1
|
Zhang S, Yang R, Ouyang Y, Shen Y, Hu L, Xu C. Cancer stem cells: a target for overcoming therapeutic resistance and relapse. Cancer Biol Med 2023; 20:j.issn.2095-3941.2023.0333. [PMID: 38164743 PMCID: PMC10845928 DOI: 10.20892/j.issn.2095-3941.2023.0333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Cancer stem cells (CSCs) are a small subset of cells in cancers that are thought to initiate tumorous transformation and promote metastasis, recurrence, and resistance to treatment. Growing evidence has revealed the existence of CSCs in various types of cancers and suggested that CSCs differentiate into diverse lineage cells that contribute to tumor progression. We may be able to overcome the limitations of cancer treatment with a comprehensive understanding of the biological features and mechanisms underlying therapeutic resistance in CSCs. This review provides an overview of the properties, biomarkers, and mechanisms of resistance shown by CSCs. Recent findings on metabolic features, especially fatty acid metabolism and ferroptosis in CSCs, are highlighted, along with promising targeting strategies. Targeting CSCs is a potential treatment plan to conquer cancer and prevent resistance and relapse in cancer treatment.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610042, China
| | - Rui Yang
- Department of Ultrasound in Medicine, Chengdu Wenjiang District People’s Hospital, Chengdu 611130, China
| | - Yujie Ouyang
- Acupuncture and Massage College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yang Shen
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- School of Pharmacy, Macau University of Science and Technology, Macau SAR 999078, China
| | - Lanlin Hu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Yu-Yue Pathology Scientific Research Center, Chongqing 400039, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Chuan Xu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Yu-Yue Pathology Scientific Research Center, Chongqing 400039, China
- Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|
2
|
Jeon YG, Kim YY, Lee G, Kim JB. Physiological and pathological roles of lipogenesis. Nat Metab 2023; 5:735-759. [PMID: 37142787 DOI: 10.1038/s42255-023-00786-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 03/15/2023] [Indexed: 05/06/2023]
Abstract
Lipids are essential metabolites, which function as energy sources, structural components and signalling mediators. Most cells are able to convert carbohydrates into fatty acids, which are often converted into neutral lipids for storage in the form of lipid droplets. Accumulating evidence suggests that lipogenesis plays a crucial role not only in metabolic tissues for systemic energy homoeostasis but also in immune and nervous systems for their proliferation, differentiation and even pathophysiological roles. Thus, excessive or insufficient lipogenesis is closely associated with aberrations in lipid homoeostasis, potentially leading to pathological consequences, such as dyslipidaemia, diabetes, fatty liver, autoimmune diseases, neurodegenerative diseases and cancers. For systemic energy homoeostasis, multiple enzymes involved in lipogenesis are tightly controlled by transcriptional and post-translational modifications. In this Review, we discuss recent findings regarding the regulatory mechanisms, physiological roles and pathological importance of lipogenesis in multiple tissues such as adipose tissue and the liver, as well as the immune and nervous systems. Furthermore, we briefly introduce the therapeutic implications of lipogenesis modulation.
Collapse
Affiliation(s)
- Yong Geun Jeon
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ye Young Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Gung Lee
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jae Bum Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
3
|
Paul B, Lewinska M, Andersen JB. Lipid alterations in chronic liver disease and liver cancer. JHEP Rep 2022; 4:100479. [PMID: 35469167 PMCID: PMC9034302 DOI: 10.1016/j.jhepr.2022.100479] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
Lipids are a complex and diverse group of molecules with crucial roles in many physiological processes, as well as in the onset, progression, and maintenance of cancers. Fatty acids and cholesterol are the building blocks of lipids, orchestrating these crucial metabolic processes. In the liver, lipid alterations are prevalent as a cause and consequence of chronic hepatitis B and C virus infections, alcoholic hepatitis, and non-alcoholic fatty liver disease and steatohepatitis. Recent developments in lipidomics have also revealed that dynamic changes in triacylglycerols, phospholipids, sphingolipids, ceramides, fatty acids, and cholesterol are involved in the development and progression of primary liver cancer. Accordingly, the transcriptional landscape of lipid metabolism suggests a carcinogenic role of increasing fatty acids and sterol synthesis. However, limited mechanistic insights into the complex nature of the hepatic lipidome have so far hindered the development of effective therapies.
Collapse
|
4
|
Aster glehni F. Schmidt Extract Modulates the Activities of HMG-CoA Reductase and Fatty Acid Synthase. PLANTS 2021; 10:plants10112287. [PMID: 34834649 PMCID: PMC8620592 DOI: 10.3390/plants10112287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022]
Abstract
Aster glehni F. Schmidt (AG), is a natural product known to have anti-obesity effects, but the mechanism underlying these effects is not well documented. We hypothesized that AG may have inhibitory effects on enzymes related to lipid accumulation. Herein, AG fractions were tested against HMG-CoA reductase (HMGR) and fatty acid synthase (FAS), two important enzymes involved in cholesterol and fatty acid synthesis, respectively. We found that dicaffeoylquinic acid (DCQA) methyl esters present in AG are largely responsible for the inhibition of HMGR and FAS. Since free DCQA is a major form present in AG, we demonstrated that a simple methylation of the AG extract could increase the overall inhibitory effects against those enzymes. Through this simple process, we were able to increase the inhibitory effect by 150%. We believe that our processed AG effectively modulates the HMGR and FAS activities, providing promising therapeutic potential for cholesterol- and lipid-lowering effects.
Collapse
|
5
|
Yoon H, Shaw JL, Haigis MC, Greka A. Lipid metabolism in sickness and in health: Emerging regulators of lipotoxicity. Mol Cell 2021; 81:3708-3730. [PMID: 34547235 PMCID: PMC8620413 DOI: 10.1016/j.molcel.2021.08.027] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022]
Abstract
Lipids play crucial roles in signal transduction, contribute to the structural integrity of cellular membranes, and regulate energy metabolism. Questions remain as to which lipid species maintain metabolic homeostasis and which disrupt essential cellular functions, leading to metabolic disorders. Here, we discuss recent advances in understanding lipid metabolism with a focus on catabolism, synthesis, and signaling. Technical advances, including functional genomics, metabolomics, lipidomics, lipid-protein interaction maps, and advances in mass spectrometry, have uncovered new ways to prioritize molecular mechanisms mediating lipid function. By reviewing what is known about the distinct effects of specific lipid species in physiological pathways, we provide a framework for understanding newly identified targets regulating lipid homeostasis with implications for ameliorating metabolic diseases.
Collapse
Affiliation(s)
- Haejin Yoon
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Ludwig Center for Cancer Research at Harvard, Boston, MA 02115, USA
| | - Jillian L Shaw
- Kidney Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Ludwig Center for Cancer Research at Harvard, Boston, MA 02115, USA.
| | - Anna Greka
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Kidney Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
6
|
Cinnamon as Dietary Supplement Caused Hyperlipidemia in Healthy Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9892088. [PMID: 34306160 PMCID: PMC8272659 DOI: 10.1155/2021/9892088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/18/2021] [Accepted: 06/26/2021] [Indexed: 11/20/2022]
Abstract
Objective Cinnamon is a cooking spice and a medicinal herb. It is increasingly used as a health supplement due to its perceived benefit to prevent and or manage type 2 diabetes and metabolic disorders. However, it is unclear if regular consumption of this medicinal plant will interfere with normal physiological functions. Therefore, this study investigated the impact of daily cinnamon supplements on glucose and lipid metabolic profiles in healthy rats. Methods Male rats (Sprague Dawley, 8 weeks) were supplied with cinnamon in their diet (equivalent to ∼1 g/day in humans) for two weeks. Blood glucose and lipid levels, as well as metabolic markers in both liver and abdominal white adipose tissue, were measured. Results Cinnamon significantly increased fat mass and blood cholesterol and low-density lipoprotein (LDL) levels, but reduced fasting blood glucose level by 12%. Liver functional enzymes were normal in rats consuming cinnamon. However, several lipid metabolic markers were impaired which may contribute to dyslipidemia, including two main switches for energy metabolism (sirtuin 1 and peroxisome proliferator-activated receptor-gamma coactivator-1α) and the LDL receptor. However, de novo lipid synthesis enzymes and inflammatory markers were also reduced in the liver by cinnamon treatment, which may potentially prevent the development of steatosis. Markers for lipid oxidation were downregulated in fat tissue in cinnamon-treated rats, contributing to increased fat accumulation. Conclusion Daily low-dose cinnamon supplementation seems to promote abdominal adipose tissue accumulation and disturb lipid homeostasis in healthy rats, raising the concerns regarding daily use in healthy people.
Collapse
|
7
|
Miki H, Han KH, Scott D, Croft M, Kang YJ. 4-1BBL Regulates the Polarization of Macrophages, and Inhibition of 4-1BBL Signaling Alleviates Imiquimod-Induced Psoriasis. THE JOURNAL OF IMMUNOLOGY 2020; 204:1892-1903. [PMID: 32041783 DOI: 10.4049/jimmunol.1900983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/15/2020] [Indexed: 12/16/2022]
Abstract
4-1BBL, a member of the TNF superfamily, regulates the sustained production of inflammatory cytokines in macrophages triggered by TLR signaling. In this study, we have investigated the role of 4-1BBL in macrophage metabolism and polarization and in skin inflammation using a model of imiquimod-induced psoriasis in mice. Genetic ablation or blocking of 4-1BBL signaling by Ab or 4-1BB-Fc alleviated the pathology of psoriasis by regulating the expression of inflammatory cytokines associated with macrophage activation and regulated the polarization of macrophages in vitro. We further linked this result with macrophage by finding that 4-1BBL expression during the immediate TLR response was dependent on glycolysis, mitochondrial oxidative phosphorylation, and fatty acid metabolism, whereas the late-phase 4-1BBL-mediated sustained inflammatory response was dependent on glycolysis and fatty acid synthesis. Correlating with this, administration of a fatty acid synthase inhibitor, cerulenin, also alleviated the pathology of psoriasis. We further found that 4-1BBL-mediated psoriasis development is independent of its receptor 4-1BB, as a deficiency of 4-1BB augmented the severity of psoriasis linked to a reduced regulatory T cell population and increased IL-17A expression in γδ T cells. Additionally, coblocking of 4-1BBL signaling and IL-17A activity additively ameliorated psoriasis. Taken together, 4-1BBL signaling regulates macrophage polarization and contributes to imiquimod-induced psoriasis by sustaining inflammation, providing a possible avenue for psoriasis treatment in patients.
Collapse
Affiliation(s)
- Haruka Miki
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Kyung Ho Han
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - David Scott
- Cancer Metabolism Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Michael Croft
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, CA 92037; .,Department of Medicine, University of California San Diego, La Jolla, CA 92037
| | - Young Jun Kang
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, CA 92037; and .,Molecular Medicine Research Institute, Sunnyvale, CA 94085
| |
Collapse
|
8
|
Novel Targets for Treating Ischemia-Reperfusion Injury in the Liver. Int J Mol Sci 2018; 19:ijms19051302. [PMID: 29701719 PMCID: PMC5983804 DOI: 10.3390/ijms19051302] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/20/2018] [Accepted: 04/24/2018] [Indexed: 12/22/2022] Open
Abstract
Liver ischemia-reperfusion injury (IRI) is a major complication of hemorrhagic shock, liver transplantation, and other liver surgeries. It is one of the leading causes for post-surgery hepatic dysfunction, always leading to morbidity and mortality. Several strategies, such as low-temperature reperfusion and ischemic preconditioning, are useful for ameliorating liver IRI in animal models. However, these methods are difficult to perform in clinical surgeries. It has been reported that the activation of peroxisome proliferator activated receptor gamma (PPARγ) protects the liver against IRI, but with unidentified direct target gene(s) and unclear mechanism(s). Recently, FAM3A, a direct target gene of PPARγ, had been shown to mediate PPARγ’s protective effects in liver IRI. Moreover, noncoding RNAs, including LncRNAs and miRNAs, had also been reported to play important roles in the process of hepatic IRI. This review briefly discussed the roles and mechanisms of several classes of important molecules, including PPARγ, FAM3A, miRNAs, and LncRNAs, in liver IRI. In particular, oral administration of PPARγ agonists before liver surgery or liver transplantation to activate hepatic FAM3A pathways holds great promise for attenuating human liver IRI.
Collapse
|
9
|
Song H, Wu T, Xu D, Chu Q, Lin D, Zheng X. Dietary sweet cherry anthocyanins attenuates diet-induced hepatic steatosis by improving hepatic lipid metabolism in mice. Nutrition 2016; 32:827-33. [PMID: 27158052 DOI: 10.1016/j.nut.2016.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/24/2015] [Accepted: 01/07/2016] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Anthocyanins have been reported to have beneficial effects on obesity and obesity-related metabolic disorders (e.g., insulin resistance and dyslipidemia). The objective of this study was to examine the beneficial effects of sweet cherry anthocyanins (SWCN) on high-fat diet-induced liver steatosis and investigate the underlying molecular mechanism. METHODS C57 BL/6 J mice were fed low-fat diet, high-fat diet, or high-fat diet supplemented with SWCN of 200 mg/kg for 15 wk. The hepatic gene expression profile was analyzed by DNA microarray analysis. RESULTS SWCN supplementation alleviated high-fat diet-induced liver steatosis in mice. Microarray analysis of hepatic gene expression profiles indicated that SWCN treatment significantly changed the expression profiles of 1119 genes which were enriched in 16 pathways, such as PPAR signaling pathway, steroid biosynthesis, fatty acid metabolism, and biosynthesis of unsaturated fatty acids. CONCLUSION These results confirmed the previous findings regarding the occurrence and development of hepatic steatosis under high-fat-diet conditions, elucidated that SWCN protected from diet-induced hepatic steatosis and the beneficial effects might be involved in multiple molecular pathways, especially the PPARγ pathway.
Collapse
Affiliation(s)
- Haizhao Song
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P. R. China
| | - Tao Wu
- Department of Food Sciences & Bioengineering, Tianjin University of Science & Technology, Tianjin, P.R. China
| | - Dongdong Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P. R. China
| | - Qiang Chu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P. R. China
| | - Dingbo Lin
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Xiaodong Zheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P. R. China.
| |
Collapse
|
10
|
Downregulation of fatty acid synthase complex suppresses cell migration by targeting phospho-AKT in bladder cancer. Mol Med Rep 2015; 13:1845-50. [DOI: 10.3892/mmr.2015.4746] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 11/19/2015] [Indexed: 11/05/2022] Open
|
11
|
Effect of peroxisome proliferator-activated receptor gamma agonist on heart of rabbits with acute myocardial ischemia/reperfusion injury. ASIAN PAC J TROP MED 2014; 7:271-5. [PMID: 24507674 DOI: 10.1016/s1995-7645(14)60036-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/15/2014] [Accepted: 02/15/2014] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To explore protective effect of rosiglitazone on myocardial ischemia reperfusion injury. METHODS A total of 48 male SD rats were randomly divided into control group (A), I/R group(B), high dose of rosiglitazone (C), low dose of rosiglitazone (D). Plasm concentration of creatine kinase (CK), CK-MB, hsCRP, Superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), nitric oxide (NO) and endothelin (ET) were measured 1 h later after I/R. 24 h after I/R hearts were harvested to observe pathological and ultrastructural changes. Immunohistochemistry and western blotting was used to test CD40 expression in myocardial tissue. Area of myocardial infarction were tested, arrhythmia rate during I/R was recorded. RESULTS Plasm concentration of creatine kinase (CK), CK-MB, hsCRP, NO, MDA and ET were decreased in group C, D compared with group B. Plasm concentration of T-SOD and GSH-Px was increased significantly in group C, D compared with group B. Compared with group B, pathological and ultrastructural changes in group C, D were slightly. Myocardial infarction area and arrhythmia rate were lower in group C, D compare with group B. CONCLUSIONS Rosiglitazone can protect myocardium from I/R injury by enhancing T-SOD and GSH-Px concentration, inhibit inflammatory reaction, improve endothelial function, reduce oxidative stress and calcium overload.
Collapse
|
12
|
Palanisamy AP, Cheng G, Sutter AG, Liu J, Lewin DN, Chao J, Chavin K. Adenovirus-mediated eNOS expression augments liver injury after ischemia/reperfusion in mice. PLoS One 2014; 9:e93304. [PMID: 24667691 PMCID: PMC3965553 DOI: 10.1371/journal.pone.0093304] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 02/28/2014] [Indexed: 01/16/2023] Open
Abstract
Hepatic ischemia/reperfusion (l/R) injury continues to be a critical problem. The role of nitric oxide in liver I/R injury is still controversial. This study examines the effect of endothelial nitric oxide synthase (eNOS) over-expression on hepatic function following I/R. Adenovirus expressing human eNOS (Ad-eNOS) was administered by tail vein injection into C57BL/6 mice. Control mice received either adenovirus expressing LacZ or vehicle only. Sixty minutes of total hepatic ischemia was performed 3 days after adenovirus treatment, and mice were sacrificed after 6 or 24 hrs of reperfusion to assess hepatic injury. eNOS over expression caused increased liver injury as evidenced by elevated AST and ALT levels and decreased hepatic ATP content. While necrosis was not pervasive in any group, TUNEL demonstrated significantly increased apoptosis in Ad-eNOS infected livers. Western blotting demonstrated increased levels of protein nitration and upregulation of the pro-apoptotic proteins bax and p53. Our data suggest that over-expression of eNOS is detrimental in the setting of hepatic I/R.
Collapse
Affiliation(s)
- Arun P. Palanisamy
- Division of Transplant Surgery, Department Of Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Gang Cheng
- Division of Transplant Surgery, Department Of Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Alton G. Sutter
- Division of Transplant Surgery, Department Of Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - John Liu
- Division of Transplant Surgery, Department Of Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - David N. Lewin
- Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Julie Chao
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Kenneth Chavin
- Division of Transplant Surgery, Department Of Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|