1
|
Liu W, Luo G. NEDD9 is transcriptionally regulated by HDAC4 and promotes breast cancer metastasis and macrophage M2 polarization via the FAK/NF-κB signaling pathway. Neoplasia 2024; 57:101059. [PMID: 39326322 PMCID: PMC11470473 DOI: 10.1016/j.neo.2024.101059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Breast cancer is a malignancy with a generally poor prognosis. With the advancement of molecular research, we have gained deeper insights into the cellular processes that drive breast cancer development. However, the precise mechanisms remain elusive. RESULTS Based on the CPTAC database, we found that NEDD9 expression is up-regulated in breast cancer tissues and is associated with poor prognosis in breast cancer patients. Functional experiments showed that NEDD9 promotes tumor growth and metastasis both in vitro and in vivo. Overexpression of NEDD9 disrupts mammary epithelial acinus formation and triggers epithelial-mesenchymal transition in breast cancer cells, effects that are reversed upon NEDD9 gene silencing. Mechanistically, NEDD9 upregulates its expression by inhibiting HDAC4 activity, leading to enhanced H3K9 acetylation of the NEDD9 gene promoter and activation of the FAK/NF-κB signaling pathway. Furthermore, NEDD9 overexpression promotes IL-6 secretion, which further drives breast cancer progression. Notably, NEDD9 activation fosters the pro-tumoral M2 macrophage polarization in the tumor microenvironment. NEDD9 stimulates IL-6 secretion, polarizes monocytes towards an M2-like phenotype, and enhances BC cell invasiveness. CONCLUSIONS These findings suggest that NEDD9 upregulation plays a pivotal role in breast cancer metastasis and macrophage M2 polarization via the FAK/NF-κB signaling axis. Targeting NEDD9 may offer a promising therapeutic approach for breast cancer treatment.
Collapse
Affiliation(s)
- Wenhong Liu
- Department of Radiology, The First Affiliated Hospital of University of South China, Hengyang City, 421001, Hunan Province, China
| | - Guanghua Luo
- Department of Radiology, The First Affiliated Hospital of University of South China, Hengyang City, 421001, Hunan Province, China.
| |
Collapse
|
2
|
Wang X, Xue X, Pang M, Yu L, Qian J, Li X, Tian M, Lyu A, Lu C, Liu Y. Epithelial-mesenchymal plasticity in cancer: signaling pathways and therapeutic targets. MedComm (Beijing) 2024; 5:e659. [PMID: 39092293 PMCID: PMC11292400 DOI: 10.1002/mco2.659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Currently, cancer is still a leading cause of human death globally. Tumor deterioration comprises multiple events including metastasis, therapeutic resistance and immune evasion, all of which are tightly related to the phenotypic plasticity especially epithelial-mesenchymal plasticity (EMP). Tumor cells with EMP are manifest in three states as epithelial-mesenchymal transition (EMT), partial EMT, and mesenchymal-epithelial transition, which orchestrate the phenotypic switch and heterogeneity of tumor cells via transcriptional regulation and a series of signaling pathways, including transforming growth factor-β, Wnt/β-catenin, and Notch. However, due to the complicated nature of EMP, the diverse process of EMP is still not fully understood. In this review, we systematically conclude the biological background, regulating mechanisms of EMP as well as the role of EMP in therapy response. We also summarize a range of small molecule inhibitors, immune-related therapeutic approaches, and combination therapies that have been developed to target EMP for the outstanding role of EMP-driven tumor deterioration. Additionally, we explore the potential technique for EMP-based tumor mechanistic investigation and therapeutic research, which may burst vigorous prospects. Overall, we elucidate the multifaceted aspects of EMP in tumor progression and suggest a promising direction of cancer treatment based on targeting EMP.
Collapse
Affiliation(s)
- Xiangpeng Wang
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Xiaoxia Xue
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Mingshi Pang
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Liuchunyang Yu
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Jinxiu Qian
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Xiaoyu Li
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Meng Tian
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Aiping Lyu
- School of Chinese MedicineHong Kong Baptist UniversityKowloonHong KongChina
| | - Cheng Lu
- Institute of Basic Research in Clinical MedicineChina Academy of Chinese Medical SciencesBeijingChina
| | - Yuanyan Liu
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| |
Collapse
|
3
|
Tang L, Xu S, Wei R, Fan G, Zhou J, Wei X, Xu X. Transcription factor 7 like 2 promotes metastasis in hepatocellular carcinoma via NEDD9-mediated activation of AKT/mTOR signaling pathway. Mol Med 2024; 30:108. [PMID: 39060928 PMCID: PMC11282612 DOI: 10.1186/s10020-024-00878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignant tumors of the digestive system, and the exact mechanism of HCC is still unclear. Transcription factor 7 like 2 (TCF7L2) plays a pivotal role in cell proliferation and stemness maintenance. However, the exact mechanism of TCF7L2 in HCC remains unclear. METHODS Clinical samples and public databases were used to analyze the expression and prognosis of TCF7L2 in HCC. The function of TCF7L2 in HCC was studied in vitro and in vivo. ChIP and luciferase assays were used to explore the molecular mechanism of TCF7L2. The relationship between TCF7L2 and NEDD9 was verified in HCC clinical samples by tissue microarrays. RESULTS The expression of TCF7L2 was upregulated in HCC, and high expression of TCF7L2 was associated with poor prognosis of HCC patients. Overexpression of TCF7L2 promoted the metastasis of HCC in vitro and in vivo, while Knockdown of TCF7L2 showed the opposite effect. Mechanically, TCF7L2 activated neural precursor cell expressed developmentally downregulated protein 9 (NEDD9) transcription by binding to the -1522/-1509 site of the NEDD9 promoter region, thereby increasing the phosphorylation levels of AKT and mTOR. The combination of TCF7L2 and NEDD9 could distinguish the survival of HCC patients. CONCLUSIONS This study demonstrated that TCF7L2 promotes HCC metastasis by activating AKT/mTOR pathway in a NEDD9-dependent manner, suggesting that potential of TCF7L2 and NEDD9 as prognostic markers and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Linsong Tang
- Department of Urology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, Zhejiang, China
| | - Shengjun Xu
- Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, Zhejiang, China
| | - Rongli Wei
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Guanghan Fan
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Junbin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, Zhejiang, China
| | - Xiao Xu
- Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Song H, Jiang H, Hu W, Hai Y, Cai Y, Li H, Liao Y, Huang Y, Lv X, Zhang Y, Zhang J, Huang Y, Liang X, Huang H, Lin X, Wang Y, Yi X. Cervical extracellular matrix hydrogel optimizes tumor heterogeneity of cervical squamous cell carcinoma organoids. SCIENCE ADVANCES 2024; 10:eadl3511. [PMID: 38748808 PMCID: PMC11095500 DOI: 10.1126/sciadv.adl3511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/10/2024] [Indexed: 05/19/2024]
Abstract
Cervical cancer, primarily squamous cell carcinoma, is the most prevalent gynecologic malignancy. Organoids can mimic tumor development in vitro, but current Matrigel inaccurately replicates the tissue-specific microenvironment. This limitation compromises the accurate representation of tumor heterogeneity. We collected para-cancerous cervical tissues from patients diagnosed with cervical squamous cell carcinoma (CSCC) and prepared uterine cervix extracellular matrix (UCEM) hydrogels. Proteomic analysis of UCEM identified several tissue-specific signaling pathways including human papillomavirus, phosphatidylinositol 3-kinase-AKT, and extracellular matrix receptor. Secreted proteins like FLNA, MYH9, HSPA8, and EEF1A1 were present, indicating UCEM successfully maintained cervical proteins. UCEM provided a tailored microenvironment for CSCC organoids, enabling formation and growth while preserving tumorigenic potential. RNA sequencing showed UCEM-organoids exhibited greater similarity to native CSCC and reflected tumor heterogeneity by exhibiting CSCC-associated signaling pathways including virus protein-cytokine, nuclear factor κB, tumor necrosis factor, and oncogenes EGR1, FPR1, and IFI6. Moreover, UCEM-organoids developed chemotherapy resistance. Our research provides insights into advanced organoid technology through native matrix hydrogels.
Collapse
Affiliation(s)
- Haonan Song
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Haoyuan Jiang
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Weichu Hu
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yan Hai
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yihuan Cai
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Hu Li
- The First Affiliated Hospital, Jinan University, Guangzhou 510280, China
| | - Yuru Liao
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yi Huang
- Department of Gynecology, The Sixth Affiliated Hospital, South China University of Technology, Foshan 528200, China
| | - Xiaogang Lv
- Department of Gynecologic Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510030, China
| | - Yefei Zhang
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jiping Zhang
- Department of Gynecology, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Yan Huang
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiaomei Liang
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Hao Huang
- Department of Gynecology, The Sixth Affiliated Hospital, South China University of Technology, Foshan 528200, China
| | - Xinhua Lin
- Greater Bay Area Institute of Precision Medicine, Guangzhou 510280, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University Shanghai, Shanghai 200438, China
| | - Yifeng Wang
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiao Yi
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Greater Bay Area Institute of Precision Medicine, Guangzhou 510280, China
| |
Collapse
|
5
|
Wang X, Jin Y, Xu L, Tao S, Wu Y, Ao C. Integrating Single-Cell RNA-Seq and Bulk RNA-Seq to Construct a Novel γδT Cell-Related Prognostic Signature for Human Papillomavirus-Infected Cervical Cancer. Cancer Control 2024; 31:10732748241274228. [PMID: 39206965 PMCID: PMC11363054 DOI: 10.1177/10732748241274228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/11/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Gamma delta (γδ) T cells play dual roles in human tumors, with both antitumor and tumor-promoting functions. However, the role of γδT cells in HPV-infected cervical cancer is still undetermined. Therefore, we aimed to identify γδT cell-related prognostic signatures in the cervical tumor microenvironment. METHODS Single-cell RNA-sequencing (scRNA-seq) data, bulk RNA-seq data, and corresponding clinical information of cervical cancer patients were obtained from the TCGA and GEO databases. The Seurat R package was used for single-cell analysis, and machine learning algorithms were used to screen and construct a γδT cell-related prognostic signature. Real-time quantitative PCR (RT-qPCR) was performed to detect the expression of prognostic signature genes. RESULTS Single-cell analysis indicated distinct populations of γδT cells between HPV-positive (HPV+) and HPV-negative (HPV-) cervical cancers. A trajectory analysis indicated γδT cells clustered into differential clusters with the pseudotime. High-dimensional Weighted Gene Co-expression Network Analysis (hdWGCNA) identified the key γδT cell-related gene modules. Bulk RNA-seq analysis also demonstrated the heterogeneity of immune cells, and the γδT-score was positively associated with inflammatory response and negatively associated with MYC stemness. Eight γδT cell-related hub genes (GTRGs), including ITGAE, IKZF3, LSP1, NEDD9, CLEC2D, RBPJ, TRBC2, and OXNAD1, were selected and validated as a prognostic signature for cervical cancer. CONCLUSION We identified γδT cell-related prognostic signatures that can be considered independent factors for survival prediction in cervical cancer.
Collapse
Affiliation(s)
- Xiaochuan Wang
- Department of Dermatology, The First People’s Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Yunnan Provincial Key Laboratory of Clinical Virology, Kunming, China
| | - Yichao Jin
- Department of Dermatology, The First People’s Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Yunnan Provincial Key Laboratory of Clinical Virology, Kunming, China
| | - Liangheng Xu
- Department of Dermatology, The First People’s Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Yunnan Provincial Key Laboratory of Clinical Virology, Kunming, China
| | - Sizhen Tao
- Department of Dermatology, The First People’s Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Yunnan Provincial Key Laboratory of Clinical Virology, Kunming, China
| | - Yifei Wu
- Department of Dermatology, The First People’s Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Yunnan Provincial Key Laboratory of Clinical Virology, Kunming, China
| | - Chunping Ao
- Department of Dermatology, The First People’s Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Yunnan Provincial Key Laboratory of Clinical Virology, Kunming, China
| |
Collapse
|
6
|
Tseng TY, Lee CH, Lee HL, Su CY, Kao CY, Tsai JP, Hsieh YH. Licochalcone A Suppresses Renal Cancer Cell Proliferation and Metastasis by Engagement of Sp1-Mediated LC3 Expression. Pharmaceutics 2023; 15:pharmaceutics15020684. [PMID: 36840005 PMCID: PMC9966374 DOI: 10.3390/pharmaceutics15020684] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Licochalcone A (LicA) is a strong anti-inflammatory, antioxidant, and anticarcinogenic substance that is useful against a variety of human malignancies. However, its precise mechanism in mediating the development of renal cell carcinoma (RCC) is not entirely understood. In this work, LicA was discovered to limit cell growth and survival, induce cell cycle arrest, promote autophagy and LC3B expression, and inhibit the migration and invasion of RCC cells. In addition, the proliferation, migration, and invasion inhibited by LicA were restored by the transfection of siRNA-LC3. The effects of LC3B on the metastatic phenotype of ACHN cells was enhanced with the overexpression of Sp1 or suppressed by inhibiting the phosphorylation of FAK and Src. Finally, LicA showed antitumor properties against RCC in an in vivo xenograft model. In conclusion, our study demonstrated the chemotherapeutic potential of LicA on proliferation, migration, invasion, and autophagy through the activation of LC3B expression, ultimately modulating FAK/Src signaling pathway-mediated Sp1 expression. These findings illustrate the novel role and molecular mechanisms of LicA against RCC cells.
Collapse
Affiliation(s)
- Tsai-Yi Tseng
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Division of Pediatric Surgery, Department of Surgery, Children’s Hospital of China Medical University, Taichung 404333, Taiwan
| | - Chien-Hsing Lee
- Division of Pediatric Surgery, Department of Surgery, Children’s Hospital of China Medical University, Taichung 404333, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404333, Taiwan
| | - Hsiang-Lin Lee
- Department of Surgery, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Chien-Yu Su
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Cheng-Yen Kao
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Jen-Pi Tsai
- School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
- Division of Nephrology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
- Correspondence: (J.-P.T.); (Y.-H.H.)
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Correspondence: (J.-P.T.); (Y.-H.H.)
| |
Collapse
|
7
|
Purazo ML, Ice RJ, Shimpi R, Hoenerhoff M, Pugacheva EN. NEDD9 Overexpression Causes Hyperproliferation of Luminal Cells and Cooperates with HER2 Oncogene in Tumor Initiation: A Novel Prognostic Marker in Breast Cancer. Cancers (Basel) 2023; 15:1119. [PMID: 36831460 PMCID: PMC9954084 DOI: 10.3390/cancers15041119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/23/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
HER2 overexpression occurs in 10-20% of breast cancer patients. HER2+ tumors are characterized by an increase in Ki67, early relapse, and increased metastasis. Little is known about the factors influencing early stages of HER2- tumorigenesis and diagnostic markers. Previously, it was shown that the deletion of NEDD9 in mouse models of HER2 cancer interferes with tumor growth, but the role of NEDD9 upregulation is currently unexplored. We report that NEDD9 is overexpressed in a significant subset of HER2+ breast cancers and correlates with a limited response to anti-HER2 therapy. To investigate the mechanisms through which NEDD9 influences HER2-dependent tumorigenesis, we generated MMTV-Cre-NEDD9 transgenic mice. The analysis of mammary glands shows extensive ductal epithelium hyperplasia, increased branching, and terminal end bud expansion. The addition of oncogene Erbb2 (neu) leads to the earlier development of early hyperplastic benign lesions (~16 weeks), with a significantly shorter latency than the control mice. Similarly, NEDD9 upregulation in MCF10A-derived acini leads to hyperplasia-like DCIS. This phenotype is associated with activation of ERK1/2 and AURKA kinases, leading to an increased proliferation of luminal cells. These findings indicate that NEDD9 is setting permissive conditions for HER2-induced tumorigenesis, thus identifying this protein as a potential diagnostic marker for early detection.
Collapse
Affiliation(s)
- Marc L. Purazo
- WVU Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV 26505, USA
| | - Ryan J. Ice
- WVU Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV 26505, USA
| | - Rahul Shimpi
- WVU Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV 26505, USA
| | - Mark Hoenerhoff
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elena N. Pugacheva
- WVU Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV 26505, USA
- Department of Biochemistry & Molecular Medicine, School of Medicine, West Virginia University, Morgantown, WV 26505, USA
| |
Collapse
|
8
|
RAB11A Promotes Cell Malignant Progression and Tumor Formation of Prostate Cancer via Activating FAK/AKT Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:5885387. [PMID: 36760469 PMCID: PMC9904921 DOI: 10.1155/2023/5885387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/25/2022] [Accepted: 11/24/2022] [Indexed: 02/04/2023]
Abstract
Background RAB11A, a member of the GTPase family, acts as a regulator in diverse cancers development. The dysregulation of the FAK/AKT signaling pathway is mainly related to tumorigenesis. This study aimed to investigate the possible effect of RAB11A in prostate cancer and further explore the potential mechanisms. Results In this study, we illustrated the tumor-promoting effects of RAB11A based on in vivo and in vitro experiments. RAB11A expression was upregulated in prostate cancer cells. RAB11A knockdown decreased the prostate cancer cell proliferation, migration, and invasion. RAB11A also induced the epithelial-mesenchymal transition. PF562271 suppressed the malignant characteristics of prostate cancer cells caused by RAB11A knockdown. Furthermore, the interference of RAB11A reduced the tumor growth and the protein levels of p-FAK/FAK and p-AKT/AKT in vivo. Conclusion RAB11A promotes cell malignant progression and tumor formation in prostate cancer via activating FAK/AKT signaling pathway.
Collapse
|
9
|
Histone deacetylase inhibitors promote breast cancer metastasis by elevating NEDD9 expression. Signal Transduct Target Ther 2023; 8:11. [PMID: 36604412 PMCID: PMC9816171 DOI: 10.1038/s41392-022-01221-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/13/2022] [Accepted: 09/29/2022] [Indexed: 01/07/2023] Open
Abstract
Histone deacetylase (HDAC) is a kind of protease that modifies histone to regulate gene expression, and is usually abnormally activated in tumors. The approved pan-HDAC inhibitors have demonstrated clinical benefits for patients in some hematologic malignancies. Only limited therapeutic success in breast cancer has been observed in clinical trials. In this study, we declare that pan-HDAC inhibitors targeting NEDD9-FAK pathway exacerbate breast cancer metastasis in preclinical models, which may severely impede their clinical success. NEDD9 is not an oncogene, however, it has been demonstrated recently that there are high level or activity changes of NEDD9 in a variety of cancer, including leukemia, colon cancer, and breast cancer. Mechanistically, pan-HDAC inhibitors enhance H3K9 acetylation at the nedd9 gene promoter via inhibition of HDAC4 activity, thus increase NEDD9 expression, and then activate FAK phosphorylation. The realization that pan-HDAC inhibitors can alter the natural history of breast cancer by increasing invasion warrants clinical attention. In addition, although NEDD9 has been reported to have a hand in breast cancer metastasis, it has not received much attention, and no therapeutic strategies have been developed. Notably, we demonstrate that FAK inhibitors can reverse breast cancer metastasis induced by upregulation of NEDD9 via pan-HDAC inhibitors, which may offer a potential combination therapy for breast cancer.
Collapse
|
10
|
Im S, Cho YK, Kang D, Shin GY, Jung ES, Song KY, Lee SH, Park JM. Combined high NEDD9 expression and E-cadherin loss correlate with poor clinical outcome in gastric cancer. J Gastroenterol Hepatol 2022; 37:2255-2263. [PMID: 36203318 DOI: 10.1111/jgh.16022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/24/2022] [Accepted: 10/04/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM Neural precursor cell expressed developmentally downregulated 9 (NEDD9) is a member of the Cas family. Previous studies have revealed that NEDD9 coordinates the focal adhesion kinase and Src signaling cascades that are involved in integrin-dependent adhesion and migration, invasion, cell apoptosis and life cycle, and survival, which may play a role in epithelial-mesenchymal transformation. The aim of this study was to analyze the expression of NEDD9 and E-cadherin in gastric cancer (GC) and evaluate their clinical significance. METHODS NEDD9 and E-cadherin expression was analyzed with immunohistochemistry using tissue microarray technique in 435 GC patients who underwent gastrectomy. The NEDD9 expression level was defined by the combination score, which was determined by multiplying the staining intensity score and the proportion score (≥5; NEDD9-high, <5; NEDD9-low). E-cadherin loss was defined as a total loss of staining. The clinicopathologic parameters, overall survival, and disease-free survival rates were analyzed according to the NEDD9 and E-cadherin expression status. RESULTS The combined NEDD9 and E-cadherin expression status correlated with lymphatic invasion (P = 0.001), vascular invasion (P = 0.020), and T stage (P = 0.001). Combined high NEDD9 expression and loss of E-cadherin expression status had a worse overall survival rate (P < 0.001) and served as a poor prognostic factor (Hazard ratio 2.49, 95% CI 1.25-5, P = 0.01). CONCLUSIONS Immunohistochemical staining for NEDD9 and E-cadherin may function as a candidate prognostic marker for gastric cancer in everyday practice, especially when applied in combination.
Collapse
Affiliation(s)
- Soyoung Im
- Department of Hospital Pathology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yu Kyung Cho
- Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Donghoon Kang
- Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ga-Yeong Shin
- Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Eun Sun Jung
- Department of Hospital Pathology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Kyo Young Song
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung Hak Lee
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jae Myung Park
- Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
11
|
Tan S, Wang P, Hu J, Wang X, Li H. NEDD9 Mediates the FAK/Src Signaling Pathway to Promote the Adhesion of Human Trabecular Meshwork Cells after Dexamethasone Treatment. Curr Eye Res 2022; 47:1156-1164. [PMID: 35577404 DOI: 10.1080/02713683.2022.2071945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE The differential gene expression of neural precursor cell expressed developmentally downregulated 9 (NEDD9) in human trabecular meshwork (HTM) cells after dexamethasone (Dex) treatment was confirmed through gene expression profiling. However, the regulatory mechanism of NEDD9 expression in HTM cells remains unknown. In this study, we investigated NEDD9 expression in HTM cells and gained a better understanding of glucocorticoid-induced glaucoma (GIG) pathophysiology. METHODS The Gene Expression Omnibus database and GEO2R tool were used to identify differentially expressed genes in the GSE37474 and GSE124114 datasets, and NEDD9 gene expression was found to be upregulated. Human corneoscleral segments and HTM cells were treated with 100 nM Dex or an equal volume of ethanol (0.01%) for 7 days. NEDD9 expression in TM tissues was evaluated by immunohistochemistry, and NEED9 expression in HTM cells was confirmed by RT-qPCR and western blotting. HTM cell adhesive behaviors were assessed with a cell adhesion detection kit. NEDD9 expression was knocked down with short hairpin RNA in HTM cells, and FAK/Src signaling pathway activation was found to be regulated by NEDD9. RESULTS After 7 days of HTM cell Dex treatment, NEDD9 expression was upregulated to be approximately twice that of control. FAK, Src, phospho-FAK, and phospho-Src expression in Dex-treated HTM cells was markedly increased. Downregulation of NEDD9 expression reduced HTM cell adhesion to the surface of culture wells and simultaneously led to a reduction in FAK, Src, phospho-FAK and phospho-Src expression. CONCLUSIONS NEDD9 expression is upregulated in HTM cells after Dex treatment and promotes HTM cell adhesion. These findings underscore the contribution of NEDD9 overexpression to altered HTM cell adhesion during glucocorticoid therapy and may play a key role in GIG pathological progression. Considering the similarity between GIG and primary open-angle glaucoma (POAG), our findings suggest that targeting NEDD9 may be a new therapeutic strategy for POAG patients.
Collapse
Affiliation(s)
- Sisi Tan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, P. R. China
| | - Peng Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, P. R. China
| | - Jianping Hu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, P. R. China
| | - Xiaochen Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, P. R. China
| | - Hong Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, P. R. China
| |
Collapse
|
12
|
Narciclasine suppresses esophageal cancer cell proliferation and migration by inhibiting the FAK signaling pathway. Eur J Pharmacol 2022; 921:174669. [DOI: 10.1016/j.ejphar.2021.174669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023]
|
13
|
MicroRNA-1252-5p, regulated by Myb, inhibits invasion and epithelial-mesenchymal transition of pancreatic cancer cells by targeting NEDD9. Aging (Albany NY) 2021; 13:18924-18945. [PMID: 34314382 PMCID: PMC8351675 DOI: 10.18632/aging.203344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/23/2021] [Indexed: 01/14/2023]
Abstract
MicroRNAs (miRNAs) are known to be involved in the development and progression of pancreatic cancer (PAC). The expression levels and roles of miR-1252-5p in PAC remain unclear. Quantitative real-time PCR and in situ hybridization were used to detect miR-1252-5p expression in PAC cells and human tissues. We studied the gain and loss of function of miR-1252-5p in the PAC cell lines in vitro and in vivo. The direct targets of miR-1252-5p were analyzed using public databases and a dual-luciferase reporter assay. Expression levels of miR-1252-5p are downregulated in PAC cell lines and tissue samples, and its expression is negatively associated with adverse clinical features and poor prognosis. In vitro and in vivo experiments show that miR-1252-5p overexpression inhibits the proliferation, migration, invasion, and epithelial-mesenchymal transition of PAC cells, and miR-1252-5p knockdown enhances these biological behaviors. MiR-1252-5p negatively regulates neural precursor cell expressed, developmentally downregulated 9 (NEDD9) by directly binding its 3'- untranslated region. Further mechanism research revealed that the SRC/STAT3 pathway is involved in miR-1252-5p/NEDD9 mediation of PAC's biological behaviors. We also verified that Myb inhibited miR-1252-5p by directly binding at its promoter. MiR-1252-5p may act as a tumor-suppressing miRNA in PAC and may be a potential therapeutic target for PAC patients.
Collapse
|
14
|
Lee HS, Lee IH, Kang K, Park SI, Kwon TW, Moon SJ, Lee CH, Lee DY. Systems Pharmacology Study of the Anticervical Cancer Mechanisms of FDY003. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20977364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Increasing data support that herbal medicines are beneficial in the treatment of cervical cancer; however, their mechanisms of action remain to be elucidated. In the current study, we used a systems pharmacology approach to explore the pharmacological mechanisms of FDY003, an anticancer herbal formula comprising Lonicera japonica Thunberg, Artemisia capillaris Thunberg, and Cordyceps militaris (Linn.) Link, in the treatment of cervical cancer. Through the pharmacokinetic assessment of absorption-distribution-metabolism-excretion characteristics, we found 18 active compounds that might interact with 106 cervical cancer-related targets responsible for the pharmacological effects. FDY003 targets were significantly associated with gene ontology terms related to the regulation of cellular behaviors, including cell proliferation, cell cycle processes, cell migration, cell apoptosis, cell death, and angiogenesis. The therapeutic targets of the herbal drug were further enriched in various oncogenic pathways that are implicated in the tumorigenesis and progression of cervical cancer, including the phosphatidylinositol 3-kinase, mitogen-activated protein kinase, focal adhesion, human papillomavirus infection, and tumor necrosis factor signaling pathways. Our study provides a systematic approach to explore the anticancer properties of herbal medicines against cervical cancer.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, Songpa-gu, Seoul, Republic of Korea
- Forest Hospital, Songpa-gu, Seoul, Republic of Korea
| | - In-Hee Lee
- The Fore, Songpa-gu, Seoul, Republic of Korea
| | - Kyungrae Kang
- Forest Hospital, Songpa-gu, Seoul, Republic of Korea
| | - Sang-In Park
- Forestheal Hospital, Songpa-gu, Seoul, Republic of Korea
| | - Tae-Wook Kwon
- Forest Hospital, Songpa-gu, Seoul, Republic of Korea
| | | | - Chol Hee Lee
- Forest Hospital, Songpa-gu, Seoul, Republic of Korea
| | - Dae-Yeon Lee
- The Fore, Songpa-gu, Seoul, Republic of Korea
- Forest Hospital, Songpa-gu, Seoul, Republic of Korea
| |
Collapse
|
15
|
Wang Y, Tao B, Li J, Mao X, He W, Chen Q. Melatonin Inhibits the Progression of Oral Squamous Cell Carcinoma via Inducing miR-25-5p Expression by Directly Targeting NEDD9. Front Oncol 2020; 10:543591. [PMID: 33344223 PMCID: PMC7738623 DOI: 10.3389/fonc.2020.543591] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
Melatonin exerts anti-cancer roles in various types of cancers. However, to the best of our knowledge, its role in oral squamous cell carcinoma (OSCC) is unknown. The present study aimed to investigate the role of melatonin and its underlying mechanism in OSCC. MTT, colony formation, wound healing, and transwell invasion assays proved that melatonin played anti-tumor effects in OSCC cells by inhibiting cell viability, proliferation, migration, and invasion in a concentration-dependent manner. The RT-qPCR analysis showed that miR-25-5p was significantly upregulated after melatonin treatment. Further, miR-25-5p might be involved in melatonin-induced inhibitory effects on the biological behavior of OSCC. The expression of miR-25-5p was decreased in tumor tissues and OSCC cells detected by RT-qPCR. MTT assay, colony formation assay, and TUNEL staining indicated miR-25-5p overexpression inhibited OSCC cell viability, proliferation, and induced OSCC cell apoptosis. Furthermore, wound healing, transwell invasion assay, and animal experiments suggested that miR-25-5p might exert suppressive effects on the migration, invasion, and tumor formation of OSCC cells, while miR-25-5p knockdown exhibited the opposite effects in OSCC cells. Bioinformatics analysis, western blot analysis, and luciferase reporter assay suggested that neural precursor cell expressed developmentally downregulated protein 9 (NEDD9) was proved to be a putative target for miR-25-5p. The role of NEDD9 in inhibiting OSCC cell proliferation, invasion, and migration was verified with NEDD9 siRNA transfection. Thus, melatonin exerted anti-proliferative, anti-invasive, and anti-migrative effects on OSCC via miR-25-5p/NEDD9 pathway. Melatonin could be applied as a potential novel drug on treating OSCC.
Collapse
Affiliation(s)
- Yanling Wang
- Department of Stomatology, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, China
| | - Bo Tao
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiaying Li
- Huiqiao Medical Center, Southern Medical University Nanfang Hospital, Guangzhou, China
| | - Xiaoqun Mao
- Nursing Department, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wei He
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qinbiao Chen
- Neurosurgery Department, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
16
|
Du Q, Wang W, Liu T, Shang C, Huang J, Liao Y, Qin S, Chen Y, Liu P, Liu J, Yao S. High Expression of Integrin α3 Predicts Poor Prognosis and Promotes Tumor Metastasis and Angiogenesis by Activating the c-Src/Extracellular Signal-Regulated Protein Kinase/Focal Adhesion Kinase Signaling Pathway in Cervical Cancer. Front Oncol 2020; 10:36. [PMID: 32117712 PMCID: PMC7033469 DOI: 10.3389/fonc.2020.00036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 01/09/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Cervical cancer remains a leading cause of death in women due to metastasis to distant tissues and organs. Integrins are involved in cancer metastasis. However, whether integrin α3 participates in cervical cancer metastasis is under investigation. In this study, we explored the effect and detailed mechanism through which integrin α3 regulates cervical cell migration, invasion, and angiogenesis. Methods: First, we explored the mRNA and protein expression levels of integrin α3 in cervical cancer cell lines and tissue samples obtained from patients. After knocking down the expression of integrin α3 using shRNA, the proliferation, migration, and invasion of cervical cancer cells, as well as the possible signaling pathways involved, were investigated in vitro. In addition, tube formation, proliferation, and migration of human umbilical vein endothelial cells were tested to identify their effect on angiogenesis. Zebrafish tumor migration and nude mouse lung metastasis models were utilized for the in vivo analysis. Results: We examined samples from 142 patients with cervical cancer and 20 normal cervixes. Integrin α3 was highly expressed in patients and predicted poor overall survival and disease-free survival. In SiHa cells, treatment with integrin α3 shRNA induced the phosphorylation of protein focal adhesion kinase and enhanced focal adhesion. These events were mediated by the activation of c-Src and extracellular signal-regulated protein kinase cascades. Consequently, integrin α3 increased the migratory ability of SiHa cells. In addition, knockdown of integrin α3 decreased the tube formation, proliferation, and migration of human umbilical vein endothelial cells, as well as the levels of matrix metalloproteinase-9, indicating its effect on angiogenesis. Stable transfection with integrin α3 shRNA reduced the migratory ability of SiHa cells in the zebrafish model and diminished lung metastasis in the xenograft mouse model. Conclusion: Integrin α3 recruits the c-Src/extracellular signal-regulated protein kinase cascade, leading to phosphorylation of focal adhesion kinase. Moreover, it regulates focal adhesion, endowing cervical cancer cells with potentiated migratory and invasive ability, and promotes angiogenesis via matrix metalloproteinase-9. Our findings may shed light on the mechanism involved in cervical cancer metastasis and highlight integrin α3 as a candidate prognostic biomarker and therapeutic target in patients with cervical cancer.
Collapse
Affiliation(s)
- Qiqiao Du
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tianyu Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chunliang Shang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Jiaming Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuandong Liao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuhang Qin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yili Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Pan Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Junxiu Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Wang Y, Dan L, Li Q, Li L, Zhong L, Shao B, Yu F, He S, Tian S, He J, Xiao Q, Putti TC, He X, Feng Y, Lin Y, Xiang T. ZMYND10, an epigenetically regulated tumor suppressor, exerts tumor-suppressive functions via miR145-5p/NEDD9 axis in breast cancer. Clin Epigenetics 2019; 11:184. [PMID: 31801619 PMCID: PMC6894283 DOI: 10.1186/s13148-019-0785-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 11/24/2019] [Indexed: 02/07/2023] Open
Abstract
Background Recent studies suggested that ZMYND10 is a potential tumor suppressor gene in multiple tumor types. However, the mechanism by which ZMYND10 inhibits breast cancer remains unclear. Here, we investigated the role and mechanism of ZMYND10 in breast cancer inhibition. Results ZMYND10 was dramatically reduced in multiple breast cancer cell lines and tissues, which was associated with promoter hypermethylation. Ectopic expression of ZMYND10 in silenced breast cancer cells induced cell apoptosis while suppressed cell growth, cell migration and invasion in vitro, and xenograft tumor growth in vivo. Furthermore, molecular mechanism studies indicated that ZMYND10 enhances expression of miR145-5p, which suppresses the expression of NEDD9 protein through directly targeting the 3'-untranslated region of NEDD9 mRNA. Conclusions Results from this study show that ZMYND10 suppresses breast cancer tumorigenicity by inhibiting the miR145-5p/NEDD9 signaling pathway. This novel discovered signaling pathway may be a valid target for small molecules that might help to develop new therapies to better inhibit the breast cancer metastasis.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liangying Dan
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,The People's Hospital of Tongliang District, Chongqing, China
| | - Qianqian Li
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Lan Zhong
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Bianfei Shao
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fang Yu
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Sanxiu He
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shaorong Tian
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin He
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Xiao
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Thomas C Putti
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiaoqian He
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yixiao Feng
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yong Lin
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Tingxiu Xiang
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
18
|
Hakimee H, Hutamekalin P, Tanasawet S, Chonpathompikunlert P, Tipmanee V, Sukketsiri W. Metformin Inhibit Cervical Cancer Migration by Suppressing the FAK/Akt Signaling Pathway. Asian Pac J Cancer Prev 2019; 20:3539-3545. [PMID: 31870092 PMCID: PMC7173373 DOI: 10.31557/apjcp.2019.20.12.3539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Indexed: 01/27/2023] Open
Abstract
Background: Metformin, an antidiabetic drug, has been previously reported to have anti-cancer activities. However, its role in the control of cancer cell migration remains elusive. Methods: To examine the possible effect of metformin on migration of cervical cancer cells. The related mechanisms were further determined by immunocytochemistry and Western’s blotting assay. Results: The results showed that metformin treatment substantially inhibited the migration ability of cervical cancer cells. Consistently, the filopodia and lamellipodia formation were depleted after exposure to metformin. The suppression of migration mediated through the regulatory proteins such as focal adhesion kinase (FAK), ATP-dependent tyrosine kinase (Akt), Rac1 and RhoA after metformin treatment. Conclusion: Metformin displays antimigration effects in cervical cancer cells by inhibiting filopodia and lamellipodia formation through the suppression of FAK, Akt and its downstream Rac1 and RhoA protein. We propose that metformin could be a novel potential candidate as an antimetastatic cancer drug in the cervical cancer management.
Collapse
Affiliation(s)
- Henna Hakimee
- Department of Pharmacology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Pilaiwanwadee Hutamekalin
- Department of Physiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla,Thailand
| | - Supita Tanasawet
- Department of Anatomy, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla,Thailand
| | - Pennapa Chonpathompikunlert
- Expert Centre of Innovative Health Food (InnoFood), Thailand Institute of Scientific and Technological Research (TISTR), Pathumthani, Thailand
| | - Varomyalin Tipmanee
- Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla,Thailand
| | - Wanida Sukketsiri
- Department of Pharmacology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
19
|
Jayamohan S, Kannan M, Moorthy RK, Rajasekaran N, Jung HS, Shin YK, Arockiam AJV. Dysregulation of miR-375/AEG-1 Axis by Human Papillomavirus 16/18-E6/E7 Promotes Cellular Proliferation, Migration, and Invasion in Cervical Cancer. Front Oncol 2019; 9:847. [PMID: 31552174 PMCID: PMC6746205 DOI: 10.3389/fonc.2019.00847] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/19/2019] [Indexed: 01/03/2023] Open
Abstract
Cervical Cancer (CC) is a highly aggressive tumor and is one of the leading causes of cancer-related deaths in women. miR-375 was shown to be significantly down-regulated in cervical cancer cells. However, the precise biological functions of miR-375 and the molecular mechanisms underlying its action in CC are largely unknown. miR-375 targets were predicted by bioinformatics target prediction tools and validated using luciferase reporter assay. Herein, we investigated the functional significance of miR-375 and its target gene in CC to identify potential new therapeutic targets. We found that miR-375 expression was significantly downregulated in CC, and astrocyte elevated gene-1 (AEG-1) was identified as a target of miR-375. Our results also showed that ectopic expression of miR-375 suppressed CC cell proliferation, migration, invasion and angiogenesis, and increased the 5-fluorouracil-induced apoptosis and cell cycle arrest in vitro. In contrast, inhibition of miR-375 expression significantly enhanced these functions. Furthermore, HPV - 16 E6/E7 and HPV - 18 E6/E7 significantly down-regulates miR-375 expression in CC. HPV 16/18-E6/E7/miR-375/AEG-1 axis plays an important role in the regulation of cell proliferation, migration, and invasion in CC. Therefore, targeting miR-375/AEG-1 mediated axis could serve as a potential therapeutic target for CC.
Collapse
Affiliation(s)
- Sridharan Jayamohan
- Molecular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Maheshkumar Kannan
- Molecular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Rajesh Kannan Moorthy
- Molecular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Nirmal Rajasekaran
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea.,Laboratory of Molecular Pathology and Cancer Genomics, College of Pharmacy, Seoul National University, Seoul, South Korea
| | | | - Young Kee Shin
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea.,Laboratory of Molecular Pathology and Cancer Genomics, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Antony Joseph Velanganni Arockiam
- Molecular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
20
|
Meng H, Wu J, Huang Q, Yang X, Yang K, Qiu Y, Ren J, Shen R, Qi H. NEDD9 promotes invasion and migration of colorectal cancer cell line HCT116 via JNK/EMT. Oncol Lett 2019; 18:4022-4029. [PMID: 31516604 PMCID: PMC6732989 DOI: 10.3892/ol.2019.10756] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 06/06/2019] [Indexed: 12/18/2022] Open
Abstract
Neural precursor cell-expressed, developmentally-downregulated 9 (NEDD9) is a multi-domain skeleton protein that serves an important role in the cell signaling process via modulating invasion, metastasis, proliferation and apoptosis of tumor cells. The present study identified that the expression levels of NEDD9 in colorectal cancer were elevated. Therefore, the effect of downregulating the expression of NEDD9 in terms of invasion and migration of colorectal cancer cells was investigated and the role of the JNK pathway in these processes was also investigated. The data revealed that downregulation of NEDD9 and JNK inhibitors suppressed invasion and migration, decreased expression levels of phosphorylated JNK, increased the expression levels of E-cadherin and decreased the expression levels of vimentin. In summary, NEDD9 promotes invasion and migration of colorectal cancer cells via the JNK pathway.
Collapse
Affiliation(s)
- Haining Meng
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Junyu Wu
- Department of Emergency, First Affiliated Hospital of The People's Liberation Army General Hospital, Beijing 100037, P.R. China
| | - Qiao Huang
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Xi Yang
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Kunao Yang
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Yuexin Qiu
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Jiwen Ren
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Ruowu Shen
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Hong Qi
- Department of General Surgery, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
21
|
Gu Y, Lu J, Chen C, Zheng F. NEDD9 overexpression predicts poor prognosis in solid cancers: a meta-analysis. Onco Targets Ther 2019; 12:4213-4222. [PMID: 31213839 PMCID: PMC6549757 DOI: 10.2147/ott.s205760] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 04/26/2019] [Indexed: 12/24/2022] Open
Abstract
Background: The oncogenicity of neural precursor cell-expressed developmentally down-regulated 9 (NEDD9) has been demonstrated in multiple cancer types. However, the prognostic value of NEDD9 in some solid cancers remains controversial. Thus, this meta-analysis was conducted to evaluate the relationship between NEDD9 expression survival rates in solid tumors. Method: Our meta-analysis included studies searched from various search engines with specific inclusion criteria and exclusion criteria. Combined HRs for overall survival (OS) and disease-free survival (DFS) or progression-free survival (PFS) or recurrence-free survival (RFS) or cancer-specific survival (CSS) were assessed using fixed-effects and random-effects models. The source of heterogeneity was identified by subgroup analysis. Additionally, publication bias was assessed using funnel plot and Egger’s regression asymmetry test. Result: Eighteen studies with a total of 2,476 patients were retrieved for analysis. Pooled HRs and 95% CIs were calculated. Both OS (HR=1.82; 95% CI: 1.43–2.31) and DFS/PFS/RFS/CSS (HR=2.54; 95% CI: 1.93–3.33) indicated that NEDD9 overexpression is associated with poor OS in cancer patients with solid tumors. Conclusion: NEDD9 overexpression might be a potential marker to predict prognosis in solid cancer patients.
Collapse
Affiliation(s)
- Yang Gu
- Department of Orthopedics, The Affiliated Union Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Jingjing Lu
- Department of Gynecology, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No.2 Hospital), Ningbo, People's Republic of China
| | - Chen Chen
- Department of Orthopedics, First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Fei Zheng
- Department of Gynecology, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No.2 Hospital), Ningbo, People's Republic of China
| |
Collapse
|
22
|
Zhao S, Min P, Liu L, Zhang L, Zhang Y, Wang Y, Zhao X, Ma Y, Xie H, Zhu C, Jiang H, Du J, Gu L. NEDD9 Facilitates Hypoxia-Induced Gastric Cancer Cell Migration via MICAL1 Related Rac1 Activation. Front Pharmacol 2019; 10:291. [PMID: 31019460 PMCID: PMC6458266 DOI: 10.3389/fphar.2019.00291] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/11/2019] [Indexed: 12/28/2022] Open
Abstract
Aims and Hypothesis: NEDD9 is highly expressed in gastric cancer and has a significant involvement in its pathogenesis. However, the mechanism behind hypoxia-promoted cancer cell migration and its regulation because of NEDD9 is still unknown. The aim of this study is to investigate the involvement of NEDD9 in gastric cancer cell migration under hypoxia and explore the underlying potential molecular mechanisms.
Collapse
Affiliation(s)
- Shuo Zhao
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Pengxiang Min
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Lei Liu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Lin Zhang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Yujie Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yueyuan Wang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Xuyang Zhao
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Yadong Ma
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Hui Xie
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China.,Department of Implantology, Changzhou Stomatological Hospital, Changzhou, China
| | - Chenchen Zhu
- School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Haonan Jiang
- School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Jun Du
- Department of Physiology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Luo Gu
- Department of Physiology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
23
|
Semelakova M, Grauzam S, Betadthunga P, Tiedeken J, Coaxum S, Neskey DM, Rosenzweig SA. Vimentin and Non-Muscle Myosin IIA are Members of the Neural Precursor Cell Expressed Developmentally Down-Regulated 9 (NEDD9) Interactome in Head and Neck Squamous Cell Carcinoma Cells. Transl Oncol 2019; 12:49-61. [PMID: 30267961 PMCID: PMC6160858 DOI: 10.1016/j.tranon.2018.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/08/2018] [Accepted: 09/08/2018] [Indexed: 12/11/2022] Open
Abstract
Here we demonstrate an interaction between neural precursor cell expressed, developmentally-downregulated 9 (NEDD9) and the cytoskeletal proteins vimentin and non-muscle myosin IIA (NMIIA), based on co-immunoprecipitation and mass spectrometric sequence identification. Vimentin was constitutively phosphorylated at Ser56 but vimentin associated with NEDD9-was not phosphorylated at Ser56. In contrast, NMIIA bound to NEDD9 was phosphorylated on S1943 consistent with its function in invasion and secretion. Treatment of cells with the vimentin-targeting steroidal lactone withaferin A had no effect on vimentin turnover as previously reported, instead causing NEDD9 cleavage and cell death. The NMIIA-selective inhibitor blebbistatin induced cells to form long extensions and attenuated secretion of matrix metalloproteinases (MMPs) 2 and 9. While the site of vimentin interaction on NEDD9 was not defined, NMIIA was found to interact with NEDD9 at its substrate domain. NEDD9 interactions with vimentin and NMIIA are consistent with these proteins having roles in MMP secretion and cell invasion. These findings suggest that a better understanding of NEDD9 signaling is likely to reveal novel therapeutic targets for the prevention of invasion and metastasis.
Collapse
Affiliation(s)
- Martina Semelakova
- Institute of Biology and Ecology, Department of Cell Biology, Faculty of Science, Pavol Jozef Šafárik University, Košice, Slovakia; Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue MSC 509, Charleston, SC 29425-5050
| | - Stèphane Grauzam
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue MSC 509, Charleston, SC 29425-5050
| | - Prabhakar Betadthunga
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue MSC 509, Charleston, SC 29425-5050; Department of Post Graduate-Studies and Research in Biotechnology, Sahydri Science College, Kuvempu University, Shimoga, Karnataka, India, 577203
| | - Jessica Tiedeken
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue MSC 509, Charleston, SC 29425-5050
| | - Sonya Coaxum
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue MSC 509, Charleston, SC 29425-5050; Department of Otolaryngology, Head and Neck Surgery, Medical University of South Carolina
| | - David M Neskey
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue MSC 509, Charleston, SC 29425-5050; Department of Otolaryngology, Head and Neck Surgery, Medical University of South Carolina; Hollings Cancer Center, Medical University of South Carolina, 173 Ashley Avenue MSC 550, Charleston, SC 29425-5050
| | - Steven A Rosenzweig
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue MSC 509, Charleston, SC 29425-5050; Hollings Cancer Center, Medical University of South Carolina, 173 Ashley Avenue MSC 550, Charleston, SC 29425-5050.
| |
Collapse
|
24
|
Zhang C, Wang T, Wu H, Zhang L, Li K, Wang F, Chen Y, Jin J, Hua D. HEF1 regulates differentiation through the Wnt5a/β-catenin signaling pathway in human gastric cancer. Biochem Biophys Res Commun 2019; 509:201-208. [DOI: 10.1016/j.bbrc.2018.12.104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 02/06/2023]
|
25
|
Tsukamoto T, Kajiwara K, Nada S, Okada M. Src mediates TGF‐β‐induced intraocular pressure elevation in glaucoma. J Cell Physiol 2018; 234:1730-1744. [DOI: 10.1002/jcp.27044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Teruhisa Tsukamoto
- Department of Oncogene Research Research Institute for Microbial Diseases, Osaka University Osaka Japan
- New Drug Research Division Ako Research Institute, Otsuka Pharmaceutical Co., Ltd. Ako Japan
| | - Kentaro Kajiwara
- Department of Oncogene Research Research Institute for Microbial Diseases, Osaka University Osaka Japan
| | - Shigeyuki Nada
- Department of Oncogene Research Research Institute for Microbial Diseases, Osaka University Osaka Japan
| | - Masato Okada
- Department of Oncogene Research Research Institute for Microbial Diseases, Osaka University Osaka Japan
| |
Collapse
|
26
|
Radulović P, Krušlin B. Immunohistochemical expression of NEDD9, E-cadherin and γ-catenin and their prognostic significance in pancreatic ductal adenocarcinoma (PDAC). Bosn J Basic Med Sci 2018; 18:246-251. [PMID: 29924959 DOI: 10.17305/bjbms.2018.2378] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 12/20/2022] Open
Abstract
Extensive research is being conducted to identify novel diagnostic, predictive and prognostic biomarkers for pancreatic ductal adenocarcinoma (PDAC), as only a few markers have been routinely used so far with limited success. Our aim was to assess the expression of neural precursor cell expressed developmentally down-regulated protein 9 (NEDD9), E-cadherin, and γ-catenin in PDAC in relation to clinicopathological parameters and patient survival. We also investigated if there is a correlation of NEDD9 expression with E-cadherin or γ-catenin. The protein expression was determined by immunohistochemistry in 61 PDAC and 61 samples of normal pancreatic tissue. The log rank test and Kaplan-Meier survival curve were used for survival analysis. E-cadherin and γ-catenin expressions were reduced in PDAC, and completely retained in normal pancreatic tissue. Expression of NEDD9 was significantly increased in PDAC (strong expression in 78.7% of cases and moderate in 21.3%) and reduced in normal pancreatic tissue (strong positivity in 45.9% of cases, moderate in 31.1%, and weak in 23%). There was a positive correlation between reduced E-cadherin and γ-catenin expression in PDAC (p = 0.015). The loss or reduced expression of E-cadherin had a negative impact on patient survival (p = 0.020). A negative correlation between E-cadherin expression and tumor grade was also observed (p = 0.011). Decreased E-cadherin expression was more common in male patients with PDAC (81.3% vs. 60% for females, p = 0.005). γ-catenin and NEDD9 expressions were not statistically correlated with tumor stage and grade, gender, nor with patient survival. Our results support the role of NEDD9, E-cadherin and γ-catenin proteins in PDAC, but further research should clarify in detail their mechanism of action in pancreatic cancer.
Collapse
Affiliation(s)
- Petra Radulović
- Department of Pathology and Cytology, Sestre Milosrdnice University Hospital, Zagreb, Croatia.
| | | |
Collapse
|
27
|
Juszczak GR, Stankiewicz AM. Glucocorticoids, genes and brain function. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:136-168. [PMID: 29180230 DOI: 10.1016/j.pnpbp.2017.11.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/18/2017] [Accepted: 11/23/2017] [Indexed: 01/02/2023]
Abstract
The identification of key genes in transcriptomic data constitutes a huge challenge. Our review of microarray reports revealed 88 genes whose transcription is consistently regulated by glucocorticoids (GCs), such as cortisol, corticosterone and dexamethasone, in the brain. Replicable transcriptomic data were combined with biochemical and physiological data to create an integrated view of the effects induced by GCs. The most frequently reported genes were Errfi1 and Ddit4. Their up-regulation was associated with the altered transcription of genes regulating growth factor and mTORC1 signaling (Gab1, Tsc22d3, Dusp1, Ndrg2, Ppp5c and Sesn1) and progression of the cell cycle (Ccnd1, Cdkn1a and Cables1). The GC-induced reprogramming of cell function involves changes in the mRNA level of genes responsible for the regulation of transcription (Klf9, Bcl6, Klf15, Tle3, Cxxc5, Litaf, Tle4, Jun, Sox4, Sox2, Sox9, Irf1, Sall2, Nfkbia and Id1) and the selective degradation of mRNA (Tob2). Other genes are involved in the regulation of metabolism (Gpd1, Aldoc and Pdk4), actin cytoskeleton (Myh2, Nedd9, Mical2, Rhou, Arl4d, Osbpl3, Arhgef3, Sdc4, Rdx, Wipf3, Chst1 and Hepacam), autophagy (Eva1a and Plekhf1), vesicular transport (Rhob, Ehd3, Vps37b and Scamp2), gap junctions (Gjb6), immune response (Tiparp, Mertk, Lyve1 and Il6r), signaling mediated by thyroid hormones (Thra and Sult1a1), calcium (Calm2), adrenaline/noradrenaline (Adcy9 and Adra1d), neuropeptide Y (Npy1r) and histamine (Hdc). GCs also affected genes involved in the synthesis of polyamines (Azin1) and taurine (Cdo1). The actions of GCs are restrained by feedback mechanisms depending on the transcription of Sgk1, Fkbp5 and Nr3c1. A side effect induced by GCs is increased production of reactive oxygen species. Available data show that the brain's response to GCs is part of an emergency mode characterized by inactivation of non-core activities, restrained inflammation, restriction of investments (growth), improved efficiency of energy production and the removal of unnecessary or malfunctioning cellular components to conserve energy and maintain nutrient supply during the stress response.
Collapse
Affiliation(s)
- Grzegorz R Juszczak
- Department of Animal Behavior, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552 Magdalenka, Poland.
| | - Adrian M Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552 Magdalenka, Poland
| |
Collapse
|
28
|
Srinivas KP, Viji R, Dan VM, Sajitha IS, Prakash R, Rahul PV, Santhoshkumar TR, Lakshmi S, Pillai MR. DEPTOR promotes survival of cervical squamous cell carcinoma cells and its silencing induces apoptosis through downregulating PI3K/AKT and by up-regulating p38 MAP kinase. Oncotarget 2018; 7:24154-71. [PMID: 26992219 PMCID: PMC5029691 DOI: 10.18632/oncotarget.8131] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/02/2016] [Indexed: 12/26/2022] Open
Abstract
DEPTOR is an endogenous inhibitor of mTOR complexes, de-regulated in cancers. The present study reveals a vital role for DEPTOR in survival of cervical squamous cell carcinoma (SCC). DEPTOR was found to be overexpressed in both cervical SCC cells and tissues and it's silencing in cervical SCC cells induced apoptosis, mainly by up-regulation of p38 MAPK and by inhibiting PI3K/AKT pathway via a feed-back inhibition from mTORC1-S6K. DEPTOR silencing resulted in reduced expression of the nitric oxide synthases iNOS and eNOS, as well as increased activation of ERK1/2 and p38 MAP kinases. Activation of AKT signaling by overexpression of constitutively active-AKT (CA-AKT) failed to overcome the apoptosis caused by DEPTOR silencing. Similarly pharmacological inhibition of ERK also failed to control apoptosis. However pharmacological inhibition of p38 MAPK rescued the cells from apoptosis, indicating the major role of p38 MAPK in cell death induced by DEPTOR silencing. DEPTOR was also found to regulate ERK1/2 in an AKT dependent manner. DEPTOR knockdown induced cell death in SiHa cells overexpressing the anti-apoptotic Bcl-2 and Bcl-xL, indicating strong survival role of DEPTOR in these cells. DEPTOR overexpression activated PI3K/AKT by relieving the negative feed-back inhibition from mTORC1-S6K. DEPTOR regulation was also observed to be independent of HPV E6/E7 oncoproteins, but it might be a molecular co-factor contributing to cervical carcinogenesis. In summary, DEPTOR is found to promote survival of cervical SCC cells and its reduction induced apoptosis via differential effects on PI3K/AKT and p38 MAPK and can be a potential target in cervical SCC.
Collapse
Affiliation(s)
| | - Remadevi Viji
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram-695014, Kerala, India
| | - Vipin Mohan Dan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram-695014, Kerala, India
| | - Indira Sukumaran Sajitha
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram-695014, Kerala, India
| | - Rajappan Prakash
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram-695014, Kerala, India
| | - Puthan Valappil Rahul
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram-695014, Kerala, India
| | - Thankayyan R Santhoshkumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram-695014, Kerala, India
| | - Subhadra Lakshmi
- Division of Cancer Research, Regional Cancer Centre, Thiruvananthapuram-695011, Kerala, India
| | | |
Collapse
|
29
|
Zhou S, Xu M, Shen J, Liu X, Chen M, Cai X. Overexpression of NEDD9 promotes cell invasion and metastasis in hepatocellular carcinoma. Clin Res Hepatol Gastroenterol 2017; 41:677-686. [PMID: 28578938 DOI: 10.1016/j.clinre.2017.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 02/16/2017] [Accepted: 04/14/2017] [Indexed: 02/04/2023]
Abstract
Neural precursor cell expressed, developmentally downregulated 9 (NEDD9), is a focal adhesion scaffold protein which has been associated with metastasis in several cancers. Recent study found that NEDD9 expression was upregulated in HCC. However, the precise function of NEDD9 in HCC is still unclear. In the present study, we demonstrated that high NEDD9 expression was associated with the invasiveness of HCC in clinical samples. Moreover, by gain-and-loss function studies, we revealed that silencing of NEDD9 expression inhibited cancer cells proliferation, migration and invasion, while upregulated expression of NEDD9 promoted invasion and metastasis of HCC cells in vitro and in vivo. Further studies revealed that NEDD9 inversely regulated E-cadherin in HCC cells and HCC tissues, which indicated that NEDD9 might promotes the invasion and metastasis of HCC cells through the downregulation of E-cadherin, possibly by inducing EMT. On the whole, our findings thus indicate that NEDD9 may serve as a metastasis-promoting gene and potential therapeutic target for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Senjun Zhou
- Department of General Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, 312000 Shaoxing, China
| | - Ming Xu
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3, East Qingchun Road, 310016 Hangzhou, China
| | - Jiliang Shen
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3, East Qingchun Road, 310016 Hangzhou, China
| | - Xiaolong Liu
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3, East Qingchun Road, 310016 Hangzhou, China
| | - Mingming Chen
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3, East Qingchun Road, 310016 Hangzhou, China
| | - Xiujun Cai
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3, East Qingchun Road, 310016 Hangzhou, China.
| |
Collapse
|
30
|
Progesterone and calcitriol reduce invasive potential of endometrial cancer cells by targeting ARF6, NEDD9 and MT1-MMP. Oncotarget 2017; 8:113583-113597. [PMID: 29371931 PMCID: PMC5768348 DOI: 10.18632/oncotarget.22745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/05/2017] [Indexed: 01/22/2023] Open
Abstract
Previously, we have demonstrated that progesterone and calcitriol synergistically inhibit growth of endometrial and ovarian cancer by enhancing apoptosis and causing cell cycle arrest. Metastasis is the main reason of mortality in cancer patients. Activation of ADP-Ribosylation Factor 6 (ARF6), Neural Precursor cell expressed Developmentally Downregulated 9 (NEDD9), and Membrane-Type-1 Matrix Metalloproteinase (MT1-MMP) have been implicated in promoting tumor growth and metastasis. We examined the effects of progesterone, calcitriol and progesterone-calcitriol combination on metastasis promoting proteins in endometrial cancer. Expression of ARF6, NEDD9, and MT1-MMP was enhanced in advanced-stage endometrial tumors and in cancer cell lines compared to normal tissues and immortalized EM-E6/E7-TERT endometrial epithelial cells. Knockdown of these proteins significantly inhibited the invasiveness of the cancer cells. The expression levels of all three proteins was reduced with progesterone and progesterone-calcitriol combination treatment, whereas calcitriol alone showed no effect on their expression but moderately decreased MT1-MMP activity. Fluorescence microscopy showed membrane expression of MT1-MMP in vehicle and calcitriol-treated endometrial cancer cells. However, progesterone and calcitriol-progesterone combination treatment revealed MT1-MMP in the cytoplasm. Furthermore, progesterone and calcitriol reduced the activity of MT1-MMP, MMP-9, and MMP-2. In addition, invadopodia regulatory proteins were attenuated in both progesterone and progesterone-calcitriol combination treated cells as well as in MT1-MMP knockdown cells. Thus, targeting the aberrant MT1-MMP signaling with progesterone-calcitriol may be a novel approach to impede MT1-MMP mediated cancer dissemination and may have therapeutic benefits for endometrial cancer patients.
Collapse
|
31
|
Xue YZ, Wu TL, Dai YY, Sheng YY, Wu YM, Xia BL, Huang ZW. NEDD9 expression is correlated with epithelial-to-mesenchymal transition markers in colorectal cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:8640-8646. [PMID: 31966721 PMCID: PMC6965374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 05/26/2017] [Indexed: 06/10/2023]
Abstract
The epithelial-to-mesenchymal transition (EMT) is a critical step in tumor metastasis. NEDD9 has been shown to be an oncogene in colorectal cancer. However, little is known about the relationship between NEDD9 and EMT in colorectal cancer metastasis. A total of 63 pairs of freshly frozen colorectal cancer tissues and adjacent noncancerous tissues were evaluated for NEDD9 gene expression using quantitative real-time PCR. The expression of NEDD9 and three epithelial-mesenchymal transition (EMT)-related proteins (E-cadherin, β-catenin and vimentin) was examined in 122 colorectal cancers by immunohistochemistry. The expression of NEDD9 was markedly increased in colorectal cancer tissues compared with adjacent noncancerous tissues. The expression level of NEDD9 was positively correlated and TNM stage but not with other clinicopathological features of colorectal tumors. Furthermore, the expression of NEDD9 was strongly associated with the loss of epithelial marker E-cadherin and acquired expression of the mesenchymal markers nuclear β-catenin and vimentin. These findings suggested that NEDD9 might promote EMT and the progression of colorectal cancer, and thus may be a potential therapeutic target of colorectal cancers.
Collapse
Affiliation(s)
- Yu-Zheng Xue
- Department of Gastroenterology, The Third Hospital Affiliated to Nantong UniversityWuxi, Jiangsu Province, China
| | - Tie-Long Wu
- Department of Gastroenterology, The Third Hospital Affiliated to Nantong UniversityWuxi, Jiangsu Province, China
| | - Yuan-Yuan Dai
- Department of Gastroenterology, The Third Hospital Affiliated to Nantong UniversityWuxi, Jiangsu Province, China
| | - Ying-Yue Sheng
- Department of Gastroenterology, The Third Hospital Affiliated to Nantong UniversityWuxi, Jiangsu Province, China
| | - Yan-Min Wu
- Department of Gastroenterology, The Third Hospital Affiliated to Nantong UniversityWuxi, Jiangsu Province, China
| | - Bei-Lei Xia
- Department of Gastroenterology, The Third Hospital Affiliated to Nantong UniversityWuxi, Jiangsu Province, China
| | - Zhong-Wei Huang
- Department of Emergency, Affiliated Hospital of Nantong UniversityNantong, Jiangsu Province, China
| |
Collapse
|
32
|
Zhou RT, He M, Yu Z, Liang Y, Nie Y, Tai S, Teng CB. Baicalein inhibits pancreatic cancer cell proliferation and invasion via suppression of NEDD9 expression and its downstream Akt and ERK signaling pathways. Oncotarget 2017; 8:56351-56363. [PMID: 28915595 PMCID: PMC5593566 DOI: 10.18632/oncotarget.16912] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/06/2017] [Indexed: 12/30/2022] Open
Abstract
Baicalein, a flavone ingredient of Scutellaria baicalensis Georgi, is a promising anti-cancer agent. However, its potential anti-pancreatic cancer effects and the underlying mechanisms are still unclear. In this study, we showed that Baicalein not only induced apoptosis, but also suppressed proliferation, migration and invasion of two pancreatic cancer cell lines BxPC-3 and PANC-1 in a dose- and time-dependent manner. Notably, Baicalein exhibited low toxicity to normal human liver or kidney cells. We further discovered that Baicalein suppressed BxPC-3 and PANC-1 cell proliferation and invasion through targeting the expression of NEDD9, a Cas scaffolding protein, to decrease Akt and ERK activities. Especially, Baicalein decreased Akt phosphorylation at T-308 via lowering NEDD9-dependent PDK1 expression. Overexpression of NEDD9 effectively rescued proliferation and invasion of BxPC-3 and PANC-1 cells dampened by Baicalein. Taken together, our findings suggest that Baicalein is a potent remedy applied to pancreatic cancer treatment in the future.
Collapse
Affiliation(s)
- Rong-Tao Zhou
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Mei He
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Ze Yu
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yang Liang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yuzhe Nie
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Sheng Tai
- Department of General Surgery, The Second Hospital of Harbin Medical University, Harbin, China
| | - Chun-Bo Teng
- College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
33
|
Okon IS, Ding Y, Coughlan KA, Wang Q, Song P, Benbrook DM, Zou MH. Aberrant NRP-1 expression serves as predicator of metastatic endometrial and lung cancers. Oncotarget 2016; 7:7970-8. [PMID: 26701889 PMCID: PMC4884968 DOI: 10.18632/oncotarget.6699] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 11/25/2015] [Indexed: 01/13/2023] Open
Abstract
Neuropilin-1 (NRP-1) has emerged as an important driver of tumor-promoting phenotypes of human malignancies. However, incomplete knowledge exists as to how this single-pass transmembrane receptor mediates pleiotropic tumor-promoting functions. The purpose of this study was to evaluate NRP-1 expression and metastatic properties in 94 endometrial cancer and matching serum specimens and in a lung cancer cell line. We found that NRP-1 expression significantly correlated with increased tumoral expression of vascular endothelial growth factor 2 (VEGFR2) and serum levels of hepatocyte growth factor (HGF) and cell growth-stimulating factor (C-GSF). Tumoral NRP-1 also was positively associated with expression of NEDD9, a pro-metastatic protein. In the highly metastatic lung cancer cell line (H1792), stable LKB1 depletion caused increased migration in vitro and accentuated NRP-1 and NEDD9 expression in vivo. Our findings demonstrate that perturbed expression of these targets correlate with metastatic potential of endometrial and lung tumors, providing clinically-relevant biomarker applications for diagnostic and therapeutic targeting.
Collapse
Affiliation(s)
- Imoh S Okon
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA 30302, USA
| | - Ye Ding
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA 30302, USA
| | | | - Qiongxin Wang
- Section of Molecular Medicine, Oklahoma City, OK 73104, USA
| | - Ping Song
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA 30302, USA
| | - Doris M Benbrook
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK 73104, USA
| | - Ming-Hui Zou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA 30302, USA
| |
Collapse
|
34
|
Li P, Sun T, Yuan Q, Pan G, Zhang J, Sun D. The expressions of NEDD9 and E-cadherin correlate with metastasis and poor prognosis in triple-negative breast cancer patients. Onco Targets Ther 2016; 9:5751-5759. [PMID: 27703373 PMCID: PMC5036611 DOI: 10.2147/ott.s113768] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Neural precursor cell expressed, developmentally downregulated 9 (NEDD9), a member of Crk-associated substrate family, is involved in cancer cell adhesion, migration, invasion, and epithelial–mesenchymal transition. E-cadherin is a key event in the cellular invasion during the epithelial–mesenchymal transition mechanism. The aim of this study was to evaluate the association among NEDD9 expression, E-cadherin expression, and survival in triple-negative breast cancer (TNBC) patients. Methods NEDD9 and E-cadherin expressions were analyzed by immunohistochemistry in 106 TNBC patients and 120 non-TNBC patients. And the association of clinicopathological factors with survival was analyzed using Kaplan–Meier analysis and Cox regression in TNBC patients. Results The results revealed that the rate of increased expression of NEDD9 and reduced expression of E-cadherin was significantly higher in TNBC group than that in non-TNBC group (P<0.001, both). Comparison of features between TNBC and non-TNBC groups showed that histological type (P=0.026) and lymph node metastasis (P=0.001) were significantly different. Correlation analysis showed that positive NEDD9 expression and negative E-cadherin expression were significantly correlated with lymph node metastasis and tumor-node-metastasis stage (P<0.05). In addition, the enhanced NEDD9 expression was significantly associated with a reduced 5-year survival for TNBC patients (overall survival [OS]: P=0.013; disease-free survival [DFS]: P=0.021). Negative E-cadherin expression showed a significantly worse 5-year OS and DFS (OS: P=0.011; DFS: P=0.012). Multivariate analysis showed that lymph node metastasis (OS: P=0.006; DFS: P=0.004), tumor-node-metastasis stage (OS: P=0.012; DFS: P=0.001), NEDD9 (OS: P=0.046; DFS: P=0.022), and E-cadherin (OS: P=0.022; DFS: P=0.025) independently predicted a poor prognosis of OS and DFS. Moreover, patients with NEDD9-positive/E-cadherin-negative expression had a significantly worse outcome than other groups (OS: P=0.004; DFS: P=0.001). Conclusion Our finding demonstrated the potential value of NEDD9 and E-cadherin expression levels as prognostic molecular markers and a target for new therapies for TNBC patients.
Collapse
Affiliation(s)
- Peng Li
- Department of Breast and Thyroid Surgery
| | - Tingting Sun
- Department of Clinical Laboratory, Shengli Oilfield Central Hospital, Dongying, Shandong, People's Republic of China
| | | | | | - Jian Zhang
- Department of Breast and Thyroid Surgery
| | - Diwen Sun
- Department of Breast and Thyroid Surgery
| |
Collapse
|
35
|
Misra SK, Ray T, Ostadhossein F, Kim B, Ray PS, Pan D. Carotenoid Nanovector for Efficient Therapeutic Gene Knockdown of Transcription Factor FOXC1 in Liver Cancer. Bioconjug Chem 2016; 27:594-603. [PMID: 26720420 DOI: 10.1021/acs.bioconjchem.5b00601] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transcription factor FOXC1 has been implicated to play a critical role in hepatocellular carcinoma (HCC) progression, but targeting FOXC1 for therapeutic benefit remains a challenge owing to its location inside the cell nucleus. Herein we report successful therapeutic gene knockdown of transcription factor FOXC1 in liver cancer cells through efficient delivery of siFOXC1 using novel carotenoid functionalized dendritic nanoparticles (CDN). This delivery system also displayed a markedly reduced toxicity profile compared to a standard siRNA transfection agent. We were able to achieve ∼90% FOXC1 knockdown using the CDN-siFOXC1 complex. Additionally, it was found to have ∼18% greater delivery efficiency compared to treatments with particles which have no carotenoid tagging, thereby emphasizing the role of carotenoid mediated cell internalization in the efficient delivery of CDN-siFOXC1 complex in liver cancer cells.
Collapse
Affiliation(s)
- Santosh K Misra
- Department of Bioengineering and Beckman Institute, Materials Science and Engineering, University of Illinois at Urbana-Champaign and Carle Cancer Center , 502 North Busey, Urbana, Illinois 61801, United States
| | - Tania Ray
- Department of Surgery, University of Illinois College of Medicine, Division of Surgical Oncology, Carle Cancer Center , 509 West University Avenue, Urbana, Illinois 61801, United States
| | - Fatemeh Ostadhossein
- Department of Bioengineering and Beckman Institute, Materials Science and Engineering, University of Illinois at Urbana-Champaign and Carle Cancer Center , 502 North Busey, Urbana, Illinois 61801, United States
| | - Bomy Kim
- Department of Surgery, University of Illinois College of Medicine, Division of Surgical Oncology, Carle Cancer Center , 509 West University Avenue, Urbana, Illinois 61801, United States
| | - Partha S Ray
- Department of Surgery, University of Illinois College of Medicine, Division of Surgical Oncology, Carle Cancer Center , 509 West University Avenue, Urbana, Illinois 61801, United States
| | - Dipanjan Pan
- Department of Bioengineering and Beckman Institute, Materials Science and Engineering, University of Illinois at Urbana-Champaign and Carle Cancer Center , 502 North Busey, Urbana, Illinois 61801, United States
| |
Collapse
|
36
|
CPE overexpression is correlated with pelvic lymph node metastasis and poor prognosis in patients with early-stage cervical cancer. Arch Gynecol Obstet 2015; 294:333-42. [PMID: 26695643 DOI: 10.1007/s00404-015-3985-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/07/2015] [Indexed: 12/16/2022]
Abstract
PURPOSE Elevated carboxypeptidase E (CPE) levels play crucial roles in tumorigenesis and metastasis. This study investigated the expression and clinicopathological significance of CPE in early-stage cervical cancer. METHODS Elevated carboxypeptidase E expression was analyzed using quantitative polymerase chain reaction and western blotting in normal cervical tissue, cervical cancer cell lines, and in cervical cancer tissues and adjacent noncancerous tissues (ANTs) from the same patient. Immunohistochemistry (IHC) was used to examine CPE expression in tissue samples from 112 patients with early-stage cervical cancer (FIGO stages Ia2-IIa2), 60 patients with cervical intraepithelial neoplasia, and 19 patients with normal cervical tissues (NCTs). Associations between CPE expression and prognostic and diagnostic factors were evaluated statistically. RESULTS CPE expression was significantly higher in cervical cancer cell lines and tissues than in normal tissues and ANTs. Semi-quantitative analysis of IHC indicated that CPE gradually increased from CIN I to cervical cancer, but was absent in NCTs. CPE expression was seen in 40.2 % (45/112) of the cervical cancer samples. CPE expression was significantly associated with FIGO stage (P = 0.003), tumor size (P = 0.012), stromal invasion (P < 0.001), lymphovascular space invasion (P = 0.016), parametrial infiltration (P = 0.027), vaginal involvement (P = 0.007), postoperative adjuvant therapy (P = 0.024), recurrence (P < 0.001), survival (P < 0.001), and pelvic lymph node metastasis (PLNM) (P < 0.001), and it was significantly higher in tissues from patients with PLNM than without PLNM. Logistic regression analysis identified high-level CPE expression as an independent risk factor for PLNM (P = 0.001). Patients with higher CPE expression had shorter overall survival duration than patients with lower CPE expression. Univariate and multivariate Cox-regression analyses suggested that high-level CPE expression is an independent prognostic factor for overall survival in early-stage cervical cancer. CONCLUSIONS High-level CPE expression was associated with a poor prognosis in early-stage cervical cancer. CPE may serve as a biomarker for predicting PLNM and survival in these patients.
Collapse
|
37
|
PRK1/PKN1 controls migration and metastasis of androgen-independent prostate cancer cells. Oncotarget 2015; 5:12646-64. [PMID: 25504435 PMCID: PMC4350344 DOI: 10.18632/oncotarget.2653] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/26/2014] [Indexed: 12/20/2022] Open
Abstract
The major threat in prostate cancer is the occurrence of metastases in androgen-independent tumor stage, for which no causative cure is available. Here we show that metastatic behavior of androgen-independent prostate tumor cells requires the protein-kinase-C-related kinase (PRK1/PKN1) in vitro and in vivo. PRK1 regulates cell migration and gene expression through its kinase activity, but does not affect cell proliferation. Transcriptome and interactome analyses uncover that PRK1 regulates expression of migration-relevant genes by interacting with the scaffold protein sperm-associated antigen 9 (SPAG9/JIP4). SPAG9 and PRK1 colocalize in human cancer tissue and are required for p38-phosphorylation and cell migration. Accordingly, depletion of either ETS domain-containing protein Elk-1 (ELK1), an effector of p38-signalling or p38 depletion hinders cell migration and changes expression of migration-relevant genes as observed upon PRK1-depletion. Importantly, a PRK1 inhibitor prevents metastases in mice, showing that the PRK1-pathway is a promising target to hamper prostate cancer metastases in vivo.
Collapse
|
38
|
ZHANG SISEN, WU LIHUA. Roles of neural precursor cell expressed, developmentally downregulated 9 in tumor-associated cellular processes (Review). Mol Med Rep 2015; 12:6415-21. [DOI: 10.3892/mmr.2015.4240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 06/15/2015] [Indexed: 11/05/2022] Open
|
39
|
McLennan R, Schumacher LJ, Morrison JA, Teddy JM, Ridenour DA, Box AC, Semerad CL, Li H, McDowell W, Kay D, Maini PK, Baker RE, Kulesa PM. VEGF signals induce trailblazer cell identity that drives neural crest migration. Dev Biol 2015; 407:12-25. [PMID: 26278036 DOI: 10.1016/j.ydbio.2015.08.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/10/2015] [Accepted: 08/12/2015] [Indexed: 10/23/2022]
Abstract
Embryonic neural crest cells travel in discrete streams to precise locations throughout the head and body. We previously showed that cranial neural crest cells respond chemotactically to vascular endothelial growth factor (VEGF) and that cells within the migratory front have distinct behaviors and gene expression. We proposed a cell-induced gradient model in which lead neural crest cells read out directional information from a chemoattractant profile and instruct trailers to follow. In this study, we show that migrating chick neural crest cells do not display distinct lead and trailer gene expression profiles in culture. However, exposure to VEGF in vitro results in the upregulation of a small subset of genes associated with an in vivo lead cell signature. Timed addition and removal of VEGF in culture reveals the changes in neural crest cell gene expression are rapid. A computational model incorporating an integrate-and-switch mechanism between cellular phenotypes predicts migration efficiency is influenced by the timescale of cell behavior switching. To test the model hypothesis that neural crest cellular phenotypes respond to changes in the VEGF chemoattractant profile, we presented ectopic sources of VEGF to the trailer neural crest cell subpopulation and show diverted cell trajectories and stream alterations consistent with model predictions. Gene profiling of trailer cells that diverted and encountered VEGF revealed upregulation of a subset of 'lead' genes. Injection of neuropilin1 (Np1)-Fc into the trailer subpopulation or electroporation of VEGF morpholino to reduce VEGF signaling failed to alter trailer neural crest cell trajectories, suggesting trailers do not require VEGF to maintain coordinated migration. These results indicate that VEGF is one of the signals that establishes lead cell identity and its chemoattractant profile is critical to neural crest cell migration.
Collapse
Affiliation(s)
- Rebecca McLennan
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
| | - Linus J Schumacher
- University of Oxford, Wolfson Centre for Mathematical Biology, Mathematical Institute, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK; Department of Computer Science, University of Oxford, Oxford OX1 3QD, UK
| | - Jason A Morrison
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
| | - Jessica M Teddy
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
| | - Dennis A Ridenour
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
| | - Andrew C Box
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
| | - Craig L Semerad
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
| | - Hua Li
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
| | - William McDowell
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
| | - David Kay
- Department of Computer Science, University of Oxford, Oxford OX1 3QD, UK
| | - Philip K Maini
- University of Oxford, Wolfson Centre for Mathematical Biology, Mathematical Institute, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK
| | - Ruth E Baker
- University of Oxford, Wolfson Centre for Mathematical Biology, Mathematical Institute, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK
| | - Paul M Kulesa
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS 66160, USA.
| |
Collapse
|
40
|
Ibrahim R, Lemoine A, Bertoglio J, Raingeaud J. Human enhancer of filamentation 1-induced colorectal cancer cell migration: Role of serine phosphorylation and interaction with the breast cancer anti-estrogen resistance 3 protein. Int J Biochem Cell Biol 2015; 64:45-57. [DOI: 10.1016/j.biocel.2015.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/11/2015] [Accepted: 03/18/2015] [Indexed: 02/02/2023]
|
41
|
Zhang SS, Wu LH, Liu Q, Chen KS, Zhang XF. Elevated expression of NEDD9 is associated with metastatic activity in gastric cancer. Onco Targets Ther 2015; 8:633-40. [PMID: 25792847 PMCID: PMC4360801 DOI: 10.2147/ott.s77904] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective To investigate the protein and mRNA expression of NEDD9 in gastric cancer (GC) tissues, adjacent atypical hyperplasia tissues, and normal gastric mucosa tissues, and analyze its relationship with the pathological features and prognosis of GC. Methods Forty cases of GC tissues, 20 cases of adjacent atypical hyperplasia tissues, and 40 cases of normal gastric mucous tissues were collected. Immunohistochemistry and Western blot were used to examine the expression of NEDD9 protein in various tissues. Situ hybridization and reverse transcription polymerase chain reaction were applied to detect the expression of NEDD9 mRNA in various tissues. The correlation of NEDD9 expression with invasion and metastasis of GC was analyzed. Results The protein expression level of NEDD9 was significantly higher in GC tissues than in adjacent atypical hyperplasia tissues and normal gastric mucous tissues (P<0.05). The protein expression level of NEDD9 was positively related to the invasion depth of carcinoma and tumor lymph node metastasis (P<0.05), but unrelated to age, sex, tumor size, and clinical classification of cancer (P<0.05). The mRNA expression level of NEDD9 was also significantly higher in GC tissues than in adjacent atypical hyperplasia tissues and normal gastric mucous tissues (P<0.05), and positively related with the tumor lymph node metastasis and invasion depth of carcinoma (P<0.05). Conclusion NEDD9 is involved in the occurrence and development of GC, and it may be an important biological marker of GC metastasis and infiltration.
Collapse
Affiliation(s)
- Si-Sen Zhang
- The Emergency Department, People's Hospital of Zhengzhou, Zhengzhou, Henan, People's Republic of China
| | - Li-Hua Wu
- The Emergency Department, People's Hospital of Zhengzhou, Zhengzhou, Henan, People's Republic of China
| | - Qing Liu
- The Emergency Department, People's Hospital of Zhengzhou, Zhengzhou, Henan, People's Republic of China
| | - Kui-Sheng Chen
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Xie-Fu Zhang
- General Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
42
|
Kozyulina PY, Loskutov YV, Kozyreva VK, Rajulapati A, Ice RJ, Jones BC, Pugacheva EN. Prometastatic NEDD9 Regulates Individual Cell Migration via Caveolin-1-Dependent Trafficking of Integrins. Mol Cancer Res 2014; 13:423-38. [PMID: 25319010 DOI: 10.1158/1541-7786.mcr-14-0353] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
UNLABELLED The dissemination of tumor cells relies on efficient cell adhesion and migration, which in turn depends upon endocytic trafficking of integrins. In the current work, it was found that depletion of the prometastatic protein, NEDD9, in breast cancer cells results in a significant decrease in individual cell migration due to impaired trafficking of ligand-bound integrins. NEDD9 deficiency does not affect the expression or internalization of integrins but heightens caveolae-dependent trafficking of ligand-bound integrins to early endosomes. Increase in mobility of ligand-bound integrins is concomitant with an increase in tyrosine phosphorylation of caveolin-1 (CAV1) and volume of CAV1-vesicles. NEDD9 directly binds to CAV1 and colocalizes within CAV1 vesicles. In the absence of NEDD9, the trafficking of ligand-bound integrins from early to late endosomes is impaired, resulting in a significant decrease in degradation of ligand-integrin complexes and an increase in recycling of ligand-bound integrins from early endosomes back to the plasma membrane without ligand disengagement, thus leading to low adhesion and migration. Reexpression of NEDD9 or decrease in the amount of active, tyrosine 14 phosphorylated (Tyr14) CAV1 in NEDD9-depleted cells rescues the integrin trafficking deficiency and restores cellular adhesion and migration capacity. Collectively, these findings indicate that NEDD9 orchestrates trafficking of ligand-bound integrins through the attenuation of CAV1 activity. IMPLICATIONS This study provides valuable new insight into the potential therapeutic benefit of NEDD9 depletion to reduce dissemination of tumor cells and discovers a new regulatory role of NEDD9 in promoting migration through modulation of CAV1-dependent trafficking of integrins.
Collapse
Affiliation(s)
- Polina Y Kozyulina
- Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, West Virginia. Institute of Cytology Russian Academy of Sciences, St. Petersburg, Russia
| | - Yuriy V Loskutov
- Mary Babb Randolph Cancer Center, School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Varvara K Kozyreva
- Mary Babb Randolph Cancer Center, School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Anuradha Rajulapati
- Mary Babb Randolph Cancer Center, School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Ryan J Ice
- Mary Babb Randolph Cancer Center, School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Brandon C Jones
- Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Elena N Pugacheva
- Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, West Virginia. Mary Babb Randolph Cancer Center, School of Medicine, West Virginia University, Morgantown, West Virginia.
| |
Collapse
|
43
|
Li P, Zhou H, Zhu X, Ma G, Liu C, Lin B, Mao W. High expression of NEDD9 predicts adverse outcomes of colorectal cancer patients. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:2565-2570. [PMID: 24966970 PMCID: PMC4069898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 02/12/2014] [Indexed: 06/03/2023]
Abstract
NEDD9, a member of Crk-associated substrate (CAS) family, is highly expressed in multiple cancer types and involved cancer cell adhesion, migration, invasion. The prognostic value of NEDD9 has not been evaluated before. The aim of this study was to evaluate the association between NEDD9 expression and survival in colorectal cancer (CRC) patients. NEDD9 expression was analyzed by immunohistochemistry in 92 patients with CRC. Patients were followed-up annually by telephone or at outpatient clinic. The results revealed that high expression of NEDD9 in 68/92 CRC samples, compared with 12/92 normal tissues (P<0.01). Correlation analysis showed high level of expression of NEDD9 was significantly correlated with advanced TNM stage (P=0.014), pT grade (P=0.009), pN (P=0.013) and pM status (P=0.047). Patients with a higher NEDD9 expression had a significantly shorter overall survival (OS) (P<0.01). The multivariate analysis revealed that NEDD9 expression could serve as an independent predictive factor of OS. Our finding demonstrated the potential value of NEDD9 expression level as a prognostic molecular marker and a target for new therapies for CRC patients.
Collapse
Affiliation(s)
- Peng Li
- Department of General Surgery, Qingdao Municipal Hospital, Qingdao University Medical CollegeQingdao, China
| | - Houmin Zhou
- Department of General Surgery, Qingdao Municipal Hospital, Qingdao University Medical CollegeQingdao, China
| | - Xinhong Zhu
- Department of International Clinic, Qingdao Municipal Hospital, Qingdao University Medical CollegeQingdao, China
| | - Guiliang Ma
- Department of General Surgery, Qingdao Municipal Hospital, Qingdao University Medical CollegeQingdao, China
| | - Chao Liu
- Department of General Surgery, Qingdao Municipal Hospital, Qingdao University Medical CollegeQingdao, China
| | - Bin Lin
- Department of General Surgery, Qingdao Municipal Hospital, Qingdao University Medical CollegeQingdao, China
| | - Weizheng Mao
- Department of General Surgery, Qingdao Municipal Hospital, Qingdao University Medical CollegeQingdao, China
| |
Collapse
|
44
|
NEDD9 overexpression correlates with poor prognosis in gastric cancer. Tumour Biol 2014; 35:6351-6. [PMID: 24664584 DOI: 10.1007/s13277-014-1839-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/11/2014] [Indexed: 10/25/2022] Open
Abstract
In this study, the expression of neural precursor cell expressed developmentally downregulated 9 (NEDD9) in benign and malignant gastric tissues was investigated, and the significance of NEDD9 in gastric cancer prognosis was explored. Immunohistochemistry was used to detect NEDD9 expression in gastric cancer, nontumor gastric, and normal gastric tissues. The relationship between NEDD9 expression in gastric cancer tissues and the clinicopathologic factors was examined using the Mann-Whitney U test. The two factors between NEDD9 expression and tumor node metastasis (TNM) stage in gastric cancer patients were analyzed by Spearman rank correlation analysis. The Kaplan-Meier method and log-rank test were used to compare the overall survival of NEDD9 negative, weak positive expression, and strong positive expression group. NEDD9 expression rates were significantly higher (P < 0.001) in gastric cancer tissues (162 out of 187, 86.6 %) compared with normal (2 out of 11, 18.2 %) and nontumor (11 out of 58, 19.0 %) gastric tissues. The upregulated NEDD9 expression in gastric cancer tissue was significantly correlated with high preoperative CEA level (P = 0.044), poor differentiation (P = 0.007), tissue invasion (P = 0.015), present lymph node metastasis (P < 0.001), and high TNM stage (P < 0.001). NEDD9 expression was positively correlated with clinical TNM stage. Advancing clinical TNM stage corresponded with higher NEDD9 expression (r s = 0.289, P < 0.001). The overall 5-year survival of gastric cancer patients with strong positive NEDD9 expression was significantly shorter compared with the survival of NEDD9 negative and weakly positive expression group. NEDD9 may be used as a biomarker in the clinical setting to predict the prognosis of gastric cancer patients.
Collapse
|
45
|
Kozyreva VK, McLaughlin SL, Livengood RH, Calkins RA, Kelley LC, Rajulapati A, Ice RJ, Smolkin MB, Weed SA, Pugacheva EN. NEDD9 regulates actin dynamics through cortactin deacetylation in an AURKA/HDAC6-dependent manner. Mol Cancer Res 2014; 12:681-93. [PMID: 24574519 DOI: 10.1158/1541-7786.mcr-13-0654] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED The prometastatic protein NEDD9 (neural precursor cell expressed, developmentally downregulated 9) is highly expressed in many cancers and is required for mesenchymal individual cell migration and progression to the invasive stage. Nevertheless, the molecular mechanisms of NEDD9-driven migration and the downstream targets effecting metastasis are not well defined. In the current study, knockdown of NEDD9 in highly metastatic tumor cells drastically reduces their migratory capacity due to disruption of actin dynamics at the leading edge. Specifically, NEDD9 deficiency leads to a decrease in the persistence and stability of lamellipodial protrusions similar to knockdown of cortactin (CTTN). Mechanistically, it was shown that NEDD9 binds to and regulates acetylation of CTTN in an Aurora A kinase (AURKA)/HDAC6-dependent manner. The knockdown of NEDD9 or AURKA results in an increase in the amount of acetylated CTTN and a decrease in the binding of CTTN to F-actin. Overexpression of the deacetylation mimicking (9KR) mutant of CTTN is sufficient to restore actin dynamics at the leading edge and migration proficiency of the tumor cells. Inhibition of AURKA and HDAC6 activity by alisertib and Tubastatin A in xenograft models of breast cancer leads to a decrease in the number of pulmonary metastases. Collectively, these findings identify CTTN as the key downstream component of NEDD9-driven migration and metastatic phenotypes. IMPLICATIONS This study provides a mechanistic platform for therapeutic interventions based on AURKA and HDAC6 inhibition for patients with metastatic breast cancer to prevent and/or eradicate metastases.
Collapse
Affiliation(s)
- Varvara K Kozyreva
- Authors' Affiliations: Mary Babb Randolph Cancer Center; Departments of 2Biochemistry, 3Pathology, and 4Neurobiology and Anatomy, West Virginia University School of Medicine, Morgantown, West Virginia
| | | | | | | | | | | | | | | | | | | |
Collapse
|