NKG2D mAb: A New Treatment for Crohn's Disease? Int J Mol Sci 2017; 18:ijms18091997. [PMID: 28926962 PMCID: PMC5618646 DOI: 10.3390/ijms18091997] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/24/2017] [Accepted: 09/11/2017] [Indexed: 01/09/2023] Open
Abstract
Crohn’s disease (CD) and ulcerative colitis (UC) are immunologically-mediated, debilitating conditions resulting from destructive inflammation of the gastrointestinal tract. The pathogenesis of IBD is incompletely understood, but is considered to be the result of an abnormal immune response with a wide range of cell types and proteins involved. Natural Killer Group 2D (NKG2D) is an activating receptor constitutively expressed on human Natural Killer (NK), γδ T, mucosal-associated invariant T (MAIT), CD56+ T, and CD8+ T cells. Activation of NKG2D triggers cellular proliferation, cytokine production, and target cell killing. Research into the NKG2D mechanism of action has primarily been focused on cancer and viral infections where cytotoxicity evasion is a concern. In human inflammatory bowel disease (IBD) this system is less characterized, but the ligands have been shown to be highly expressed during intestinal inflammation and the following receptor activation may contribute to tissue degeneration. A recent phase II clinical trial showed that an antibody against NKG2D induced clinical remission of CD in some patients, suggesting NKG2D and its ligands to be of importance in the pathogenesis of CD. This review will describe the receptor and its ligands in intestinal tissues and the clinical potential of blocking NKG2D in Crohn’s disease.
Collapse
|
20
|
Holm A, Nagaeva O, Nagaev I, Loizou C, Laurell G, Mincheva-Nilsson L, Nylander K, Olofsson K. Lymphocyte profile and cytokine mRNA expression in peripheral blood mononuclear cells of patients with recurrent respiratory papillomatosis suggest dysregulated cytokine mRNA response and impaired cytotoxic capacity. IMMUNITY INFLAMMATION AND DISEASE 2017; 5:541-550. [PMID: 28805308 PMCID: PMC5691300 DOI: 10.1002/iid3.188] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/19/2017] [Accepted: 06/27/2017] [Indexed: 01/07/2023]
Abstract
Objectives Recurrent respiratory papillomatosis (RRP) is a relatively rare, chronic disease caused by Human Papilloma Virus (HPV) 6 and 11, and characterized by wart‐like lesions in the airway affecting voice and respiratory function. The majority of HPV infections are asymptomatic and resolve spontaneously, however, some individuals are afflicted with persistent HPV infections. Failure to eliminate HPV 6 and 11 due to a defect immune responsiveness to these specific genotypes is proposed to play a major role in the development of RRP. Methods We performed a phenotypic characterization of peripheral blood mononuclear cells (PBMC) collected from 16 RRP patients and 12 age‐matched healthy controls, using immunoflow cytometry, and monoclonal antibodies against differentiation and activation markers. The cytokine mRNA profile of monocytes, T helper‐, T cytotoxic‐, and NK cells was assessed using RT‐qPCR cytokine analysis, differentiating between Th1‐, Th2‐, Th3/regulatory‐, and inflammatory immune responses. Results We found a dominance of cytotoxic T cells, activated NK cells, and high numbers of stressed MIC A/B expressing lymphocytes. There was an overall suppression of cytokine mRNA production and an aberrant cytokine mRNA profile in the activated NK cells. Conclusion These findings demonstrate an immune dysregulation with inverted CD4+/CD8+ ratio and aberrant cytokine mRNA production in RRP patients, compared to healthy controls.
Collapse
Affiliation(s)
- Anna Holm
- Department of Clinical Sciences, Division of Otorhinolaryngology, Umeå University, Umeå, Sweden
| | - Olga Nagaeva
- Department of Clinical Microbiology, Division of Clinical Immunology, Umeå University, Umeå, Sweden
| | - Ivan Nagaev
- Department of Clinical Microbiology, Division of Clinical Immunology, Umeå University, Umeå, Sweden
| | - Christos Loizou
- Department of Clinical Sciences, Division of Otorhinolaryngology, Umeå University, Umeå, Sweden
| | - Göran Laurell
- Department of Surgical Sciences, Division of Otorhinolaryngology, Uppsala University, Uppsala, Sweden
| | - Lucia Mincheva-Nilsson
- Department of Clinical Microbiology, Division of Clinical Immunology, Umeå University, Umeå, Sweden
| | - Karin Nylander
- Department of Medical Bioscience, Division of Pathology, Umeå University, Umeå, Sweden
| | - Katarina Olofsson
- Department of Clinical Sciences, Division of Otorhinolaryngology, Umeå University, Umeå, Sweden
| |
Collapse
|
21
|
Vadstrup K, Galsgaard ED, Jensen H, Lanier LL, Ryan JC, Chen SY, Nolan GP, Vester-Andersen MK, Pedersen JS, Gerwien J, Jensen T, Bendtsen F. NKG2D ligand expression in Crohn's disease and NKG2D-dependent stimulation of CD8 + T cell migration. Exp Mol Pathol 2017; 103:56-70. [PMID: 28684217 DOI: 10.1016/j.yexmp.2017.06.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 05/24/2017] [Accepted: 06/30/2017] [Indexed: 12/15/2022]
Abstract
Interaction between the activating NKG2D receptor on lymphocytes and its ligands MICA, MICB, and ULBP1-6 modulate T and NK cell activity and may contribute to the pathogenesis of Crohn's disease (CD). NKG2D ligands are generally not expressed on the cell surface of normal, non-stressed cells, but expression of MICA and MICB in CD intestine has been reported. In this exploratory study, we further characterize the expression of NKG2D and its ligands, including the less well-described ULBP4-6, in CD, and test if NKG2D ligand interactions are involved in the migration of activated T cells into the affected mucosal compartments. Intestinal tissue from CD patients and healthy controls were analyzed by flow cytometry, mass cytometry, and immunohistochemistry for expression of NKG2D and ligands, and for cytokine release. Furthermore, NKG2D-dependent chemotaxis of activated CD8+ T cells across a monolayer of ligand-expressing human intestinal endothelial cells was examined. Activated lymphocytes down-regulated NKG2D expression upon accumulation in inflamed CD intestine. NKG2D expression on CD56+ T and γδ T cells from inflamed tissue seemed inversely correlated with CRP levels and cytokine release. B cells, monocytes, mucosal epithelium, and vascular endothelium expressed NKG2D ligands in inflamed CD intestine. The expression of NKG2D ligands was correlated with cytokine release, but was highly variable between patients. Stimulation of vascular intestinal endothelial cells in vitro induced expression of NKG2D ligands, including MICA/B and ULBP2/6. Blockade of NKG2D on CD8+ T cells inhibited the migration over ligand-expressing endothelial cells. Intestinal induction of NKG2D ligands and ligand-induced down-regulation of NKG2D in CD suggest that the NKG2D-ligand interaction may be involved in both the activation and recruitment of NKG2D+ lymphocytes into the inflamed CD intestine.
Collapse
Affiliation(s)
- Kasper Vadstrup
- Gastrounit, Medical Division, Hvidovre University Hospital, DK-2650 Hvidovre, Denmark; Faculty of Health Sciences, The Panum Institute, University of Copenhagen, DK-2200 Copenhagen N, Denmark; Biopharmaceutical Research Unit, Novo Nordisk A/S, DK-2760 Maaloev, Denmark; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| | | | - Helle Jensen
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lewis L Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - James C Ryan
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Medicine, Veterans Affairs Medical Center and University of California San Francisco, San Francisco, CA, USA
| | - Shih-Yu Chen
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Garry P Nolan
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | | | - Julie Steen Pedersen
- Gastrounit, Medical Division, Hvidovre University Hospital, DK-2650 Hvidovre, Denmark
| | - Jens Gerwien
- Biopharmaceutical Research Unit, Novo Nordisk A/S, DK-2760 Maaloev, Denmark
| | - Teis Jensen
- Biopharmaceutical Research Unit, Novo Nordisk A/S, DK-2760 Maaloev, Denmark
| | - Flemming Bendtsen
- Gastrounit, Medical Division, Hvidovre University Hospital, DK-2650 Hvidovre, Denmark; Faculty of Health Sciences, The Panum Institute, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
22
|
Ghadially H, Brown L, Lloyd C, Lewis L, Lewis A, Dillon J, Sainson R, Jovanovic J, Tigue NJ, Bannister D, Bamber L, Valge-Archer V, Wilkinson RW. MHC class I chain-related protein A and B (MICA and MICB) are predominantly expressed intracellularly in tumour and normal tissue. Br J Cancer 2017; 116:1208-1217. [PMID: 28334733 PMCID: PMC5418453 DOI: 10.1038/bjc.2017.79] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Major histocompatibility complex (MHC) class I chain-related protein A (MICA) and MHC class I chain-related protein B (MICB) are polymorphic proteins that are induced upon stress, damage or transformation of cells which act as a 'kill me' signal through the natural-killer group 2, member D receptor expressed on cytotoxic lymphocytes. MICA/B are not thought to be constitutively expressed by healthy normal cells but expression has been reported for most tumour types. However, it is not clear how much of this protein is expressed on the cell surface. METHODS Using a novel, well-characterised antibody and both standard and confocal microscopy, we systematically profiled MICA/B expression in multiple human tumour and normal tissue. RESULTS High expression of MICA/B was detected in the majority of tumour tissues from multiple indications. Importantly, MICA/B proteins were predominantly localised intracellularly with only occasional evidence of cell membrane localisation. MICA/B expression was also demonstrated in most normal tissue epithelia and predominantly localised intracellularly. Crucially, we did not observe qualitative differences in cell surface expression between tumour and MICA/B expressing normal epithelia. CONCLUSIONS This demonstrates for the first time that MICA/B is more broadly expressed in normal tissue and that expression is mainly intracellular with only a small fraction appearing on the cell surface of some epithelia and tumour cells.
Collapse
Affiliation(s)
| | - Lee Brown
- MedImmune Ltd., Granta Park, Cambridge CB21 6GH, UK
| | - Chris Lloyd
- MedImmune Ltd., Granta Park, Cambridge CB21 6GH, UK
| | | | - Arthur Lewis
- MedImmune Ltd., Granta Park, Cambridge CB21 6GH, UK
| | | | | | | | | | | | - Lisa Bamber
- MedImmune Ltd., Granta Park, Cambridge CB21 6GH, UK
| | - Viia Valge-Archer
- AstraZeneca, Chesterford Research Park, Little Chesterford CB10 1XL, UK
| | | |
Collapse
|
23
|
Pérez S, Taléns-Visconti R, Rius-Pérez S, Finamor I, Sastre J. Redox signaling in the gastrointestinal tract. Free Radic Biol Med 2017; 104:75-103. [PMID: 28062361 DOI: 10.1016/j.freeradbiomed.2016.12.048] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 12/20/2016] [Accepted: 12/31/2016] [Indexed: 12/16/2022]
Abstract
Redox signaling regulates physiological self-renewal, proliferation, migration and differentiation in gastrointestinal epithelium by modulating Wnt/β-catenin and Notch signaling pathways mainly through NADPH oxidases (NOXs). In the intestine, intracellular and extracellular thiol redox status modulates the proliferative potential of epithelial cells. Furthermore, commensal bacteria contribute to intestine epithelial homeostasis through NOX1- and dual oxidase 2-derived reactive oxygen species (ROS). The loss of redox homeostasis is involved in the pathogenesis and development of a wide diversity of gastrointestinal disorders, such as Barrett's esophagus, esophageal adenocarcinoma, peptic ulcer, gastric cancer, ischemic intestinal injury, celiac disease, inflammatory bowel disease and colorectal cancer. The overproduction of superoxide anion together with inactivation of superoxide dismutase are involved in the pathogenesis of Barrett's esophagus and its transformation to adenocarcinoma. In Helicobacter pylori-induced peptic ulcer, oxidative stress derived from the leukocyte infiltrate and NOX1 aggravates mucosal damage, especially in HspB+ strains that downregulate Nrf2. In celiac disease, oxidative stress mediates most of the cytotoxic effects induced by gluten peptides and increases transglutaminase levels, whereas nitrosative stress contributes to the impairment of tight junctions. Progression of inflammatory bowel disease relies on the balance between pro-inflammatory redox-sensitive pathways, such as NLRP3 inflammasome and NF-κB, and the adaptive up-regulation of Mn superoxide dismutase and glutathione peroxidase 2. In colorectal cancer, redox signaling exhibits two Janus faces: On the one hand, NOX1 up-regulation and derived hydrogen peroxide enhance Wnt/β-catenin and Notch proliferating pathways; on the other hand, ROS may disrupt tumor progression through different pro-apoptotic mechanisms. In conclusion, redox signaling plays a critical role in the physiology and pathophysiology of gastrointestinal tract.
Collapse
Affiliation(s)
- Salvador Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Raquel Taléns-Visconti
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Sergio Rius-Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Isabela Finamor
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain.
| |
Collapse
|
24
|
Araya RE, Gomez Castro MF, Carasi P, McCarville JL, Jury J, Mowat AM, Verdu EF, Chirdo FG. Mechanisms of innate immune activation by gluten peptide p31-43 in mice. Am J Physiol Gastrointest Liver Physiol 2016; 311:G40-9. [PMID: 27151946 DOI: 10.1152/ajpgi.00435.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 05/02/2016] [Indexed: 01/31/2023]
Abstract
Celiac disease (CD) is an immune-mediated enteropathy triggered by gluten in genetically susceptible individuals. Innate immunity contributes to the pathogenesis of CD, but the mechanisms remain poorly understood. Although previous in vitro work suggests that gliadin peptide p31-43 acts as an innate immune trigger, the underlying pathways are unclear and have not been explored in vivo. Here we show that intraluminal delivery of p31-43 induces morphological changes in the small intestinal mucosa of normal mice consistent with those seen in CD, including increased cell death and expression of inflammatory mediators. The effects of p31-43 were dependent on MyD88 and type I IFNs, but not Toll-like receptor 4 (TLR4), and were enhanced by coadministration of the TLR3 agonist polyinosinic:polycytidylic acid. Together, these results indicate that gliadin peptide p31-43 activates the innate immune pathways in vivo, such as IFN-dependent inflammation, relevant to CD. Our findings also suggest a common mechanism for the potential interaction between dietary gluten and viral infections in the pathogenesis of CD.
Collapse
Affiliation(s)
- Romina E Araya
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP)(CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - María Florencia Gomez Castro
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP)(CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Paula Carasi
- Catedra de Microbiología, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Justin L McCarville
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Jennifer Jury
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Allan M Mowat
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Elena F Verdu
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Fernando G Chirdo
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP)(CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina;
| |
Collapse
|
25
|
Galipeau HJ, McCarville JL, Huebener S, Litwin O, Meisel M, Jabri B, Sanz Y, Murray JA, Jordana M, Alaedini A, Chirdo FG, Verdu EF. Intestinal microbiota modulates gluten-induced immunopathology in humanized mice. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2969-82. [PMID: 26456581 DOI: 10.1016/j.ajpath.2015.07.018] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/09/2015] [Indexed: 01/16/2023]
Abstract
Celiac disease (CD) is an immune-mediated enteropathy triggered by gluten in genetically susceptible individuals. The recent increase in CD incidence suggests that additional environmental factors, such as intestinal microbiota alterations, are involved in its pathogenesis. However, there is no direct evidence of modulation of gluten-induced immunopathology by the microbiota. We investigated whether specific microbiota compositions influence immune responses to gluten in mice expressing the human DQ8 gene, which confers moderate CD genetic susceptibility. Germ-free mice, clean specific-pathogen-free (SPF) mice colonized with a microbiota devoid of opportunistic pathogens and Proteobacteria, and conventional SPF mice that harbor a complex microbiota that includes opportunistic pathogens were used. Clean SPF mice had attenuated responses to gluten compared to germ-free and conventional SPF mice. Germ-free mice developed increased intraepithelial lymphocytes, markers of intraepithelial lymphocyte cytotoxicity, gliadin-specific antibodies, and a proinflammatory gliadin-specific T-cell response. Antibiotic treatment, leading to Proteobacteria expansion, further enhanced gluten-induced immunopathology in conventional SPF mice. Protection against gluten-induced immunopathology in clean SPF mice was reversed after supplementation with a member of the Proteobacteria phylum, an enteroadherent Escherichia coli isolated from a CD patient. The intestinal microbiota can both positively and negatively modulate gluten-induced immunopathology in mice. In subjects with moderate genetic susceptibility, intestinal microbiota changes may be a factor that increases CD risk.
Collapse
Affiliation(s)
- Heather J Galipeau
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Justin L McCarville
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Sina Huebener
- Department of Medicine, Columbia University Medical Center, New York, New York
| | - Owen Litwin
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Marlies Meisel
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Bana Jabri
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Yolanda Sanz
- Microbial Ecology, Nutrition & Health Research Group, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Joseph A Murray
- Division of Gastroenterology and Hepatology, Department of Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Manel Jordana
- Departments of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Armin Alaedini
- Department of Medicine, Columbia University Medical Center, New York, New York
| | - Fernando G Chirdo
- Institute of Immunological and Pathophysiological Studies, Department of Biological Sciences, Faculty of Sciences, National University of La Plata, La Plata, Argentina
| | - Elena F Verdu
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
26
|
Rodiño-Janeiro BK, Alonso-Cotoner C, Pigrau M, Lobo B, Vicario M, Santos J. Role of Corticotropin-releasing Factor in Gastrointestinal Permeability. J Neurogastroenterol Motil 2015; 21:33-50. [PMID: 25537677 PMCID: PMC4288093 DOI: 10.5056/jnm14084] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 12/11/2022] Open
Abstract
The interface between the intestinal lumen and the mucosa is the location where the majority of ingested immunogenic particles face the scrutiny of the vast gastrointestinal immune system. Upon regular physiological conditions, the intestinal micro-flora and the epithelial barrier are well prepared to process daily a huge amount of food-derived antigens and non-immunogenic particles. Similarly, they are ready to prevent environmental toxins and microbial antigens to penetrate further and interact with the mucosal-associated immune system. These functions promote the development of proper immune responses and oral tolerance and prevent disease and inflammation. Brain-gut axis structures participate in the processing and execution of response signals to external and internal stimuli. The brain-gut axis integrates local and distant regulatory networks and super-systems that serve key housekeeping physiological functions including the balanced functioning of the intestinal barrier. Disturbance of the brain-gut axis may induce intestinal barrier dysfunction, increasing the risk of uncontrolled immunological reactions, which may indeed trigger transient mucosal inflammation and gut disease. There is a large body of evidence indicating that stress, through the brain-gut axis, may cause intestinal barrier dysfunction, mainly via the systemic and peripheral release of corticotropin-releasing factor. In this review, we describe the role of stress and corticotropin-releasing factor in the regulation of gastrointestinal permeability, and discuss the link to both health and pathological conditions.
Collapse
Affiliation(s)
- Bruno K Rodiño-Janeiro
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - Carmen Alonso-Cotoner
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - Marc Pigrau
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - Beatriz Lobo
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - María Vicario
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - Javier Santos
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| |
Collapse
|
27
|
Gliadin peptides as triggers of the proliferative and stress/innate immune response of the celiac small intestinal mucosa. Int J Mol Sci 2014. [PMID: 25387079 DOI: 10.3390/ijms151120518.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Celiac disease (CD) is a frequent inflammatory intestinal disease, with a genetic background, caused by gliadin-containing food. Undigested gliadin peptides induce innate and adaptive T cell-mediated immune responses. The major mediator of the stress and innate immune response to gliadin peptides (i.e., peptide 31-43, P31-43) is the cytokine interleukin-15 (IL-15). The role of epithelial growth factor (EGF) as a mediator of enterocyte proliferation and the innate immune response has been described. In this paper, we review the most recent literature on the mechanisms responsible for triggering the up-regulation of these mediators in CD by gliadin peptides. We will discuss the role of P31-43 in enterocyte proliferation, structural changes and the innate immune response in CD mucosa in cooperation with EGF and IL-15, and the mechanism of up-regulation of these mediators related to vesicular trafficking. We will also review the literature that focuses on constitutive alterations of the structure, signalling/proliferation and stress/innate immunity pathways of CD cells. Finally, we will discuss how these pathways can be triggered by gliadin peptide P31-43 in controls, mimicking the celiac cellular phenotype.
Collapse
|
28
|
Barone MV, Troncone R, Auricchio S. Gliadin peptides as triggers of the proliferative and stress/innate immune response of the celiac small intestinal mucosa. Int J Mol Sci 2014; 15:20518-37. [PMID: 25387079 PMCID: PMC4264181 DOI: 10.3390/ijms151120518] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/27/2014] [Accepted: 10/27/2014] [Indexed: 02/06/2023] Open
Abstract
Celiac disease (CD) is a frequent inflammatory intestinal disease, with a genetic background, caused by gliadin-containing food. Undigested gliadin peptides induce innate and adaptive T cell-mediated immune responses. The major mediator of the stress and innate immune response to gliadin peptides (i.e., peptide 31–43, P31–43) is the cytokine interleukin-15 (IL-15). The role of epithelial growth factor (EGF) as a mediator of enterocyte proliferation and the innate immune response has been described. In this paper, we review the most recent literature on the mechanisms responsible for triggering the up-regulation of these mediators in CD by gliadin peptides. We will discuss the role of P31–43 in enterocyte proliferation, structural changes and the innate immune response in CD mucosa in cooperation with EGF and IL-15, and the mechanism of up-regulation of these mediators related to vesicular trafficking. We will also review the literature that focuses on constitutive alterations of the structure, signalling/proliferation and stress/innate immunity pathways of CD cells. Finally, we will discuss how these pathways can be triggered by gliadin peptide P31–43 in controls, mimicking the celiac cellular phenotype.
Collapse
Affiliation(s)
- Maria Vittoria Barone
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy.
| | - Riccardo Troncone
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy.
| | - Salvatore Auricchio
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy.
| |
Collapse
|