1
|
Kim J, Chang J. Cross-protective efficacy and safety of an adenovirus-based universal influenza vaccine expressing nucleoprotein, hemagglutinin, and the ectodomain of matrix protein 2. Vaccine 2024; 42:3505-3513. [PMID: 38714444 DOI: 10.1016/j.vaccine.2024.04.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 05/09/2024]
Abstract
It is necessary to develop universal vaccines that act broadly and continuously to combat regular seasonal epidemics of influenza and rare pandemics. The aim of this study was to find the optimal dose regimen for the efficacy and safety of a mixture of previously developed recombinant adenovirus-based vaccines that expressed influenza nucleoprotein, hemagglutinin, and ectodomain of matrix protein 2 (rAd/NP and rAd/HA-M2e). The vaccine efficacy and safety were measured in the immunized mice with the mixture of rAd/NP and rAd/HA-M2e intranasally or intramuscularly. The minimum dose that would be efficacious in a single intranasal administration of the vaccine mixture and cross-protective efficacy against various influenza strains were examined. In addition, the immune responses that may affect the cross-protective efficacy were measured. We found that intranasal administration is an optimal route for 107 pfu of vaccine mixture, which is effective against pre-existing immunity against adenovirus. In a study to find the minimum dose with vaccine efficacy, the 106 pfu of vaccine mixture showed higher antibody titers to the nucleoprotein than did the same dose of rAd/NP alone in the serum of immunized mice. The 106 pfu of vaccine mixture overcame the morbidity and mortality of mice against the lethal dose of pH1N1, H3N2, and H5N1 influenza infections. No noticeable side effects were observed in single and repeated toxicity studies. We found that the mucosal administration of adenovirus-based universal influenza vaccine has both efficacy and safety, and can provide cross-protection against various influenza infections even at doses lower than those previously known to be effective.
Collapse
MESH Headings
- Animals
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Viral Matrix Proteins/immunology
- Viral Matrix Proteins/genetics
- Adenoviridae/genetics
- Adenoviridae/immunology
- Administration, Intranasal
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Mice
- Cross Protection
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/immunology
- Female
- Mice, Inbred BALB C
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/genetics
- Vaccine Efficacy
- Nucleoproteins/immunology
- Nucleoproteins/genetics
- Viral Core Proteins/immunology
- Viral Core Proteins/genetics
- Injections, Intramuscular
- Viroporin Proteins
Collapse
Affiliation(s)
- Jooyoung Kim
- QuadMedicine Inc., Seongnam, Gyeonggi 13209, Republic of Korea.
| | - Jun Chang
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
2
|
Kong HJ, Choi Y, Kim EA, Chang J. Vaccine Strategy That Enhances the Protective Efficacy of Systemic Immunization by Establishing Lung-Resident Memory CD8 T Cells Against Influenza Infection. Immune Netw 2023; 23:e32. [PMID: 37670808 PMCID: PMC10475829 DOI: 10.4110/in.2023.23.e32] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 09/07/2023] Open
Abstract
Most influenza vaccines currently in use target the highly variable hemagglutinin protein to induce neutralizing antibodies and therefore require yearly reformulation. T cell-based universal influenza vaccines focus on eliciting broadly cross-reactive T-cell responses, especially the tissue-resident memory T cell (TRM) population in the respiratory tract, providing superior protection to circulating memory T cells. This study demonstrated that intramuscular (i.m.) administration of the adenovirus-based vaccine expressing influenza virus nucleoprotein (rAd/NP) elicited weak CD8 TRM responses in the lungs and airways, and yielded poor protection against lethal influenza virus challenge. However, a novel "prime-and-deploy" strategy that combines i.m. vaccination of rAd/NP with subsequent intranasal administration of an empty adenovector induced strong NP-specific CD8+ TRM cells and provided complete protection against influenza virus challenge. Overall, our results demonstrate that this "prime-and-deploy" vaccination strategy is potentially applicable to the development of universal influenza vaccines.
Collapse
Affiliation(s)
- Hyun-Jung Kong
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Youngwon Choi
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Eun-Ah Kim
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Jun Chang
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
3
|
Wang WC, Sayedahmed EE, Sambhara S, Mittal SK. Progress towards the Development of a Universal Influenza Vaccine. Viruses 2022; 14:v14081684. [PMID: 36016306 PMCID: PMC9415875 DOI: 10.3390/v14081684] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 11/21/2022] Open
Abstract
Influenza viruses are responsible for millions of cases globally and significantly threaten public health. Since pandemic and zoonotic influenza viruses have emerged in the last 20 years and some of the viruses have resulted in high mortality in humans, a universal influenza vaccine is needed to provide comprehensive protection against a wide range of influenza viruses. Current seasonal influenza vaccines provide strain-specific protection and are less effective against mismatched strains. The rapid antigenic drift and shift in influenza viruses resulted in time-consuming surveillance and uncertainty in the vaccine protection efficacy. Most recent universal influenza vaccine studies target the conserved antigen domains of the viral surface glycoproteins and internal proteins to provide broader protection. Following the development of advanced vaccine technologies, several innovative strategies and vaccine platforms are being explored to generate robust cross-protective immunity. This review provides the latest progress in the development of universal influenza vaccines.
Collapse
Affiliation(s)
- Wen-Chien Wang
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (W.-C.W.); (E.E.S.)
| | - Ekramy E. Sayedahmed
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (W.-C.W.); (E.E.S.)
| | - Suryaprakash Sambhara
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
- Correspondence: (S.S.); (S.K.M.)
| | - Suresh K. Mittal
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (W.-C.W.); (E.E.S.)
- Correspondence: (S.S.); (S.K.M.)
| |
Collapse
|
4
|
Tsybalova LM, Stepanova LA, Ramsay ES, Vasin AV. Influenza B: Prospects for the Development of Cross-Protective Vaccines. Viruses 2022; 14:1323. [PMID: 35746794 PMCID: PMC9228933 DOI: 10.3390/v14061323] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 01/04/2023] Open
Abstract
In this review, we analyze the epidemiological and ecological features of influenza B, one of the most common and severe respiratory infections. The review presents various strategies for cross-protective influenza B vaccine development, including recombinant viruses, virus-like particles, and recombinant proteins. We provide an overview of viral proteins as cross-protective vaccine targets, along with other updated broadly protective vaccine strategies. The importance of developing such vaccines lies not only in influenza B prevention, but also in the very attractive prospect of eradicating the influenza B virus in the human population.
Collapse
Affiliation(s)
- Liudmila M. Tsybalova
- Smorodintsev Research Institute of Influenza, Prof. Popova Str., 15/17, 197376 St. Petersburg, Russia; (L.A.S.); (E.S.R.); or (A.V.V.)
| | - Liudmila A. Stepanova
- Smorodintsev Research Institute of Influenza, Prof. Popova Str., 15/17, 197376 St. Petersburg, Russia; (L.A.S.); (E.S.R.); or (A.V.V.)
| | - Edward S. Ramsay
- Smorodintsev Research Institute of Influenza, Prof. Popova Str., 15/17, 197376 St. Petersburg, Russia; (L.A.S.); (E.S.R.); or (A.V.V.)
| | - Andrey V. Vasin
- Smorodintsev Research Institute of Influenza, Prof. Popova Str., 15/17, 197376 St. Petersburg, Russia; (L.A.S.); (E.S.R.); or (A.V.V.)
- Research Institute of Influenza named after A.A. Smorodintsev, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, 195251 St. Petersburg, Russia
| |
Collapse
|
5
|
Mytle N, Leyrer S, Inglefield JR, Harris AM, Hickey TE, Minang J, Lu H, Ma Z, Andersen H, Grubaugh ND, Guina T, Skiadopoulos MH, Lacy MJ. Influenza Antigens NP and M2 Confer Cross Protection to BALB/c Mice against Lethal Challenge with H1N1, Pandemic H1N1 or H5N1 Influenza A Viruses. Viruses 2021; 13:1708. [PMID: 34578289 PMCID: PMC8473317 DOI: 10.3390/v13091708] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 02/01/2023] Open
Abstract
Influenza hemagglutinin (HA) is considered a major protective antigen of seasonal influenza vaccine but antigenic drift of HA necessitates annual immunizations using new circulating HA versions. Low variation found within conserved non-HA influenza virus (INFV) antigens may maintain protection with less frequent immunizations. Conserved antigens of influenza A virus (INFV A) that can generate cross protection against multiple INFV strains were evaluated in BALB/c mice using modified Vaccinia virus Ankara (MVA)-vectored vaccines that expressed INFV A antigens hemagglutinin (HA), matrix protein 1 (M1), nucleoprotein (NP), matrix protein 2 (M2), repeats of the external portion of M2 (M2e) or as tandem repeats (METR), and M2e with transmembrane region and cytoplasmic loop (M2eTML). Protection by combinations of non-HA antigens was equivalent to that of subtype-matched HA. Combinations of NP and forms of M2e generated serum antibody responses and protected mice against lethal INFV A challenge using PR8, pandemic H1N1 A/Mexico/4108/2009 (pH1N1) or H5N1 A/Vietnam/1203/2004 (H5N1) viruses, as demonstrated by reduced lung viral burden and protection against weight loss. The highest levels of protection were obtained with NP and M2e antigens delivered as MVA inserts, resulting in broadly protective immunity in mice and enhancement of previous natural immunity to INFV A.
Collapse
Affiliation(s)
- Nutan Mytle
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
- Biomedical Advanced Research and Development Agency, U.S. Department of Health and Human Services, Washington, DC 20201, USA
| | - Sonja Leyrer
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
- Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Jon R. Inglefield
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
- Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Andrea M. Harris
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
| | - Thomas E. Hickey
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
- National Cancer Institute, National Institutes of Health, Frederick, MD 20814, USA
| | - Jacob Minang
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
- Optimal Health Care, 11377 Robinwood Dr, Hagerstown, MD 21742, USA
| | - Hang Lu
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
| | - Zhidong Ma
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
| | - Hanné Andersen
- BIOQUAL, Inc., 12301 Parklawn Dr, Rockville, MD 20852, USA;
| | - Nathan D. Grubaugh
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
- Yale School of Public Health, Yale University, 60 College Street, New Haven, CT 06510, USA
| | - Tina Guina
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
- AstraZeneca, Gaithersburg, MD 20878, USA
| | - Mario H. Skiadopoulos
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
- U.S. Department of Health and Human Services, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael J. Lacy
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
| |
Collapse
|
6
|
Chung H, Kim EA, Chang J. A "Prime and Deploy" Strategy for Universal Influenza Vaccine Targeting Nucleoprotein Induces Lung-Resident Memory CD8 T cells. Immune Netw 2021; 21:e28. [PMID: 34522441 PMCID: PMC8410988 DOI: 10.4110/in.2021.21.e28] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 01/31/2023] Open
Abstract
Lung-resident memory T cells (TRM) play an essential role in protecting against pulmonary virus infection. Parenteral administration of DNA vaccine is generally not sufficient to induce lung CD8 TRM cells. This study investigates whether intramuscularly administered DNA vaccine expressing the nucleoprotein (NP) induces lung TRM cells and protects against the influenza B virus. The results show that DNA vaccination poorly generates lung TRM cells and massive secondary effector CD8 T cells entering the lungs after challenge infection do not offer sufficient protection. Nonetheless, intranasal administration of non-replicating adenovirus vector expressing no Ag following priming DNA vaccination deploys NP-specific CD8 TRM cells in the lungs, which subsequently offers complete protection. This novel 'prime and deploy' strategy could be a promising regimen for a universal influenza vaccine targeting the conserved NP Ag.
Collapse
Affiliation(s)
- Haerynn Chung
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Eun-Ah Kim
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Jun Chang
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
7
|
Uddbäck I, Kohlmeier JE, Thomsen AR, Christensen JP. Harnessing Cross-Reactive CD8 + T RM Cells for Long-Standing Protection Against Influenza A Virus. Viral Immunol 2021; 33:201-207. [PMID: 32286174 PMCID: PMC7185354 DOI: 10.1089/vim.2019.0177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Ida Uddbäck
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Jacob E Kohlmeier
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia.,Emory-UGA Center of Excellence for Influenza Research and Surveillance, Atlanta, Georgia
| | - Allan R Thomsen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jan P Christensen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Sayedahmed EE, Elkashif A, Alhashimi M, Sambhara S, Mittal SK. Adenoviral Vector-Based Vaccine Platforms for Developing the Next Generation of Influenza Vaccines. Vaccines (Basel) 2020; 8:vaccines8040574. [PMID: 33019589 PMCID: PMC7712206 DOI: 10.3390/vaccines8040574] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/06/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022] Open
Abstract
Ever since the discovery of vaccines, many deadly diseases have been contained worldwide, ultimately culminating in the eradication of smallpox and polio, which represented significant medical achievements in human health. However, this does not account for the threat influenza poses on public health. The currently licensed seasonal influenza vaccines primarily confer excellent strain-specific protection. In addition to the seasonal influenza viruses, the emergence and spread of avian influenza pandemic viruses such as H5N1, H7N9, H7N7, and H9N2 to humans have highlighted the urgent need to adopt a new global preparedness for an influenza pandemic. It is vital to explore new strategies for the development of effective vaccines for pandemic and seasonal influenza viruses. The new vaccine approaches should provide durable and broad protection with the capability of large-scale vaccine production within a short time. The adenoviral (Ad) vector-based vaccine platform offers a robust egg-independent production system for manufacturing large numbers of influenza vaccines inexpensively in a short timeframe. In this review, we discuss the progress in the development of Ad vector-based influenza vaccines and their potential in designing a universal influenza vaccine.
Collapse
Affiliation(s)
- Ekramy E. Sayedahmed
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (E.E.S.); (A.E.); (M.A.)
| | - Ahmed Elkashif
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (E.E.S.); (A.E.); (M.A.)
| | - Marwa Alhashimi
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (E.E.S.); (A.E.); (M.A.)
| | - Suryaprakash Sambhara
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
- Correspondence: (S.S.); (S.K.M.)
| | - Suresh K. Mittal
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (E.E.S.); (A.E.); (M.A.)
- Correspondence: (S.S.); (S.K.M.)
| |
Collapse
|
9
|
Wang W, Huang B, Wang X, Tan W, Ruan L. Improving Cross-Protection against Influenza Virus Using Recombinant Vaccinia Vaccine Expressing NP and M2 Ectodomain Tandem Repeats. Virol Sin 2019; 34:583-591. [PMID: 31240620 PMCID: PMC6814692 DOI: 10.1007/s12250-019-00138-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/29/2019] [Indexed: 12/31/2022] Open
Abstract
Conventional influenza vaccines need to be designed and manufactured yearly. However, they occasionally provide poor protection owing to antigenic mismatch. Hence, there is an urgent need to develop universal vaccines against influenza virus. Using nucleoprotein (NP) and extracellular domain of matrix protein 2 (M2e) genes from the influenza A virus A/Beijing/30/95 (H3N2), we constructed four recombinant vaccinia virus-based influenza vaccines carrying NP fused with one or four copies of M2e genes in different orders. The recombinant vaccinia viruses were used to immunize BALB/C mice. Humoral and cellular responses were measured, and then the immunized mice were challenged with the influenza A virus A/Puerto Rico/8/34 (PR8). NP-specific humoral response was elicited in mice immunized with recombinant vaccinia viruses carrying full-length NP, while robust M2e-specific humoral response was elicited only in the mice immunized with recombinant vaccinia viruses carrying multiple copies of M2e. All recombinant viruses elicited NP- and M2e-specific cellular immune responses in mice. Only immunization with RVJ-4M2eNP induced remarkably higher levels of IL-2 and IL-10 cytokines specific to M2e. Furthermore, RVJ-4M2eNP immunization provided the highest cross-protection in mice challenged with 20 MLD50 of PR8. Therefore, the cross-protection potentially correlates with both NP and M2e-specific humoral and cellular immune responses induced by RVJ-4M2eNP, which expresses a fusion antigen of full-length NP preceded by four M2e repeats. These results suggest that the rational fusion of NP and multiple M2e antigens is critical toward inducing protective immune responses, and the 4M2eNP fusion antigen may be employed to develop a universal influenza vaccine.
Collapse
Affiliation(s)
- Wenling Wang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Baoying Huang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Xiuping Wang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Wenjie Tan
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Li Ruan
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| |
Collapse
|
10
|
Lee SY, Kang JO, Chang J. Nucleoprotein vaccine induces cross-protective cytotoxic T lymphocytes against both lineages of influenza B virus. Clin Exp Vaccine Res 2019; 8:54-63. [PMID: 30775351 PMCID: PMC6369129 DOI: 10.7774/cevr.2019.8.1.54] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 01/14/2019] [Indexed: 12/31/2022] Open
Abstract
Purpose The influenza B virus diverges into two antigenically distinct lineages: B/Yamagata and B/Victoria. Influenza B is the dominant circulating virus during some influenza seasons, and recent data demonstrated that influenza A and B infection similarly cause severe clinical symptoms in hospitalized patients. Nucleoprotein (NP) is a good target for a universal influenza vaccine. This study investigated whether NP epitope variation within two lineages affects the dominant cytotoxic T lymphocyte (CTL) responses induced by vaccination and the resultant protective immunity. Materials and Methods The NP of B/Yamagata/16/1988, the representative strain of the Yamagata lineage, includes a dominant CTL epitope, FSPIRITFL, while B/Shangdong/7/1997 from the Victoria lineage has one amino acid difference in this sequence, FSPIRVTFL. Two recombinant replication-deficient adenovirus (rAd)-vectored vaccines expressing either NP were prepared (rAd/B-NP(I) and rAd/B-NP(V), respectively) and administered to BALB/c mice intranasally. To examine the efficacy of vaccination, antibody responses, CTL responses, and morbidity/mortality after challenge were measured. Results Both vaccines induce similar antibody and CD8 T-cell responses cross-reacting to both epitopes, and also confer cross-protection against both lineages regardless of amino acid difference. Conclusion The rAd-vectored vaccine expressing the NP could be developed as universal influenza B vaccine which provides broader protection.
Collapse
Affiliation(s)
- So-Young Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Jung-Ok Kang
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Jun Chang
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| |
Collapse
|
11
|
Vaccination potential of B and T epitope-enriched NP and M2 against Influenza A viruses from different clades and hosts. PLoS One 2018; 13:e0191574. [PMID: 29377916 PMCID: PMC5788337 DOI: 10.1371/journal.pone.0191574] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 01/08/2018] [Indexed: 12/30/2022] Open
Abstract
To avoid outbreaks of influenza virus epidemics and pandemics among human populations, modern medicine requires the development of new universal vaccines that are able to provide protection from a wide range of influenza A virus strains. In the course of development of a universal vaccine, it is necessary to consider that immunity must be generated even against viruses from different hosts because new human epidemic virus strains have their origins in viruses of birds and other animals. We have enriched conserved viral proteins–nucleoprotein (NP) and matrix protein 2 (M2)—by B and T-cell epitopes not only human origin but also swine and avian origin. For this purpose, we analyzed M2 and NP sequences with respect to changes in the sequences of known T and B-cell epitopes and chose conserved and evolutionarily significant epitopes. Eventually, we found consensus sequences of M2 and NP that have the maximum quantity of epitopes that are 100% coincident with them. Consensus epitope-enriched amino acid sequences of M2 and NP proteins were included in a recombinant adenoviral vector. Immunization with Ad5-tet-M2NP induced strong CD8 and CD4 T cells responses, specific to each of the encoded antigens, i.e. M2 and NP. Eight months after immunization with Ad5-tet-M2NP, high numbers of M2- and NP-responding “effector memory” CD44posCD62neg T cells were found in the mouse spleens, which revealed a long-term T cell immune memory conferred by the immunization. In all, the challenge experiments showed an extraordinarily wide-ranging efficacy of protection by the Ad5-tet-M2NP vaccine, covering 5 different heterosubtypes of influenza A virus (2 human, 2 avian and 1 swine).
Collapse
|
12
|
Lee DK, Lee EY, Kim RH, Kwak HW, Kim JY, Kim H, Kang KW, Lee SM, Park JH, Chang J, Nam JH. Effect of apoptosis-associated speck-like protein containing a caspase recruitment domain on vaccine efficacy: Overcoming the effects of its deficiency with aluminum hydroxide adjuvant. Microbiol Immunol 2018; 62:176-186. [PMID: 29315762 DOI: 10.1111/1348-0421.12569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 12/08/2017] [Accepted: 12/22/2017] [Indexed: 11/30/2022]
Abstract
Host factors such as nutritional status and immune cell state are important for vaccine efficacy. Inflammasome activation may be important for triggering vaccine-induced humoral and cell-mediated immune responses. Formulations with alum as a typical adjuvant to overcome the effects of host factors have recently been shown to induce inflammasome activation, which augments vaccine efficacy. Apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) is one of the main components of inflammasomes, but it is not clear whether ASC affects the vaccine-induced immune response. Herein, we used two types of vaccines: inactivated influenza vaccine not formulated with alum, and HPV vaccine formulated with alum. We gave the vaccines to ASC knockout (ASC-/- ) mice to investigate the role of ASC in vaccine efficacy. Influenza vaccine-immunized ASC-/- mice did not show antibody titers in week 2 after the first vaccination. After boosting, the antibody titer in ASC-/- mice was about half that in wild type (WT) mice. Furthermore, a cytotoxic T-lymphocyte response against influenza vaccine was not induced in ASC-/- mice. Therefore, vaccinated ASC-/- mice did not show effective protection against viral challenge. ASC-/- mice immunized with alum-formulated HPV vaccine showed similar antibody titers and T-cell proliferation compared with immunized WT mice. However, the HPV vaccine without alum induced up to threefold lower titers of HPV-specific antibody titers in ASC-/- mice compared with those in WT mice. These findings suggest that alum in vaccine can overcome the ASC-deficient condition.
Collapse
Affiliation(s)
- Deuk-Ki Lee
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - Eun-Young Lee
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - Ryoon-Ho Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - Hye-Won Kwak
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - Joo Young Kim
- Division of Life & Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, South Korea
| | - Hun Kim
- SK Chemical, Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, 13493, South Korea
| | - Kyung-Won Kang
- Department of Biotechnology, Chonbuk National University, Iksan, 570-752, South Korea
| | - Sang-Myeong Lee
- Department of Biotechnology, Chonbuk National University, Iksan, 570-752, South Korea
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
| | - Jun Chang
- Division of Life & Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, South Korea
| | - Jae-Hwan Nam
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea
| |
Collapse
|
13
|
|
14
|
Vemula SV, Sayedahmed EE, Sambhara S, Mittal SK. Vaccine approaches conferring cross-protection against influenza viruses. Expert Rev Vaccines 2017; 16:1141-1154. [PMID: 28925296 DOI: 10.1080/14760584.2017.1379396] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Annual vaccination is one of the most efficient and cost-effective strategies to prevent and control influenza epidemics. Most of the currently available influenza vaccines are strong inducers of antibody responses against viral surface proteins, hemagglutinin (HA) and neuraminidase (NA), but are poor inducers of cell-mediated immune responses against conserved internal proteins. Moreover, due to the high variability of viral surface proteins because of antigenic drift or antigenic shift, many of the currently licensed vaccines confer little or no protection against drift or shift variants. Areas covered: Next generation influenza vaccines that can induce humoral immune responses to receptor-binding epitopes as well as broadly neutralizing conserved epitopes, and cell-mediated immune responses against highly conserved internal proteins would be effective against variant viruses as well as a novel pandemic influenza until circulating strain-specific vaccines become available. Here we discuss vaccine approaches that have the potential to provide broad spectrum protection against influenza viruses. Expert commentary: Based on current progress in defining cross-protective influenza immunity, it seems that the development of a universal influenza vaccine is feasible. It would revolutionize the strategy for influenza pandemic preparedness, and significantly impact the shelf-life and protection efficacy of seasonal influenza vaccines.
Collapse
Affiliation(s)
- Sai V Vemula
- a Department of Comparative Pathobiology and Purdue Institute for Immunology , Inflammation and Infectious Disease, Purdue University , West Lafayette , IN , USA
| | - Ekramy E Sayedahmed
- a Department of Comparative Pathobiology and Purdue Institute for Immunology , Inflammation and Infectious Disease, Purdue University , West Lafayette , IN , USA
| | - Suryaprakash Sambhara
- b Influenza Division , Centers for Disease Control and Prevention , Atlanta , GA , USA
| | - Suresh K Mittal
- a Department of Comparative Pathobiology and Purdue Institute for Immunology , Inflammation and Infectious Disease, Purdue University , West Lafayette , IN , USA
| |
Collapse
|
15
|
Sim SH, Kim JY, Seong BL, Nguyen HH, Chang J. Baculovirus Displaying Hemagglutinin Elicits Broad Cross-Protection against Influenza in Mice. PLoS One 2016; 11:e0152485. [PMID: 27023684 PMCID: PMC4811570 DOI: 10.1371/journal.pone.0152485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/15/2016] [Indexed: 12/26/2022] Open
Abstract
The widespread influenza virus infection further emphasizes the need for novel vaccine strategies that effectively reduce the impact of epidemic as well as pandemic influenza. Conventional influenza vaccines generally induce virus neutralizing antibody responses which are specific for a few antigenically related strains within the same subtype. However, antibodies directed against the conserved stalk domain of HA could neutralize multiple subtypes of influenza virus and thus provide broad-spectrum protection. In this study, we designed and constructed a recombinant baculovirus-based vaccine, rBac-HA virus, that expresses full-length HA of pandemic H1N1 influenza virus (A/California/04/09) on the viral envelope. We demonstrated that repeated intranasal immunizations with rBac-HA virus induced HA stalk-specific antibody responses and protective immunity against homologous as well as heterosubtypic virus challenge. The adoptive transfer experiment shows that the cross-protection is conferred by the immune sera which contain HA stalk-specific antibodies. These results warrant further development of rBac-HA virus as a broad-protective vaccine against influenza. The vaccine induced protection against infection with the same subtype as well as different subtype, promising a potential universal vaccine for broad protection against different subtypes to control influenza outbreaks including pandemic.
Collapse
Affiliation(s)
- Sang-Hee Sim
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Joo Young Kim
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Baik Lin Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Huan Huu Nguyen
- Laboratory of Viral Immunology, International Vaccine Institute, Seoul, Korea
| | - Jun Chang
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
- * E-mail:
| |
Collapse
|
16
|
|
17
|
Uddback IEM, Pedersen LMI, Pedersen SR, Steffensen MA, Holst PJ, Thomsen AR, Christensen JP. Combined local and systemic immunization is essential for durable T-cell mediated heterosubtypic immunity against influenza A virus. Sci Rep 2016; 6:20137. [PMID: 26831578 PMCID: PMC4735591 DOI: 10.1038/srep20137] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 12/30/2015] [Indexed: 12/22/2022] Open
Abstract
The threat from unpredictable influenza virus pandemics necessitates the development of a new type of influenza vaccine. Since the internal proteins are highly conserved, induction of T cells targeting these antigens may provide the solution. Indeed, adenoviral (Ad) vectors expressing flu nucleoprotein have previously been found to induce short-term protection in mice. In this study we confirm that systemic (subcutaneous (s.c.) immunization rapidly induced heterosubtypic protection predominantly mediated by CD8 T cells, but within three months clinical protection completely disappeared. Local (intranasal (i.n.)) immunization elicited delayed, but more lasting protection despite relatively inefficient immunization. However, by far, the most robust protection was induced by simultaneous, combined (i.n. + s.c.) vaccination, and, notably, in this case clinical protection lasted at least 8 months without showing any evidence of fading. Interestingly, the superior ability of the latter group to resist reinfection correlated with a higher number of antigen-specific CD8 T cells in the spleen. Thus, detailed analysis of the underlying CD8 T cell responses highlights the importance of T cells already positioned in the lungs prior to challenge, but at the same time underscores an important back-up role for circulating antigen-specific cells with the capacity to expand and infiltrate the infected lungs.
Collapse
Affiliation(s)
- Ida E M Uddback
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Line M I Pedersen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Sara R Pedersen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Maria A Steffensen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Peter J Holst
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Allan R Thomsen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jan P Christensen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Broadly protective immunity against divergent influenza viruses by oral co-administration of Lactococcus lactis expressing nucleoprotein adjuvanted with cholera toxin B subunit in mice. Microb Cell Fact 2015; 14:111. [PMID: 26242406 PMCID: PMC4524015 DOI: 10.1186/s12934-015-0287-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/19/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Current influenza vaccines need to be annually reformulated to well match the predicated circulating strains. Thus, it is critical for developing a novel universal influenza vaccine that would be able to confer cross-protection against constantly emerging divergent influenza virus strains. Influenza virus A is a genus of the Orthomyxoviridae family of viruses. Influenza virus nucleoprotein (NP) is a structural protein which encapsidates the negative strand viral RNA, and anti-NP antibodies play role in cross-protective immunity. Lactococcus lactis (L. lactis) is an ideal vaccine delivery vehicle via oral administration route. However, L. lactis vectored vaccine exhibits poor immunogenicity without the use of mucosal adjuvant. To enhance the immunogenicity of L. lactis vectored vaccine, cholera toxin B (CTB) subunit, one of mucosal adjuvants, is a safe adjuvant for oral route, when combined with L. lactis vectored vaccine. In this study, we hypothesized that pNZ8008, a L. lactis expression plasmid, encoding NP antigen, would be able to elicit cross-protection with the use of CTB via oral administration route. RESULTS To construct L. lactis vectored vaccine, nucleoprotein (NP) gene of A/California/04/2009(H1N1) was sub-cloned into a L. lactis expression plasmid, pNZ8008. The expression of recombinant L. lactis/pNZ8008-NP was confirmed by Western blot, immunofluorescence assay and flow cytometric analysis. Further, immunogenicity of L. lactis/pNZ8008-NP alone or adjuvanted with cholera toxin B (CTB) subunit was evaluated in a mouse model via oral administration route. Antibodies responses were detected by ELISA. The result indicated that oral administration of L. lactis/pNZ8008-NP adjuvanted with CTB could elicit significant humoral and mucosal immune responses, as well as cellular immune response, compared with L. lactis/pNZ8008-NP alone. To further assess the cross-protective immunity of L. lactis/pNZ8008-NP adjuvanted with CTB, we used L. lactis/pNZ8110-pgsA-HA1 alone or adjuvanted with CTB as controls. Mice that received L. lactis/pNZ8008-NP adjuvanted with CTB were completely protected from homologous H1N1 virus and showed 80% protection against heterologous H3N2 or H5N1 virus, respectively. By contrast, L. lactis/pNZ8110-pgsA-HA1 adjuvanted with CTB also conferred 100% protection against H5N1 virus infection, but indicated no cross-protection against H1N1 or H5N1 virus challenge. As controls, mice vaccinated orally with L. lactis/pNZ8008-NP alone or L. lactis/pNZ8110-pgsA-HA1 alone could not survive. CONCLUSION This study is the first to report the construction of recombinant L. lactis/pNZ8008-NP and investigate its immunogenicity with the use of CTB. Compared with L. lactis/pNZ8110-pgsA-HA1 adjuvanted with CTB, our data support 5 × 10(11) CFU of L. lactis/pNZ8008-NP adjuvanted with 1 µg of CTB is a better combination for universal influenza vaccines development that would provide cross-protective immunity against divergent influenza A viruses.
Collapse
|
19
|
Nizard M, Diniz MO, Roussel H, Tran T, Ferreira LC, Badoual C, Tartour E. Mucosal vaccines: novel strategies and applications for the control of pathogens and tumors at mucosal sites. Hum Vaccin Immunother 2015; 10:2175-87. [PMID: 25424921 DOI: 10.4161/hv.29269] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mucosal immune system displays several adaptations reflecting the exposure to the external environment. The efficient induction of mucosal immune responses also requires specific approaches, such as the use of appropriate administration routes and specific adjuvants and/or delivery systems. In contrast to vaccines delivered via parenteral routes, experimental, and clinical evidences demonstrated that mucosal vaccines can efficiently induce local immune responses to pathogens or tumors located at mucosal sites as well as systemic response. At least in part, such features can be explained by the compartmentalization of mucosal B and T cell populations that play important roles in the modulation of local immune responses. In the present review, we discuss molecular and cellular features of the mucosal immune system as well as novel immunization approaches that may lead to the development of innovative and efficient vaccines targeting pathogens and tumors at different mucosal sites.
Collapse
Affiliation(s)
- Mevyn Nizard
- a INSERM U970; Universite Paris Descartes; Sorbonne Paris-Cité; Paris, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Nahampun HN, Bosworth B, Cunnick J, Mogler M, Wang K. Expression of H3N2 nucleoprotein in maize seeds and immunogenicity in mice. PLANT CELL REPORTS 2015; 34:969-80. [PMID: 25677970 DOI: 10.1007/s00299-015-1758-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 01/22/2015] [Accepted: 01/28/2015] [Indexed: 05/27/2023]
Abstract
Oral administration of maize-expressed H3N2 nucleoprotein induced antibody responses in mice showing the immunogenicity of plant-derived antigen and its potential to be utilized as a universal flu vaccine. Influenza A viruses cause influenza epidemics that are devastating to humans and livestock. The vaccine for influenza needs to be reformulated every year to match the circulating strains due to virus mutation. Influenza virus nucleoprotein (NP) is a multifunctional RNA-binding protein that is highly conserved among strains, making it a potential candidate for a universal vaccine. In this study, the NP gene of H3N2 swine origin influenza virus was expressed in maize endosperm. Twelve transgenic maize lines were generated and analyzed for recombinant NP (rNP) expression. Transcript analysis showed the main accumulation of rNP in seed. Protein level of rNP in T1 transgenic maize seeds ranged from 8.0 to 35 µg of NP/g of corn seed. The level increased up to 70 µg of NP/g in T3 seeds. A mouse study was performed to test the immunogenicity of one line of maize-derived rNP (MNP). Mice were immunized with MNP in a prime-boost design. Oral gavage administration showed that a humoral immune response was elicited in the mice treated with MNP indicating the immunogenicity of MNP. NP-specific antibody responses in the MNP group showed comparable antibody titer with the groups receiving positive controls such as Vero cell-derived NP (VNP) or alphavirus replicon particle-derived NP (ANP). Cytokine analysis showed antigen-specific stimulation of IL-4 cytokine elicited in splenocytes from mice treated with MNP further confirming a TH2 humoral immune response induced by MNP administration.
Collapse
Affiliation(s)
- Hartinio N Nahampun
- Interdepartmental Plant Biology Major, Iowa State University, Ames, IA, 50011-1010, USA
| | | | | | | | | |
Collapse
|
21
|
Multifunctional liposomes constituting microneedles induced robust systemic and mucosal immunoresponses against the loaded antigens via oral mucosal vaccination. Vaccine 2015; 33:4330-40. [PMID: 25858854 DOI: 10.1016/j.vaccine.2015.03.081] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 03/12/2015] [Accepted: 03/24/2015] [Indexed: 11/20/2022]
Abstract
To develop effective, convenient and stable mucosal vaccines, mannose-PEG-cholesterol (MPC)/lipid A-liposomes (MLLs) entrapping model antigen bovine serum albumin (BSA) were prepared by the procedure of emulsification-lyophilization and used to constitute microneedles, forming the proMLL-filled microneedle arrays (proMMAs). The proMMAs were rather stable and hard enough to pierce porcine skin and, upon rehydration, dissolved rapidly recovering the MLLs without size and entrapment change. The proMMAs given to mice via oral mucosal (o.m.) route, rather than routine intradermal administration, elicited robust systemic and mucosal immunoresponses against the loaded antigens as evidenced by high levels of BSA-specific IgG in the sera and IgA in the salivary, intestinal and vaginal secretions of mice. Enhanced levels of IgG2a and IFN-γ in treated mice revealed that proMMAs induced a mixed Th1/Th2 immunoresponse. Moreover, a significant increase in CD8(+) T cells confirmed that strong cellular immunity had also been established by the immunization of the proMMAs. Thus, the proMMAs can be immunized via o.m. route to set up an effective multiple defense against pathogen invasion and may be an effective vaccine adjuvant-delivery system (VADS) applicable in the controlled temperature chain.
Collapse
|
22
|
He B, Zheng BJ, Wang Q, Du L, Jiang S, Lu L. Adenovirus-based vaccines against avian-origin H5N1 influenza viruses. Microbes Infect 2015; 17:135-41. [PMID: 25479556 PMCID: PMC7110517 DOI: 10.1016/j.micinf.2014.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 11/18/2014] [Accepted: 11/18/2014] [Indexed: 02/03/2023]
Abstract
Since 1997, human infection with avian H5N1, having about 60% mortality, has posed a threat to public health. In this review, we describe the epidemiology of H5N1 transmission, advantages and disadvantages of different influenza vaccine types, and characteristics of adenovirus, finally summarizing advances in adenovirus-based H5N1 systemic and mucosal vaccines.
Collapse
Affiliation(s)
- Biao He
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai 200032, China
| | - Bo-jian Zheng
- Department of Microbiology, University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai 200032, China
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai 200032, China; Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai 200032, China.
| |
Collapse
|
23
|
Coughlan L, Mullarkey C, Gilbert S. Adenoviral vectors as novel vaccines for influenza. ACTA ACUST UNITED AC 2015; 67:382-99. [PMID: 25560474 DOI: 10.1111/jphp.12350] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 10/05/2014] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Influenza is a viral respiratory disease causing seasonal epidemics, with significant annual illness and mortality. Emerging viruses can pose a major pandemic threat if they acquire the capacity for sustained human-to-human transmission. Vaccination reduces influenza-associated mortality and is critical in minimising the burden on the healthcare system. However, current vaccines are not always effective in at-risk populations and fail to induce long-lasting protective immunity against a range of viruses. KEY FINDINGS The development of 'universal' influenza vaccines, which induce heterosubtypic immunity capable of reducing disease severity, limiting viral shedding or protecting against influenza subtypes with pandemic potential, has gained interest in the research community. To date, approaches have focused on inducing immune responses to conserved epitopes within the stem of haemagglutinin, targeting the ectodomain of influenza M2e or by stimulating cellular immunity to conserved internal antigens, nucleoprotein or matrix protein 1. SUMMARY Adenoviral vectors are potent inducers of T-cell and antibody responses and have demonstrated safety in clinical applications, making them an excellent choice of vector for delivery of vaccine antigens. In order to circumvent pre-existing immunity in humans, serotypes from non-human primates have recently been investigated. We will discuss the pre-clinical development of these novel vectors and their advancement to clinical trials.
Collapse
|
24
|
Zhang N, Zheng BJ, Lu L, Zhou Y, Jiang S, Du L. Advancements in the development of subunit influenza vaccines. Microbes Infect 2014; 17:123-34. [PMID: 25529753 DOI: 10.1016/j.micinf.2014.12.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/07/2014] [Accepted: 12/08/2014] [Indexed: 12/19/2022]
Abstract
The ongoing threat of influenza epidemics and pandemics has emphasized the importance of developing safe and effective vaccines against infections from divergent influenza viruses. In this review, we first introduce the structure and life cycle of influenza A viruses, describing major influenza A virus-caused pandemics. We then compare different types of influenza vaccines and discuss current advancements in the development of subunit influenza vaccines, particularly those based on nucleoprotein (NP), extracellular domain of matrix protein 2 (M2e) and hemagglutinin (HA) proteins. We also illustrate potential strategies for improving the efficacy of subunit influenza vaccines.
Collapse
Affiliation(s)
- Naru Zhang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Bo-Jian Zheng
- Department of Microbiology, University of Hong Kong, Pokfulam, Hong Kong
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai, China
| | - Yusen Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shibo Jiang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA; Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai, China.
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA.
| |
Collapse
|
25
|
Wang W, Huang B, Jiang T, Wang X, Qi X, Tan W, Ruan L. Maximal immune response and cross protection by influenza virus nucleoprotein derived from E. coli using an optimized formulation. Virology 2014; 468-470:265-273. [PMID: 25213406 DOI: 10.1016/j.virol.2014.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/11/2014] [Accepted: 08/09/2014] [Indexed: 12/16/2022]
Abstract
The highly conserved internal nucleoprotein (NP) is a promising antigen to develop a universal influenza A virus vaccine. In this study, mice were injected intramuscularly with Escherichia coli-derived NP protein alone or in combination with adjuvant alum (Al(OH)3), CpG or both. The results showed that the NP protein formulated with adjuvant was effective in inducing a protective immune response. Additionally, the adjuvant efficacy of Al(OH)3 was stronger than that of CpG. Optimal immune responses were observed in BALB/c mice immunized with a combination of NP protein plus Al(OH)3 and CpG. These mice also showed maximal resistance following challenge with influenza A virus PR8 strain. Most importantly, 10 µg NP formulated with Al(OH)3 and CpG induced higher protection than did 90 µg NP. These findings indicated that a combination of Al(OH)3 and CpG may be an efficient adjuvant in the NP formulation.
Collapse
Affiliation(s)
- Wenling Wang
- National Institute for Viral Disease Control & Prevention, Chinese Center for Disease Control and Prevention (China CDC), 155# Chang Bai Road, Chang Ping District, Beijing 102206, China
| | - Baoying Huang
- National Institute for Viral Disease Control & Prevention, Chinese Center for Disease Control and Prevention (China CDC), 155# Chang Bai Road, Chang Ping District, Beijing 102206, China
| | - Tao Jiang
- National Institute for Viral Disease Control & Prevention, Chinese Center for Disease Control and Prevention (China CDC), 155# Chang Bai Road, Chang Ping District, Beijing 102206, China
| | - Xiuping Wang
- National Institute for Viral Disease Control & Prevention, Chinese Center for Disease Control and Prevention (China CDC), 155# Chang Bai Road, Chang Ping District, Beijing 102206, China
| | - Xiangrong Qi
- National Institute for Viral Disease Control & Prevention, Chinese Center for Disease Control and Prevention (China CDC), 155# Chang Bai Road, Chang Ping District, Beijing 102206, China
| | - Wenjie Tan
- National Institute for Viral Disease Control & Prevention, Chinese Center for Disease Control and Prevention (China CDC), 155# Chang Bai Road, Chang Ping District, Beijing 102206, China
| | - Li Ruan
- National Institute for Viral Disease Control & Prevention, Chinese Center for Disease Control and Prevention (China CDC), 155# Chang Bai Road, Chang Ping District, Beijing 102206, China.
| |
Collapse
|
26
|
Intranasal adenovirus-vectored vaccine for induction of long-lasting humoral immunity-mediated broad protection against influenza in mice. J Virol 2014; 88:9693-703. [PMID: 24920793 DOI: 10.1128/jvi.00823-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Influenza vaccines aimed at inducing antibody (Ab) responses against viral surface hemagglutinin (HA) and neuraminidase (NA) provide sterile immunity to infection with the same subtypes. Vaccines targeting viral conserved determinants shared by the influenza A viruses (IAV) offer heterosubtypic immunity (HSI), a broad protection against different subtypes. We proposed that vaccines targeting both HA and the conserved ectodomain of matrix protein 2 (M2e) would provide protection against infection with the same subtype and also HSI against other subtypes. We report here that single intranasal immunization with a recombinant adenovirus (rAd) vector encoding both HA of H5 virus and M2e (rAdH5/M2e) induced significant HA- and M2e-specific Ab responses, along with protection against heterosubtypic challenge in mice. The protection is superior compared to that induced by rAd vector encoding either HA (rAdH5), or M2e (rAdM2e). While protection against homotypic H5 virus is primarily mediated by virus-neutralizing Abs, the cross-protection is associated with Abs directed to conserved stalk HA and M2e that seem to have an additive effect. Consistently, adoptive transfer of antisera induced by rAdH5/M2e provided the best protection against heterosubtypic challenge compared to that provided by antisera derived from mice immunized with rAdH5 or rAdM2e. These results support the development of rAd-vectored vaccines encoding both H5 and M2e as universal vaccines against different IAV subtypes. IMPORTANCE Current licensed influenza vaccines provide protection limited to the infection with same virus strains; therefore, the composition of influenza vaccines has to be revised every year. We have developed a new universal influenza vaccine that is highly efficient in induction of long-lasting cross-protection against different influenza virus strains. The cross-protection is associated with a high level of vaccine-induced antibodies against the conserved stalk domain of influenza virus hemagglutinin and the ectodomain of matrix protein. The vaccine could be used to stimulate cross-protective antibodies for the prevention and treatment of influenza with immediate effect for individuals who fail to respond to or receive the vaccine in due time. The vaccine offers a new tool to control influenza outbreaks, including pandemics.
Collapse
|
27
|
Kraan H, Vrieling H, Czerkinsky C, Jiskoot W, Kersten G, Amorij JP. Buccal and sublingual vaccine delivery. J Control Release 2014; 190:580-92. [PMID: 24911355 PMCID: PMC7114675 DOI: 10.1016/j.jconrel.2014.05.060] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 11/25/2022]
Abstract
Because of their large surface area and immunological competence, mucosal tissues are attractive administration and target sites for vaccination. An important characteristic of mucosal vaccination is its ability to elicit local immune responses, which act against infection at the site of pathogen entry. However, mucosal surfaces are endowed with potent and sophisticated tolerance mechanisms to prevent the immune system from overreacting to the many environmental antigens. Hence, mucosal vaccination may suppress the immune system instead of induce a protective immune response. Therefore, mucosal adjuvants and/or special antigen delivery systems as well as appropriate dosage forms are required in order to develop potent mucosal vaccines. Whereas oral, nasal and pulmonary vaccine delivery strategies have been described extensively, the sublingual and buccal routes have received considerably less attention. In this review, the characteristics of and approaches for sublingual and buccal vaccine delivery are described and compared with other mucosal vaccine delivery sites. We discuss recent progress and highlight promising developments in the search for vaccine formulations, including adjuvants and suitable dosage forms, which are likely critical for designing a successful sublingual or buccal vaccine. Finally, we outline the challenges, hurdles to overcome and formulation issues relevant for sublingual or buccal vaccine delivery.
Collapse
Affiliation(s)
- Heleen Kraan
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands.
| | - Hilde Vrieling
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Cecil Czerkinsky
- Institut de Pharmacologie Moleculaire et Cellulaire, UMR 7275 CNRS-INSERM-UNSA, Valbonne, France
| | - Wim Jiskoot
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Gideon Kersten
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands; Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Jean-Pierre Amorij
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands.
| |
Collapse
|
28
|
Wang N, Wang T, Zhang M, Chen R, Niu R, Deng Y. Mannose derivative and lipid A dually decorated cationic liposomes as an effective cold chain free oral mucosal vaccine adjuvant-delivery system. Eur J Pharm Biopharm 2014; 88:194-206. [PMID: 24769065 DOI: 10.1016/j.ejpb.2014.04.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/14/2014] [Accepted: 04/16/2014] [Indexed: 01/24/2023]
Abstract
To develop convenient, effective cold chain-free subunit vaccines, a mannose-PEG-cholesterol conjugate (MPC) was synthesized as a lectin binding molecule and anchored onto liposomes which entrapped lipid A and model antigen to form a vaccine adjuvant-delivery system targeting antigen presenting cells. With MPC, soy phosphatidylcholine, stearylamine and monophosphoryl lipid A as emulsifiers dissolved in oil phase (O), and sucrose and BSA in water phase (W), the O/W emulsions were prepared and subsequently lyophilized. The lyophilized product was stable enough to be stored at room temperature and, upon rehydration, formed MPC-/lipid A-liposomes (MLLs) with a size under 300 nm and antigen association rates of around 36%. The MLLs given to mice via oral mucosal (o.m.) administration showed no side effects but induced potent immune responses as evidenced by the high levels of IgG in the sera and IgA in the salivary, intestinal and vaginal secretions of mice. High levels of IgG2a and IFN-γ in treated mice revealed that MLLs via o.m. vaccination induced a mixed Th1/Th2 response against antigens, establishing both humoral and cellular immunity. Thus, the MLLs may be a potent cold chain-free oral mucosal vaccine adjuvant-delivery system.
Collapse
Affiliation(s)
- Ning Wang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, China
| | - Ting Wang
- Department of Pharmacy, Anhui Medical University, Hefei, China; Department of Pharmacy, Jining Medical College, Sunshine City, China.
| | - Meiling Zhang
- Department of Pharmacy, Anhui Medical University, Hefei, China
| | - Ruonan Chen
- Department of Pharmacy, Anhui Medical University, Hefei, China
| | - Ruowen Niu
- Department of Pharmacy, Anhui Medical University, Hefei, China
| | - Yihui Deng
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|