1
|
Wang S, Lam SS, Aguilar A, Anakwe S, Barahona K, Haider H, Hunyadi O, Jain K, Kolodziejski D, Lal A, Li M, MacKenzie F, Miller J, Nardin O, Nguyen E, Pappu J, Rodriguez M, Lin JW. Inhibitory modulation of action potentials in crayfish motor axons by fluoxetine. Synapse 2024; 78:e22304. [PMID: 38896000 DOI: 10.1002/syn.22304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/07/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024]
Abstract
The goal of this report is to explore how K2P channels modulate axonal excitability by using the crayfish ventral superficial flexor preparation. This preparation allows for simultaneous recording of motor nerve extracellular action potentials (eAP) and intracellular excitatory junctional potential (EJP) from a muscle fiber. Previous pharmacological studies have demonstrated the presence of K2P-like channels in crayfish. Fluoxetine (50 µM) was used to block K2P channels in this study. The blocker caused a gradual decline, and eventually complete block, of motor axon action potentials. At an intermediate stage of the block, when the peak-to-peak amplitude of eAP decreased to ∼60%-80% of the control value, the amplitude of the initial positive component of eAP declined at a faster rate than that of the negative peak representing sodium influx. Furthermore, the second positive peak following this sodium influx, which corresponds to the after-hyperpolarizing phase of intracellularly recorded action potentials (iAP), became larger during the intermediate stage of eAP block. Finally, EJP recorded simultaneously with eAP showed no change in amplitude, but did show a significant increase in synaptic delay. These changes in eAP shape and EJP delay are interpreted as the consequence of depolarized resting membrane potential after K2P channel block. In addition to providing insights to possible functions of K2P channels in unmyelinated axons, results presented here also serve as an example of how changes in eAP shape contain information that can be used to infer alterations in intracellular events. This type of eAP-iAP cross-inference is valuable for gaining mechanistic insights here and may also be applicable to other model systems.
Collapse
Affiliation(s)
- Selene Wang
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Si Seng Lam
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Anisah Aguilar
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Stephanie Anakwe
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | | | - Hani Haider
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Olivia Hunyadi
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Kaahini Jain
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | | | - Anindita Lal
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Man Li
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Frank MacKenzie
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - John Miller
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Oliviero Nardin
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Emily Nguyen
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Jaii Pappu
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Melissa Rodriguez
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Jen-Wei Lin
- Department of Biology, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Zang C, Chung MHJ, Neeman T, Harrison L, Vinogradov IM, Jennions MD. Does losing reduce the tendency to engage with rivals to reach mates? An experimental test. Behav Ecol 2024; 35:arae037. [PMID: 38779595 PMCID: PMC11107846 DOI: 10.1093/beheco/arae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Male-male contests for access to females or breeding resources are critical in determining male reproductive success. Larger males and those with more effective weaponry are more likely to win fights. However, even after controlling for such predictors of fighting ability, studies have reported a winner-loser effect: previous winners are more likely to win subsequent contests, while losers often suffer repeated defeats. While the effect of winning-losing is well-documented for the outcome of future fights, its effect on other behaviors (e.g. mating) remains poorly investigated. Here, we test whether a winning versus losing experience influenced subsequent behaviors of male mosquitofish (Gambusia holbrooki) toward rivals and potential mates. We housed focal males with either a smaller or larger opponent for 24 h to manipulate their fighting experience to become winners or losers, respectively. The focal males then underwent tests that required them to enter and swim through a narrow corridor to reach females, bypassing a cylinder that contained either a larger rival male (competitive scenario), a juvenile or was empty (non-competitive scenarios). The tests were repeated after 1 wk. Winners were more likely to leave the start area and to reach the females, but only when a larger rival was presented, indicating higher levels of risk-taking behavior in aggressive interactions. This winner-loser effect persisted for at least 1 wk. We suggest that male mosquitofish adjust their assessment of their own and/or their rival's fighting ability following contests in ways whose detection by researchers depends on the social context.
Collapse
Affiliation(s)
- Chenke Zang
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| | - Meng-Han Joseph Chung
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| | - Teresa Neeman
- Biological Data Science Institute, Australian National University, Canberra Australian Capital Territory, 2601, Australia
| | - Lauren Harrison
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Ivan M Vinogradov
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| | - Michael D Jennions
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Centre at Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
3
|
Ibuchi K, Nagayama T. Opposing effects of dopamine on agonistic behaviour in crayfish. J Exp Biol 2021; 224:269155. [PMID: 34128529 DOI: 10.1242/jeb.242057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/29/2021] [Indexed: 01/27/2023]
Abstract
The effects of dopamine on the agonistic behaviour of crayfish were analysed. When dopamine concentrations of 1 μmol l-1 were injected into large crayfish, individuals were beaten by smaller opponents, despite their physical advantage. Injection of 10 μmol l-1 dopamine into small animals increased their rate of winning against larger opponents. Injection of a D1 receptor antagonist prohibited the onset of a 'loser' effect in subordinate animals, suggesting that the inhibitory effect of dopamine on larger animals is mediated by D1 receptors. Similarly, injection of a D2 receptor antagonist prohibited the onset of a 'winner' effect in dominant animals, suggesting that the facilitating effect of dopamine on small animals is mediated by D2 receptors. Since the inhibitory effect of 1 μmol l-1 dopamine was similar to that seen with 1 μmol l-1 octopamine and the facilitating effect of 10 μmol l-1 dopamine was similar to that of 1 μmol l-1 serotonin, functional interactions among dopamine, octopamine and serotonin were analyzed by co-injection of amines with their receptor antagonists in various combinations. The inhibitory effect of 1 μmol l-1 dopamine disappeared when administered with D1 receptor antagonist, but remained when combined with octopamine receptor antagonist. Octopamine effects disappeared when administered with either D1 receptor antagonist or octopamine receptor antagonist, suggesting that the dopamine system is downstream of octopamine. The facilitating effect of 10 μmol l-1 dopamine disappeared when combined with serotonin 5HT1 receptor antagonist or D2 receptor antagonist. Serotonin effects also disappeared when combined with D2 receptor antagonist, suggesting that dopamine and serotonin activate each other through parallel pathways.
Collapse
Affiliation(s)
- Kengo Ibuchi
- Division of Biology, Graduate School of Science and Engineering, Yamagata University, 990-8560 Yamagata, Japan
| | - Toshiki Nagayama
- Department of Biology, Faculty of Science, Yamagata University, 990-8560 Yamagata, Japan
| |
Collapse
|
4
|
Kamada S, Nagayama T. Anxiety induces long-term memory forgetting in the crayfish. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:459-467. [PMID: 33881581 DOI: 10.1007/s00359-021-01487-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
When two male crayfish encounter, agonistic bouts are initiated and a winner-loser relationship is established. Larger animals are more likely to win with their physical advantage, but they are frequently beaten by small dominant animals with previous winning experience. This winner effect remains for several days. In mammals, anxiety impairs learning and induces memory forgetting. In this study, dominant crayfish were exposed to electrical shocks two days after their first win, after which they were paired with large or small naive opponents the following day. Our results showed that electrical shock-applied dominant animals were beaten by large naive opponents, but overcame small naive opponents, suggesting that electrical shocks cause animals to forget their previous winner effect. Electrical shocks appeared to elicit serotonin-mediated anxiety since electrical shocks had no effect on mianserin-injected dominant animals. A 0.5 µM serotonin injection induced a caused anxiety-like reaction, while a 1.0 µM serotonin injection-induced no changes in posture and walking activity. For pairings between dominant and naive animals 1 day after serotonin injection, 0.5 µM serotonin caused similar forgetting of the winner effect, but 1.0 µM serotonin had no effect. Serotonin of low concentrations mediated anxiety and stimulated forgetting of the winner's memory.
Collapse
Affiliation(s)
- Satomi Kamada
- Department of Biology, Faculty of Science, Yamagata University, Yamagata, 990-8560, Japan
| | - Toshiki Nagayama
- Department of Biology, Faculty of Science, Yamagata University, Yamagata, 990-8560, Japan.
| |
Collapse
|
5
|
Social context shapes cognitive abilities: associative memories are modulated by fight outcome and social isolation in the crab Neohelice granulata. Anim Cogn 2021; 24:1007-1026. [PMID: 33788037 PMCID: PMC8009927 DOI: 10.1007/s10071-021-01492-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 11/16/2022]
Abstract
Cognitive abilities of an animal can be influenced by distinct social experiences. However, the extent of this modulation has not been addressed in different learning scenarios: are all tasks similarly affected by social experiences? In the present study, we analyzed the effect of social dominance in aversive and appetitive memory processes in the crab Neohelice granulata. In addition, we studied the influence of social isolation on memory ability. Social dominance experiments consisted of an agonistic phase immediately followed by a memory phase. During the agonistic phase, matched pairs of male crabs were staged in 10-min encounters and the dominant or subordinate condition of each member of the dyad was determined. During the memory phase, crabs were trained to acquire aversive or appetitive memory and tested 24 h later. Results showed that the agonistic encounter can modulate long-term memory according to the dominance condition in such a way that memory retention of subordinates results higher than their respective dominant. Remarkably, this result was found for both aversive and appetitive memory tasks. In addition, we found that isolated animals showed no memory retention when compared with animals that remained grouped. Altogether this work emphasizes the importance of social context as a modulator of cognitive abilities.
Collapse
|
6
|
Enhancement of synaptic responses in ascending interneurones following acquisition of social dominance in crayfish. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:415-428. [PMID: 33772639 DOI: 10.1007/s00359-021-01481-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
When crayfish have attained dominant status after agonistic bouts, their avoidance reaction to mechanical stimulation of the tailfan changes from a dart to a turn response. Ascending interneurones originating in the terminal ganglion receive sensory inputs from the tailfan and they affect spike activity of both uropod and abdominal postural motor neurones, which coordinates the uropod and abdominal postural movements. Despite the varying output effects of ascending interneurones, the synaptic responses of all interneurones to sensory stimulation were enhanced when they acquired a dominant state. The number of spikes increased as did a sustained membrane depolarizations. Regardless of social status, the output effects on the uropod motor neurones of all interneurones except VE-1 remained unchanged. VE-1 mainly inhibited the uropod opener motor neurones in naive animals, but tended to excite them in dominant animals. Synaptic enhancement of the sensory response of ascending interneurones was also observed in naive animals treated with bath-applied serotonin. However, subordinate animals or naive animals treated with octopamine had no noticeable effect on the synaptic response of their ascending interneurones to sensory stimulation. Thus, enhancement of the synaptic response is a specific neural event that occurs when crayfish attain social dominance and it is mediated by serotonin.
Collapse
|
7
|
Pang YY, Huang GY, Song YM, Song XZ, Lv JH, He L, Niu C, Shi AY, Shi XL, Cheng YX, Yang XZ. Effects of miR-143 and its target receptor 5-HT2B on agonistic behavior in the Chinese mitten crab (Eriocheir sinensis). Sci Rep 2021; 11:4492. [PMID: 33627750 PMCID: PMC7904944 DOI: 10.1038/s41598-021-83984-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/10/2021] [Indexed: 11/17/2022] Open
Abstract
Chinese mitten crab (Eriocheir sinensis) as a commercially important species is widely cultured in China. However, E. sinensis is prone to agonistic behavior, which causes physical damage and wastes energy resources, negatively impacting their growth and survival. Therefore, understanding the regulatory mechanisms that underlie the switching of such behavior is essential for ensuring the efficient and cost-effective aquaculture of E. sinensis. The 5-HT2B receptor is a key downstream target of serotonin (5-HT), which is involved in regulating animal behavior. In this study, the full-length sequence of 5-HT2B gene was cloned. The total length of the 5-HT2B gene was found to be 3127 bp with a 236 bp 5′-UTR (untranslated region), a 779 bp 3′-UTR, and a 2112 bp open reading frame encoding 703 amino acids. Phylogenetic tree analysis revealed that the 5-HT2B amino acid sequence of E. sinensis is highly conserved with that of Cancer borealis. Using in vitro co-culture and luciferase assays, the miR-143 targets the 5-HT2B 3′-UTR and inhibits 5-HT2B expression was confirmed. Furthermore, RT-qPCR and Western blotting analyses revealed that the miR-143 mimic significantly inhibits 5-HT2B mRNA and protein expression. However, injection of miR-143 did not decrease agonistic behavior, indicating that 5-HT2B is not involved in the regulation of such behavior in E. sinensis.
Collapse
Affiliation(s)
- Yang-Yang Pang
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China
| | - Gen-Yong Huang
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China
| | - Ya-Meng Song
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China
| | - Xiao- Zhe Song
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China
| | - Jia-Huan Lv
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China
| | - Long He
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China
| | - Chao Niu
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China
| | - Ao-Ya Shi
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China
| | - Xing-Liang Shi
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China
| | - Yong-Xu Cheng
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China.
| | - Xiao-Zhen Yang
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China.
| |
Collapse
|
8
|
Mathews L. Outcomes of agonistic interactions alter sheltering behavior in crayfish. Behav Processes 2021; 184:104337. [PMID: 33515634 DOI: 10.1016/j.beproc.2021.104337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/22/2022]
Abstract
'Winner' and 'loser' effects have been demonstrated in a broad range of species, but such investigations are often limited to the effects of prior contest outcomes on future agonistic interactions. Much less is known about the impacts of winning or losing contests on other aspects of individual behavior, like courtship interactions and sheltering behavior. In this investigation, I examined the effect of prior contest outcomes on sheltering behavior in the crayfish Faxonius virilis. I predicted that winners of contests would spend less time inside shelters and more time exploring, while losers of contests would spend more time inside shelters and less time exploring. I compared individual sheltering behavior before and after staged dyadic encounters between competitively mismatched individuals. This experiment revealed strong effects on the behavior of contest losers, which showed significant increases in the amount of time spent inside the shelter immediately after the contest. However, there was no significant change in the sheltering behavior of contest winners. These results reinforce the idea that contest outcomes can affect individual behaviors other than agonistic behavior, and suggest that losing a contest may motivate individual crayfish to engage in less-risky behavior, at least for a brief period after the contest.
Collapse
Affiliation(s)
- Lauren Mathews
- Department of Biology, Worcester Polytechnic Institute, United States.
| |
Collapse
|
9
|
Winner effects and switching assessment strategies facilitate fast and frugal decisions in territorial contests. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
|
11
|
Bubak AN, Watt MJ, Yaeger JDW, Renner KJ, Swallow JG. The stalk-eyed fly as a model for aggression - is there a conserved role for 5-HT between vertebrates and invertebrates? ACTA ACUST UNITED AC 2020; 223:223/1/jeb132159. [PMID: 31896721 DOI: 10.1242/jeb.132159] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Serotonin (5-HT) has largely been accepted to be inhibitory to vertebrate aggression, whereas an opposing stimulatory role has been proposed for invertebrates. Herein, we argue that critical gaps in our understanding of the nuanced role of 5-HT in invertebrate systems drove this conclusion prematurely, and that emerging data suggest a previously unrecognized level of phylogenetic conservation with respect to neurochemical mechanisms regulating the expression of aggressive behaviors. This is especially apparent when considering the interplay among factors governing 5-HT activity, many of which share functional homology across taxa. We discuss recent findings using insect models, with an emphasis on the stalk-eyed fly, to demonstrate how particular 5-HT receptor subtypes mediate the intensity of aggression with respect to discrete stages of the interaction (initiation, escalation and termination), which mirrors the complex behavioral regulation currently recognized in vertebrates. Further similarities emerge when considering the contribution of neuropeptides, which interact with 5-HT to ultimately determine contest progression and outcome. Relative to knowledge in vertebrates, much less is known about the function of 5-HT receptors and neuropeptides in invertebrate aggression, particularly with respect to sex, species and context, prompting the need for further studies. Our Commentary highlights the need to consider multiple factors when determining potential taxonomic differences, and raises the possibility of more similarities than differences between vertebrates and invertebrates with regard to the modulatory effect of 5-HT on aggression.
Collapse
Affiliation(s)
- Andrew N Bubak
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Michael J Watt
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - Jazmine D W Yaeger
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - Kenneth J Renner
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - John G Swallow
- Department of Integrative Biology, University of Colorado-Denver, Denver, CO 80217, USA
| |
Collapse
|
12
|
Pang YY, Song YM, Zhang L, Song XZ, Zhang C, Lv JH, He L, Cheng YX, Yang XZ. 5-HT2B, 5-HT7, and DA2 Receptors Mediate the Effects of 5-HT and DA on Agonistic Behavior of the Chinese Mitten Crab ( Eriocheir sinensis). ACS Chem Neurosci 2019; 10:4502-4510. [PMID: 31642670 DOI: 10.1021/acschemneuro.9b00342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Chinese mitten crab (Eriocheir sinensis) is a commercially important crab in China and is usually managed at high stocking densities. Agonistic behavior directly impacts crab integrity, survival, and growth and results in economic losses. In the present study, we evaluated the modulatory effects of serotonin (5-HT) and dopamine (DA) though the 5-HT2 and DA2 receptor-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway on agonistic behavior. The results showed that injection of either 10-6 mol/crab 5-HT or DA reduced the agonistic behavior of E. sinensis (P < 0.05), as did 10-10 mol/crab DA and 10-8 mol/crab 5-HT and DA (P < 0.05); however, a dose of 10-10 mol/crab 5-HT promoted agonistic behavior. 5-HT significantly increased the mRNA expression level of 5-HT7 receptor and reduced that of the DA2 receptor in the cerebral ganglion (P < 0.05). In contrast to 5-HT, DA significantly decreased 5-HT2B mRNA levels and increased 5-HT7 and DA2 receptor levels in the thoracic ganglia (P < 0.05). In addition, injections of either 5-HT or DA increased the cAMP and PKA levels in hemolymph (P < 0.05). By using in vitro culture of the thoracic ganglia, the current study showed that ketanserin (5-HT2 antagonist) and [R(-)-TNPA] (DA2 agonist) had obvious effects on the expression levels of the two receptors (P < 0.05). In vivo experiments further demonstrated that ketanserin and [R(-)-TNPA] could both significantly reduce the agonistic behavior of the crabs (P < 0.05). Furthermore, both ketanserin and [R(-)-TNPA] promoted the cAMP and PKA levels (P < 0.05). The injection of CPT-cAMP (cAMP analogue) elevated the PKA levels and inhibited agonistic behavior. In summary, this study showed that 5HT-2B and DA2 receptors were involved in the agonistic behavior that 5-HT/DA induced through the cAMP-PKA pathway in E. sinensis.
Collapse
Affiliation(s)
- Yang-Yang Pang
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Ya-Meng Song
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Long Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Xiao-Zhe Song
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Cong Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Jia-Huan Lv
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Long He
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Yong-Xu Cheng
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Xiao-Zhen Yang
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
13
|
Abreu MS, Maximino C, Banha F, Anastácio PM, Demin KA, Kalueff AV, Soares MC. Emotional behavior in aquatic organisms? Lessons from crayfish and zebrafish. J Neurosci Res 2019; 98:764-779. [DOI: 10.1002/jnr.24550] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/24/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Murilo S. Abreu
- Bioscience Institute University of Passo Fundo (UPF) Passo Fundo Brazil
- The International Zebrafish Neuroscience Research Consortium (ZNRC) Slidell LA USA
| | - Caio Maximino
- The International Zebrafish Neuroscience Research Consortium (ZNRC) Slidell LA USA
- Institute of Health and Biological Studies Federal University of Southern and Southeastern Pará, Unidade III Marabá Brazil
| | - Filipe Banha
- Department of Landscape, Environment and Planning MARE – Marine and Environmental Sciences Centre University of Évora Évora Portugal
| | - Pedro M. Anastácio
- Department of Landscape, Environment and Planning MARE – Marine and Environmental Sciences Centre University of Évora Évora Portugal
| | - Konstantin A. Demin
- Institute of Experimental Medicine Almazov National Medical Research Center Ministry of Healthcare of Russian Federation St. Petersburg Russia
- Institute of Translational Biomedicine St. Petersburg State University St. Petersburg Russia
| | - Allan V. Kalueff
- School of Pharmacy Southwest University Chongqing China
- Ural Federal University Ekaterinburg Russia
| | - Marta C. Soares
- CIBIO, Research Centre in Biodiversity and Genetic Resources University of Porto Porto Portugal
| |
Collapse
|
14
|
Identification of putative amine receptor complement in the eyestalk of the crayfish, Procambarus clarkii. INVERTEBRATE NEUROSCIENCE 2019; 19:12. [PMID: 31549228 DOI: 10.1007/s10158-019-0232-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 09/16/2019] [Indexed: 10/25/2022]
Abstract
In decapod crustaceans, the amines dopamine, octopamine, serotonin, and histamine are known to serve as locally released and/or circulating neuromodulators. While many studies have focused on determining the modulatory actions of amines on decapod nervous systems, comparatively little is known about the identity of the receptors through which they exert their actions. Here, a crayfish, Procambarus clarkii, tissue-specific transcriptome was used to identify putative amine receptors in the eyestalk, a structure composed largely of the eyestalk ganglia, including the neuroendocrine X-organ-sinus gland system, and retina. Transcripts encoding 17 distinct putative amine receptors, three dopamine (one dopamine 1-like, one dopamine 2-like, and one dopamine/ecdysteroid-like), five octopamine (one alpha-like, three beta-like, and one octopamine/tyramine-like), three serotonin (two type-1-like and one type-7-like), and six histamine (five histamine-gated chloride channel A-like and one histamine-gated chloride channel B-like) were identified in the assembly. Comparison of the nucleotide sequence of the transcript encoding one predicted type-1-like serotonin receptor with that cloned previously from the P. clarkii nervous system shows the two sequences to be essentially identical, providing increased support for the validity of the transcripts used to deduce the proteins reported here. Reciprocal BLAST and structural/functional domain analyses support the protein family annotations ascribed to the putative P. clarkii receptors. These data represent the first large-scale description of amine receptors from P. clarkii, and as such provide a new resource for initiating gene-based studies of aminergic control of physiology/behavior at the level of receptors in this species.
Collapse
|
15
|
Yang XZ, Pang YY, Huang GY, Xu MJ, Zhang C, He L, Lv JH, Song YM, Song XZ, Cheng YX. The serotonin or dopamine by cyclic adenosine monophosphate-protein kinase A pathway involved in the agonistic behaviour of Chinese mitten crab, Eriocheir sinensis. Physiol Behav 2019; 209:112621. [PMID: 31323296 DOI: 10.1016/j.physbeh.2019.112621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/05/2019] [Accepted: 07/15/2019] [Indexed: 12/16/2022]
Abstract
Agonistic behaviour is common in an encounter between two crustaceans. It often causes limb disability and consumes a lot of energy, which is harmful for the growth and survival of commercially important crustaceans. In the present study, we mainly focused on the agonistic behaviour of the Chinese mitten crab, Eriocheir sinensis, which is an important species of the aquaculture industry in China. We recorded agnostic behaviour with a high-definition camera and preliminarily evaluated the role of serotonin (5-HT) or dopamine (DA)-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway and eyestalk in the behaviour. The results showed that agonistic behaviour in E. sinensis consisted of three stages: approach, contact and fight. We found that the number of fights and cumulative time of fight were significantly higher in the male vs. male group than in the female vs. female and female vs. male groups (P < 0.05). After 1 h of agonistic behaviour, 5-HT concentration showed a significant increase and DA concentration showed a significant decrease when compared with the control group (no encounter; P < 0.05). 5-HT1B and 5-HT2B mRNA levels showed a significant increase in the eyestalk (P < 0.05). 5-HT7 mRNA levels showed significant downregulation in the thoracic ganglia and DA1A mRNA levels showed upregulation in the intestine (P < 0.05). DA2 mRNA levels showed a significant decrease in the eyestalk (P < 0.05). These changes were accompanied by a significant increase in cAMP level and significant decrease in PKA level in the haemolymph (P < 0.05). In addition, a significant decrease in glucose levels was detected after the agonistic behaviour. Crustacean hyperglycemic hormone (CHH) mRNA levels showed significant upregulation in the eyestalk and significant downregulation in the intestine (P < 0.05). The number of fights and cumulative time of fight in the left eyestalk ablation (L-X vs. L-X) group were more and longer than those in the intact eyestalk (C vs. C), right eyestalk ablation (R-X vs. R-X) and bilateral eyestalk ablation (D-X vs. D-X) groups. In short, E. sinensis shows special agonistic behaviour modulated by 5-HT or DA-cAMP-PKA pathway and eyestalk, especially the left eyestalk.
Collapse
Affiliation(s)
- Xiao-Zhen Yang
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, 201306 Shanghai, PR China.
| | - Yang-Yang Pang
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, 201306 Shanghai, PR China
| | - Gen-Yong Huang
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, 201306 Shanghai, PR China
| | - Min-Jie Xu
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, 201306 Shanghai, PR China
| | - Cong Zhang
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, 201306 Shanghai, PR China
| | - Long He
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, 201306 Shanghai, PR China
| | - Jia-Huan Lv
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, 201306 Shanghai, PR China
| | - Ya-Meng Song
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, 201306 Shanghai, PR China
| | - Xiao-Zhe Song
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, 201306 Shanghai, PR China
| | - Yong-Xu Cheng
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, 201306 Shanghai, PR China.
| |
Collapse
|
16
|
Takahashi K, Yamaguchi E, Fujiyama N, Nagayama T. The effects of shelter quality and prior residence on marmorkrebs (marbled crayfish). ACTA ACUST UNITED AC 2019; 222:jeb.197301. [PMID: 30814296 DOI: 10.1242/jeb.197301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/20/2019] [Indexed: 11/20/2022]
Abstract
Many animals fight over a limited valuable resource. In marmorkrebs (marbled crayfish), large animals usually defeat small opponents but they are frequently beaten by small opponents that are shelter owners. A prior residence effect of marbled crayfish was analysed quantitatively in the present study. More than 2 h of residency in a shelter was sufficient for small owners to defeat large intruders. Small animals that stayed in a shelter for 24 h still tended to win following removal of the shelter 10 min before pairing with large intruders, but 2 h residents were occasionally beaten by large intruders without the support of shelters during pairings. The prior residence effect thus developed depending on the duration of residency. To clarify whether the strength of the prior residence effect was affected by the quality of a shelter, large and small owners with different combinations of high- and low-quality shelters were paired. When both large and small owners possessed a high-quality shelter, the frequency of agonistic bouts was reduced. Even if agonistic bouts occurred, the win frequency of small owners was almost equal to that of large owners. Thus, the residence effect on small owners was sufficiently strong to overcome the physical disadvantage of small animals to large opponents. By contrast, small owners of low--quality shelters were frequently beaten by large owners with the shelters of same or better quality. We conclude that the outcome of fights over the resource shelter is highly dependent on both the perception of shelter quality and body size differences.
Collapse
Affiliation(s)
- Kazuya Takahashi
- Division of Biology, Graduate School of Science and Engineering, Yamagata University, 990-8560 Yamagata, Japan
| | - Erika Yamaguchi
- Department of Biology, Faculty of Science, Yamagata University, 990-8560 Yamagata, Japan
| | - Naoyuki Fujiyama
- Department of Biology, Faculty of Science, Yamagata University, 990-8560 Yamagata, Japan
| | - Toshiki Nagayama
- Department of Biology, Faculty of Science, Yamagata University, 990-8560 Yamagata, Japan
| |
Collapse
|
17
|
Bubak AN, Watt MJ, Renner KJ, Luman AA, Costabile JD, Sanders EJ, Grace JL, Swallow JG. Sex differences in aggression: Differential roles of 5-HT2, neuropeptide F and tachykinin. PLoS One 2019; 14:e0203980. [PMID: 30695038 PMCID: PMC6350964 DOI: 10.1371/journal.pone.0203980] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/15/2019] [Indexed: 11/18/2022] Open
Abstract
Despite the conserved function of aggression across taxa in obtaining critical resources such as food and mates, serotonin's (5-HT) modulatory role on aggressive behavior appears to be largely inhibitory for vertebrates but stimulatory for invertebrates. However, critical gaps exist in our knowledge of invertebrates that need to be addressed before definitively stating opposing roles for 5-HT and aggression. Specifically, the role of 5-HT receptor subtypes are largely unknown, as is the potential interactive role of 5-HT with other neurochemical systems known to play a critical role in aggression. Similarly, the influence of these systems in driving sex differences in aggressive behavior of invertebrates is not well understood. Here, we investigated these questions by employing complementary approaches in a novel invertebrate model of aggression, the stalk-eyed fly. A combination of altered social conditions, pharmacological manipulation and 5-HT2 receptor knockdown by siRNA revealed an inhibitory role of this receptor subtype on aggression. Additionally, we provide evidence for 5-HT2's involvement in regulating neuropeptide F activity, a suspected inhibitor of aggression. However, this function appears to be stage-specific, altering only the initiation stage of aggressive conflicts. Alternatively, pharmacologically increasing systemic concentrations of 5-HT significantly elevated the expression of the neuropeptide tachykinin, which did not affect contest initiation but instead promoted escalation via production of high intensity aggressive behaviors. Notably, these effects were limited solely to males, with female aggression and neuropeptide expression remaining unaltered by any manipulation that affected 5-HT. Together, these results demonstrate a more nuanced role for 5-HT in modulating aggression in invertebrates, revealing an important interactive role with neuropeptides that is more reminiscent of vertebrates. The sex-differences described here also provide valuable insight into the evolutionary contexts of this complex behavior.
Collapse
Affiliation(s)
- Andrew N. Bubak
- Department of Neurology, University of Colorado-Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Michael J. Watt
- Center for Brain and Behavior Research, Basic Biomedical Sciences, University of South Dakota, Vermillion, South Dakota, United States of America
| | - Kenneth J. Renner
- Biology Department, University of South Dakota, Vermillion, South Dakota, United States of America
| | - Abigail A. Luman
- Department of Integrative Biology, University of Colorado-Denver, Denver, United States of America
| | - Jamie D. Costabile
- Department of Integrative Biology, University of Colorado-Denver, Denver, United States of America
| | - Erin J. Sanders
- Department of Integrative Biology, University of Colorado-Denver, Denver, United States of America
| | - Jaime L. Grace
- Department of Biology, Bradley University, Peoria, Illinois, United States of America
| | - John G. Swallow
- Department of Integrative Biology, University of Colorado-Denver, Denver, United States of America
- * E-mail:
| |
Collapse
|
18
|
Mendoza-Vargas L, Guarneros-Bañuelos E, Báez-Saldaña A, Galicia-Mendoza F, Flores-Soto E, Fuentes-Pardo B, Alvarado R, Valdés-Tovar M, Sommer B, Benítez-King G, Solís-Chagoyán H. Involvement of Melatonin in the Regulation of the Circadian System in Crayfish. Int J Mol Sci 2018; 19:ijms19072147. [PMID: 30041485 PMCID: PMC6073447 DOI: 10.3390/ijms19072147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 02/07/2023] Open
Abstract
Melatonin (MEL) is an ancient molecule, broadly distributed in nature from unicellular to multicellular species. MEL is an indoleamine that acts on a wide variety of cellular targets regulating different physiological functions. This review is focused on the role played by this molecule in the regulation of the circadian rhythms in crayfish. In these species, information about internal and external time progression might be transmitted by the periodical release of MEL and other endocrine signals acting through the pacemaker. We describe documented and original evidence in support of this hypothesis that also suggests that the rhythmic release of MEL contributes to the reinforcement of the temporal organization of nocturnal or diurnal circadian oscillators. Finally, we discuss how MEL might coordinate functions that converge in the performance of complex behaviors, such as the agonistic responses to establish social dominance status in Procambarus clarkii and the burrowing behavior in the secondary digging crayfish P. acanthophorus.
Collapse
Affiliation(s)
- Leonor Mendoza-Vargas
- Departamento El Hombre y su Ambiente, Universidad Autónoma Metropolitana-Xochimilco (UAM-Xochimilco), 04960 Ciudad de México, Mexico.
| | - Elizabeth Guarneros-Bañuelos
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340 Ciudad de México, Mexico.
| | - Armida Báez-Saldaña
- Departamento de Biología Celular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico.
| | - Fabiola Galicia-Mendoza
- Departamento El Hombre y su Ambiente, Universidad Autónoma Metropolitana-Xochimilco (UAM-Xochimilco), 04960 Ciudad de México, Mexico.
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico.
| | - Beatriz Fuentes-Pardo
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico.
| | - Ramón Alvarado
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico.
| | - Marcela Valdés-Tovar
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, 14370 Ciudad de México, Mexico.
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, 14080 Ciudad de México, Mexico.
| | - Gloria Benítez-King
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, 14370 Ciudad de México, Mexico.
| | - Héctor Solís-Chagoyán
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, 14370 Ciudad de México, Mexico.
| |
Collapse
|
19
|
Abe T, Fujiyama N, Tomimatsu H, Nagayama T. Age-dependent and social status-dependent behavioural plasticity of the cricket Gryllus bimaculatus. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
20
|
Momohara Y, Aonuma H, Nagayama T. Tyraminergic modulation of agonistic outcomes in crayfish. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:465-473. [PMID: 29488014 DOI: 10.1007/s00359-018-1255-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 02/03/2018] [Accepted: 02/23/2018] [Indexed: 01/05/2023]
Abstract
Octopamine, a biogenic amine, modulates various behaviors, ranging from locomotion and aggression to learning and memory in invertebrates. Several studies recently demonstrated that tyramine, the biological precursor of octopamine, also affects behaviors independent of octopamine. Here we investigated the involvement of tyramine in agonistic interaction of the male crayfish Procambarus clarkii. When male crayfish fight, larger animals (3-7% difference in body length) are more likely to win. By contrast, direct injection of tyramine or octopamine counteracted the physical advantage of larger animals. Tyramine or octopamine-injected naive large animals were mostly beaten by untreated smaller naive animals. This pharmacological effect was similar to the loser effect in which subordinate larger animals are frequently beaten by smaller animals. Furthermore, loser effects were partly eliminated by either injection of epinastine, an octopamine blocker, or yohimbine, a tyramine blocker, and significantly diminished by injection of a mixture of both blockers. We also observed that tyramine levels in the subesophageal ganglion were remarkably increased in subordinate crayfish after losing a fight. These results suggest that tyramine modulates aggressive levels of crayfish and contributes to the loser effect in parallel with octopamine.
Collapse
Affiliation(s)
- Yuto Momohara
- Division of Biology, Graduate School of Science and Engineering, Yamagata University, Yamagata, 990-8560, Japan. .,Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, Japan.
| | - Hitoshi Aonuma
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Sapporo, 060-0811, Japan
| | - Toshiki Nagayama
- Department of Biology, Faculty of Science, Yamagata University, Yamagata, 990-8560, Japan
| |
Collapse
|
21
|
Bacqué-Cazenave J, Cattaert D, Delbecque JP, Fossat P. Serotonin has opposite effects on the aggressiveness of crayfish, facing either a smaller or a larger rival: alteration of size perception. J Exp Biol 2018; 221:jeb.177840. [DOI: 10.1242/jeb.177840] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/23/2018] [Indexed: 12/27/2022]
Abstract
We injected serotonin (5-HT) in adult male crayfish before pairing them with size-matched non-injected competitors, and we observed dyadic agonistic interactions. Paradoxically, 5-HT elicited opposite behavioral responses if the injected animal was opposed by a smaller or larger rival: the level of aggressiveness of the injected crayfish was higher in front of a larger rival but lower in front of a smaller rival. Our results indicate that the effects of 5-HT on aggressiveness are dependent on the perception of the relative size difference of the opponent. In both cases, however, 5-HT significantly delayed the decision to retreat. We conclude that 5-HT does not primarily act on aggressiveness but rather on the brain centers that integrate risk assessment and/or decision-making, which then modulate the aggressive response. Our study supports a reinterpretation of the role of 5-HT in crustacean agonistic behavior that may be of interest for other animals.
Collapse
Affiliation(s)
- Julien Bacqué-Cazenave
- Université de Bordeaux. CNRS, UMR5287, INCIA (Institut des Neurosciences Cognitives et Intégratives d'Aquitaine), 146 Rue Leo Saignat, 33076 Bordeaux, France
| | - Daniel Cattaert
- Université de Bordeaux. CNRS, UMR5287, INCIA (Institut des Neurosciences Cognitives et Intégratives d'Aquitaine), 146 Rue Leo Saignat, 33076 Bordeaux, France
| | - Jean Paul Delbecque
- Université de Bordeaux. CNRS, UMR5287, INCIA (Institut des Neurosciences Cognitives et Intégratives d'Aquitaine), 146 Rue Leo Saignat, 33076 Bordeaux, France
| | - Pascal Fossat
- Université de Bordeaux. CNRS, UMR5287, INCIA (Institut des Neurosciences Cognitives et Intégratives d'Aquitaine), 146 Rue Leo Saignat, 33076 Bordeaux, France
| |
Collapse
|
22
|
Shiratori C, Suzuki N, Momohara Y, Shiraishi K, Aonuma H, Nagayama T. Cyclic AMP-regulated opposing and parallel effects of serotonin and dopamine on phototaxis in the Marmorkrebs (marbled crayfish). Eur J Neurosci 2017; 46:1863-1874. [PMID: 28661085 DOI: 10.1111/ejn.13632] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 02/01/2023]
Abstract
Phototactic behaviours are observed from prokaryotes to amphibians and are a basic form of orientation. We showed that the marbled crayfish displays phototaxis in which the behavioural response reversed from negative to positive depending on external light conditions. Animals reared in a 12-L/12-D light cycle showed negative phototaxis during daytime and positive phototaxis during night-time. Animals reared under constant light conditioning showed negative phototaxis during day- and night-time, while animals reared under constant dark conditioning showed positive phototaxis during day- and night-time. Injection of serotonin leads to a reversal of negative to positive phototaxis in both light/dark-reared and light/light-reared animals while injection of dopamine induced reversed negative phototaxis in dark/dark-reared animals. Four hours of dark adaptation were enough for light/dark-reared animals to reverse phototaxis from negative to positive. Injection of a serotonin 5HT1 receptor antagonist blocked the reverse phototaxis while serotonin 5HT2 receptor antagonists had no effects. Similarly, dark/dark-reared animals reversed to showing negative phototaxis after 4 h of light adaptation. Injection of a dopamine DA1 receptor antagonist blocked this reverse phototaxis, while dopamine DA2 receptor antagonists had no effects. Injection of a cAMP analogue into light/dark-reared animals blocked reverse phototaxis after dark adaptation, while adenylate cyclase inhibitor in dark/dark-reared animals blocked reverse phototaxis after light adaptation. These results strongly suggest that serotonin mediates positive phototaxis owing to decreased cAMP levels, while dopamine-mediated negative phototaxis occurs due to increased cAMP levels. Supporting this, the ratio of serotonin to dopamine in the brain was much higher in dark/dark-reared than light/dark-reared animals.
Collapse
Affiliation(s)
- Chihiro Shiratori
- Division of Biology, Graduate School of Science and Engineering, Yamagata University, 990-8560, Yamagata, Japan
| | - Nanoka Suzuki
- Division of Biology, Graduate School of Science and Engineering, Yamagata University, 990-8560, Yamagata, Japan
| | - Yuto Momohara
- Division of Biology, Graduate School of Science and Engineering, Yamagata University, 990-8560, Yamagata, Japan
| | - Kyosuke Shiraishi
- Division of Biology, Graduate School of Science and Engineering, Yamagata University, 990-8560, Yamagata, Japan
| | - Hitoshi Aonuma
- Research Institute for Electronic Science, Hokkaido University, 060-0812, Sapporo, Japan
| | - Toshiki Nagayama
- Department of Biology, Faculty of Science, Yamagata University, 990-8560, Yamagata, Japan
| |
Collapse
|
23
|
Woodman SG, Steinkey D, Dew WA, Burket SR, Brooks BW, Pyle GG. Effects of sertraline on behavioral indices of crayfish Orconectes virilis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 134P1:31-37. [PMID: 27575517 DOI: 10.1016/j.ecoenv.2016.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/13/2016] [Accepted: 08/22/2016] [Indexed: 06/06/2023]
Abstract
Sertraline, a selective serotonin re-uptake inhibitor, is a widely prescribed antidepressant in North America. Though sertraline is continuously released from wastewater treatment plant discharge to surface water, effects of aqueous exposure of sertraline on behavioral responses of aquatic animals are largely unknown. Our study explored the effects of aqueous exposures of sertraline on antagonistic bouts and predator response behavior of virile crayfish (Orconectes virilis). Crayfish were either exposed or not exposed to waterborne sertraline and then size-matched for paired antagonistic bouts to determine if sertraline affects the aggression of each crayfish. We investigated the effect of sertraline on responses to visual predator cues and determined whether sertraline acts as an olfactory cue. Our results demonstrate that crayfish exposed to sertraline are more aggressive when paired with control crayfish but, when sertraline crayfish are paired, there is no change in aggression. Attraction response to sertraline in behavioral mazes was also observed, which may represent a maladaptive behavior, and in an ecological context may result in crayfish moving to areas with elevated levels of sertraline. However, aqueous exposure to sertraline had no effect on predator responses of crayfish. Future research is warranted to determine whether such medicine released in wastewater treatment plant effluents produces long-term ecologically important consequences for aquatic animals residing in urbanized aquatic ecosystems.
Collapse
Affiliation(s)
- S G Woodman
- Department of Biological Sciences, University of Lethbridge, Lethbridge, ON, Canada T1K3M4
| | - D Steinkey
- Department of Biological Sciences, University of Lethbridge, Lethbridge, ON, Canada T1K3M4
| | - W A Dew
- Department of Biological Sciences, University of Lethbridge, Lethbridge, ON, Canada T1K3M4; Department of Biology, Trent University, Peterborough, ON, Canada K9J7B8
| | - S R Burket
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| | - B W Brooks
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| | - G G Pyle
- Department of Biological Sciences, University of Lethbridge, Lethbridge, ON, Canada T1K3M4.
| |
Collapse
|
24
|
Rodríguez-Sosa L, Calderón-Rosete G, Ortega-Cambranis A, De-Miguel FF. Octopamine cyclic release and its modulation of visual sensitivity in crayfish. Comp Biochem Physiol A Mol Integr Physiol 2016; 203:83-90. [PMID: 27593450 DOI: 10.1016/j.cbpa.2016.08.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/30/2016] [Accepted: 08/30/2016] [Indexed: 11/27/2022]
Abstract
The biogenic amine octopamine (OA) modulates invertebrate behavior by changing neuronal responses from sensory inputs to motor outputs. However, the OA modulation of visual sensitivity and its possible coupling to diurnal cycles remains unexplored. Here we studied the diurnal variations in the OA levels in the hemolymph of the crayfish Procambarus clarkii, its release from the structures in the eyestalk and its modulation of the retinal light sensitivity. The hemolymph concentration of OA and its amino acid precursor tyrosine was measured by high-resolution liquid chromatography; OA varied along the 24-hcycle. The peak value appeared about 2h before the light offset which preceded the peak locomotor activity. OA was found in every structure of the eyestalk but displayed higher levels in the retina-lamina ganglionaris. Moreover, OA was released from isolated eyestalks at a rate of 92nmol/eyestalk/min and a calcium-dependent release was evoked by incubation in a high potassium solution. OA injected into dark-adapted crayfish or applied to the isolated retina at concentrations of 1, 10 and 100μM produced a proportionally increasing reduction in the amplitude of the photoreceptor light responses. These OA concentrations did not affect the position of the visual accessory pigments. Our results suggest that OA release in the crayfish eyestalk is coupled to the 24-hcycle to regulate the diurnal reduction of the photoreceptor sensitivity and to favor the expression of exploratory locomotion during the dark phase of the circadian cycle.
Collapse
Affiliation(s)
- Leonardo Rodríguez-Sosa
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, C.P. 04510 Ciudad de México, México.
| | - Gabina Calderón-Rosete
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, C.P. 04510 Ciudad de México, México
| | - Aída Ortega-Cambranis
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, C.P. 72570 Puebla, Pue., México
| | - Francisco F De-Miguel
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, C.P. 04510 Ciudad de México, México
| |
Collapse
|
25
|
Momohara Y, Minami H, Kanai A, Nagayama T. Role of cAMP signalling in winner and loser effects in crayfish agonistic encounters. Eur J Neurosci 2016; 44:1886-95. [PMID: 27086724 DOI: 10.1111/ejn.13259] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/07/2016] [Accepted: 04/07/2016] [Indexed: 12/31/2022]
Abstract
For territorial animals, establishment of status-dependent dominance order is essential to maintain social stability. In agonistic encounters of the crayfish Procambarus clarkii, a difference of body length of 3-7% is enough for larger animals to become dominant. Despite a physical disadvantage, small winners of the first pairings were more likely to win subsequent conflicts with larger inexperienced animals. In contrast, the losers of the first pairings rarely won subsequent conflicts with smaller naive animals. Such experiences of previous winning or losing affected agonistic outcomes for a long period. The winner effects lasted more than 2 weeks and the loser effect lasted about 10 days. Injection of 5HT1 receptor antagonist into the dominant animals 15-30 min after establishment of dominance order blocked the formation of the winner effects. In contrast, injection of adrenergic-like octopamine receptor antagonist into subordinate animals blocked the formation of the loser. 5HT1 receptors are negatively coupled to adenylyl cyclase and adrenergic-like octopamine receptors are positively coupled. Consistent with this, dominant animals failed to show the winner effect when injected with pCPT-cAMP, a cAMP analogue, and subordinate animals failed to show a loser effect when injected with adenylyl cyclase inhibitor SQ 22536. These results suggest that an increase and decrease of cAMP concentration is essential in mediating loser and winner effects, respectively. Furthermore, formation of the loser effect was blocked by injection of protein kinase A (PKA) inhibitor H89, suggesting long-term memory of the loser effect is dependent on the cAMP-PKA signalling pathway.
Collapse
Affiliation(s)
- Yuto Momohara
- Division of Biology, Graduate School of Science and Engineering, Yamagata University, 990-8560, Yamagata, Japan
| | - Hiroki Minami
- Division of Biology, Graduate School of Science and Engineering, Yamagata University, 990-8560, Yamagata, Japan
| | - Akihiro Kanai
- Division of Biology, Graduate School of Science and Engineering, Yamagata University, 990-8560, Yamagata, Japan
| | - Toshiki Nagayama
- Department of Biology, Faculty of Science, Yamagata University, Yamagata, Japan
| |
Collapse
|
26
|
Herberholz J, Swierzbinski ME, Birke JM. Effects of Different Social and Environmental Conditions on Established Dominance Relationships in Crayfish. THE BIOLOGICAL BULLETIN 2016; 230:152-164. [PMID: 27132137 DOI: 10.1086/bblv230n2p152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Like most social animals, crayfish readily form dominance relationships and linear social hierarchies when competing for limited resources. Competition often entails dyadic aggressive interactions, from which one animal emerges as the dominant and one as the subordinate. Once dominance relationships are formed, they typically remain stable for extended periods of time; thus, access to future resources is divided unequally among conspecifics. We previously showed that firmly established dominance relationships in juvenile crayfish can be disrupted by briefly adding a larger conspecific to the original pair. This finding suggested that the stability of social relationships in crayfish was highly context-dependent and more transient than previously assumed. We now report results that further identify the mechanisms underlying the destabilization of crayfish dominance relationships. We found that rank orders remained stable when conspecifics of smaller or equal size were added to the original pair, suggesting that both dominant and subordinate must be defeated by a larger crayfish in order to destabilize dominance relationships. We also found that dominance relationships remained stable when both members of the original pair were defeated by larger conspecifics in the absence of their original opponent. This showed that dominance relationships are not destabilized unless both animals experience defeat together. Lastly, we found that dominance relationships of pairs were successfully disrupted by larger intruders, although with reduced magnitude, after all chemical cues associated with earlier agonistic experiences were eliminated. These findings provide important new insights into the contextual features that regulate the stability of social dominance relationships in crayfish and probably in other species as well.
Collapse
Affiliation(s)
- Jens Herberholz
- Department of Psychology and Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland 20742
| | - Matthew E Swierzbinski
- Department of Psychology and Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland 20742
| | | |
Collapse
|
27
|
Mesterton-Gibbons M, Dai Y, Goubault M. Modeling the evolution of winner and loser effects: A survey and prospectus. Math Biosci 2016; 274:33-44. [DOI: 10.1016/j.mbs.2016.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/31/2016] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
|
28
|
Abstract
For many animals, shelters are valuable source to hide from predators. To know acquisition of adequate shelter is important to understand social interactions of animals. Preferences for types of shelter used by the Marmorkrebs (marbled crayfish) were analysed behaviourally. Individual crayfish were presented with a choice between two PVC pipes with four different internal diameters (XL, L, M and S). The time spent in each shelter and the number of times crayfish entered each shelter were measured. Preference ranks of crayfish were XL = L = or > M > S. Our experiments strongly suggested that crayfish chose shelters based first on the diameter of the entrance, and then based on the length of the shelter. Crayfish recognised adequate shelters by visual cues under light conditions and utilised tactile cues from their antennae under dark conditions.
Collapse
Affiliation(s)
- Kazuya Takahashi
- Division of Biology, Graduate School of Science and Engineering, Yamagata University, 990-8560 Yamagata, Japan
| | - Toshiki Nagayama
- Department of Biology, Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-Machi, 990-8560 Yamagata, Japan
| |
Collapse
|
29
|
Momohara Y, Yoshida M, Nagayama T. Serotonergic modulation of social status-dependent behavioural plasticity of the crayfish avoidance reaction. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:1063-74. [DOI: 10.1007/s00359-015-1038-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 08/04/2015] [Accepted: 08/09/2015] [Indexed: 11/28/2022]
|
30
|
David vs. Goliath: Serotonin modulates opponent perception between smaller and larger rivals. Behav Brain Res 2015; 292:521-7. [PMID: 26188180 DOI: 10.1016/j.bbr.2015.07.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/03/2015] [Accepted: 07/07/2015] [Indexed: 11/24/2022]
Abstract
During agonistic encounters, the perception of a larger opponent through morphological signaling typically suppresses aggression in the smaller individual, preventing contest intensity escalation. However, non-morphological factors such as central serotonin (5-HT) activity can influence individual aggression, potentially altering contest intensity despite initial size discrepancies. When male stalk-eyed flies (Teleopsis dalmanni) fight, contest escalation is directly proportional to similarity in body size, with escalation being lower in size-mismatched contests. We have shown that both high-intensity aggression and the probability of winning are increased in males with pharmacologically elevated 5-HT relative to size-matched non-treated opponents. Here, we hypothesized that, in size-mismatched contests, increasing brain 5-HT in the smaller opponent could similarly increase aggression and counteract the low contest intensity normally driven by size discrepancy. Size-mismatched male pairs (greater than 5% difference in eyestalk length) engaged in a forced fight paradigm, with the smaller fly either untreated or with pharmacologically elevated 5-HT levels. The expression of high-intensity aggressive behaviors was significantly increased in smaller treated opponents, but the probability of winning was not altered. This suggests that while elevated serotonergic activity can increase aggression and intensity despite perception of a larger opponent, this is not sufficient to overcome size biases with respect to contest outcome. However, the fact that larger opponents continued to win against smaller treated flies was not simply a function of size. Instead, untreated larger males adjusted their fighting strategy to match the increased aggression of their smaller treated opponent, suggesting contextual flexibility in behavior based on individual opponent assessment.
Collapse
|
31
|
Paluzzi JPV, Bhatt G, Wang CHJ, Zandawala M, Lange AB, Orchard I. Identification, functional characterization, and pharmacological profile of a serotonin type-2b receptor in the medically important insect, Rhodnius prolixus. Front Neurosci 2015; 9:175. [PMID: 26041983 PMCID: PMC4436800 DOI: 10.3389/fnins.2015.00175] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/28/2015] [Indexed: 11/13/2022] Open
Abstract
In the Chagas disease vector, Rhodnius prolixus, two diuretic hormones act synergistically to dramatically increase fluid secretion by the Malpighian tubules (MTs) during the rapid diuresis that is initiated upon engorgement of vertebrate blood. One of these diuretic hormones is the biogenic amine, serotonin (5-hydroxytryptamine, 5-HT), which controls a variety of additional activities including cuticle plasticization, salivary gland secretion, anterior midgut absorption, cardioacceleratory activity, and myotropic activities on a number of visceral tissues. To better understand the regulatory mechanisms linked to these various physiological actions of serotonin, we have isolated and characterized a serotonin type 2b receptor in R. prolixus, Rhopr5HTR2b, which shares sequence similarity to the vertebrate serotonin type 2 receptors. Rhopr5HTR2b transcript is enriched in well-recognized physiological targets of serotonin, including the MTs, salivary glands and dorsal vessel (i.e., insect heart). Notably, Rhopr5HTR2b was not enriched in the anterior midgut where serotonin stimulates absorption and elicits myotropic control. Using a heterologous functional receptor assay, we examined Rhopr5HTR2b activation characteristics and its sensitivity to potential agonists, antagonists, and other biogenic amines. Rhopr5HTR2b is dose-dependently activated by serotonin with an EC50 in the nanomolar range. Rhopr5HTR2b is sensitive to alpha-methyl serotonin and is inhibited by a variety of serotonin receptor antagonists, including propranolol, spiperone, ketanserin, mianserin, and cyproheptadine. In contrast, the cardioacceleratory activity of serotonin revealed a unique pharmacological profile, with no significant response induced by alpha-methyl serotonin and insensitivity to ketanserin and mianserin. This distinct agonist/antagonist profile indicates that a separate serotonin receptor type may mediate cardiomodulatory effects controlled by serotonin in R. prolixus.
Collapse
Affiliation(s)
| | - Garima Bhatt
- Department of Biology, York University Toronto, ON, Canada ; Department of Biology, University of Toronto Mississauga Mississauga, ON, Canada
| | - Chang-Hui J Wang
- Department of Biology, University of Toronto Mississauga Mississauga, ON, Canada
| | - Meet Zandawala
- Department of Biology, University of Toronto Mississauga Mississauga, ON, Canada
| | - Angela B Lange
- Department of Biology, University of Toronto Mississauga Mississauga, ON, Canada
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga Mississauga, ON, Canada
| |
Collapse
|
32
|
Nagayama T, Araki M. Habituation of LG-mediated tailflip in the crayfish. INVERTEBRATE NEUROSCIENCE 2015; 15:178. [DOI: 10.1007/s10158-015-0178-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/11/2015] [Indexed: 01/20/2023]
|
33
|
Mita A, Yoshida M, Nagayama T. Nitric oxide modulates a swimmeret beating rhythm in the crayfish. ACTA ACUST UNITED AC 2014; 217:4423-31. [PMID: 25452502 DOI: 10.1242/jeb.110551] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The modulatory effects of nitric oxide (NO) and cAMP on the rhythmic beating activity of the swimmeret motor neurones in the crayfish were examined. Swimmerets are paired appendages located on the ventral side of each abdominal segment that show rhythmic beating activity during forward swimming, postural righting behaviour and egg ventilation in gravid females. In isolated abdominal nerve cord preparations, swimmeret motor neurones are usually silent or show a continuous low-frequency spiking activity. Application of carbachol, a cholinergic agonist, elicited rhythmic bursts of motor neurone spikes. The co-application of L-arginine, the substrate for NO synthesis with carbachol increased the burst frequency of the motor neurones. The co-application of the NO donor SNAP with carbachol also increased the burst frequency of the motor neurones. By contrast, co-application of a NOS inhibitor, L-NAME, with carbachol decreased beating frequency of the motor neurones. These results indicate that NO may act as a neuromodulator to facilitate swimmeret beating activity. The facilitatory effect of L-arginine was cancelled by co-application of the soluble guanylate cyclase (sGC) inhibitor ODQ suggesting that NO acts by activating sGC to promote the production of cGMP. Application of L-arginine alone or membrane-permeable cGMP analogue 8-Br-cGMP alone did not elicit rhythmic activity of motor neurones, but co-application of 8-Br-cGMP with carbachol increased bursting frequency of the motor neurones. Furthermore, application of the membrane-permeable cAMP analogue CPT-cAMP alone produced rhythmic bursting of swimmeret motor neurones, and the bursting frequency elicited by CPT-cAMP was increased by co-application with L-arginine. Co-application of the adenylate cyclase inhibitor SQ22536 ceased rhythmic bursts of motor neurone spikes elicited by carbachol. These results suggest that a cAMP system enables the rhythmic bursts of motor neurone spikes and that a NO-cGMP signaling pathway increases cAMP activity to facilitate swimmeret beating.
Collapse
Affiliation(s)
- Atsuki Mita
- Division of Biology, Graduate School of Science and Engineering, Yamagata University, 990-8560 Yamagata, Japan
| | - Misaki Yoshida
- Division of Biology, Graduate School of Science and Engineering, Yamagata University, 990-8560 Yamagata, Japan
| | - Toshiki Nagayama
- Department of Biology, Faculty of Science, Yamagata University, 990-8560 Yamagata, Japan.
| |
Collapse
|
34
|
Fossat P, Bacque-Cazenave J, De Deurwaerdere P, Delbecque JP, Cattaert D. Anxiety-like behavior in crayfish is controlled by serotonin. Science 2014; 344:1293-7. [DOI: 10.1126/science.1248811] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|