1
|
Condac C, Lozneanu L, Matasariu DR, Ursache A, Bujor IE, Niță ME, Boiculese VL, Bîrluțiu V. Shedding Light on the COVID-19 Pandemic: Placental Expression of Cell Biomarkers in Negative, Vaccinated, and Positive Pregnant Women. J Clin Med 2024; 13:5546. [PMID: 39337033 PMCID: PMC11432756 DOI: 10.3390/jcm13185546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Background: We investigated the expression of inflammation, placental development, and function markers, including cluster of differentiation 44 (CD44), osteopontin (OPN), and cyclooxygenase-2 (COX-2), to shed light on the controversy regarding the impact of the COVID-19 epidemic on fetal development and pregnancy outcomes. Methods: We immunohistochemically analyzed placental tissue from 170 patients (65 COVID-positive and unvaccinated women; 35 Pfeizer-vaccinated and COVID-negative women; and 70 COVID-negative and unvaccinated women, without any other associated pathology) for particularities in the expression of these three molecules. Results: CD44 expression was highest in COVID-negative and unvaccinated women, moderate in COVID-positive cases, and lowest in vaccinated and COVID-negative women. OPN expression was highest in COVID-negative and Pfeizer-vaccinated cases, moderate in COVID-negative and unvaccinated cases, and lowest in COVID-positive cases. COX-2 expression was increased in COVID-negative and unvaccinated women, modestly elevated in COVID-positive and unvaccinated cases, and lowest in vaccinated cases. Conclusions: These findings reflected an alteration in the placental structure and consequent function due to altered expression of the three studied molecules.
Collapse
Affiliation(s)
- Constantin Condac
- Department of Anesthesia and Intensive Care, "Cuza Vodă" Hospital, 700038 Iasi, Romania
- Department of Infectious Diseases, University of Medicine and Pharmacy "Lucian Blaga", 550169 Sibiu, Romania
| | - Ludmila Lozneanu
- Department of Morpho-Functional Sciences I-Histology, University of Medicine and Pharmacy "Gr. T. Popa", 700115 Iasi, Romania
| | - Daniela Roxana Matasariu
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy "Gr. T. Popa", 700115 Iasi, Romania
- Department of Obstetrics and Gynecology, "Cuza Vodă" Hospital, 700038 Iasi, Romania
| | - Alexandra Ursache
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy "Gr. T. Popa", 700115 Iasi, Romania
| | - Iuliana Elena Bujor
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy "Gr. T. Popa", 700115 Iasi, Romania
| | - Maria Elena Niță
- Department of Obstetrics and Gynecology, "Cuza Vodă" Hospital, 700038 Iasi, Romania
| | - Vasile Lucian Boiculese
- Biostatistics, Department of Preventive Medicine and Interdisciplinarity, University of Medicine and Pharmacy "Gr. T. Popa", 700115 Iasi, Romania
| | - Victoria Bîrluțiu
- Department of Infectious Diseases, University of Medicine and Pharmacy "Lucian Blaga", 550169 Sibiu, Romania
| |
Collapse
|
2
|
Canan S, İnan MA, Erdem A, Demirdağ E, Gündüz Mİ, Erdem Ö, Erdem M. Evaluation of endometrial receptivity in recurrent pregnancy loss and recurrent implantation failure. Turk J Obstet Gynecol 2024; 21:22-27. [PMID: 38440964 PMCID: PMC10920968 DOI: 10.4274/tjod.galenos.2024.42959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 03/06/2024] Open
Abstract
Objective The cause of implantation defects in patients with recurrent implantation failure (RIF) and recurrent pregnancy loss (RPL) has not been clearly established. We aimed to evaluate the immunohistochemical changes in HOXA-11, β1 integrin, focal adhesion kinase (FAK), cluster of differentiation 44 (CD44), and extracellular matrix protein 1 (ECM1) molecules during the receptive endometrial period in patients with RIF and RPL. Materials and Methods This study was retrospectively conducted at a university hospital. After the exclusion of cases with pathology that may cause a change in the level of receptors in the endometrium, biopsies performed during the receptive period were selected, and the patients were categorized into RPL (n=15), RIF (n=16), control (n=16) groups. All preparations were immunohistochemically stained for HOXA-11, β1 integrin, FAK, CD44, and ECM1. Results HOXA-11 and β1 Integrin expression changes were similar between the RIF and control groups. However, FAK expression was significantly increased in the RIF group (p<0.01). Additionally, ECM1 and CD44 expressions were significantly decreased in the RIF group compared with the control group (p<0.01). There was no significant difference in the endometrial staining of HOXA-11, FAK, and ECM1 in patients with a history of RPL. However, β1 Integrin and CD44 levels were significantly decreased in the RPL group compared with the control group (p<0.05). Conclusion Implantation is a complex process, and altered adhesion mechanisms involved in endometrial receptivity may be related to defective implantation in patients with RIF and RPL. Among the adhesion molecules, the expression of CD44, β1 integrin, FAK, and ECM1 molecules varies in inappropriate implantation compared with the normal population.
Collapse
Affiliation(s)
- Sultan Canan
- Sakarya Training and Research Hospital, Clinic of Obstetrics and Gynecology, Sakarya, Turkey
| | - Mehmet Arda İnan
- Gazi University Faculty of Medicine, Department of Pathology, Ankara, Turkey
| | - Ahmet Erdem
- Gazi University Faculty of Medicine, Department of Obstetrics and Gynecology, Ankara, Turkey
| | - Erhan Demirdağ
- Gazi University Faculty of Medicine, Department of Obstetrics and Gynecology, Ankara, Turkey
| | | | - Özlem Erdem
- Gazi University Faculty of Medicine, Department of Pathology, Ankara, Turkey
| | - Mehmet Erdem
- Gazi University Faculty of Medicine, Department of Obstetrics and Gynecology, Ankara, Turkey
| |
Collapse
|
3
|
Piao Y, Yun SY, Fu Z, Jang JM, Back MJ, Kim HH, Kim DK. Recombinant Human HAPLN1 Mitigates Pulmonary Emphysema by Increasing TGF-β Receptor I and Sirtuins Levels in Human Alveolar Epithelial Cells. Mol Cells 2023; 46:558-572. [PMID: 37587649 PMCID: PMC10495690 DOI: 10.14348/molcells.2023.0097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 08/18/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) will be the third leading cause of death worldwide by 2030. One of its components, emphysema, has been defined as a lung disease that irreversibly damages the lungs' alveoli. Treatment is currently unavailable for emphysema symptoms and complete cure of the disease. Hyaluronan (HA) and proteoglycan link protein 1 (HAPLN1), an HA-binding protein linking HA in the extracellular matrix to stabilize the proteoglycan structure, forms a bulky hydrogel-like aggregate. Studies on the biological role of the full-length HAPLN1, a simple structure-stabilizing protein, are limited. Here, we demonstrated for the first time that treating human alveolar epithelial type 2 cells with recombinant human HAPLN1 (rhHAPLN1) increased TGF-β receptor 1 (TGF-β RI) protein levels, but not TGF-β RII, in a CD44-dependent manner with concurrent enhancement of the phosphorylated Smad3 (p-Smad3), but not p-Smad2, upon TGF-β1 stimulation. Furthermore, rhHAPLN1 significantly increased sirtuins levels (i.e., SIRT1/2/6) without TGF-β1 and inhibited acetylated p300 levels that were increased by TGF-β1. rhHAPLN1 is crucial in regulating cellular senescence, including p53, p21, and p16, and inflammation markers such as p-NF-κB and Nrf2. Both senile emphysema mouse model induced via intraperitoneal rhHAPLN1 injections and porcine pancreatic elastase (PPE)-induced COPD mouse model generated via rhHAPLN1-containing aerosols inhalations showed a significantly potent efficacy in reducing alveolar spaces enlargement. Preclinical trials are underway to investigate the effects of inhaled rhHAPLN1-containing aerosols on several COPD animal models.
Collapse
Affiliation(s)
- Yongwei Piao
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- HaplnScience Inc., Seongnam 13494, Korea
| | - So Yoon Yun
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- HaplnScience Inc., Seongnam 13494, Korea
| | - Zhicheng Fu
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Ji Min Jang
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Moon Jung Back
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Ha Hyung Kim
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Dae Kyong Kim
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- HaplnScience Inc., Seongnam 13494, Korea
| |
Collapse
|
4
|
Zhou X, Cao Y, Zhou M, Han M, Liu M, Hu Y, Xu B, Zhang A. Decreased CD44v3 expression impairs endometrial stromal cell proliferation and decidualization in women with recurrent implantation failure. Reprod Biol Endocrinol 2022; 20:170. [PMID: 36527033 PMCID: PMC9756673 DOI: 10.1186/s12958-022-01042-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/22/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The precise pathogenesis of poor endometrial receptivity in recurrent implantation failure (RIF) remains unclear. This study was aimed at exploring the effects of different CD44 isoforms in the mid-secretory phase endometrium on endometrial receptivity in women with RIF. METHODS Mid-secretory phase endometrial tissue samples were obtained from the following two groups of women who had undergone IVF: (a) 24 patients with RIF and (b) 18 patients with infertility due to tubal obstruction, who had achieved a successful clinical pregnancy after the first embryo transfer in IVF (control group). Identification of differentially expressed CD44 isoforms in endometrial tissues was assessed using immunohistochemistry, qPCR, and western blotting. Effects of overexpression and knockdown of CD44v3 on proliferation and decidualization of immortalized human endometrial stromal cells (T-HESCs) and primary HESCs were investigated by qPCR and western blot analysis. A heterologous coculture system of embryo implantation was constructed to mimic the process of trophoblast invasion during implantation. RESULTS The expression of CD44v3 was significantly higher in the mid-secretory phase of endometrial stromal cells than in the proliferation phase, but was notably lower in RIF patients. Knockdown of CD44v3 significantly downregulated cell proliferation both in T-HESCs and HESCs. The expression of decidualization markers, prolactin (PRL) and insulin like growth factor binding protein-1 (IGFBP1), was notably decreased following the knockdown of CD44v3, whereas the expression of both PRL and IGFBP1 increased after its overexpression in HESCs. Furthermore, the CD44v3-knockdown HESCs displayed significant deficiency in supporting trophoblast outgrowth in a coculture system of embryo implantation; however, overexpression of CD44v3 in HESCs promoted trophoblast outgrowth. CONCLUSION The reduced expression of CD44v3 suppresses the proliferation and decidualization of HESCs, which might play a pivotal role in poor endometrial receptivity in women with RIF.
Collapse
Affiliation(s)
- Xiaowei Zhou
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China
| | - Yi Cao
- Department of Obstetrics and Gynecology, Minhang Hospital, Fudan University, 170 Xin Song Road, Shanghai, 201100, People's Republic of China
| | - Mingjuan Zhou
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China
| | - Mi Han
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China
| | - Mengyu Liu
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China
| | - Yanqin Hu
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Bufang Xu
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China.
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Aijun Zhang
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China.
| |
Collapse
|
5
|
Guo Q, Yang C, Gao F. The state of CD44 activation in cancer progression and therapeutic targeting. FEBS J 2022; 289:7970-7986. [PMID: 34478583 DOI: 10.1111/febs.16179] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/20/2021] [Accepted: 09/02/2021] [Indexed: 01/14/2023]
Abstract
CD44, a non-kinase transmembrane glycoprotein, is ubiquitously expressed on various types of cells, especially cancer stem cells (CSCs), and has been implicated in cancer onset and aggressiveness. The major ligand for the CD44, hyaluronan (HA), binds to and interacts with CD44, which in turn triggers downstream signaling cascades, thereby promoting cellular behaviors such as proliferation, motility, invasiveness and chemoresistance. The CD44-HA interaction is cell-specific and strongly affected by the state of CD44 activation. Therefore, the binding of HA to CD44 is essential for the activation of CD44 during which the detailed regulatory mechanism needs to be clarified. Different CD44 activation states distribute in human carcinoma and normal tissue; however, whether CD44 activation is a critical requirement for tumor initiation, progression and notorious CSC properties remains to be clarified. A deeper understanding of the regulation of CD44 activation may facilitate the development of novel targeted drugs in the future. Here, we review the current findings concerning the states of CD44 activation on the cell surface, the underlying regulatory mechanisms of CD44 activation, the known role for CD44 activation in tumor progression and CSC hallmarks, as well as the potential of HA-coated nanoparticle for targeting activated CD44 for cancer therapy.
Collapse
Affiliation(s)
- Qian Guo
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Cuixia Yang
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Feng Gao
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
6
|
Fabrication of Low-Molecular-Weight Hyaluronic Acid-Carboxymethyl Cellulose Hybrid to Promote Bone Growth in Guided Bone Regeneration Surgery: An Animal Study. Polymers (Basel) 2022; 14:polym14153211. [PMID: 35956724 PMCID: PMC9370888 DOI: 10.3390/polym14153211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Guided bone regeneration surgery is an important dental operation used to regenerate enough bone to successfully heal dental implants. When this technique is performed on maxilla sinuses, hyaluronic acid (HLA) can be used as an auxiliary material to improve the graft material handling properties. Recent studies have indicated that low-molecular hyaluronic acid (L-HLA) provides a better regeneration ability than high-molecular-weight (H-HLA) analogues. The aim of this study was to fabricate an L-HLA-carboxymethyl cellulose (CMC) hybrid to promote bone regeneration while maintaining viscosity. The proliferation effect of fabricated L-HLA was tested using dental pulp stem cells (DPSCs). The mitogen-activated protein kinase (MAPK) pathway was examined using cells cultured with L-HLA combined with extracellular-signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 inhibitors. The bone growth promotion of fabricated L-HLA/CMC hybrids was tested using an animal model. Micro-computer tomography (Micro-CT) and histological images were evaluated quantitatively to compare the differences in the osteogenesis between the H-HLA and L-HLA. Our results show that the fabricated L-HLA can bind to CD44 on the DPSC cell membranes and affect MAPK pathways, resulting in a prompt proliferation rate increase. Micro CT images show that new bone formation in rabbit calvaria defects treated with L-HLA/CMC was almost two times higher than in defects filled with H-HLA/CMC (p < 0.05) at 4 weeks, a trend that remained at 8 weeks and was confirmed by HE-stained images. According to these findings, it is reasonable to conclude that L-HLA provides better bone healing than H-HLA, and that the L-HLA/CMC fabricated in this study is a potential candidate for improving bone healing efficiency when a guided bone regeneration surgery was performed.
Collapse
|
7
|
Cummings MJ, Yu H, Paudel S, Hu G, Li X, Hemberger M, Wang X. Uterine-specific SIRT1 deficiency confers premature uterine aging and impairs invasion and spacing of blastocyst, and stromal cell decidualization, in mice. Mol Hum Reprod 2022; 28:gaac016. [PMID: 35536234 PMCID: PMC10689003 DOI: 10.1093/molehr/gaac016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/28/2022] [Indexed: 12/02/2023] Open
Abstract
A distinct age-related alteration in the uterine environment has recently been identified as a prevalent cause of the reproductive decline in older female mice. However, the molecular mechanisms that underlie age-associated uterine adaptability to pregnancy are not known. Sirtuin 1 (SIRT1), a multifunctional NAD+-dependent deacetylase that regulates cell viability, senescence and inflammation during aging, is reduced in aged decidua. Thus, we hypothesize that SIRT1 plays a critical role in uterine adaptability to pregnancy and that uterine-specific ablation of Sirt1 gene accelerates premature uterine aging. Female mice with uterine ablation of Sirt1 gene using progesterone receptor Cre (PgrCre) exhibit subfertility and signs of premature uterine aging. These Sirt1-deficient mothers showed decreases in litter size from their 1st pregnancy and became sterile (25.1 ± 2.5 weeks of age) after giving birth to the third litter. We report that uterine-specific Sirt1 deficiency impairs invasion and spacing of blastocysts, and stromal cell decidualization, leading to abnormal placentation. We found that these problems traced back to the very early stages of hormonal priming of the uterus. During the window of receptivity, Sirt1 deficiency compromises uterine epithelial-stromal crosstalk, whereby estrogen, progesterone and Indian hedgehog signaling pathways are dysregulated, hampering stromal cell priming for decidualization. Uterine transcriptomic analyses also link these causes to perturbations of histone proteins and epigenetic modifiers, as well as adrenomedullin signaling, hyaluronic acid metabolism, and cell senescence. Strikingly, our results also identified genes with significant overlaps with the transcriptome of uteri from aged mice and transcriptomes related to master regulators of decidualization (e.g. Foxo1, Wnt4, Sox17, Bmp2, Egfr and Nr2f2). Our results also implicate accelerated deposition of aging-related fibrillar Type I and III collagens in Sirt1-deficient uteri. Collectively, SIRT1 is an important age-related regulator of invasion and spacing of blastocysts, as well as decidualization of stromal cells.
Collapse
Affiliation(s)
- Magdalina J Cummings
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
- The Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Hongyao Yu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Sudikshya Paudel
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
- The Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Guang Hu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Xiaoling Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Myriam Hemberger
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Xiaoqiu Wang
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
- The Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
8
|
Icardi A, Lompardia SL, Papademetrio DL, Rosales P, Díaz M, Pibuel MA, Alaniz L, Alvarez E. Hyaluronan in the Extracellular Matrix of Hematological and Solid Tumors. Its Biological Effects. BIOLOGY OF EXTRACELLULAR MATRIX 2022:161-196. [DOI: 10.1007/978-3-030-99708-3_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Friberger I, Jussing E, Han J, Goos JACM, Siikanen J, Kaipe H, Lambert M, Harris RA, Samén E, Carlsten M, Holmin S, Tran TA. Optimisation of the Synthesis and Cell Labelling Conditions for [ 89Zr]Zr-oxine and [ 89Zr]Zr-DFO-NCS: a Direct In Vitro Comparison in Cell Types with Distinct Therapeutic Applications. Mol Imaging Biol 2021; 23:952-962. [PMID: 34231103 PMCID: PMC8578071 DOI: 10.1007/s11307-021-01622-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/29/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022]
Abstract
BACKGROUND There is a need to better characterise cell-based therapies in preclinical models to help facilitate their translation to humans. Long-term high-resolution tracking of the cells in vivo is often impossible due to unreliable methods. Radiolabelling of cells has the advantage of being able to reveal cellular kinetics in vivo over time. This study aimed to optimise the synthesis of the radiotracers [89Zr]Zr-oxine (8-hydroxyquinoline) and [89Zr]Zr-DFO-NCS (p-SCN-Bn-Deferoxamine) and to perform a direct comparison of the cell labelling efficiency using these radiotracers. PROCEDURES Several parameters, such as buffers, pH, labelling time and temperature, were investigated to optimise the synthesis of [89Zr]Zr-oxine and [89Zr]Zr-DFO-NCS in order to reach a radiochemical conversion (RCC) of >95 % without purification. Radio-instant thin-layer chromatography (iTLC) and radio high-performance liquid chromatography (radio-HPLC) were used to determine the RCC. Cells were labelled with [89Zr]Zr-oxine or [89Zr]Zr-DFO-NCS. The cellular retention of 89Zr and the labelling impact was determined by analysing the cellular functions, such as viability, proliferation, phagocytotic ability and phenotypic immunostaining. RESULTS The optimised synthesis of [89Zr]Zr-oxine and [89Zr]Zr-DFO-NCS resulted in straightforward protocols not requiring additional purification. [89Zr]Zr-oxine and [89Zr]Zr-DFO-NCS were synthesised with an average RCC of 98.4 % (n = 16) and 98.0 % (n = 13), respectively. Cell labelling efficiencies were 63.9 % (n = 35) and 70.2 % (n = 30), respectively. 89Zr labelling neither significantly affected the cell viability (cell viability loss was in the range of 1-8 % compared to its corresponding non-labelled cells, P value > 0.05) nor the cells' proliferation rate. The phenotype of human decidual stromal cells (hDSC) and phagocytic function of rat bone-marrow-derived macrophages (rMac) was somewhat affected by radiolabelling. CONCLUSIONS Our study demonstrates that [89Zr]Zr-oxine and [89Zr]Zr-DFO-NCS are equally effective in cell labelling. However, [89Zr]Zr-oxine was superior to [89Zr]Zr-DFO-NCS with regard to long-term stability, cellular retention, minimal variation between cell types and cell labelling efficiency.
Collapse
Affiliation(s)
- Ida Friberger
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Emma Jussing
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Radiopharmacy, Karolinska University Hospital, Stockholm, Sweden
| | - Jinming Han
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Centre for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Jeroen A C M Goos
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Radiopharmacy, Karolinska University Hospital, Stockholm, Sweden
| | - Jonathan Siikanen
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Helen Kaipe
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Mélanie Lambert
- Department of Medicine in Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Robert A Harris
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Centre for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Erik Samén
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Radiopharmacy, Karolinska University Hospital, Stockholm, Sweden
| | - Mattias Carlsten
- Department of Medicine in Huddinge, Karolinska Institutet, Stockholm, Sweden
- Center for Cell Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Stockholm, Sweden
| | - Staffan Holmin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Thuy A Tran
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.
- Department of Radiopharmacy, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
10
|
Zakusilo FT, Kerry O’Banion M, Gelbard HA, Seluanov A, Gorbunova V. Matters of size: Roles of hyaluronan in CNS aging and disease. Ageing Res Rev 2021; 72:101485. [PMID: 34634492 DOI: 10.1016/j.arr.2021.101485] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/29/2022]
Abstract
Involvement of extracellular matrix (ECM) components in aging and age-related neurodegeneration is not well understood. The role of hyaluronan (HA), a major extracellular matrix glycosaminoglycan, in malignancy and inflammation is gaining new understanding. In particular, the differential biological effects of high molecular weight (HMW-HA) and low molecular weight hyaluronan (LMW-HA), and the mechanism behind such differences are being uncovered. Tightly regulated in the brain, HA can have diverse effects on cellular development, growth and degeneration. In this review, we summarize the homeostasis and signaling of HA in healthy tissue, discuss its distribution and ontogeny in the central nervous system (CNS), summarize evidence for its involvement in age-related neurodegeneration and Alzheimer Disease (AD), and assess the potential of HA as a therapeutic target in the CNS.
Collapse
|
11
|
Unfer V, Tilotta M, Kaya C, Noventa M, Török P, Alkatout I, Gitas G, Bilotta G, Laganà AS. Absorption, distribution, metabolism and excretion of hyaluronic acid during pregnancy: a matter of molecular weight. Expert Opin Drug Metab Toxicol 2021; 17:823-840. [PMID: 33999749 DOI: 10.1080/17425255.2021.1931682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION For many years hyaluronic acid (HA) was mainly used for its hydrating properties. However, new applications have recently arisen, considering the biological properties of HA and its molecular weight. Clinical application of low molecular weight HA (LMW-HA) initially was supported by specific absorption data. The identification of high molecular weight HA (HMW-HA) absorption pathways and the knowledge of its physiological role allowed to evaluate its clinical application. Based on the immunomodulatory properties of HMW-HA and its physiological involvement as signaling molecule, pregnancy represents an interesting context of application. AREA COVERED This expert opinion includes in-vitro, in-vivo, ex-vivo and clinical studies on gestational models. It provides an overview of the physiological and the therapeutic role of HMW-HA in pregnancy starting from its metabolism. Indeed, HMW-HA is widely involved in several physiological processes as implantation, immune response, uterine quiescence and cervical remodeling, and therefore is an essential molecule for a successful pregnancy. EXPERT OPINION Available evidence suggests that HMW-HA administration can support physiological pregnancy, favoring blastocyst adhesion and development, preventing miscarriage and pre-term birth. For this reason, supplementation in pregnancy should be evaluated.
Collapse
Affiliation(s)
| | | | - Cihan Kaya
- Department of Obstetrics and Gynaecology, University of Health Sciences, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Marco Noventa
- Department of Women and Children's Health, Clinic of Gynecology and Obstetrics, University of Padua, Padua, Italy
| | - Péter Török
- Faculty of Medicine, Institute of Obstetrics and Gynecology, University of Debrecen, Hungary
| | - Ibrahim Alkatout
- Department of Obstetrics and Gynecology, University Hospital Schleswig Holstein, Kiel, Germany
| | - Georgios Gitas
- Department of Obstetrics and Gynecology, University Hospital Schleswig Holstein, Lübeck, Germany
| | | | - Antonio Simone Laganà
- Department of Obstetrics and Gynecology, "Filippo Del Ponte" Hospital,University of Insubria, Varese, Italy
| |
Collapse
|
12
|
Atkinson B, Woodland E. Embryo Glue: The Use of Hyaluronan in Embryo Transfer Media. Semin Reprod Med 2021; 39:24-26. [PMID: 34034352 DOI: 10.1055/s-0041-1730415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
EmbryoGlue is available to patients at many in vitro fertilization clinics, usually at an additional cost. The efficacy of hyaluronan-enriched transfer medium (HETM) is supported by moderate quality evidence that indicates a significant improvement in clinical outcomes such as live birth rates for patients, including poorer prognosis women (i.e., maternal age factor [>35 years] and recurrent implantation failure). An increased multiple pregnancy rate has been reported with the use of HETM; therefore, a single embryo transfer policy should be considered in conjunction with the use of EmbryoGlue. There is no evidence to suggest that HETM has any detrimental impact, and therefore the use of HETM in clinics may be justified for a specific demographic of patients. Further robust evidence, in the form of meta-analyses or large-scale randomized controlled trials, is needed to build a sufficient consensus regarding the benefit of hyaluronan supplementation in embryo transfer media.
Collapse
Affiliation(s)
- Beth Atkinson
- Biomedical Sciences, Clinical Embryology and ART, The Hewitt Fertility Centre, Liverpool Women's Hospital, Liverpool, United Kingdom
| | - Emma Woodland
- Molecular and Cellular Biology, Clinical Embryology, Salisbury Fertility Centre, Salisbury District Hospital, Salisbury, United Kingdom
| |
Collapse
|
13
|
Puerta-Guardo H, Tabata T, Petitt M, Dimitrova M, Glasner DR, Pereira L, Harris E. Zika Virus Nonstructural Protein 1 Disrupts Glycosaminoglycans and Causes Permeability in Developing Human Placentas. J Infect Dis 2020; 221:313-324. [PMID: 31250000 DOI: 10.1093/infdis/jiz331] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/26/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND During pregnancy, the Zika flavivirus (ZIKV) infects human placentas, inducing defects in the developing fetus. The flavivirus nonstructural protein 1 (NS1) alters glycosaminoglycans on the endothelium, causing hyperpermeability in vitro and vascular leakage in vivo in a tissue-dependent manner. The contribution of ZIKV NS1 to placental dysfunction during ZIKV infection remains unknown. METHODS We examined the effect of ZIKV NS1 on expression and release of heparan sulfate (HS), hyaluronic acid (HA), and sialic acid on human trophoblast cell lines and anchoring villous explants from first-trimester placentas infected with ZIKV ex vivo. We measured changes in permeability in trophoblasts and stromal cores using a dextran-based fluorescence assay and changes in HA receptor expression using immunofluorescent microscopy. RESULTS ZIKV NS1 in the presence and absence of ZIKV increased the permeability of anchoring villous explants. ZIKV NS1 induced shedding of HA and HS and altered expression of CD44 and lymphatic endothelial cell HA receptor-1, HA receptors on stromal fibroblasts and Hofbauer macrophages in villous cores. Hyaluronidase was also stimulated in NS1-treated trophoblasts. CONCLUSIONS These findings suggest that ZIKV NS1 contributes to placental dysfunction via modulation of glycosaminoglycans on trophoblasts and chorionic villi, resulting in increased permeability of human placentas.
Collapse
Affiliation(s)
- Henry Puerta-Guardo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley
| | - Takako Tabata
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco
| | - Matthew Petitt
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco
| | - Milena Dimitrova
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley
| | - Dustin R Glasner
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley
| | - Lenore Pereira
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley
| |
Collapse
|
14
|
Mikami K, Endo T, Sawada N, Igarashi GO, Kimura M, Sakuraba H, Fukuda S. Inhibition of Systemic Hyaluronan Synthesis Exacerbates Murine Hepatic Carcinogenesis. ACTA ACUST UNITED AC 2018; 32:273-278. [PMID: 29475909 DOI: 10.21873/invivo.11234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND/AIM Hyaluronan (HA) is used as a biomarker of liver fibrosis, which is a key risk factor for the development of hepatocellular carcinoma (HCC). We examined the effects of prolonged pharmacological inhibition of HA synthesis on liver carcinogenesis. MATERIALS AND METHODS Liver tumors were induced in mice by administering 0.03% thioacetamide (TAA) in drinking water over a 12-month period. Animals simultaneously received either a diet containing of an inhibitor of HA synthesis [4-methylumbelliferone (4-MU)], or a control diet. RESULTS Addition of 4-MU resulted in a significantly higher number of tumors compared to TAA treatment alone. Moreover, addition of 4-MU resulted in a dose-dependent increase in maximum tumor size. CONCLUSION While local HA suppression has been shown to have an inhibitory effect on HCC in vitro and in tumor cell implantation experiments, the present results indicate that systemic inhibition of HA synthesis by 4-MU supplementation facilitates hepatic carcinogenesis in vivo.
Collapse
Affiliation(s)
- Kenichiro Mikami
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tetsu Endo
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Naoya Sawada
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - G O Igarashi
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masayo Kimura
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hirotake Sakuraba
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shinsaku Fukuda
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
15
|
Tarusha L, Paoletti S, Travan A, Marsich E. Alginate membranes loaded with hyaluronic acid and silver nanoparticles to foster tissue healing and to control bacterial contamination of non-healing wounds. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:22. [PMID: 29396683 DOI: 10.1007/s10856-018-6027-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/10/2018] [Indexed: 06/07/2023]
Abstract
Chronic non-healing wounds are a clinically important problem in terms of number of patients and costs. Wound dressings such as hydrogels, hydrocolloids, polyurethane films and foams are commonly used to manage these wounds since they tend to maintain a moist environment which is shown to accelerate re-epithelialization. The use of antibacterial compounds is important in the management of wound infections. A novel wound-dressing material based on a blended matrix of the polysaccharides alginate, hyaluronic acid and Chitlac-silver nanoparticles is here proposed and its application for wound healing is examined. The manufacturing approach to obtain membranes is based on gelling, foaming and freeze-casting of alginate, hyaluronic acid and Chitlac-silver nanoparticles mixtures using calcium ions as the cross-linking agent. Comprehensive evaluations of the morphology, swelling kinetics, permeability, mechanical characteristics, cytotoxicity, capability to inhibit metalloproteinases and of antibacterial property were conducted. Biological in vitro studies demonstrated that hyaluronic acid released by the membrane is able to stimulate the wound healing meanwhile the metal silver exploits an efficient antibacterial activity against both planktonic bacteria and biofilms. Overall, the experimental data evidence that the studied material could be used as antibacterial wound dressing for wound healing promotion.
Collapse
Affiliation(s)
- Lorena Tarusha
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127, Trieste, Italy
| | - Sergio Paoletti
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127, Trieste, Italy
| | - Andrea Travan
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127, Trieste, Italy
| | - Eleonora Marsich
- Department of Medical, Surgical and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, I-34129, Trieste, Italy.
| |
Collapse
|
16
|
The Development of a Novel Therapeutic Strategy to Target Hyaluronan in the Extracellular Matrix of Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2017; 18:ijms18030600. [PMID: 28282922 PMCID: PMC5372616 DOI: 10.3390/ijms18030600] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/04/2017] [Accepted: 03/06/2017] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal diseases to affect humans, regardless of whether patients receive multimodal therapy (including surgery, radiotherapy, and chemotherapy). This resistance to intervention is currently considered to be caused by the desmoplastic change of the extracellular matrix (ECM) in PDAC tissues, which is characterized by the accumulation of cancer-associated fibroblasts, collagen, proteoglycan, and hyaluronan. Among these ECM components, hyaluronan has attracted interest because various studies have indicated that hyaluronan-rich PDAC is correlated with the progressive properties of cancer cells, both in experimental and clinical settings. Hence, the reduction of hyaluronan in cancer tissue may represent a novel therapeutic approach for PDAC. 4-methylumbelliferone (4-MU) is a derivative of coumarin that was reported to suppress the synthesis of hyaluronan in cultured human skin fibroblasts in 1995. As an additional study, our group firstly reported that 4-MU reduced the hyaluronan synthesis of mouse melanoma cells and exerted anti-cancer activity. Subsequently, we have showed that 4-MU inhibited liver metastasis in mice inoculated with human pancreatic cancer cells. Thereafter, 4-MU has been accepted as an effective agent for hyaluronan research and is expected to have clinical applications. This review provides an overview of the interaction between PDAC and hyaluronan, the properties of 4-MU as a suppressor of the synthesis of hyaluronan, and the perspectives of PDAC treatment targeting hyaluronan.
Collapse
|
17
|
Fouladi-Nashta AA, Raheem KA, Marei WF, Ghafari F, Hartshorne GM. Regulation and roles of the hyaluronan system in mammalian reproduction. Reproduction 2017; 153:R43-R58. [PMID: 27799626 DOI: 10.1530/rep-16-0240] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/14/2016] [Accepted: 10/26/2016] [Indexed: 01/04/2025]
Abstract
Hyaluronan (HA) is a non-sulphated glycosaminoglycan polymer naturally occurring in many tissues and fluids of mammals, including the reproductive system. Its biosynthesis by HA synthase (HAS1-3) and catabolism by hyaluronidases (HYALs) are affected by ovarian steroid hormones. Depending upon its molecular size, HA functions both as a structural component of tissues in the form of high-molecular-weight HA or as a signalling molecule in the form of small HA molecules or HA fragments with effects mediated through interaction with its specific cell-membrane receptors. HA is produced by oocytes and embryos and in various segments of the reproductive system. This review provides information about the expression and function of members of the HA system, including HAS, HYALs and HA receptors. We examine their role in various processes from folliculogenesis through oocyte maturation, fertilisation and early embryo development, to pregnancy and cervical dilation, as well as its application in assisted reproduction technologies. Particular emphasis has been placed upon the role of the HA system in pre-implantation embryo development and embryo implantation, for which we propose a hypothetical sequential model.
Collapse
Affiliation(s)
- Ali A Fouladi-Nashta
- Royal Veterinary CollegeReproduction Research Group, Hawkshead Campus, Hatfield, UK
| | - Kabir A Raheem
- Royal Veterinary CollegeReproduction Research Group, Hawkshead Campus, Hatfield, UK
- Department of Veterinary Surgery and TheriogenologyMichael Okpara University of Agriculture, Umudike, Nigeria
| | - Waleed F Marei
- Royal Veterinary CollegeReproduction Research Group, Hawkshead Campus, Hatfield, UK
- Department of TheriogenologyFaculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Fataneh Ghafari
- Royal Veterinary CollegeReproduction Research Group, Hawkshead Campus, Hatfield, UK
| | - Geraldine M Hartshorne
- Warwick Medical SchoolUniversity of Warwick, Coventry, UK and Centre for Reproductive Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| |
Collapse
|
18
|
Ziganshina MM, Pavlovich SV, Bovin NV, Sukhikh GT. Hyaluronic Acid in Vascular and Immune Homeostasis during Normal Pregnancy and Preeclampsia. Acta Naturae 2016; 8:59-71. [PMID: 27795844 PMCID: PMC5081706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Indexed: 11/07/2022] Open
Abstract
Preeclampsia (PE) is a multisystem pathologic state that clinically manifests itself after the 20th week of pregnancy. It is characterized by high maternal and perinatal morbidity and mortality. According to modern concepts, the impairment of trophoblast invasion into maternal spiral arteries, leading to the development of ischemia in placenta, is considered to be the major pathogenetic factor of PE development. Ischemic lesions initiate the development of a systemic inflammatory response (SIR) and endothelial dysfunction, which is the main cause of the multiple organ failure in PE. Some data has appear indicating the importance of a glycans-forming endothelial glycocalyx and extracellular matrix (ECM) for placenta morphogenesis, as well as their role in the regulation of vascular permeability and vascular tone in hypertension disorders and, in particular, PE. Since intact glycocalyx and ECM are considered to be the major factors that maintain the physiological vascular tone and adequate intercellular interactions, their value in PE pathogenesis is underestimated. This review is focused on hyaluronic acid (HA) as the key glycan providing the organization and stabilization of the ECM and glycocalyx, its distribution in tissues in the case of presence or absence of placental pathology, as well as on the regulatory function of hyaluronic acids of various molecular weights in different physiological and pathophysiological processes. The summarized data will provide a better understanding of the PE pathogenesis, with the main focus on glycopathology.
Collapse
Affiliation(s)
- M. M. Ziganshina
- Federal State Budget Institution “Research Center for Obstetrics, Gynecology and Perinatology” of the Ministry of Healthcare of the Russian Federation, Oparin str. 4, 117997, Russia, Moscow
| | - S. V. Pavlovich
- Federal State Budget Institution “Research Center for Obstetrics, Gynecology and Perinatology” of the Ministry of Healthcare of the Russian Federation, Oparin str. 4, 117997, Russia, Moscow
| | - N. V. Bovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho- Maklaya str. 16/10, 117997, Russia, Moscow
| | - G. T. Sukhikh
- Federal State Budget Institution “Research Center for Obstetrics, Gynecology and Perinatology” of the Ministry of Healthcare of the Russian Federation, Oparin str. 4, 117997, Russia, Moscow
| |
Collapse
|
19
|
Jordan AR, Racine RR, Hennig MJP, Lokeshwar VB. The Role of CD44 in Disease Pathophysiology and Targeted Treatment. Front Immunol 2015; 6:182. [PMID: 25954275 PMCID: PMC4404944 DOI: 10.3389/fimmu.2015.00182] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/02/2015] [Indexed: 12/17/2022] Open
Abstract
The cell-surface glycoprotein CD44 is involved in a multitude of important physiological functions including cell proliferation, adhesion, migration, hematopoiesis, and lymphocyte activation. The diverse physiological activity of CD44 is manifested in the pathology of a number of diseases including cancer, arthritis, bacterial and viral infections, interstitial lung disease, vascular disease, and wound healing. This diversity in biological activity is conferred by both a variety of distinct CD44 isoforms generated through complex alternative splicing, posttranslational modifications (e.g., N- and O-glycosylation), interactions with a number of different ligands, and the abundance and spatial distribution of CD44 on the cell surface. The extracellular matrix glycosaminoglycan hyaluronic acid (HA) is the principle ligand of CD44. This review focuses both CD44-hyaluronan dependent and independent CD44 signaling and the role of CD44–HA interaction in various pathophysiologies. The review also discusses recent advances in novel treatment strategies that exploit the CD44–HA interaction either for direct targeting or for drug delivery.
Collapse
Affiliation(s)
- Andre R Jordan
- Sheila and David Fuente Program in Cancer Biology, University of Miami-Miller School of Medicine , Miami, FL , USA
| | - Ronny R Racine
- Department of Urology, University of Miami-Miller School of Medicine , Miami, FL , USA
| | - Martin J P Hennig
- Department of Urology, University of Miami-Miller School of Medicine , Miami, FL , USA ; Department of Urology and Uro-oncology, Hannover Medical School , Hannover , Germany
| | - Vinata B Lokeshwar
- Department of Urology, University of Miami-Miller School of Medicine , Miami, FL , USA ; Department of Cell Biology, University of Miami-Miller School of Medicine , Miami, FL , USA ; Miami Clinical Translational Institute, University of Miami-Miller School of Medicine , Miami, FL , USA
| |
Collapse
|