1
|
Arslan FN, Hannezo É, Merrin J, Loose M, Heisenberg CP. Adhesion-induced cortical flows pattern E-cadherin-mediated cell contacts. Curr Biol 2024; 34:171-182.e8. [PMID: 38134934 DOI: 10.1016/j.cub.2023.11.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/25/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
Metazoan development relies on the formation and remodeling of cell-cell contacts. Dynamic reorganization of adhesion receptors and the actomyosin cell cortex in space and time plays a central role in cell-cell contact formation and maturation. Nevertheless, how this process is mechanistically achieved when new contacts are formed remains unclear. Here, by building a biomimetic assay composed of progenitor cells adhering to supported lipid bilayers functionalized with E-cadherin ectodomains, we show that cortical F-actin flows, driven by the depletion of myosin-2 at the cell contact center, mediate the dynamic reorganization of adhesion receptors and cell cortex at the contact. E-cadherin-dependent downregulation of the small GTPase RhoA at the forming contact leads to both a depletion of myosin-2 and a decrease of F-actin at the contact center. At the contact rim, in contrast, myosin-2 becomes enriched by the retraction of bleb-like protrusions, resulting in a cortical tension gradient from the contact rim to its center. This tension gradient, in turn, triggers centrifugal F-actin flows, leading to further accumulation of F-actin at the contact rim and the progressive redistribution of E-cadherin from the contact center to the rim. Eventually, this combination of actomyosin downregulation and flows at the contact determines the characteristic molecular organization, with E-cadherin and F-actin accumulating at the contact rim, where they are needed to mechanically link the contractile cortices of the adhering cells.
Collapse
Affiliation(s)
- Feyza Nur Arslan
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria; Institute of Bioengineering, École polytechnique fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Édouard Hannezo
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria
| | - Jack Merrin
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria
| | - Martin Loose
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria
| | | |
Collapse
|
2
|
Hicks D, Giresh K, Wrischnik LA, Weiser DC. The PPP1R15 Family of eIF2-alpha Phosphatase Targeting Subunits (GADD34 and CReP). Int J Mol Sci 2023; 24:17321. [PMID: 38139150 PMCID: PMC10743859 DOI: 10.3390/ijms242417321] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The vertebrate PPP1R15 family consists of the proteins GADD34 (growth arrest and DNA damage-inducible protein 34, the product of the PPP1R15A gene) and CReP (constitutive repressor of eIF2α phosphorylation, the product of the PPP1R15B gene), both of which function as targeting/regulatory subunits for protein phosphatase 1 (PP1) by regulating subcellular localization, modulating substrate specificity and assembling complexes with target proteins. The primary cellular function of these proteins is to facilitate the dephosphorylation of eukaryotic initiation factor 2-alpha (eIF2α) by PP1 during cell stress. In this review, we will provide a comprehensive overview of the cellular function, biochemistry and pharmacology of GADD34 and CReP, starting with a brief introduction of eIF2α phosphorylation via the integrated protein response (ISR). We discuss the roles GADD34 and CReP play as feedback inhibitors of the unfolded protein response (UPR) and highlight the critical function they serve as inhibitors of the PERK-dependent branch, which is particularly important since it can mediate cell survival or cell death, depending on how long the stressful stimuli lasts, and GADD34 and CReP play key roles in fine-tuning this cellular decision. We briefly discuss the roles of GADD34 and CReP homologs in model systems and then focus on what we have learned about their function from knockout mice and human patients, followed by a brief review of several diseases in which GADD34 and CReP have been implicated, including cancer, diabetes and especially neurodegenerative disease. Because of the potential importance of GADD34 and CReP in aspects of human health and disease, we will discuss several pharmacological inhibitors of GADD34 and/or CReP that show promise as treatments and the controversies as to their mechanism of action. This review will finish with a discussion of the biochemical properties of GADD34 and CReP, their regulation and the additional interacting partners that may provide insight into the roles these proteins may play in other cellular pathways. We will conclude with a brief outline of critical areas for future study.
Collapse
Affiliation(s)
- Danielle Hicks
- Department of Science, Mathematics and Engineering, Modesto Junior College, Modesto, CA 95350, USA
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Krithika Giresh
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Lisa A. Wrischnik
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Douglas C. Weiser
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| |
Collapse
|
3
|
Henriques MC, Carvalho I, Santos C, Herdeiro MT, Fardilha M, Pavlaki MD, Loureiro S. Unveiling the molecular mechanisms and developmental consequences of mercury (Hg) toxicity in zebrafish embryo-larvae: A comprehensive approach. Neurotoxicol Teratol 2023; 100:107302. [PMID: 37739188 DOI: 10.1016/j.ntt.2023.107302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Mercury (Hg) is a global contaminant affecting aquatic ecosystems' health. Chronic exposure to Hg has shown that the normal development of zebrafish embryo-larvae is affected. However, the molecular mechanisms behind the toxicity of Hg on fish embryonic development are still poorly understood. This work aimed to investigate the effects of Hg exposure on zebrafish embryo-larvae using a combined approach at individual (mortality, embryo development and locomotor behavior) and biochemical (neurotoxicity and oxidative stress enzymatic activities and protein phosphatase expression) levels. The Fish Embryo Toxicity assay followed the Organization for Economic Cooperation and Development Guideline 236 and used a concentration range between 13 and 401 μg Hg/L. Lethal and developmental endpoints were examined at 24, 48, 72 and 96 hpf. Biochemical markers, including Acetylcholinesterase (AChE), Catalase (CAT), Glutathione Reductase (GR), and Glutathione-S-Transferase (GST) activities and, for the first time, the expression of the protein phosphatase 1 gamma (PP1γ) was assessed after 24, 48, 72 and 96 h of exposure to 10 and 100 μg Hg/L. The behavioral effects of a sublethal range of Hg (from 0.8 to 13 μg Hg/L) were assessed using an automated video tracking system at 120 hpf. Several developmental abnormalities on zebrafish embryos and larvae, including pericardial edema, spin and tail deformities and reduced rate of consumption of the yolk sac, were found after exposure to Hg (LC50 at 96 hpf of 139 μg Hg/L) with EC50 values for total malformations ranging from 22 to 264 μg Hg/L. After 96 hpf, no significant effects were observed in the CAT and GR activities. However, an increase in the GST activity in a concentration and time-dependent manner was found, denoting possible stress-related adaptation of zebrafish embryos to deleterious effects of Hg exposure. The AchE activity showed a response pattern in line with the behavioral responses. At the lowest concentration tested, no significant effects were found for the AChE activity, whereas a decrease in AChE activity was observed at 100 μg Hg/L, suggesting that exposure to Hg induced neurotoxic effects in zebrafish embryos which in turn may explain the lack of equilibrium found in this study (EC50 at 96 hpf of 83 μg Hg/L). Moreover, a decrease in the PP1γ expression was found after 96 h of exposure to 10 and 100 μg Hg/L. Thus, we suggest that Hg may be an inhibitor of PP1γ in zebrafish embryos-larvae and thus, along with the alterations in the enzymatic activity of GST, explain some of the developmental malformations observed, as well as the lack of equilibrium. Hence, in this study, we propose the use of PP1 expression, in combination with apical and biochemical endpoints, as a precursor for assessing Hg's toxic mechanism on embryonic development.
Collapse
Affiliation(s)
- Magda Carvalho Henriques
- Institute of Biomedicine (iBiMED) & Department of Medical Sciences, University of Aveiro, Aveiro, Portugal; CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Inês Carvalho
- Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Cátia Santos
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Maria Teresa Herdeiro
- Institute of Biomedicine (iBiMED) & Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Margarida Fardilha
- Institute of Biomedicine (iBiMED) & Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Maria Dimitriou Pavlaki
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal.
| | - Susana Loureiro
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
4
|
Pulgar E, Schwayer C, Guerrero N, López L, Márquez S, Härtel S, Soto R, Heisenberg CP, Concha ML. Apical contacts stemming from incomplete delamination guide progenitor cell allocation through a dragging mechanism. eLife 2021; 10:66483. [PMID: 34448451 PMCID: PMC8460252 DOI: 10.7554/elife.66483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/25/2021] [Indexed: 01/26/2023] Open
Abstract
The developmental strategies used by progenitor cells to allow a safe journey from their induction place towards the site of terminal differentiation are still poorly understood. Here, we uncovered a mechanism of progenitor cell allocation that stems from an incomplete process of epithelial delamination that allows progenitors to coordinate their movement with adjacent extra-embryonic tissues. Progenitors of the zebrafish laterality organ originate from the superficial epithelial enveloping layer by an apical constriction process of cell delamination. During this process, progenitors retain long-lasting apical contacts that enable the epithelial layer to pull a subset of progenitors on their way to the vegetal pole. The remaining delaminated cells follow the movement of apically attached progenitors by a protrusion-dependent cell-cell contact mechanism, avoiding sequestration by the adjacent endoderm, ensuring their collective fate and allocation at the site of differentiation. Thus, we reveal that incomplete delamination serves as a cellular platform for coordinated tissue movements during development.
Collapse
Affiliation(s)
- Eduardo Pulgar
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Santiago, Chile
| | - Cornelia Schwayer
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Néstor Guerrero
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Santiago, Chile
| | - Loreto López
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Santiago, Chile
| | - Susana Márquez
- Physics Department, FCFM, Universidad de Chile, Santiago, Chile
| | - Steffen Härtel
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Santiago, Chile.,National Center for Health Information Systems, CENS, Santiago, Chile
| | - Rodrigo Soto
- Physics Department, FCFM, Universidad de Chile, Santiago, Chile
| | | | - Miguel L Concha
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| |
Collapse
|
5
|
Lang I, Virk G, Zheng DC, Young J, Nguyen MJ, Amiri R, Fong M, Arata A, Chadaideh KS, Walsh S, Weiser DC. The Evolution of Duplicated Genes of the Cpi-17/Phi-1 ( ppp1r14) Family of Protein Phosphatase 1 Inhibitors in Teleosts. Int J Mol Sci 2020; 21:ijms21165709. [PMID: 32784920 PMCID: PMC7460850 DOI: 10.3390/ijms21165709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 11/29/2022] Open
Abstract
The Cpi-17 (ppp1r14) gene family is an evolutionarily conserved, vertebrate specific group of protein phosphatase 1 (PP1) inhibitors. When phosphorylated, Cpi-17 is a potent inhibitor of myosin phosphatase (MP), a holoenzyme complex of the regulatory subunit Mypt1 and the catalytic subunit PP1. Myosin phosphatase dephosphorylates the regulatory myosin light chain (Mlc2) and promotes actomyosin relaxation, which in turn, regulates numerous cellular processes including smooth muscle contraction, cytokinesis, cell motility, and tumor cell invasion. We analyzed zebrafish homologs of the Cpi-17 family, to better understand the mechanisms of myosin phosphatase regulation. We found single homologs of both Kepi (ppp1r14c) and Gbpi (ppp1r14d) in silico, but we detected no expression of these genes during early embryonic development. Cpi-17 (ppp1r14a) and Phi-1 (ppp1r14b) each had two duplicate paralogs, (ppp1r14aa and ppp1r14ab) and (ppp1r14ba and ppp1r14bb), which were each expressed during early development. The spatial expression pattern of these genes has diverged, with ppp1r14aa and ppp1r14bb expressed primarily in smooth muscle and skeletal muscle, respectively, while ppp1r14ab and ppp1r14ba are primarily expressed in neural tissue. We observed that, in in vitro and heterologous cellular systems, the Cpi-17 paralogs both acted as potent myosin phosphatase inhibitors, and were indistinguishable from one another. In contrast, the two Phi-1 paralogs displayed weak myosin phosphatase inhibitory activity in vitro, and did not alter myosin phosphorylation in cells. Through deletion and chimeric analysis, we identified that the difference in specificity for myosin phosphatase between Cpi-17 and Phi-1 was encoded by the highly conserved PHIN (phosphatase holoenzyme inhibitory) domain, and not the more divergent N- and C- termini. We also showed that either Cpi-17 paralog can rescue the knockdown phenotype, but neither Phi-1 paralog could do so. Thus, we provide new evidence about the biochemical and developmental distinctions of the zebrafish Cpi-17 protein family.
Collapse
Affiliation(s)
- Irene Lang
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA; (I.L.); (G.V.); (D.C.Z.); (J.Y.); (M.J.N.); (R.A.); (M.F.); (A.A.); (K.S.C.)
| | - Guneet Virk
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA; (I.L.); (G.V.); (D.C.Z.); (J.Y.); (M.J.N.); (R.A.); (M.F.); (A.A.); (K.S.C.)
| | - Dale C. Zheng
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA; (I.L.); (G.V.); (D.C.Z.); (J.Y.); (M.J.N.); (R.A.); (M.F.); (A.A.); (K.S.C.)
| | - Jason Young
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA; (I.L.); (G.V.); (D.C.Z.); (J.Y.); (M.J.N.); (R.A.); (M.F.); (A.A.); (K.S.C.)
| | - Michael J. Nguyen
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA; (I.L.); (G.V.); (D.C.Z.); (J.Y.); (M.J.N.); (R.A.); (M.F.); (A.A.); (K.S.C.)
| | - Rojin Amiri
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA; (I.L.); (G.V.); (D.C.Z.); (J.Y.); (M.J.N.); (R.A.); (M.F.); (A.A.); (K.S.C.)
| | - Michelle Fong
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA; (I.L.); (G.V.); (D.C.Z.); (J.Y.); (M.J.N.); (R.A.); (M.F.); (A.A.); (K.S.C.)
| | - Alisa Arata
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA; (I.L.); (G.V.); (D.C.Z.); (J.Y.); (M.J.N.); (R.A.); (M.F.); (A.A.); (K.S.C.)
| | - Katia S. Chadaideh
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA; (I.L.); (G.V.); (D.C.Z.); (J.Y.); (M.J.N.); (R.A.); (M.F.); (A.A.); (K.S.C.)
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Susan Walsh
- Life Sciences, Soka University of America, Aliso Viejo, CA 92656, USA;
| | - Douglas C. Weiser
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA; (I.L.); (G.V.); (D.C.Z.); (J.Y.); (M.J.N.); (R.A.); (M.F.); (A.A.); (K.S.C.)
- Correspondence: ; Tel.: +1-209-946-2955
| |
Collapse
|
6
|
Schwayer C, Shamipour S, Pranjic-Ferscha K, Schauer A, Balda M, Tada M, Matter K, Heisenberg CP. Mechanosensation of Tight Junctions Depends on ZO-1 Phase Separation and Flow. Cell 2020; 179:937-952.e18. [PMID: 31675500 DOI: 10.1016/j.cell.2019.10.006] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/19/2019] [Accepted: 10/07/2019] [Indexed: 10/25/2022]
Abstract
Cell-cell junctions respond to mechanical forces by changing their organization and function. To gain insight into the mechanochemical basis underlying junction mechanosensitivity, we analyzed tight junction (TJ) formation between the enveloping cell layer (EVL) and the yolk syncytial layer (YSL) in the gastrulating zebrafish embryo. We found that the accumulation of Zonula Occludens-1 (ZO-1) at TJs closely scales with tension of the adjacent actomyosin network, revealing that these junctions are mechanosensitive. Actomyosin tension triggers ZO-1 junctional accumulation by driving retrograde actomyosin flow within the YSL, which transports non-junctional ZO-1 clusters toward the TJ. Non-junctional ZO-1 clusters form by phase separation, and direct actin binding of ZO-1 is required for stable incorporation of retrogradely flowing ZO-1 clusters into TJs. If the formation and/or junctional incorporation of ZO-1 clusters is impaired, then TJs lose their mechanosensitivity, and consequently, EVL-YSL movement is delayed. Thus, phase separation and flow of non-junctional ZO-1 confer mechanosensitivity to TJs.
Collapse
Affiliation(s)
- Cornelia Schwayer
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Shayan Shamipour
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | - Alexandra Schauer
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Maria Balda
- Institute of Ophthalmology, University College London, London, UK
| | - Masazumi Tada
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Karl Matter
- Institute of Ophthalmology, University College London, London, UK
| | | |
Collapse
|
7
|
HOXA2 activity regulation by cytoplasmic relocation, protein stabilization and post-translational modification. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194404. [PMID: 31323436 DOI: 10.1016/j.bbagrm.2019.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/19/2019] [Accepted: 07/07/2019] [Indexed: 11/22/2022]
Abstract
HOX proteins are homeodomain transcription factors critically involved in patterning animal embryos and controlling organogenesis. While the functions of HOX proteins and the processes under their control begin to be well documented, the modalities of HOX protein activity regulation remain poorly understood. Here we show that HOXA2 interacts with PPP1CB, a catalytic subunit of the Ser/Thr PP1 phosphatase complex. This interaction co-localizes in the cytoplasm with a previously described HOXA2 interactor, KPC2, which belongs to the KPC E3 ubiquitin ligase complex. We provide evidence that HOXA2, PPP1CB and KPC2 define a molecularly and functionally interacting complex. Collectively, our experiments support that PPP1CB and KPC2 together inhibit the activity of HOXA2 by activating its nuclear export, but favored HOXA2 de-ubiquitination and stabilization thereby establishing a store of HOXA2 in the cytoplasm.
Collapse
|
8
|
LaFlamme A, Young KE, Lang I, Weiser DC. Alternative splicing of (ppp1r12a/mypt1) in zebrafish produces a novel myosin phosphatase targeting subunit. Gene 2018; 675:15-26. [PMID: 29960069 PMCID: PMC6123272 DOI: 10.1016/j.gene.2018.06.092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 06/07/2018] [Accepted: 06/26/2018] [Indexed: 01/04/2023]
Abstract
Myosin phosphatase is an evolutionarily conserved regulator of actomyosin contractility, comprised of a regulatory subunit (Mypt1), and a catalytic subunit (PP1). Zebrafish has become an ideal model organism for the study of the genetic and cell physiological role of the myosin phosphatase in morphogenesis and embryonic development. We identified and characterized a novel splice variant of Mypt1 (ppp1r12a-tv202) from zebrafish, which is widely expressed during early embryonic development. Importantly, mutant alleles and antisense morpholinos that have been used to demonstrate the important role of Mypt1 in early development, not only disrupt the longer splice variants, but also tv202. The protein product of ppp1r12a-tv202 (Mypt1-202) contains the PP1-binding N-terminus, but lacks the regulatory C-terminus, which contains two highly conserved inhibitory phosphorylation sites. We observed that the protein product of tv202 assembled a constitutively active myosin phosphatase uninhibited by kinases such as Zipk. Thus, we propose that Mypt1-202 plays an important role in maintaining baseline Mlc2 dephosphorylation and actomyosin relaxation during early zebrafish development.
Collapse
Affiliation(s)
- Andrew LaFlamme
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Kyle E Young
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Irene Lang
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Douglas C Weiser
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA.
| |
Collapse
|
9
|
Zhao L, Lu Z, He X, Mughal MN, Fang R, Zhou Y, Zhao J, Gasser RB, Grevelding CG, Ye Q, Hu M. Serine/threonine protein phosphatase 1 (PP1) controls growth and reproduction in Schistosoma japonicum. FASEB J 2018; 32:fj201800725R. [PMID: 29879373 DOI: 10.1096/fj.201800725r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Schistosomiasis is a human parasitic disease caused by flatworms of the genus Schistosoma. Adult female schistosomes produce numerous eggs that are responsible for the pathogenesis and transmission of the disease, and the maturation of female gonads depends on the permanent pairing of females and males. Signaling protein kinases have been proven to control female gonad differentiation after pairing; however, little is known about the roles of protein phosphatases in the developmental and reproductive biology of schistosomes. Here we explored 3 genes encoding catalytic subunits of serine/threonine protein phosphatase 1 (PP1c) that were structurally and evolutionarily conserved in Schistosoma japonicum. In situ hybridization showed transcripts of 3 Sj-pp1c genes mainly localized in the reproductive organs and tissues. Triple knockdown of Sj-pp1c genes by RNA interference caused stunted growth and decreased pairing stability of worm pairs, as well as a remarkable reduction in cell proliferation activity and defects in reproductive maturation and fecundity. Transcriptomic analysis post-RNA interference suggested that Sj-pp1c genes are involved in controlling worm development and maturation mainly by regulating cell proliferation, eggshell synthesis, nutritional metabolism, cytoskeleton organization, and neural process. Our study provides the first insight into the fundamental contribution of Sj-PP1c to molecular mechanisms underlying the reproductive biology of schistosomes.-Zhao, L., Lu, Z., He, X., Mughal, M. N., Fang, R., Zhou, Y., Zhao, J., Gasser, R. B., Grevelding, C. G., Ye, Q., Hu, M. Serine/threonine protein phosphatase 1 (PP1) controls growth and reproduction in Schistosoma japonicum.
Collapse
Affiliation(s)
- Lu Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhigang Lu
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University, Giessen, Germany
| | - Xin He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mudassar N Mughal
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Rui Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yanqin Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Robin B Gasser
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Melbourne, Australia
| | - Christoph G Grevelding
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University, Giessen, Germany
| | - Qing Ye
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Reig G, Cerda M, Sepúlveda N, Flores D, Castañeda V, Tada M, Härtel S, Concha ML. Extra-embryonic tissue spreading directs early embryo morphogenesis in killifish. Nat Commun 2017; 8:15431. [PMID: 28580937 PMCID: PMC5465322 DOI: 10.1038/ncomms15431] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 03/30/2017] [Indexed: 01/20/2023] Open
Abstract
The spreading of mesenchymal-like cell layers is critical for embryo morphogenesis and tissue repair, yet we know little of this process in vivo. Here we take advantage of unique developmental features of the non-conventional annual killifish embryo to study the principles underlying tissue spreading in a simple cellular environment, devoid of patterning signals and major morphogenetic cell movements. Using in vivo experimentation and physical modelling we reveal that the extra-embryonic epithelial enveloping cell layer, thought mainly to provide protection to the embryo, directs cell migration and the spreading of embryonic tissue during early development. This function relies on the ability of embryonic cells to couple their autonomous random motility to non-autonomous signals arising from the expansion of the extra-embryonic epithelium, mediated by cell membrane adhesion and tension. Thus, we present a mechanism of extra-embryonic control of embryo morphogenesis that couples the mechanical properties of adjacent tissues in the early killifish embryo.
Collapse
Affiliation(s)
- Germán Reig
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, PO Box 70031, Santiago, Chile.,Biomedical Neuroscience Institute, Independencia 1027, Santiago, Chile
| | - Mauricio Cerda
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, PO Box 70031, Santiago, Chile.,Biomedical Neuroscience Institute, Independencia 1027, Santiago, Chile
| | - Néstor Sepúlveda
- Department of Physics, Faculty of Physical and Mathematical Sciences, Universidad de Chile, PO Box 487-3, Santiago, Chile
| | - Daniela Flores
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, PO Box 70031, Santiago, Chile.,Biomedical Neuroscience Institute, Independencia 1027, Santiago, Chile
| | - Victor Castañeda
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, PO Box 70031, Santiago, Chile.,Biomedical Neuroscience Institute, Independencia 1027, Santiago, Chile
| | - Masazumi Tada
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Steffen Härtel
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, PO Box 70031, Santiago, Chile.,Biomedical Neuroscience Institute, Independencia 1027, Santiago, Chile.,National Center for Health Information Systems CENS, Independencia 1027, Santiago, Chile
| | - Miguel L Concha
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, PO Box 70031, Santiago, Chile.,Biomedical Neuroscience Institute, Independencia 1027, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| |
Collapse
|
11
|
Morita H, Grigolon S, Bock M, Krens SFG, Salbreux G, Heisenberg CP. The Physical Basis of Coordinated Tissue Spreading in Zebrafish Gastrulation. Dev Cell 2017; 40:354-366.e4. [PMID: 28216382 PMCID: PMC5364273 DOI: 10.1016/j.devcel.2017.01.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 12/18/2016] [Accepted: 01/20/2017] [Indexed: 11/21/2022]
Abstract
Embryo morphogenesis relies on highly coordinated movements of different tissues. However, remarkably little is known about how tissues coordinate their movements to shape the embryo. In zebrafish embryogenesis, coordinated tissue movements first become apparent during "doming," when the blastoderm begins to spread over the yolk sac, a process involving coordinated epithelial surface cell layer expansion and mesenchymal deep cell intercalations. Here, we find that active surface cell expansion represents the key process coordinating tissue movements during doming. By using a combination of theory and experiments, we show that epithelial surface cells not only trigger blastoderm expansion by reducing tissue surface tension, but also drive blastoderm thinning by inducing tissue contraction through radial deep cell intercalations. Thus, coordinated tissue expansion and thinning during doming relies on surface cells simultaneously controlling tissue surface tension and radial tissue contraction.
Collapse
Affiliation(s)
- Hitoshi Morita
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Silvia Grigolon
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Martin Bock
- Max-Planck-Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany
| | - S F Gabriel Krens
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Guillaume Salbreux
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Max-Planck-Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany.
| | | |
Collapse
|
12
|
Cheng XY, He S, Liang XF, Song Y, Yuan XC, Li L, Wen ZY, Cai WJ, Tao YX. Molecular cloning, expression and single nucleotide polymorphisms of protein phosphatase 1 (PP1) in mandarin fish ( Siniperca chuatsi ). Comp Biochem Physiol B Biochem Mol Biol 2015; 189:69-79. [DOI: 10.1016/j.cbpb.2015.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 07/28/2015] [Accepted: 08/04/2015] [Indexed: 01/27/2023]
|
13
|
Korrodi-Gregório L, Esteves SLC, Fardilha M. Protein phosphatase 1 catalytic isoforms: specificity toward interacting proteins. Transl Res 2014; 164:366-91. [PMID: 25090308 DOI: 10.1016/j.trsl.2014.07.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/26/2014] [Accepted: 07/01/2014] [Indexed: 01/21/2023]
Abstract
The coordinated and reciprocal action of serine-threonine protein kinases and protein phosphatases produces transitory phosphorylation, a fundamental regulatory mechanism for many biological processes. Phosphoprotein phosphatase 1 (PPP1), a major serine-threonine phosphatase, in particular, is ubiquitously distributed and regulates a broad range of cellular functions, including glycogen metabolism, cell cycle progression, and muscle relaxation. PPP1 has evolved effective catalytic machinery but in vitro lacks substrate specificity. In vivo, its specificity is achieved not only by the existence of different PPP1 catalytic isoforms, but also by binding of the catalytic moiety to a large number of regulatory or targeting subunits. Here, we will address exhaustively the existence of diverse PPP1 catalytic isoforms and the relevance of their specific partners and consequent functions.
Collapse
Affiliation(s)
- Luís Korrodi-Gregório
- Laboratório de Transdução de Sinais, Departamento de Biologia, Secção Autónoma de Ciências de Saúde, Centro de Biologia Celular, Universidade de Aveiro, Aveiro, Portugal
| | - Sara L C Esteves
- Laboratório de Transdução de Sinais, Departamento de Biologia, Secção Autónoma de Ciências de Saúde, Centro de Biologia Celular, Universidade de Aveiro, Aveiro, Portugal
| | - Margarida Fardilha
- Laboratório de Transdução de Sinais, Departamento de Biologia, Secção Autónoma de Ciências de Saúde, Centro de Biologia Celular, Universidade de Aveiro, Aveiro, Portugal.
| |
Collapse
|
14
|
Carr BW, Basepayne TL, Chen L, Jayashankar V, Weiser DC. Characterization of the zebrafish homolog of zipper interacting protein kinase. Int J Mol Sci 2014; 15:11597-613. [PMID: 24983477 PMCID: PMC4139802 DOI: 10.3390/ijms150711597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/12/2014] [Accepted: 06/23/2014] [Indexed: 11/16/2022] Open
Abstract
Zipper-interacting protein kinase (ZIPK) is a conserved vertebrate-specific regulator of actomyosin contractility in smooth muscle and non-muscle cells. Murine ZIPK has undergone an unusual divergence in sequence and regulation compared to other ZIPK orthologs. In humans, subcellular localization is controlled by phosphorylation of threonines 299 and 300. In contrast, ZIPK subcellular localization in mouse and rat is controlled by interaction with PAR-4. We carried out a comparative biochemical characterization of the regulation of the zebrafish ortholog of ZIPK. Like the human orthologs zebrafish ZIPK undergoes nucleocytoplasmic-shuttling and is abundant in the cytoplasm, unlike the primarily nuclear rat ZIPK. Rat ZIPK, but not human or zebrafish ZIPK, interacts with zebrafish PAR-4. Mutation of the conserved residues required for activation of the mammalian orthologs abrogated activity of the zebrafish ZIPK. In contrast to the human ortholog, mutation of threonine 299 and 300 in the zebrafish ZIPK has no effect on the activity or subcellular localization. Thus, we found that zebrafish ZIPK functions in a manner most similar to the human ZIPK and quite distinct from murine orthologs, yet the regulation of subcellular localization is not conserved.
Collapse
Affiliation(s)
- Brandon W Carr
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA.
| | - Tamara L Basepayne
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA.
| | - Lawrence Chen
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA.
| | - Vaishali Jayashankar
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA.
| | - Douglas C Weiser
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA.
| |
Collapse
|