1
|
Muriuki R, Ndichu M, Githigia S, Svitek N. Novel CRISPR-Cas-powered pen-side test for East Coast fever. Int J Parasitol 2024; 54:507-521. [PMID: 38677399 DOI: 10.1016/j.ijpara.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/04/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Theileria parvacauses East Coast fever (ECF), one of the most important and lethal tick-borne diseases of cattle in sub-Saharan Africa. ECF is a considerable burden to the livestock industry, causing annual losses exceeding US $300 million. Currently, diagnosis of T. parva infections relies mainly on clinical signs, serology, and microscopic identification of parasites in either blood or lymph fluid samples. However, some of these tests might not indicate ongoing infection and they all lack the sensitivity to detect low-level infections. Molecular tests such as nested and quantitative PCR assays offer high sensitivity for detection of T. parva. However, these tests remain highly complex technologies that are impractical to use in resource-limited settings where economic losses due to the disease have the most significant impact. A field-deployable, point-of-care test will be of significant value in the treatment and control of ECF in endemic areas. For this purpose, we have developed a CRISPR-Cas12a-based pen-side tool that can sensitively and specifically detect T. parva based on the p104 gene. We describe a streamlined, field-applicable diagnostic tool comprising a 20 min recombinase polymerase amplification (RPA) reaction followed by a 60 min CRISPR-Cas12a reaction using a FAM/Biotin lateral flow strip readout. We tested two different RPA primer pairs and four different CRISPR-RNAs (crRNAs). The p104-based assay displayed high sensitivity, detecting as low as one infected lymphocyte per three microliters of blood and universally detecting eight different T. parva strains without detecting DNA from other Theileria spp. such as Theileria mutans and Theileria lestoquardi. This work opens the way for a field-applicable diagnostic tool for the sensitive point-of-care early diagnosis of T. parva infections in cattle.
Collapse
Affiliation(s)
- Robert Muriuki
- University of Nairobi, Faculty of Veterinary Medicine, Department of Veterinary Pathology and Parasitology P.O. Box 30197, Nairobi, Kenya; International Livestock Research Institute (ILRI), Animal and Human Health Program, P.O. Box 30709, Nairobi, Kenya
| | - Maingi Ndichu
- University of Nairobi, Faculty of Veterinary Medicine, Department of Veterinary Pathology and Parasitology P.O. Box 30197, Nairobi, Kenya
| | - Samuel Githigia
- University of Nairobi, Faculty of Veterinary Medicine, Department of Veterinary Pathology and Parasitology P.O. Box 30197, Nairobi, Kenya
| | - Nicholas Svitek
- International Livestock Research Institute (ILRI), Animal and Human Health Program, P.O. Box 30709, Nairobi, Kenya.
| |
Collapse
|
2
|
Kyriazakis I, Arndt C, Aubry A, Charlier J, Ezenwa VO, Godber OF, Krogh M, Mostert PF, Orsel K, Robinson MW, Ryan FS, Skuce PJ, Takahashi T, van Middelaar CE, Vigors S, Morgan ER. Improve animal health to reduce livestock emissions: quantifying an open goal. Proc Biol Sci 2024; 291:20240675. [PMID: 39045693 PMCID: PMC11267467 DOI: 10.1098/rspb.2024.0675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 07/25/2024] Open
Abstract
Greenhouse gas (GHG) emissions from livestock production must be urgently tackled to substantially reduce their contribution to global warming. Simply reducing livestock numbers to this end risks impacting negatively on food security, rural livelihoods and climate change adaptation. We argue that significant mitigation of livestock emissions can be delivered immediately by improving animal health and hence production efficiency, but this route is not prioritized because its benefits, although intuitive, are poorly quantified. Rigorous methodology must be developed to estimate emissions from animal disease and hence achievable benefits from improved health through interventions. If, as expected, climate change is to affect the distribution and severity of health conditions, such quantification becomes of even greater importance. We have therefore developed a framework and identified data sources for robust quantification of the relationship between animal health and greenhouse gas emissions, which could be applied to drive and account for positive action. This will not only help mitigate climate change but at the same time promote cost-effective food production and enhanced animal welfare, a rare win-win in the search for a sustainable planetary future.
Collapse
Affiliation(s)
- Ilias Kyriazakis
- Institute for Global Food Security, Queen’s University, Belfast, UK
| | - Claudia Arndt
- Mazingira Centre for Environmental Research and Education, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Aurelie Aubry
- Agri-Food and Biosciences Institute, Hillsborough, UK
| | | | - Vanessa O. Ezenwa
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Olivia F. Godber
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | - Mogens Krogh
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, Denmark
| | - Pim F. Mostert
- Wageningen Livestock Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Karin Orsel
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mark W. Robinson
- Institute for Global Food Security, Queen’s University, Belfast, UK
| | - Frances S Ryan
- Supporting Evidence-Based Interventions in Livestock, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | | | - Taro Takahashi
- Agri-Food and Biosciences Institute, Hillsborough, UK
- Bristol Veterinary School, University of Bristol, Langford, UK
| | - Corina E. van Middelaar
- Animal Production Systems Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Stafford Vigors
- School of Agriculture & Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Eric R. Morgan
- Institute for Global Food Security, Queen’s University, Belfast, UK
| |
Collapse
|
3
|
Rodgers ML, Bolnick DI. Opening a can of worms: a test of the co-infection facilitation hypothesis. Oecologia 2024; 204:317-325. [PMID: 37386196 PMCID: PMC10756930 DOI: 10.1007/s00442-023-05409-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/12/2023] [Indexed: 07/01/2023]
Abstract
Parasitic infections are a global occurrence and impact the health of many species. Coinfections, where two or more species of parasite are present in a host, are a common phenomenon across species. Coinfecting parasites can interact directly or indirectly via their manipulation of (and susceptibility to) the immune system of their shared host. Helminths, such as the cestode Schistocephalus solidus, are well known to suppress immunity of their host (threespine stickleback, Gasterosteus aculeatus), potentially facilitating other parasite species. Yet, hosts can evolve a more robust immune response (as seen in some stickleback populations), potentially turning facilitation into inhibition. Using wild-caught stickleback from 20 populations with non-zero S. solidus prevalence, we tested an a priori hypothesis that S. solidus infection facilitates infection by other parasites. Consistent with this hypothesis, individuals with S. solidus infections have 18.6% higher richness of other parasites compared to S. solidus-uninfected individuals from the same lakes. This facilitation-like trend is stronger in lakes where S. solidus is particularly successful but is reversed in lakes with sparse and smaller cestodes (indicative of stronger host immunity). These results suggest that a geographic mosaic of host-parasite co-evolution might lead to a mosaic of between-parasite facilitation/inhibition effects.
Collapse
Affiliation(s)
- Maria L Rodgers
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA.
- Department of Biological Sciences, North Carolina State University, Morehead City, NC, 28557, USA.
| | - Daniel I Bolnick
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
4
|
Morrison LJ, Steketee PC, Tettey MD, Matthews KR. Pathogenicity and virulence of African trypanosomes: From laboratory models to clinically relevant hosts. Virulence 2023; 14:2150445. [PMID: 36419235 DOI: 10.1080/21505594.2022.2150445] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
African trypanosomes are vector-borne protozoa, which cause significant human and animal disease across sub-Saharan Africa, and animal disease across Asia and South America. In humans, infection is caused by variants of Trypanosoma brucei, and is characterized by varying rate of progression to neurological disease, caused by parasites exiting the vasculature and entering the brain. Animal disease is caused by multiple species of trypanosome, primarily T. congolense, T. vivax, and T. brucei. These trypanosomes also infect multiple species of mammalian host, and this complexity of trypanosome and host diversity is reflected in the spectrum of severity of disease in animal trypanosomiasis, ranging from hyperacute infections associated with mortality to long-term chronic infections, and is also a main reason why designing interventions for animal trypanosomiasis is so challenging. In this review, we will provide an overview of the current understanding of trypanosome determinants of infection progression and severity, covering laboratory models of disease, as well as human and livestock disease. We will also highlight gaps in knowledge and capabilities, which represent opportunities to both further our fundamental understanding of how trypanosomes cause disease, as well as facilitating the development of the novel interventions that are so badly needed to reduce the burden of disease caused by these important pathogens.
Collapse
Affiliation(s)
- Liam J Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Pieter C Steketee
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Mabel D Tettey
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
5
|
Hirtle SV, Ahn S, Goater CP. A congeneric and non-randomly associated pair of larval trematodes dominates the assemblage of co-infecting parasites in fathead minnows ( Pimephales promelas). Parasitology 2023; 150:1006-1014. [PMID: 37705489 PMCID: PMC10941217 DOI: 10.1017/s0031182023000859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Individual hosts are often co-infected with multiple parasite species. Evidence from theoretical and empirical studies supports the idea that co-occurring parasites can impact each other and their hosts via synergistic or antagonistic interactions. The fundamental aim of understanding the consequences of co-infection to hosts and parasites requires an understanding of patterns of species co-occurrence within samples of hosts. We censused parasite assemblages in 755 adult, male fathead minnows collected from 7 lakes/ponds in southern Alberta, Canada between 2018 and 2020. Fifteen species of endoparasites infected fathead minnows, 98% of which were co-infected with between 2 and 9 parasite species (mean species richness: 4.4 ± 1.4). Non-random pairwise associations were detected within the overall parasite community. There were particularly strong, positive associations in the occurrences and intensities of the 2 congeneric larval trematodes Ornithodiplostomum sp. and Ornithodiplostomum ptychocheilus that comprised >96% of the 100 000+ parasites counted in the total sample of minnows. Furthermore, the occurrence of Ornithodiplostomum sp. was a strong predictor of the occurrence of O. ptychocheilus, and vice versa. Positive covariation in the intensities of these 2 dominants likely arises from their shared use of physid snails as first intermediate hosts in these waterbodies. These 2 species represent a predictable and non-random component within the complex assemblage of parasites of fathead minnows in this region.
Collapse
Affiliation(s)
- Sarah V. Hirtle
- Department of Biological Sciences, University of Lethbridge, AB, Lethbridge, Canada
| | - Sangwook Ahn
- Department of Biological Sciences, University of Lethbridge, AB, Lethbridge, Canada
| | - Cameron P. Goater
- Department of Biological Sciences, University of Lethbridge, AB, Lethbridge, Canada
| |
Collapse
|
6
|
Bishop LJ, Stutzer C, Maritz-Olivier C. More than Three Decades of Bm86: What We Know and Where to Go. Pathogens 2023; 12:1071. [PMID: 37764879 PMCID: PMC10537462 DOI: 10.3390/pathogens12091071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/02/2023] [Accepted: 08/15/2023] [Indexed: 09/29/2023] Open
Abstract
Tick and tick-borne disease control have been a serious research focus for many decades. In a global climate of increasing acaricide resistance, host immunity against tick infestation has become a much-needed complementary strategy to common chemical control. From the earliest acquired resistance studies in small animal models to proof of concept in large production animals, it was the isolation, characterization, and final recombinant protein production of the midgut antigen Bm86 from the Australian cattle tick strain of Rhipicephalus (Boophilus) microplus (later reinstated as R. (B.) australis) that established tick subunit vaccines as a viable alternative in tick and tick-borne disease control. In the past 37 years, this antigen has spawned numerous tick subunit vaccines (either Bm86-based or novel), and though we are still describing its molecular structure and function, this antigen remains the gold standard for all tick vaccines. In this paper, advances in tick vaccine development over the past three decades are discussed alongside the development of biotechnology, where existing gaps and future directives in the field are highlighted.
Collapse
Affiliation(s)
| | | | - Christine Maritz-Olivier
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0083, South Africa; (L.J.B.); (C.S.)
| |
Collapse
|
7
|
Rodgers ML, Bolnick DI. Opening a can of worms: a test of the coinfection facilitation hypothesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.18.541347. [PMID: 37292793 PMCID: PMC10245757 DOI: 10.1101/2023.05.18.541347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Parasitic infections are a global occurrence and impact the health of many species. Coinfections, where two or more species of parasite are present in a host, are a common phenomenon across species. Coinfecting parasites can interact directly, or indirectly via their manipulation of (and susceptibility to) the immune system of their shared host. Helminths, such as the cestode Schistocephalus solidus , are well known to suppress immunity of their host (threespine stickleback, Gasterosteus aculeatus ), potentially facilitating other parasite species. Yet, hosts can evolve a more robust immune response (as seen in some stickleback populations), potentially turning facilitation into inhibition. Using wild-caught stickleback from 21 populations with non-zero S. solidus prevalence, we tested an a priori hypothesis that S. solidus infection facilitates infection by other parasites. Consistent with this hypothesis, individuals with S. solidus infections have 18.6% higher richness of other parasites, compared to S. solidus -uninfected individuals from the same lakes. This facilitation-like trend is stronger in lakes where S. solidus is particularly successful but is reversed in lakes with sparse and smaller cestodes (indicative of stronger host immunity). These results suggest that a geographic mosaic of host-parasite coevolution might lead to a mosaic of between-parasite facilitation/inhibition effects.
Collapse
|
8
|
Hamed EFA, Mostafa NES, Fawzy EM, Ibrahim MN, Ibrahim BH, Radwan M, Salama MA. Toxoplasma gondii Suppresses Th2-Induced by Trichinella spiralis Infection and Downregulates Serine Protease Genes Expression: A Critical Role in Vaccine Development. IRANIAN JOURNAL OF PARASITOLOGY 2023; 18:172-181. [PMID: 37583627 PMCID: PMC10423907 DOI: 10.18502/ijpa.v18i2.13183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/19/2023] [Indexed: 08/17/2023]
Abstract
Background Toxoplasma gondii coinfection can modify host immune responses and the severity and spread of other parasites. We investigated how T. gondii and Trichinella spiralis infections counter-regulate each other's immune responses. Methods The parasite burden, the expression of T. gondii rhoptry kinase ROP18 and T. spiralis putative serine protease (TsSP), the IgG1 and IgG2a responses, besides histopathological and immunohistochemical staining with iNOS and arginase were used to evaluate the dynamics of coinfection. Results Through their effects on host immune responsiveness, coinfection with T. gondii modified the virulence of T. spiralis infection. Coinfected animals with high and low doses of T. gondii demonstrated significant reductions in the T. spiralis burden of 75.2% and 68.2%, respectively. TsSP expression was downregulated in both groups by 96.2% and 86.7%, whereasROP18 expression was downregulated by only 6% and10.6%, respectively. In coinfected mice, elevated levels of T. gondii-specific IgG2a antibodies were detected. Th1 induced by T. gondii inhibits the Th2 response to T. spiralis in coinfected animals with high iNOS expression andlow-arginine1 expression. Conclusion T. gondii infection induces a shift toward a Th1-type immune response while suppressing a helminth-specific Th2 immune response, paving the way for developing novel vaccines and more efficient control strategies.
Collapse
Affiliation(s)
| | - Nahed El-Sayed Mostafa
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Sharkia, Egypt
| | - Eman Magdy Fawzy
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Sharkia, Egypt
| | - Mohamed Nabil Ibrahim
- Department of Clinical Laboratories, College of Applied Medical Sciences, Jouf University, Qurrayat, KSA
| | - Basma Hamed Ibrahim
- Department of Pathology, Faculty of Medicine, Zagazig University, Sharkia, Egypt
| | - Mona Radwan
- Department of Community and Occupational Medicine, Faculty of medicine, Zagazig University, Sharkia, Egypt
| | - Marwa Ahmed Salama
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Sharkia, Egypt
| |
Collapse
|
9
|
Abioja M, Logunleko M, Majekodunmi B, Adekunle E, Shittu O, Odeyemi A, Nwosu E, Oke O, Iyasere O, Abiona J, Williams T, James I, Smith O, Daramola J. Roles of Candidate Genes in the Adaptation of Goats to Heat Stress: A Review. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Contreras Garcia M, Walshe E, Steketee PC, Paxton E, Lopez-Vidal J, Pearce MC, Matthews KR, Ezzahra-Akki F, Evans A, Fairlie-Clark K, Matthews JB, Grey F, Morrison LJ. Comparative Sensitivity and Specificity of the 7SL sRNA Diagnostic Test for Animal Trypanosomiasis. Front Vet Sci 2022; 9:868912. [PMID: 35450136 PMCID: PMC9017285 DOI: 10.3389/fvets.2022.868912] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Animal trypanosomiasis (AT) is a significant livestock disease, affecting millions of animals across Sub-Saharan Africa, Central and South America, and Asia, and is caused by the protozoan parasites Trypanosoma brucei, Trypanosoma vivax, and Trypanosoma congolense, with the largest economic impact in cattle. There is over-reliance on presumptive chemotherapy due to inadequate existing diagnostic tests, highlighting the need for improved AT diagnostics. A small RNA species, the 7SL sRNA, is excreted/secreted by trypanosomes in infected animals, and has been previously shown to reliably diagnose active infection. We sought to explore key properties of 7SL sRNA RT-qPCR assays; namely, assessing the potential for cross-reaction with the widespread and benign Trypanosoma theileri, directly comparing assay performance against currently available diagnostic methods, quantitatively assessing specificity and sensitivity, and assessing the rate of decay of 7SL sRNA post-treatment. Results showed that the 7SL sRNA RT-qPCR assays specific for T. brucei, T. vivax, and T. congolense performed better than microscopy and DNA PCR in detecting infection. The 7SL sRNA signal was undetectable or significantly reduced by 96-h post treatment; at 1 × curative dose there was no detectable signal in 5/5 cattle infected with T. congolense, and in 3/5 cattle infected with T. vivax, with the signal being reduced 14,630-fold in the remaining two T. vivax cattle. Additionally, the assays did not cross-react with T. theileri. Finally, by using a large panel of validated infected and uninfected samples, the species-specific assays are shown to be highly sensitive and specific by receiver operating characteristic (ROC) analysis, with 100% sensitivity (95% CI, 96.44-100%) and 100% specificity (95% CI, 96.53-100%), 96.73% (95% CI, 95.54-99.96%) and 99.19% specificity (95% CI, 92.58-99.60%), and 93.42% (95% CI, 85.51-97.16% %) and 82.43% specificity (95% CI, 72.23-89.44% %) for the T brucei, T. congolense and T. vivax assays, respectively, under the conditions used. These findings indicate that the 7SL sRNA has many attributes that would be required for a potential diagnostic marker of AT: no cross-reaction with T. theileri, high specificity and sensitivity, early infection detection, continued signal even in the absence of detectable parasitaemia in blood, and clear discrimination between infected and treated animals.
Collapse
Affiliation(s)
- Maria Contreras Garcia
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Emily Walshe
- Roslin Technologies Limited, Roslin Innovation Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Pieter C Steketee
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Edith Paxton
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Javier Lopez-Vidal
- Ashworth Laboratories, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael C Pearce
- Global Alliance for Livestock Veterinary Medicines, Edinburgh, United Kingdom
| | - Keith R Matthews
- Ashworth Laboratories, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | - Karen Fairlie-Clark
- Roslin Technologies Limited, Roslin Innovation Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Jacqueline B Matthews
- Roslin Technologies Limited, Roslin Innovation Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Finn Grey
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Liam J Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
11
|
Thomas RC, Dunn JC, Dawson DA, Hipperson H, Horsburgh GJ, Morris AJ, Orsman C, Mallord J, Grice PV, Hamer KC, Eraud C, Hervé L, Goodman SJ. Assessing rates of parasite coinfection and spatiotemporal strain variation via metabarcoding: insights for the conservation of European Turtle Doves
Streptopelia turtur. Mol Ecol 2022; 31:2730-2751. [PMID: 35253301 PMCID: PMC9325524 DOI: 10.1111/mec.16421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/15/2022] [Accepted: 03/01/2022] [Indexed: 11/30/2022]
Abstract
Understanding the frequency, spatiotemporal dynamics and impacts of parasite coinfections is fundamental to developing control measures and predicting disease impacts. The European turtle dove (Streptopelia turtur) is one of Europe's most threatened bird species. High prevalence of infection by the protozoan parasite Trichomonas gallinae has previously been identified, but the role of this and other coinfecting parasites in turtle dove declines remains unclear. Using a high‐throughput sequencing approach, we identified seven strains of T. gallinae, including two novel strains, from ITS1/5.8S/ITS2 ribosomal sequences in turtle doves on breeding and wintering grounds, with further intrastrain variation and four novel subtypes revealed by the iron‐hydrogenase gene. High spatiotemporal turnover was observed in T. gallinae strain composition, and infection was prevalent in all populations (89%–100%). Coinfection by multiple Trichomonas strains was rarer than expected (1% observed compared to 38.6% expected), suggesting either within‐host competition, or high mortality of coinfected individuals. In contrast, coinfection by multiple haemosporidians was common (43%), as was coinfection by haemosporidians and T. gallinae (90%), with positive associations between strains of T. gallinae and Leucocytozoon suggesting a mechanism such as parasite‐induced immune modulation. We found no evidence for negative associations between coinfections and host body condition. We suggest that longitudinal studies involving the recapture and investigation of infection status of individuals over their lifespan are crucial to understand the epidemiology of coinfections in natural populations.
Collapse
Affiliation(s)
- Rebecca C. Thomas
- School of Biology Irene Manton Building University of Leeds Leeds LS2 9JT UK
- NERC Biomolecular Analysis Facility Department of Animal and Plant Sciences University of Sheffield Western Bank Sheffield S10 2TN UK
| | - Jenny C. Dunn
- RSPB Centre for Conservation Science Royal Society for the Protection of Birds The Lodge Potton Road, Sandy Bedfordshire SG19 2DL UK
- School of Life Sciences University of Lincoln Joseph Banks Laboratories Lincoln LN6 7TS UK
| | - Deborah A. Dawson
- NERC Biomolecular Analysis Facility Department of Animal and Plant Sciences University of Sheffield Western Bank Sheffield S10 2TN UK
| | - Helen Hipperson
- NERC Biomolecular Analysis Facility Department of Animal and Plant Sciences University of Sheffield Western Bank Sheffield S10 2TN UK
| | - Gavin J. Horsburgh
- NERC Biomolecular Analysis Facility Department of Animal and Plant Sciences University of Sheffield Western Bank Sheffield S10 2TN UK
| | - Antony J. Morris
- RSPB Centre for Conservation Science Royal Society for the Protection of Birds The Lodge Potton Road, Sandy Bedfordshire SG19 2DL UK
| | - Chris Orsman
- RSPB Centre for Conservation Science Royal Society for the Protection of Birds The Lodge Potton Road, Sandy Bedfordshire SG19 2DL UK
| | - John Mallord
- RSPB Centre for Conservation Science Royal Society for the Protection of Birds The Lodge Potton Road, Sandy Bedfordshire SG19 2DL UK
| | - Philip V. Grice
- Natural England, Suite D Unex House Bourges Boulevard, Peterborough PE1 1NG UK
| | - Keith C. Hamer
- School of Biology Irene Manton Building University of Leeds Leeds LS2 9JT UK
| | - Cyril Eraud
- Office National de la Chasse et de la Faune Sauvage. Unité Avifaune migratrice Réserve de Chizé 405 Carrefour de la Canauderie 79360 Villiers‐en‐Bois France
| | - Lormée Hervé
- Office National de la Chasse et de la Faune Sauvage. Unité Avifaune migratrice Réserve de Chizé 405 Carrefour de la Canauderie 79360 Villiers‐en‐Bois France
| | - Simon J. Goodman
- School of Biology Irene Manton Building University of Leeds Leeds LS2 9JT UK
| |
Collapse
|
12
|
Chiuya T, Villinger J, Masiga DK, Ondifu DO, Murungi MK, Wambua L, Bastos ADS, Fèvre EM, Falzon LC. Molecular prevalence and risk factors associated with tick-borne pathogens in cattle in western Kenya. BMC Vet Res 2021; 17:363. [PMID: 34838023 PMCID: PMC8627057 DOI: 10.1186/s12917-021-03074-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/05/2021] [Indexed: 11/29/2022] Open
Abstract
Background Tick-borne pathogens (TBPs) are of global importance, especially in sub-Saharan Africa where they represent a major constraint to livestock production. Their association with human disease is also increasingly recognized, signalling their zoonotic importance. It is therefore crucial to investigate TBPs prevalence in livestock populations and the factors associated with their presence. We set out to identify TBPs present in cattle and to determine associated risk factors in western Kenya, where smallholder livestock production is important for subsistence and market-driven income. Results Tick-borne pathogen infections in blood samples collected from cattle at livestock markets and slaughterhouses between May 2017 and January 2019 were identified by high-resolution melting analysis and sequencing of PCR products of genus-specific primers. Of the 422 cattle sampled, 30.1% (127/422) were infected with at least one TBP, while 8.8% (37/422) had dual infections. Anaplasma spp. (19.7%) were the most prevalent, followed by Theileria (12.3%), Ehrlichia (6.6%), and Babesia (0.2%) spp. Sequence analysis of the TBPs revealed them to be Anaplasma platys-like organisms (13.5%), Theileria velifera (7.4%), Anaplasma marginale (4.9%), Theileria mutans (3.1%), Theileria parva (1.6%), and Babesia bigemina (0.2%). Ehrlichia ruminantium, Rickettsia spp., and arboviruses were not detected. Exotic breeds of cattle were more likely to be infected with A. marginale compared to local breeds (OR: 7.99, 95% CI: 3.04–22.02, p < 0.001). Presence of ticks was a significant predictor for Anaplasma spp. (OR: 2.18, 95% CI: 1.32–3.69, p = 0.003) and Ehrlichia spp. (OR: 2.79, 95% CI: 1.22–7.23, p = 0.022) infection. Cattle sampled at slaughterhouses were more likely to be positive for Anaplasma spp. (OR: 1.64, 95% CI: 1.01–2.70, p = 0.048) and A. marginale (OR: 3.84, 95% CI: 1.43–12.21, p = 0.012), compared to those sampled at livestock markets. Conclusion This study reports TBP prevalence and associated risk factors in western Kenya, factors which are key to informing surveillance and control measures.
Collapse
Affiliation(s)
- Tatenda Chiuya
- International Centre of Insect Physiology and Ecology (icipe), P.O Box 30772-00100, Nairobi, Kenya. .,Department of Zoology and Entomology, University of Pretoria, Private Bag 20, Pretoria, 0028, South Africa.
| | - Jandouwe Villinger
- International Centre of Insect Physiology and Ecology (icipe), P.O Box 30772-00100, Nairobi, Kenya
| | - Daniel K Masiga
- International Centre of Insect Physiology and Ecology (icipe), P.O Box 30772-00100, Nairobi, Kenya
| | - Dickens O Ondifu
- International Centre of Insect Physiology and Ecology (icipe), P.O Box 30772-00100, Nairobi, Kenya
| | - Maurice K Murungi
- International Livestock Research Institute, Old Naivasha Road, P.O Box 30709, Nairobi, 00100, Kenya
| | - Lillian Wambua
- International Livestock Research Institute, Old Naivasha Road, P.O Box 30709, Nairobi, 00100, Kenya
| | - Armanda D S Bastos
- Department of Zoology and Entomology, University of Pretoria, Private Bag 20, Pretoria, 0028, South Africa
| | - Eric M Fèvre
- International Livestock Research Institute, Old Naivasha Road, P.O Box 30709, Nairobi, 00100, Kenya.,Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, CH64 7TE, UK
| | - Laura C Falzon
- International Livestock Research Institute, Old Naivasha Road, P.O Box 30709, Nairobi, 00100, Kenya. .,Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, CH64 7TE, UK.
| |
Collapse
|
13
|
Chidzwondo F, Mutapi F. Challenge of diagnosing acute infections in poor resource settings in Africa. AAS Open Res 2021. [DOI: 10.12688/aasopenres.13234.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Frequent disease outbreaks and acute infections occur in rural and low-income urban areas of Africa, with many health systems unprepared to diagnose and control diseases that are recurrent, endemic or have extended their geographic zone. In this review, we focus on acute infections that can be characterized by sudden onset, rapid progression, severe symptoms and poor prognosis. Consequently, these infections require early diagnosis and intervention. While effective vaccines have been developed against some of these diseases, lack of compliance and accessibility, and the need for repeated or multiple vaccinations mean large populations can remain vulnerable to infection. It follows that there is a need for enhancement of national surveillance and diagnostic capacity to avert morbidity and mortality from acute infections. We discuss the limitations of traditional diagnostic methods and explore the relative merits and applicability of protein-, carbohydrate- and nucleic acid-based rapid diagnostic tests that have been trialled for some infectious diseases. We also discuss the utility and limitations of antibody-based serological diagnostics and explore how systems biology approaches can better inform diagnosis. Lastly, given the complexity and high cost associated with after-service support of emerging technologies, we propose that, for resource-limited settings in Africa, multiplex point-of-care diagnostic tools be tailor-made to detect both recurrent acute infections and endemic infections.
Collapse
|
14
|
Muturi M, Akoko J, Nthiwa D, Chege B, Nyamota R, Mutiiria M, Maina J, Thumbi SM, Nyamai M, Kahariri S, Sitawa R, Kimutai J, Kuria W, Mwatondo A, Bett B. Serological evidence of single and mixed infections of Rift Valley fever virus, Brucella spp. and Coxiella burnetii in dromedary camels in Kenya. PLoS Negl Trop Dis 2021; 15:e0009275. [PMID: 33770095 PMCID: PMC7997034 DOI: 10.1371/journal.pntd.0009275] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/26/2021] [Indexed: 12/21/2022] Open
Abstract
Camels are increasingly becoming the livestock of choice for pastoralists reeling from effects of climate change in semi-arid and arid parts of Kenya. As the population of camels rises, better understanding of their role in the epidemiology of zoonotic diseases in Kenya is a public health priority. Rift Valley fever (RVF), brucellosis and Q fever are three of the top priority diseases in the country but the involvement of camels in the transmission dynamics of these diseases is poorly understood. We analyzed 120 camel serum samples from northern Kenya to establish seropositivity rates of the three pathogens and to characterize the infecting Brucella species using molecular assays. We found seropositivity of 24.2% (95% confidence interval [CI]: 16.5–31.8%) for Brucella, 20.8% (95% CI: 13.6–28.1%) and 14.2% (95% CI: 7.9–20.4%) for Coxiella burnetii and Rift valley fever virus respectively. We found 27.5% (95% CI: 19.5–35.5%) of the animals were seropositive for at least one pathogen and 13.3% (95% CI: 7.2–19.4%) were seropositive for at least two pathogens. B. melitensis was the only Brucella spp. detected. The high sero-positivity rates are indicative of the endemicity of these pathogens among camel populations and the possible role the species has in the epidemiology of zoonotic diseases. Considering the strong association between human infection and contact with livestock for most zoonotic infections in Kenya, there is immediate need to conduct further research to determine the role of camels in transmission of these zoonoses to other livestock species and humans. This information will be useful for designing more effective surveillance systems and intervention measures. Dromedary camels are well adapted to the arid and semi-arid environment that makes up about 80% of Kenya’s landmass. As such, camels play an important role in the socio-economic wellbeing and food security of pastoralists in the country. However, the species remains relatively neglected in scientific research, one of the main reasons being camels are mostly found in remote, low-income, arid regions of Africa and Asia. We carried out a study to determine the levels of exposure of camels in northern Kenya to Brucella spp., Coxiella burnetii and Rift Valley fever virus, three priority zoonotic pathogens in the country. We found high levels of exposure to the three pathogens, indicating the important role camels might play in the epidemiology of the zoonotic diseases in humans and other livestock. Based on the study findings, we argue for the immediate need for investments in disease surveillance and control strategies for priority zoonotic disease in camels in Kenya.
Collapse
Affiliation(s)
- Mathew Muturi
- Zoonotic Disease Unit Nairobi, Nairobi, Kenya
- International Livestock Research Institute, Nairobi, Kenya
- * E-mail:
| | - James Akoko
- International Livestock Research Institute, Nairobi, Kenya
| | - Daniel Nthiwa
- Department of Biological Sciences, University of Embu, Embu, Kenya
| | | | | | | | - Josphat Maina
- Zoonotic Disease Unit Nairobi, Nairobi, Kenya
- International Livestock Research Institute, Nairobi, Kenya
| | - S. M. Thumbi
- Center for Epidemiological and Modelling Analysis, University of Nairobi Institute of Tropical and Infectious Diseases, Nairobi, Kenya
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
- Paul G Allen School for Global Health, Washington State University, Pullman, Washington, United States of America
| | - Mutono Nyamai
- Center for Epidemiological and Modelling Analysis, University of Nairobi Institute of Tropical and Infectious Diseases, Nairobi, Kenya
- Paul G Allen School for Global Health, Washington State University, Pullman, Washington, United States of America
| | - Samuel Kahariri
- Kenya Directorate of Veterinary Services, Ministry of Agriculture, Livestock and Fisheries, Nairobi, Kenya
| | - Rinah Sitawa
- Food and Agriculture Organization of the United Nations, Nairobi, Kenya
| | - Joshua Kimutai
- Food and Agriculture Organization of the United Nations, Nairobi, Kenya
| | - Wilson Kuria
- Kenya Directorate of Veterinary Services, Ministry of Agriculture, Livestock and Fisheries, Nairobi, Kenya
| | - Athman Mwatondo
- Zoonotic Disease Unit Nairobi, Nairobi, Kenya
- International Livestock Research Institute, Nairobi, Kenya
| | - Bernard Bett
- International Livestock Research Institute, Nairobi, Kenya
| |
Collapse
|
15
|
Freitas PHF, Wang Y, Yan P, Oliveira HR, Schenkel FS, Zhang Y, Xu Q, Brito LF. Genetic Diversity and Signatures of Selection for Thermal Stress in Cattle and Other Two Bos Species Adapted to Divergent Climatic Conditions. Front Genet 2021; 12:604823. [PMID: 33613634 PMCID: PMC7887320 DOI: 10.3389/fgene.2021.604823] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/15/2021] [Indexed: 12/21/2022] Open
Abstract
Understanding the biological mechanisms of climatic adaptation is of paramount importance for the optimization of breeding programs and conservation of genetic resources. The aim of this study was to investigate genetic diversity and unravel genomic regions potentially under selection for heat and/or cold tolerance in thirty-two worldwide cattle breeds, with a focus on Chinese local cattle breeds adapted to divergent climatic conditions, Datong yak (Bos grunniens; YAK), and Bali (Bos javanicus) based on dense SNP data. In general, moderate genetic diversity levels were observed in most cattle populations. The proportion of polymorphic SNP ranged from 0.197 (YAK) to 0.992 (Mongolian cattle). Observed and expected heterozygosity ranged from 0.023 (YAK) to 0.366 (Sanhe cattle; SH), and from 0.021 (YAK) to 0.358 (SH), respectively. The overall average inbreeding (±SD) was: 0.118 ± 0.028, 0.228 ± 0.059, 0.194 ± 0.041, and 0.021 ± 0.004 based on the observed versus expected number of homozygous genotypes, excess of homozygosity, correlation between uniting gametes, and runs of homozygosity (ROH), respectively. Signatures of selection based on multiple scenarios and methods (F ST, HapFLK, and ROH) revealed important genomic regions and candidate genes. The candidate genes identified are related to various biological processes and pathways such as heat-shock proteins, oxygen transport, anatomical traits, mitochondrial DNA maintenance, metabolic activity, feed intake, carcass conformation, fertility, and reproduction. This highlights the large number of biological processes involved in thermal tolerance and thus, the polygenic nature of climatic resilience. A comprehensive description of genetic diversity measures in Chinese cattle and YAK was carried out and compared to 24 worldwide cattle breeds to avoid potential biases. Numerous genomic regions under positive selection were detected using three signature of selection methods and candidate genes potentially under positive selection were identified. Enriched function analyses pinpointed important biological pathways, molecular function and cellular components, which contribute to a better understanding of the biological mechanisms underlying thermal tolerance in cattle. Based on the large number of genomic regions identified, thermal tolerance has a complex polygenic inheritance nature, which was expected considering the various mechanisms involved in thermal stress response.
Collapse
Affiliation(s)
- Pedro H. F. Freitas
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Yachun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA – National Engineering Laboratory for Animal Breeding – College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ping Yan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hinayah R. Oliveira
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Flavio S. Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Yi Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA – National Engineering Laboratory for Animal Breeding – College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qing Xu
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, China
| | - Luiz F. Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
16
|
Determinants of Eimeria and Campylobacter infection dynamics in UK domestic sheep: the role of co-infection. Parasitology 2021; 148:623-629. [PMID: 33541446 PMCID: PMC10090772 DOI: 10.1017/s0031182021000044] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Coccidiosis caused by Eimeria species is a well-recognized disease of livestock. Enteric Eimeria infections are common, but disease usually only manifests when infection intensity is abnormally high. Campylobacter species are important zoonotic enteric bacterial pathogens for which livestock are important reservoir hosts. The diversity and epidemiology of ovine Eimeria and Campylobacter infections on two farms in north-western England were explored through a 24-month survey of shedding in sheep feces. Most animals were infected with at least one of 10 different Eimeria species, among which E. bakuensis and E. ovinoidalis were most common. An animal's age and the season of sampling were associated with the probability and intensity of Eimeria infection. Season of sampling was also associated with the probability of Campylobacter infection. Interestingly, higher intensities of Eimeria infections were significantly more common in animals not co-infected with Campylobacter. We explored the determinants of E. bakuensis and E. ovinoidalis infections, observing that being infected with either significantly increased the likelihood of infection with the other. The prevalence of E. ovinoidalis infections was significantly lower in sheep infected with Campylobacter. Recognition that co-infectors shape the dynamics of parasite infection is relevant to the design of effective infection control programmes.
Collapse
|
17
|
Nyabongo L, Kanduma EG, Bishop RP, Machuka E, Njeri A, Bimenyimana AV, Nkundwanayo C, Odongo DO, Pelle R. Prevalence of tick-transmitted pathogens in cattle reveals that Theileria parva, Babesia bigemina and Anaplasma marginale are endemic in Burundi. Parasit Vectors 2021; 14:6. [PMID: 33402225 PMCID: PMC7786990 DOI: 10.1186/s13071-020-04531-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 12/07/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tick-borne diseases (TBDs) constitute a major constraint for livestock development in sub-Saharan Africa, with East Coast fever (ECF) being the most devastating TBD of cattle. However, in Burundi, detailed information is lacking on the current prevalence of TBDs and on the associated economic losses from mortality and morbidity in cattle as well as the costs associated with TBD control and treatment. The aim of this study was, therefore, to assess the prevalence and spatial distribution of tick-borne pathogens (TBPs) in cattle across the major agro-ecological zones (AEZs) in Burundi. METHODS In a cross-sectional study conducted in ten communes spanning the five main AEZs in Burundi, blood samples were taken from 828 cattle from 305 farms between October and December 2017. Evidence of Theileria parva infection was assessed by antibody level, measured using a polymorphic immunodominant molecule (PIM) antigen-based enzyme-linked immunosorbent assay (ELISA) and by a T. parva-specific p104 gene-based nested PCR. Antibodies against Theileria mutans infection were detected using the 32-kDa antigen-based indirect ELISA, while the 200-kDa antigen and the major surface protein 5 (MSP5)-based indirect ELISA were used to detect antibodies against Babesia bigemina and Anaplasma marginale, respectively. RESULTS The prevalence of T. parva across the ten communes sampled ranged from 77.5 to 93.1% and from 67.8 to 90.0% based on the ELISA and PCR analysis, respectively. A statistically significant difference in infection was observed between calves and adult cattle; however, T. parva infection levels were not significantly associated with sex and breed. The seroprevalence indicating exposure to T. mutans, B. bigemina and A. marginale ranged from 30 to 92.1%, 33.7 to 90% and 50 to 96.2%, respectively. Mixed infections of TBPs were detected in 82.91% of cattle sampled, with 11 different combinations of pathogen species detected . CONCLUSIONS The findings indicate that T. parva, A. marginale and B. bigemina infections are endemic in Burundi. Knowledge of the spatial distribution of TBPs will facilitate the design of effective targeted strategies to control these diseases. There is a need for further investigations of the distribution of tick vectors and the population structure of TBPs in order to identify the key epidemiological factors contributing to TBD outbreaks in Burundi.
Collapse
Affiliation(s)
- Lionel Nyabongo
- School of Biological Sciences, University of Nairobi (UoN), Nairobi, Kenya. .,Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709, Nairobi, Kenya. .,National Veterinary Laboratory, Bujumbura, Burundi.
| | - Esther G Kanduma
- Department of Biochemistry, School of Medicine, University of Nairobi, Nairobi, Kenya
| | - Richard P Bishop
- Veterinary Microbiology and Pathology (VMP), Washington State University, 100 Dairy Road, Pullman, WA, 99164, USA
| | - Eunice Machuka
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709, Nairobi, Kenya
| | - Alice Njeri
- International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi, Kenya
| | - Alain V Bimenyimana
- Programme National pour la Sécurité Alimentaire et le Développement Rural de l'Imbo et du Moso (PNSADR-IM), Bujumbura, Burundi
| | | | - David O Odongo
- School of Biological Sciences, University of Nairobi (UoN), Nairobi, Kenya
| | - Roger Pelle
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709, Nairobi, Kenya
| |
Collapse
|
18
|
Reflections on IDEAL: What we have learnt from a unique calf cohort study. Prev Vet Med 2020; 181:105062. [PMID: 32615453 PMCID: PMC7456772 DOI: 10.1016/j.prevetmed.2020.105062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/07/2020] [Accepted: 06/10/2020] [Indexed: 11/20/2022]
Abstract
The year 2020 marks a decade since the final visit was made in the ‘Infectious Diseases of East African Livestock’ (IDEAL) project. However, data generation from samples obtained during this ambitious longitudinal study still continues. As the project launches its extensive open-access database and biobank to the scientific community, we reflect on the challenges overcome, the knowledge gained, and the advantages of such a project. We discuss the legacy of the IDEAL project and how it continues to generate evidence since being adopted by the Centre for Tropical Livestock Genetics and Health (CTLGH). We also examine the impact of the IDEAL project, from the authors perspective, for each of the stakeholders (the animal, the farmer, the consumer, the policy maker, the funding body, and the researcher and their institution) involved in the project and provide recommendations for future researchers who are interested in running longitudinal field studies.
Collapse
|
19
|
Raftery AG, Jallow S, Coultous RM, Rodgers J, Sutton DGM. Variation in disease phenotype is marked in equine trypanosomiasis. Parasit Vectors 2020; 13:148. [PMID: 32199454 PMCID: PMC7085162 DOI: 10.1186/s13071-020-04020-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 03/16/2020] [Indexed: 11/19/2022] Open
Abstract
Background Equine trypanosomiasis is a severe and prevalent disease that has the greatest impact globally upon working equids due to its distribution across lower income countries. Morbidity and mortality rates are high; disease management strategies in endemic regions are ineffective and cost prohibitive. Individual variation in disease phenotype in other species suggests host factors could reveal novel treatment and control targets but has not been investigated in equids. Methods A prospective clinical evaluation of equines presenting for a free veterinary examination was performed in hyperendemic villages in The Gambia. Age, body condition score and body weight were estimated by validated methods, and haematocrit and total protein concentration measured. Animals fulfilling 2 out of 5 clinical inclusion criteria (anaemia, poor body condition, pyrexia, history of abortion, oedema) for a diagnosis of trypanosomiasis received trypanocidal treatment with follow-up at 1 and 2 weeks. Blood samples underwent PCR analysis with specific Trypanosoma spp. primers and results were compared to the subject’s clinical and clinicopathological features. A mixed effects generalised linear model was generated to evaluate the association of infection status with degree of pyrexia and anaemia. Results Morbidity was high within examined (n = 641) and selected (n = 247) study populations. PCR status was not associated with a defined disease phenotype; there was intra- and inter-species variability. Donkeys were more frequently Trypanosoma spp.-positive (P < 0.001) and febrile (P < 0.001) than horses, but infected horses were more anaemic (P < 0.001), and in poorer body condition (P < 0.001) than donkeys. Sex was correlated to disease phenotype: males were more anaemic (P = 0.03) and febrile (P < 0.001). Haemoparasite co-infections were more common than a single infection. Conclusions There was evidence of diversity in trypanosomiasis clinical signs plus variable disease phenotypes within equid subpopulations that warrant further investigation. The complex co-infection profile of field cases requires greater consideration to optimise disease management.![]()
Collapse
Affiliation(s)
- Alexandra G Raftery
- The Weipers Centre Equine Hospital, Large Animal Clinical Sciences and Public Health, School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, UK.
| | - Saloum Jallow
- Gambia Horse and Donkey Trust, Sambel Kunda, Central River District, The Gambia
| | - Robert M Coultous
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Jean Rodgers
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - David G M Sutton
- The Weipers Centre Equine Hospital, Large Animal Clinical Sciences and Public Health, School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, UK
| |
Collapse
|
20
|
Abstract
Parasites directly and indirectly influence the important interactions among hosts such as competition and predation through modifications of behaviour, reproduction and survival. Such impacts can affect local biodiversity, relative abundance of host species and structuring of communities and ecosystems. Despite having a firm theoretical basis for the potential effects of parasites on ecosystems, there is a scarcity of experimental data to validate these hypotheses, making our inferences about this topic more circumstantial. To quantitatively test parasites' role in structuring host communities, we set up a controlled, multigenerational mesocosm experiment involving four sympatric freshwater crustacean species that share up to four parasite species. Mesocosms were assigned to either of two different treatments, low or high parasite exposure. We found that the trematode Maritrema poulini differentially influenced the population dynamics of these hosts. For example, survival and recruitment of the amphipod Paracalliope fluviatilis were dramatically reduced compared to other host species, suggesting that parasites may affect their long-term persistence in the community. Relative abundances of crustacean species were influenced by parasites, demonstrating their role in host community structure. As parasites are ubiquitous across all communities and ecosystems, we suggest that the asymmetrical effects we observed are likely widespread structuring forces.
Collapse
|
21
|
Carvalho‐Pereira TSA, Souza FN, Santos LRDN, Pedra GG, Minter A, Bahiense TC, Reis MG, Ko AI, Childs JE, Silva EM, Costa F, Begon M. Coinfection modifies carriage of enzootic and zoonotic parasites in Norway rats from an urban slum. Ecosphere 2019. [DOI: 10.1002/ecs2.2887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Ticiana S. A. Carvalho‐Pereira
- Instituto de Biologia, Instituto de Ciências da Saúde, Faculdade de Medicina, Instituto de Saúde Coletiva Federal University of Bahia (UFBA) Salvador Brazil
- Instituto Gonçalo Moniz Fundação Oswaldo Cruz Ministério da Saúde Salvador Brazil
- Institute of Integrative Biology University of Liverpool Liverpool UK
| | - Fábio Neves Souza
- Instituto de Biologia, Instituto de Ciências da Saúde, Faculdade de Medicina, Instituto de Saúde Coletiva Federal University of Bahia (UFBA) Salvador Brazil
- Instituto Gonçalo Moniz Fundação Oswaldo Cruz Ministério da Saúde Salvador Brazil
| | | | | | - Amanda Minter
- Institute of Integrative Biology University of Liverpool Liverpool UK
| | - Thiago Campanharo Bahiense
- Instituto de Biologia, Instituto de Ciências da Saúde, Faculdade de Medicina, Instituto de Saúde Coletiva Federal University of Bahia (UFBA) Salvador Brazil
| | - Mitermayer Galvão Reis
- Instituto de Biologia, Instituto de Ciências da Saúde, Faculdade de Medicina, Instituto de Saúde Coletiva Federal University of Bahia (UFBA) Salvador Brazil
- Instituto Gonçalo Moniz Fundação Oswaldo Cruz Ministério da Saúde Salvador Brazil
- Department of Epidemiology of Microbial Disease Yale School of Public Health New Haven Connecticut USA
| | - Albert Icksang Ko
- Department of Epidemiology of Microbial Disease Yale School of Public Health New Haven Connecticut USA
| | - James E. Childs
- Department of Epidemiology of Microbial Disease Yale School of Public Health New Haven Connecticut USA
| | - Eduardo M. Silva
- Instituto de Biologia, Instituto de Ciências da Saúde, Faculdade de Medicina, Instituto de Saúde Coletiva Federal University of Bahia (UFBA) Salvador Brazil
| | - Federico Costa
- Instituto de Biologia, Instituto de Ciências da Saúde, Faculdade de Medicina, Instituto de Saúde Coletiva Federal University of Bahia (UFBA) Salvador Brazil
- Instituto Gonçalo Moniz Fundação Oswaldo Cruz Ministério da Saúde Salvador Brazil
- Institute of Integrative Biology University of Liverpool Liverpool UK
- Department of Epidemiology of Microbial Disease Yale School of Public Health New Haven Connecticut USA
| | - Mike Begon
- Institute of Integrative Biology University of Liverpool Liverpool UK
| |
Collapse
|
22
|
Zhou Z, Li K, Sun Y, Shi J, Li H, Chen Y, Yang H, Li X, Wu B, Li X, Wang Z, Cheng F, Hu S. Molecular epidemiology and risk factors of Anaplasma spp., Babesia spp. and Theileria spp. infection in cattle in Chongqing, China. PLoS One 2019; 14:e0215585. [PMID: 31306422 PMCID: PMC6629066 DOI: 10.1371/journal.pone.0215585] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 04/04/2019] [Indexed: 01/18/2023] Open
Abstract
Tick-borne pathogens (TBPs) seriously affect cattle production and can be economically damaging. The epidemiology of these organisms in the Chongqing municipality of China is not well described. This study aimed to investigate the prevalence and risk factors of TBPs including Anaplasma spp., Babesia spp. and Theileria spp. in cattle in Chongqing municipality. The results showed that 43.48% (150/345) of cattle were infected with at least one TBP, of which single infections were detected in 104 (30.14%), double infections in 34 cattle (9.86%) and triple infections in 12 (3.48%) of the cattle. The overall prevalence of Anaplasma spp., Theileria spp. and B. bigemina were 22.32%, 23.19% and 7.24%, respectively. Among these, the prevalence of A. bovis, A. central, A. phagocytophilum, A. platys, A. marginale, T. sinensisi and T. orientalis were 8.41%, 7.83%, 4.93%, 4.35%, 2.61%, 22.32% and 2.60%, respectively. We could not detect B. bovis, T. annulata, T. luwenshuni or T. uilenbergi in cattle. Cattle ≥1-year-old were more likely to be infected with Theileria spp. [adjusted odd ratio (AOR) = 2.70, 95% CI = 1.12-6.56)] compared with younger cattle, while cattle ≥1-year-old had reduced susceptibility to B. bigemina (AOR = 0.14, 95% CI = 0.03-0.60). Cattle living at higher altitude (≥500 m) were more susceptible to B. bigemina (AOR = 6.97, 95% CI = 2.08-23.35) and Theileria spp. infection (AOR = 1.87, 95% CI = 1.06-3.32). The prevalence of Theileria spp. on farms with cats was significantly higher than that without cats (AOR = 2.56, 95% CI = 1.12-5.88). Infection with A. bovis and A. central were significantly associated with A. phagocytophilum infection. Furthermore, there were significant associations between A. bovis and A. central infection, T. sinensisi and A. marginale infection, and B. bigemina and T. orientalis infection. This study provides new data on the prevalence of Anaplasma spp., Babesia spp. and Theileria spp. in cattle in Chongqing, and for the first time we reveal a possible relationship between the afore-mentioned pathogens, which will help in formulating appropriate control strategies for these pathogens in this area.
Collapse
Affiliation(s)
- Zuoyong Zhou
- College of Animal Science, Rongchang Campus of Southwest University, Chongqing, China
- Veterinary Science Engineering Research Center of Chongqing, Chongqing, China
| | - Kai Li
- College of Animal Science, Rongchang Campus of Southwest University, Chongqing, China
| | - Yingying Sun
- College of Animal Science, Rongchang Campus of Southwest University, Chongqing, China
| | - Junge Shi
- College of Animal Science, Rongchang Campus of Southwest University, Chongqing, China
| | - Hexian Li
- College of Animal Science, Rongchang Campus of Southwest University, Chongqing, China
| | - Yiwang Chen
- College of Animal Science, Rongchang Campus of Southwest University, Chongqing, China
| | - Haoyue Yang
- College of Animal Science, Rongchang Campus of Southwest University, Chongqing, China
| | - Xiao Li
- College of Animal Science, Rongchang Campus of Southwest University, Chongqing, China
| | - Bi Wu
- College of Animal Science, Rongchang Campus of Southwest University, Chongqing, China
| | - Xiaoxia Li
- College of Animal Science, Rongchang Campus of Southwest University, Chongqing, China
| | - Zhiying Wang
- College of Animal Science, Rongchang Campus of Southwest University, Chongqing, China
- Veterinary Science Engineering Research Center of Chongqing, Chongqing, China
| | - Fangjun Cheng
- College of Animal Science, Rongchang Campus of Southwest University, Chongqing, China
- Veterinary Science Engineering Research Center of Chongqing, Chongqing, China
- * E-mail: (FC); (SH)
| | - Shijun Hu
- College of Animal Science, Rongchang Campus of Southwest University, Chongqing, China
- Veterinary Science Engineering Research Center of Chongqing, Chongqing, China
- * E-mail: (FC); (SH)
| |
Collapse
|
23
|
Pigeault R, Cozzarolo CS, Choquet R, Strehler M, Jenkins T, Delhaye J, Bovet L, Wassef J, Glaizot O, Christe P. Haemosporidian infection and co-infection affect host survival and reproduction in wild populations of great tits. Int J Parasitol 2018; 48:1079-1087. [PMID: 30391229 DOI: 10.1016/j.ijpara.2018.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/06/2018] [Accepted: 06/19/2018] [Indexed: 12/20/2022]
Abstract
Theoretical studies predict that parasitic infection may impact host longevity and ultimately modify the trade-off between reproduction and survival. Indeed, a host may adjust its energy allocation in current reproduction to balance the negative effects of parasitism on its survival prospects. However, very few empirical studies tested this prediction. Avian haemosporidian parasites provide an excellent opportunity to assess the influence of parasitic infection on both host survival and reproduction. They are represented by three main genera (Plasmodium, Haemoproteus and Leucocytozoon) and are highly prevalent in many bird populations. Here we provide the first known long-term field study (12 years) to explore the effects of haemosporidian parasite infection and co-infection on fitness in two populations of great tits (Parus major), using a multistate modeling framework. We found that while co-infection decreased survival probability, both infection and co-infection increased reproductive success. This study provides evidence that co-infections can be more virulent than single infections. It also provides support for the life-history theory which predicts that reproductive effort can be adjusted to balance one's fitness when survival prospects are challenged.
Collapse
Affiliation(s)
- R Pigeault
- Département d'Ecologie & Evolution, Lausanne, Switzerland.
| | - C-S Cozzarolo
- Département d'Ecologie & Evolution, Lausanne, Switzerland
| | - R Choquet
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175, Montpellier, France
| | - M Strehler
- Département d'Ecologie & Evolution, Lausanne, Switzerland
| | - T Jenkins
- Département d'Ecologie & Evolution, Lausanne, Switzerland; Musée cantonal de zoologie, Lausanne, Switzerland
| | - J Delhaye
- Département d'Ecologie & Evolution, Lausanne, Switzerland; Evolution et Diversité Biologique, Université Toulouse 3, France
| | - L Bovet
- Département d'Ecologie & Evolution, Lausanne, Switzerland
| | - J Wassef
- Département d'Ecologie & Evolution, Lausanne, Switzerland
| | - O Glaizot
- Musée cantonal de zoologie, Lausanne, Switzerland
| | - P Christe
- Département d'Ecologie & Evolution, Lausanne, Switzerland
| |
Collapse
|
24
|
Kelly RF, Callaby R, Egbe NF, Williams DJL, Victor NN, Tanya VN, Sander M, Ndip L, Ngandolo R, Morgan KL, Handel IG, Mazeri S, Muwonge A, de C Bronsvoort BM. Association of Fasciola gigantica Co-infection With Bovine Tuberculosis Infection and Diagnosis in a Naturally Infected Cattle Population in Africa. Front Vet Sci 2018; 5:214. [PMID: 30238010 PMCID: PMC6136300 DOI: 10.3389/fvets.2018.00214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/15/2018] [Indexed: 01/24/2023] Open
Abstract
Bovine tuberculosis (bTB), caused by Mycobacterium bovis, remains a major livestock and public health problem in both high and low-income countries. With the current absence of an effective vaccine, control in cattle populations is reliant on regular testing and removal of positive animals. However, surveillance and control are hampered by imperfect diagnostic tests that have poorly described properties in naturally infected populations. Recent research in cattle co-infected with the temperate liver fluke, Fasciola hepatica, has raised concerns about the performance of the intradermal skin test in high fluke incidence areas. Further, recent studies of parasitic co-infections have demonstrated their impact on Th1 and Th2 responses, concurrent disease pathology and susceptibility to mycobacterial infections. Here we report for the first time the association of co-infection with the tropical liver fluke, Fasciola gigantica, with the presence of bTB-like lesions and the IFN-γ response in naturally infected African cattle. After adjusting for age and sex we observed a complex interaction between fluke status and breed. Fulani cattle had a higher risk of having bTB-like lesions than the mixed breed group. The risk of bTB-like lesions increased in the mixed breed group if they had concurrent evidence of fluke pathology but was less clear in the coinfected Fulani breed. Further, we observed a slight decline in the IFN-γ levels in fluke infected animals. Finally we explored factors associated with IFN-γ false negative results compared to the presence of bTB-like lesions. Fulani cattle had a higher risk of having a false negative result compared to the mixed breed group. Further, the mixed breed cattle had an increased risk of being false negative if also co-infected with fluke. Interesting, as with the risk of bTB-like lesions, this association was less clear in the Fulani cattle with weak evidence of a slight decrease in risk of having a false negative test result when fluke pathology positive. This interesting interaction where different breeds appear to have different responses to co-infections is intriguing but further work is needed to confirm and understand more clearly the possible confounding effects of different other co-infections not measured here, breed, management or exposure risks.
Collapse
Affiliation(s)
- Robert F. Kelly
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Rebecca Callaby
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Nkongho F. Egbe
- Microbiology and Parasitology Unit, Faculty of Allied Medical Science, University of Calabar, Calabar, Nigeria
| | - Diana J. L. Williams
- Veterinary Parasitology, Institute of Infection and Global Health and School of Veterinary Science, Liverpool, United Kingdom
| | - Ngu Ngwa Victor
- School of Veterinary Medicine and Sciences, University of Ngaoundere, Ngaoundere, Cameroon
| | | | - Melissa Sander
- Tuberculosis Reference Laboratory Bamenda, Hospital Roundabout, Bamenda, Cameroon
| | - Lucy Ndip
- Laboratory of Emerging Infectious Diseases, University of Buea, Buea, Cameroon
| | - Richard Ngandolo
- Laboratoire de Recherches Vétérinaires et Zootechniques de Farcha, N'Djamena, Chad
| | - Kenton L. Morgan
- Institute of Ageing and Chronic Disease and School of Veterinary Science, University of Liverpool, Neston, United Kingdom
| | - Ian G. Handel
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Stella Mazeri
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Adrian Muwonge
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Barend M. de C Bronsvoort
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
25
|
Onzima RB, Upadhyay MR, Doekes HP, Brito LF, Bosse M, Kanis E, Groenen MAM, Crooijmans RPMA. Genome-Wide Characterization of Selection Signatures and Runs of Homozygosity in Ugandan Goat Breeds. Front Genet 2018; 9:318. [PMID: 30154830 PMCID: PMC6102322 DOI: 10.3389/fgene.2018.00318] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/25/2018] [Indexed: 01/06/2023] Open
Abstract
Both natural and artificial selection are among the main driving forces shaping genetic variation across the genome of livestock species. Selection typically leaves signatures in the genome, which are often characterized by high genetic differentiation across breeds and/or a strong reduction in genetic diversity in regions associated with traits under intense selection pressure. In this study, we evaluated selection signatures and genomic inbreeding coefficients, FROH, based on runs of homozygosity (ROH), in six Ugandan goat breeds: Boer (n = 13), and the indigenous breeds Karamojong (n = 15), Kigezi (n = 29), Mubende (n = 29), Small East African (n = 29), and Sebei (n = 29). After genotyping quality control, 45,294 autosomal single nucleotide polymorphisms (SNPs) remained for further analyses. A total of 394 and 6 breed-specific putative selection signatures were identified across all breeds, based on marker-specific fixation index (FST-values) and haplotype differentiation (hapFLK), respectively. These regions were enriched with genes involved in signaling pathways associated directly or indirectly with environmental adaptation, such as immune response (e.g., IL10RB and IL23A), growth and fatty acid composition (e.g., FGF9 and IGF1), and thermo-tolerance (e.g., MTOR and MAPK3). The study revealed little overlap between breeds in genomic regions under selection and generally did not display the typical classic selection signatures as expected due to the complex nature of the traits. In the Boer breed, candidate genes associated with production traits, such as body size and growth (e.g., GJB2 and GJA3) were also identified. Furthermore, analysis of ROH in indigenous goat breeds showed very low levels of genomic inbreeding (with the mean FROH per breed ranging from 0.8% to 2.4%), as compared to higher inbreeding in Boer (mean FROH = 13.8%). Short ROH were more frequent than long ROH, except in Karamojong, providing insight in the developmental history of these goat breeds. This study provides insights into the effects of long-term selection in Boer and indigenous Ugandan goat breeds, which are relevant for implementation of breeding programs and conservation of genetic resources, as well as their sustainable use and management.
Collapse
Affiliation(s)
- Robert B. Onzima
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, Netherlands
- National Agricultural Research Organization (NARO), Entebbe, Uganda
| | - Maulik R. Upadhyay
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, Netherlands
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Harmen P. Doekes
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, Netherlands
| | - Luiz. F. Brito
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock (CGIL), University of Guelph, Guelph, ON, Canada
| | - Mirte Bosse
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, Netherlands
| | - Egbert Kanis
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, Netherlands
| | - Martien A. M. Groenen
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, Netherlands
| | | |
Collapse
|
26
|
Tayebwa DS, Vudriko P, Tuvshintulga B, Guswanto A, Nugraha AB, Gantuya S, Batiha GES, Musinguzi SP, Komugisha M, Bbira JS, Okwee-Acai J, Tweyongyere R, Wampande EM, Byaruhanga J, Adjou Moumouni PF, Sivakumar T, Yokoyama N, Igarashi I. Molecular epidemiology of Babesia species, Theileria parva, and Anaplasma marginale infecting cattle and the tick control malpractices in Central and Eastern Uganda. Ticks Tick Borne Dis 2018; 9:1475-1483. [PMID: 30017724 DOI: 10.1016/j.ttbdis.2018.06.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 06/23/2018] [Accepted: 06/27/2018] [Indexed: 12/01/2022]
Abstract
East Coast fever, babesiosis, and anaplasmosis are the major tick-borne diseases affecting cattle productivity in Uganda. The emergence of acaricide-resistant ticks is suspected to have caused a rise in hemoparasites. This study sought to detect and characterize hemoparasites among farms in acaricide-failure hotspots of central as compared to the acaricide-failure naïve areas in Eastern Uganda. Nested PCR assays were performed to determine the prevalences of Babesia bovis, Babesia bigemina, Theileria parva, and Anaplasma marginale in cattle blood samples sourced from randomly selected farms. Randomly selected isolates were sequenced to determine the genetic diversity of the parasites using the following marker genes: B. bovis spherical body protein 4, B. bigemina rhoptry-associated protein 1a, T. parva 104 kDa microneme-rhoptry antigen, and A. marginale major surface protein 5. Furthermore, partially and fully engorged adult ticks were collected for taxonomy, and tick-control practices were assessed using a semi-structured questionnaire. The prevalences of B. bigemina, T. parva, and A. marginale in cattle were 17.2, 65.1, and 22.0%, and 10.0, 26.5, and 3% in the central and eastern region, respectively. Whilst, B. bovis was not detected in the farms involved. The sequences for B. bigemina, T. parva, and A. marginale from the central region showed 99% identity with those from the eastern region. Of the 548 ticks collected, 319, 147, 76, and 6 were Rhipicephalus (Boophilus) decoloratus, Rhipicephalus appendiculatus, Amblyomma variegatum, and Rhipicephalus evertsi evertsi, respectively. The Rhipicephalus ticks were more abundant in the central region, whereas A. variegatum ticks were more abundant in the eastern region. Tick control malpractices were found in both Central and Eastern Uganda, and 42 of the 56 surveyed farms lacked appropriate restraining facilities and so they utilized either ropes or a 'boma' (enclosure). In summary, B. bigemina, T. parva, A. marginale and their co-infections were more prevalent in the central than eastern region; even though, tick control malpractices were observed in both regions. Therefore, an urgent tick and TBD control strategy is needed.
Collapse
Affiliation(s)
- Dickson Stuart Tayebwa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2 Sen-11, Inada-cho, 080-8555, Obihiro, Hokkaido, Japan; Central Diagnostic Laboratory, Makerere University, College of Veterinary Medicine, Animal Resources and Biosecurity, 7062, Kampala, Uganda; Research Center for Ticks and Tick-borne Diseases, Makerere University, College of Veterinary Medicine, Animal Resources and Biosecurity, 7062, Kampala, Uganda.
| | - Patrick Vudriko
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2 Sen-11, Inada-cho, 080-8555, Obihiro, Hokkaido, Japan; Research Center for Ticks and Tick-borne Diseases, Makerere University, College of Veterinary Medicine, Animal Resources and Biosecurity, 7062, Kampala, Uganda; School of Veterinary Medicine and Animal Resources, Makerere University, College of Veterinary Medicine, Animal Resources and Biosecurity, 7062, Kampala, Uganda.
| | - Bumduuren Tuvshintulga
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2 Sen-11, Inada-cho, 080-8555, Obihiro, Hokkaido, Japan.
| | - Azirwan Guswanto
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2 Sen-11, Inada-cho, 080-8555, Obihiro, Hokkaido, Japan.
| | - Arifin Budiman Nugraha
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2 Sen-11, Inada-cho, 080-8555, Obihiro, Hokkaido, Japan.
| | - Sambuu Gantuya
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2 Sen-11, Inada-cho, 080-8555, Obihiro, Hokkaido, Japan.
| | - Gaber El-Saber Batiha
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2 Sen-11, Inada-cho, 080-8555, Obihiro, Hokkaido, Japan; Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, 22511, Albeheira, Egypt.
| | - Simon Peter Musinguzi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2 Sen-11, Inada-cho, 080-8555, Obihiro, Hokkaido, Japan.
| | - Mariam Komugisha
- Research Center for Ticks and Tick-borne Diseases, Makerere University, College of Veterinary Medicine, Animal Resources and Biosecurity, 7062, Kampala, Uganda.
| | - Jonh Son Bbira
- Research Center for Ticks and Tick-borne Diseases, Makerere University, College of Veterinary Medicine, Animal Resources and Biosecurity, 7062, Kampala, Uganda.
| | - James Okwee-Acai
- Research Center for Ticks and Tick-borne Diseases, Makerere University, College of Veterinary Medicine, Animal Resources and Biosecurity, 7062, Kampala, Uganda; School of Veterinary Medicine and Animal Resources, Makerere University, College of Veterinary Medicine, Animal Resources and Biosecurity, 7062, Kampala, Uganda.
| | - Robert Tweyongyere
- School of Veterinary Medicine and Animal Resources, Makerere University, College of Veterinary Medicine, Animal Resources and Biosecurity, 7062, Kampala, Uganda.
| | - Eddie M Wampande
- School of Veterinary Medicine and Animal Resources, Makerere University, College of Veterinary Medicine, Animal Resources and Biosecurity, 7062, Kampala, Uganda.
| | - Joseph Byaruhanga
- Research Center for Ticks and Tick-borne Diseases, Makerere University, College of Veterinary Medicine, Animal Resources and Biosecurity, 7062, Kampala, Uganda.
| | - Paul Franck Adjou Moumouni
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2 Sen-11, Inada-cho, 080-8555, Obihiro, Hokkaido, Japan.
| | - Thillaiampalam Sivakumar
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2 Sen-11, Inada-cho, 080-8555, Obihiro, Hokkaido, Japan.
| | - Naoaki Yokoyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2 Sen-11, Inada-cho, 080-8555, Obihiro, Hokkaido, Japan.
| | - Ikuo Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2 Sen-11, Inada-cho, 080-8555, Obihiro, Hokkaido, Japan.
| |
Collapse
|
27
|
Elati K, Hamdi D, Jdidi M, Rekik M, Gharbi M. Differences in tick infestation of Tunisian sheep breeds. VETERINARY PARASITOLOGY- REGIONAL STUDIES AND REPORTS 2018; 13:50-54. [PMID: 31014889 DOI: 10.1016/j.vprsr.2018.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/07/2017] [Accepted: 03/31/2018] [Indexed: 11/30/2022]
Abstract
Different infestation patterns by ixodid ticks were studied in three sheep breeds in Tunisia: Barbarine, Queue Fine de l'Ouest and their cross-bred animals. During one year, 700 sheep were monitored and examined for tick infestation. A total of 722 ticks were collected from sheep ears. The most frequent tick species was by far Rhipicephalus sanguineus sensu lato (99%) and there were few specimens of Rhipicephalus bursa (1%) (p < 0.001). Overall infestation prevalence was estimated at 10.4%. The lowest infestation prevalence was in Barbarine sheep (7.3%), followed by Queue Fine de l'Ouest (16.7%) and the highest prevalence was in cross-bred sheep (19.1%) (p < 0.001). Mean overall infestation intensity was 1.6 ticks/sheep: lowest in Barbarine (1.4), followed by Queue Fine de l'Ouest (1.7) and cross-bred sheep (1.8). Similarly, abundance was lowest in Barbarine sheep (0.1), and was 0.3 in Queue Fine de l'Ouest and cross-bred animals. The results demonstrated a reduced infestation, possibly due to reduced attractiveness and/or increased resistance to tick infestation, of the Barbarine breed compared with the other two breeds. Further behavioural, genetic and molecular studies are needed to explain the mechanisms for the lower infestation indicators.
Collapse
Affiliation(s)
- Khawla Elati
- Laboratoire de Parasitologie, Univ. Manouba, Institution de la Recherche et de l'Enseignement Supérieur Agricoles, École Nationale de Médecine Vétérinaire de Sidi Thabet, 2020 Sidi Thabet, Tunisia.
| | - Dhia Hamdi
- Laboratoire de Parasitologie, Univ. Manouba, Institution de la Recherche et de l'Enseignement Supérieur Agricoles, École Nationale de Médecine Vétérinaire de Sidi Thabet, 2020 Sidi Thabet, Tunisia
| | - Mohamed Jdidi
- Laboratoire de Parasitologie, Univ. Manouba, Institution de la Recherche et de l'Enseignement Supérieur Agricoles, École Nationale de Médecine Vétérinaire de Sidi Thabet, 2020 Sidi Thabet, Tunisia
| | - Mourad Rekik
- International Center for Agricultural Research in the Dry Areas (ICARDA), P.O. Box 950764, Amman 11195, Jordan
| | - Mohamed Gharbi
- Laboratoire de Parasitologie, Univ. Manouba, Institution de la Recherche et de l'Enseignement Supérieur Agricoles, École Nationale de Médecine Vétérinaire de Sidi Thabet, 2020 Sidi Thabet, Tunisia
| |
Collapse
|
28
|
Stutzer C, Richards SA, Ferreira M, Baron S, Maritz-Olivier C. Metazoan Parasite Vaccines: Present Status and Future Prospects. Front Cell Infect Microbiol 2018; 8:67. [PMID: 29594064 PMCID: PMC5859119 DOI: 10.3389/fcimb.2018.00067] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/26/2018] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic parasites and pathogens continue to cause some of the most detrimental and difficult to treat diseases (or disease states) in both humans and animals, while also continuously expanding into non-endemic countries. Combined with the ever growing number of reports on drug-resistance and the lack of effective treatment programs for many metazoan diseases, the impact that these organisms will have on quality of life remain a global challenge. Vaccination as an effective prophylactic treatment has been demonstrated for well over 200 years for bacterial and viral diseases. From the earliest variolation procedures to the cutting edge technologies employed today, many protective preparations have been successfully developed for use in both medical and veterinary applications. In spite of the successes of these applications in the discovery of subunit vaccines against prokaryotic pathogens, not many targets have been successfully developed into vaccines directed against metazoan parasites. With the current increase in -omics technologies and metadata for eukaryotic parasites, target discovery for vaccine development can be expedited. However, a good understanding of the host/vector/pathogen interface is needed to understand the underlying biological, biochemical and immunological components that will confer a protective response in the host animal. Therefore, systems biology is rapidly coming of age in the pursuit of effective parasite vaccines. Despite the difficulties, a number of approaches have been developed and applied to parasitic helminths and arthropods. This review will focus on key aspects of vaccine development that require attention in the battle against these metazoan parasites, as well as successes in the field of vaccine development for helminthiases and ectoparasites. Lastly, we propose future direction of applying successes in pursuit of next generation vaccines.
Collapse
Affiliation(s)
- Christian Stutzer
- Tick Vaccine Group, Department of Genetics, University of Pretoria, Pretoria, South Africa
| | | | | | | | | |
Collapse
|
29
|
Erkenswick GA, Watsa M, Gozalo AS, Dmytryk N, Parker PG. Temporal and demographic blood parasite dynamics in two free-ranging neotropical primates. Int J Parasitol Parasites Wildl 2017; 6:59-68. [PMID: 28393014 PMCID: PMC5377436 DOI: 10.1016/j.ijppaw.2017.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 11/11/2022]
Abstract
Parasite-host relationships are influenced by several factors intrinsic to hosts, such as social standing, group membership, sex, and age. However, in wild populations, temporal variation in parasite distributions and concomitant infections can alter these patterns. We used microscropy and molecular methods to screen for naturally occurring haemoparasitic infections in two Neotropical primate host populations, the saddleback (Leontocebus weddelli) and emperor (Saguinus imperator) tamarin, in the lowland tropical rainforests of southeastern Peru. Repeat sampling was conducted from known individuals over a three-year period to test for parasite-host and parasite-parasite associations. Three parasites were detected in L. weddelli including Trypanosoma minasense, Mansonella mariae, and Dipetalonema spp., while S. imperator only hosted the latter two. Temporal variation in prevalence was observed in T. minasense and Dipetalonema spp., confirming the necessity of a multi-year study to evaluate parasite-host relationships in this system. Although callitrichids display a distinct reproductive dominance hierarchy, characterized by single breeding females that typically mate polyandrously and can suppress the reproduction of subdominant females, logistic models did not identify sex or breeding status as determining factors in the presence of these parasites. However, age class had a positive effect on infection with M. mariae and T. minasense, and adults demonstrated higher parasite species richness than juveniles or sub-adults across both species. Body weight had a positive effect on the presence of Dipetalonema spp. The inclusion of co-infection variables in statistical models of parasite presence/absence data improved model fit for two of three parasites. This study verifies the importance and need for broad spectrum and long-term screening of parasite assemblages of natural host populations.
Collapse
Affiliation(s)
- Gideon A. Erkenswick
- Department of Biology and Whitney R. Harris World Ecology Center, University of Missouri-St. Louis, One University Blvd., Saint Louis, MO 63121, USA
- Field Projects International, 7331 Murdoch Ave, Saint Louis, MO 63119, USA
| | - Mrinalini Watsa
- Field Projects International, 7331 Murdoch Ave, Saint Louis, MO 63119, USA
- Department of Anthropology, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO 63130, USA
| | - Alfonso S. Gozalo
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole Dmytryk
- Department of Biology and Whitney R. Harris World Ecology Center, University of Missouri-St. Louis, One University Blvd., Saint Louis, MO 63121, USA
| | - Patricia G. Parker
- Department of Biology and Whitney R. Harris World Ecology Center, University of Missouri-St. Louis, One University Blvd., Saint Louis, MO 63121, USA
- WildCare Institute, Saint Louis Zoo, One Government Dr., Saint Louis, MO 63110, USA
| |
Collapse
|
30
|
Dahmani M, Davoust B, Tahir D, Raoult D, Fenollar F, Mediannikov O. Molecular investigation and phylogeny of Anaplasmataceae species infecting domestic animals and ticks in Corsica, France. Parasit Vectors 2017; 10:302. [PMID: 28645313 PMCID: PMC5481957 DOI: 10.1186/s13071-017-2233-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/06/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUNDS Corsica is a French island situated in the Mediterranean Sea. The island provides suitable natural conditions to study disease ecology, especially tick-borne diseases and emerging diseases in animals and ticks. The family Anaplasmataceae is a member of the order Rickettsiales; it includes the genera Anaplasma, Ehrlichia, Neorickettsia and Wolbachia. Anaplasmosis and ehrlichiosis traditionally refer to diseases caused by obligate intracellular bacteria of the genera Anaplasma and Ehrlichia. The aim of this study was to identify and estimate the prevalence of Anaplasmataceae species infecting domestic animals and ticks in Corsica. METHODS In this study, 458 blood samples from sheep, cattle, horses, goats, dogs, and 123 ticks removed from cattle, were collected in Corsica. Quantitative real-time PCR screening and genetic characterisation of Anaplasmataceae bacteria were based on the 23S rRNA, rpoB and groEl genes. RESULTS Two tick species were collected in the present study: Rhipicephalus bursa (118) and Hyalomma marginatum marginatum (5). Molecular investigation showed that 32.1% (147/458) of blood samples were positive for Anaplasmataceae infection. Anaplasma ovis was identified in 42.3% (93/220) of sheep. Anaplasma marginale was amplified from 100% (12/12) of cattle and two R. bursa (2/123). Several potentially new species were also identified: Anaplasma cf. ovis, "Candidatus Anaplasma corsicanum", "Candidatus Anaplasma mediterraneum" were amplified from 17.3% (38/220) of sheep, and Anaplasma sp. marginale-like was amplified from 80% (4/5) of goats. Finally, one R. bursa tick was found to harbour the DNA of E. canis. All samples from horses and dogs were negative for Anaplasmataceae infection. CONCLUSIONS To our knowledge, this study is the first epidemiological survey on Anaplasmataceae species infecting animals and ticks in Corsica and contributes toward the identification of current Anaplasmataceae species circulating in Corsica.
Collapse
Affiliation(s)
- Mustapha Dahmani
- Aix Marseille Univ, CNRS, IRD, INSERM, AP-HM, URMITE, IHU - Méditerranée Infection, Marseille, France
| | - Bernard Davoust
- Aix Marseille Univ, CNRS, IRD, INSERM, AP-HM, URMITE, IHU - Méditerranée Infection, Marseille, France
| | - Djamel Tahir
- Aix Marseille Univ, CNRS, IRD, INSERM, AP-HM, URMITE, IHU - Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix Marseille Univ, CNRS, IRD, INSERM, AP-HM, URMITE, IHU - Méditerranée Infection, Marseille, France
| | - Florence Fenollar
- Aix Marseille Univ, CNRS, IRD, INSERM, AP-HM, URMITE, IHU - Méditerranée Infection, Marseille, France
| | - Oleg Mediannikov
- Aix Marseille Univ, CNRS, IRD, INSERM, AP-HM, URMITE, IHU - Méditerranée Infection, Marseille, France
| |
Collapse
|
31
|
Bahbahani H, Tijjani A, Mukasa C, Wragg D, Almathen F, Nash O, Akpa GN, Mbole-Kariuki M, Malla S, Woolhouse M, Sonstegard T, Van Tassell C, Blythe M, Huson H, Hanotte O. Signatures of Selection for Environmental Adaptation and Zebu × Taurine Hybrid Fitness in East African Shorthorn Zebu. Front Genet 2017. [PMID: 28642786 PMCID: PMC5462927 DOI: 10.3389/fgene.2017.00068] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The East African Shorthorn Zebu (EASZ) cattle are ancient hybrid between Asian zebu × African taurine cattle preferred by local farmers due to their adaptability to the African environment. The genetic controls of these adaptabilities are not clearly understood yet. Here, we genotyped 92 EASZ samples from Kenya (KEASZ) with more than 770,000 SNPs and sequenced the genome of a pool of 10 KEASZ. We observe an even admixed autosomal zebu × taurine genomic structure in the population. A total of 101 and 165 candidate regions of positive selection, based on genome-wide SNP analyses (meta-SS, Rsb, iHS, and ΔAF) and pooled heterozygosity (Hp) full genome sequence analysis, are identified, in which 35 regions are shared between them. A total of 142 functional variants, one novel, have been detected within these regions, in which 30 and 26 were classified as of zebu and African taurine origins, respectively. High density genome-wide SNP analysis of zebu × taurine admixed cattle populations from Uganda and Nigeria show that 25 of these regions are shared between KEASZ and Uganda cattle, and seven regions are shared across the KEASZ, Uganda, and Nigeria cattle. The identification of common candidate regions allows us to fine map 18 regions. These regions intersect with genes and QTL associated with reproduction and environmental stress (e.g., immunity and heat stress) suggesting that the genome of the zebu × taurine admixed cattle has been uniquely selected to maximize hybrid fitness both in terms of reproduction and survivability.
Collapse
Affiliation(s)
- Hussain Bahbahani
- Department of Biological Sciences, Faculty of Science, Kuwait UniversityKuwait, Kuwait
| | - Abdulfatai Tijjani
- School of Life Sciences, University of NottinghamNottingham, United Kingdom.,Centre for Genomics Research and Innovation, National Biotechnology Development AgencyAbuja, Nigeria
| | | | - David Wragg
- Centre for Tropical Livestock Genetics and Health, Roslin InstituteEdinburgh, United Kingdom
| | - Faisal Almathen
- Department of Veterinary Public Health and Animal Husbandry, College of Veterinary Medicine, King Faisal UniversityAl-Hasa, Saudi Arabia
| | - Oyekanmi Nash
- Centre for Genomics Research and Innovation, National Biotechnology Development AgencyAbuja, Nigeria
| | - Gerald N Akpa
- Department of Animal Science, Ahmadu Bello UniversityZaria, Nigeria
| | - Mary Mbole-Kariuki
- School of Life Sciences, University of NottinghamNottingham, United Kingdom
| | - Sunir Malla
- Deep Seq Department, University of NottinghamNottingham, United Kingdom
| | - Mark Woolhouse
- Ashworth Laboratories, Centre for Immunity, Infection and Evolution, University of EdinburghEdinburgh, United Kingdom
| | | | - Curtis Van Tassell
- Animal Genomics and Improvement Laboratory, United States Department of Agriculture, Agricultural Research ServiceBeltsville, MD, United States
| | - Martin Blythe
- Deep Seq Department, University of NottinghamNottingham, United Kingdom
| | - Heather Huson
- Animal Genomics and Improvement Laboratory, United States Department of Agriculture, Agricultural Research ServiceBeltsville, MD, United States
| | - Olivier Hanotte
- School of Life Sciences, University of NottinghamNottingham, United Kingdom.,International Livestock Research Institute (ILRI)Addis Ababa, Ethiopia
| |
Collapse
|
32
|
Leahy E, Bronsvoort B, Gamble L, Gibson A, Kaponda H, Mayer D, Mazeri S, Shervell K, Sargison N. Proof of concept of faecal egg nematode counting as a practical means of veterinary engagement with planned livestock health management in a lower income country. Ir Vet J 2017; 70:16. [PMID: 28588763 PMCID: PMC5457739 DOI: 10.1186/s13620-017-0094-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/30/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The wellbeing and livelihood of farmers in impoverished regions of the world is intrinsically linked to the health and welfare of their livestock; hence improved animal health is a pragmatic component of poverty alleviation. Prerequisite knowledge and understanding of the animal health challenges facing cattle keepers in Malawi is constrained by the lack of veterinary infrastructure, which inevitably accompanies under-resourced rural development in a poor country. METHODS We collaborated with public and private paraveterinary services to locate 62 village Zebu calves and 60 dairy co-operative calves dispersed over a wide geographical area. All calves were visited twice about 2 to 3 weeks apart, when they were clinically examined and faecal samples were collected. The calves were treated with 7.5 mg/kg of a locally-available albendazole drench on the first visit, and pre- and post- treatment trichostrongyle and Toxocara faecal egg counts were performed using a modified McMaster method. RESULTS Our clinical findings point towards a generally poor level of animal health, implying a role of ticks and tick-transmitted diseases in village calves and need for improvement in neonatal calf husbandry in the dairy co-operative holdings. High faecal trichostrongyle egg counts were not intuitive, based on our interpretation of the animal management information that was provided. This shows the need for better understanding of nematode parasite epidemiology within the context of local husbandry and environmental conditions. The albendazole anthelmintic was effective against Toxocara, while efficacy against trichostrongyle nematodes was poor in both village and dairy co-operative calves, demonstrating the need for further research to inform sustainable drug use. CONCLUSIONS Here we describe the potential value of faecal nematode egg counting as a platform for communicating with and gaining access to cattle keepers and their animals, respectively, in southern Malawi, with the aim of providing informative background knowledge and understanding that may aid in the establishment of effective veterinary services in an under-resourced community.
Collapse
Affiliation(s)
- Eithne Leahy
- Worldwide Veterinary Service, 14 Wimborne Street, Cranborne, Dorset BH21 5PP UK
| | - Barend Bronsvoort
- Royal (Dick) School of Veterinary Studies, Easter Bush Veterinary Centre, University of Edinburgh, Roslin, Midlothian EH25 9RG UK.,The Epidemiology, Economics and Risk Assessment (EERA) Group, The Roslin Institute, Easter Bush, Roslin, Midlothian EH26 9RG UK
| | - Luke Gamble
- Worldwide Veterinary Service, 14 Wimborne Street, Cranborne, Dorset BH21 5PP UK
| | | | - Henderson Kaponda
- Blantyre District Agricultural Development Office, Kunthembwe EPA, Malawi
| | - Dagmar Mayer
- Worldwide Veterinary Service, 14 Wimborne Street, Cranborne, Dorset BH21 5PP UK
| | - Stella Mazeri
- Royal (Dick) School of Veterinary Studies, Easter Bush Veterinary Centre, University of Edinburgh, Roslin, Midlothian EH25 9RG UK.,The Epidemiology, Economics and Risk Assessment (EERA) Group, The Roslin Institute, Easter Bush, Roslin, Midlothian EH26 9RG UK
| | | | - Neil Sargison
- Royal (Dick) School of Veterinary Studies, Easter Bush Veterinary Centre, University of Edinburgh, Roslin, Midlothian EH25 9RG UK
| |
Collapse
|
33
|
Friesen OC, Poulin R, Lagrue C. Differential impacts of shared parasites on fitness components among competing hosts. Ecol Evol 2017; 7:4682-4693. [PMID: 28690798 PMCID: PMC5496554 DOI: 10.1002/ece3.3062] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 04/13/2017] [Accepted: 04/19/2017] [Indexed: 12/04/2022] Open
Abstract
Effects of parasites on individual hosts can eventually translate to impacts on host communities. In particular, parasitism can differentially affect host fitness among sympatric and interacting host species. We examined whether the impact of shared parasites varied among host species within the same community. Specifically, we looked at the impacts of the acanthocephalan Acanthocephalus galaxii, the trematodes Coitocaecum parvum and Maritrema poulini, and the nematode Hedruris spinigera, on three host species: the amphipods, Paracalliope fluviatilis and Paracorophium excavatum, and the isopod, Austridotea annectens. We assessed parasite infection levels in the three host species and tested for effects on host survival, behavior, probability of pairing, and fecundity. Maritrema poulini and C. parvum were most abundant in P. excavatum but had no effect on its survival, whereas they negatively affected the survival of P. fluviatilis, the other amphipod. Female amphipods carrying young had higher M. poulini and C. parvum abundance than those without, yet the number of young carried was not linked to parasite abundance. Behavior of the isopod A. annectens was affected by M. poulini infection; more heavily infected individuals were more active. Paracorophium excavatum moved longer distances when abundance of C. parvum was lower, yet no relationship existed with respect to infection by both M. poulini and C. parvum. The differential effects of parasites on amphipods and isopods may lead to community‐wide effects. Understanding the consequences of parasitic infection and differences among host species is key to gaining greater insight into the role of parasite mediation in ecosystem dynamics.
Collapse
Affiliation(s)
- Olwyn C Friesen
- Department of Zoology University of Otago Dunedin New Zealand
| | - Robert Poulin
- Department of Zoology University of Otago Dunedin New Zealand
| | - Clément Lagrue
- Department of Zoology University of Otago Dunedin New Zealand
| |
Collapse
|
34
|
O'Connor AM, Sargeant JM, Dohoo IR, Erb HN, Cevallos M, Egger M, Ersbøll AK, Martin SW, Nielsen LR, Pearl DL, Pfeiffer DU, Sanchez J, Torrence ME, Vigre H, Waldner C, Ward MP. Explanation and Elaboration Document for the
STROBE
‐Vet Statement: Strengthening the Reporting of Observational Studies in Epidemiology – Veterinary Extension. Zoonoses Public Health 2016; 63:662-698. [DOI: 10.1111/zph.12315] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Indexed: 01/10/2023]
Affiliation(s)
- A. M. O'Connor
- Department of Veterinary Diagnostic and Production Animal Medicine Iowa State University Ames IA USA
| | - J. M. Sargeant
- Centre for Public Health and Zoonoses University of Guelph Guelph ON Canada
- Department of Population Medicine Ontario Veterinary College Guelph ON Canada
| | - I. R. Dohoo
- Centre for Veterinary Epidemiological Research University of Prince Edward Island Charlottetown PEI Canada
| | - H. N. Erb
- Department of Population Medicine and Diagnostic Sciences Cornell University Ithaca NY USA
| | - M. Cevallos
- Institute of Social and Preventive Medicine University of Bern BernSwitzerland
| | - M. Egger
- Institute of Social and Preventive Medicine University of Bern BernSwitzerland
| | - A. K. Ersbøll
- National Institute of Public Health University of Southern Denmark Copenhagen Denmark
| | - S. W. Martin
- Department of Population Medicine Ontario Veterinary College Guelph ON Canada
| | - L. R. Nielsen
- Section for Animal Welfare and Disease Control University of Copenhagen Copenhagen Denmark
| | - D. L. Pearl
- Department of Population Medicine Ontario Veterinary College Guelph ON Canada
| | - D. U. Pfeiffer
- Department of Production and Population Health Royal Veterinary College London UK
| | - J. Sanchez
- Department of Health Management University of Prince Edward Island Charlottetown PEI Canada
| | - M. E. Torrence
- Food and Drug Administration Center for Food Safety and Applied Nutrition College Park MD USA
| | - H. Vigre
- National Food Institute Technical University of Denmark Lyngby Denmark
| | - C. Waldner
- Department of Large Animal Clinical Sciences Western College of Veterinary Medicine University of Saskatchewan Saskatoon SK Canada
| | - M. P. Ward
- Faculty of Veterinary Science The University of Sydney Sydney NSWAustralia
| |
Collapse
|
35
|
O'Connor AM, Sargeant JM, Dohoo IR, Erb HN, Cevallos M, Egger M, Ersbøll AK, Martin SW, Nielsen LR, Pearl DL, Pfeiffer DU, Sanchez J, Torrence ME, Vigre H, Waldner C, Ward MP. Explanation and Elaboration Document for the STROBE-Vet Statement: Strengthening the Reporting of Observational Studies in Epidemiology-Veterinary Extension. J Vet Intern Med 2016; 30:1896-1928. [PMID: 27859752 PMCID: PMC5115190 DOI: 10.1111/jvim.14592] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 06/24/2016] [Accepted: 08/29/2016] [Indexed: 01/15/2023] Open
Abstract
The STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) statement was first published in 2007 and again in 2014. The purpose of the original STROBE was to provide guidance for authors, reviewers, and editors to improve the comprehensiveness of reporting; however, STROBE has a unique focus on observational studies. Although much of the guidance provided by the original STROBE document is directly applicable, it was deemed useful to map those statements to veterinary concepts, provide veterinary examples, and highlight unique aspects of reporting in veterinary observational studies. Here, we present the examples and explanations for the checklist items included in the STROBE-Vet statement. Thus, this is a companion document to the STROBE-Vet statement methods and process document (JVIM_14575 "Methods and Processes of Developing the Strengthening the Reporting of Observational Studies in Epidemiology-Veterinary (STROBE-Vet) Statement" undergoing proofing), which describes the checklist and how it was developed.
Collapse
Affiliation(s)
- A M O'Connor
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA
| | - J M Sargeant
- Centre for Public Health and Zoonoses, University of Guelph, Guelph, ON, Canada.,Department of Population Medicine, Ontario Veterinary College, Guelph, ON, Canada
| | - I R Dohoo
- Centre for Veterinary Epidemiological Research, University of Prince Edward Island, Charlottetown, PEI, Canada
| | - H N Erb
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY
| | - M Cevallos
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - M Egger
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - A K Ersbøll
- National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
| | - S W Martin
- Department of Population Medicine, Ontario Veterinary College, Guelph, ON, Canada
| | - L R Nielsen
- Section for Animal Welfare and Disease Control, University of Copenhagen, Copenhagen, Denmark
| | - D L Pearl
- Department of Population Medicine, Ontario Veterinary College, Guelph, ON, Canada
| | - D U Pfeiffer
- Department of Production and Population Health, Royal Veterinary College, London, UK
| | - J Sanchez
- Department of Health Management, University of Prince Edward Island, Charlottetown, PEI, Canada
| | - M E Torrence
- Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD
| | - H Vigre
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - C Waldner
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - M P Ward
- Faculty of Veterinary Science, The University of Sydney, Sydney, Australia
| |
Collapse
|
36
|
Rehman ZU, Knight JS, Koolaard J, Simpson HV, Pernthaner A. Immunomodulatory effects of adult Haemonchus contortus excretory/secretory products on human monocyte-derived dendritic cells. Parasite Immunol 2016; 37:657-69. [PMID: 26457886 DOI: 10.1111/pim.12288] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 10/05/2015] [Indexed: 12/13/2022]
Abstract
The levels of expression of surface molecules and release of cytokines and chemokines of human monocyte-derived dendritic cells were determined after their exposure to adult H. contortus excretory/secretory (ES) products or a combination of ES products and bacterial lipopolysaccharide (LPS). Worm products provoked a weak response and only partial maturation of the dendritic cells, consistent with the hyporesponsiveness and more tolerogenic immune environment present in parasitized animals and humans. Co-stimulation with LPS demonstrated that H. contortus secretions, like those of other helminths, contain immunomodulators capable of reducing some aspects of the strong T(H)1/T(H)2 response evoked by bacterial LPS. There were significant reductions in the release of some cytokine/chemokines by LPS-stimulated mdDCs and a trend (although not significant at P < 0.05) for reduced expression levels of CD40, CD80 and HLA-DR. A prominent feature was the variability in responses of dendritic cells from the four donors, even on different days in repeat experiments, suggesting that generalized conclusions may be difficult to make, except in genetically related animals. Such observations may therefore be applicable only to restricted populations. In addition, previous exposure to parasites in a target population for immunomodulatory therapy may be an important factor in assessing the likelihood of adverse reactions or failures in the treatment to worm therapy.
Collapse
Affiliation(s)
- Z U Rehman
- Institute of Veterinary Animal and Biological Sciences, Massey University, Palmerston North, New Zealand
| | - J S Knight
- The Hopkirk Research Institute, AgResearch Ltd, Palmerston North, New Zealand
| | - J Koolaard
- Grasslands Research Centre, AgResearch Ltd, Palmerston North, New Zealand
| | - H V Simpson
- Institute of Veterinary Animal and Biological Sciences, Massey University, Palmerston North, New Zealand
| | - A Pernthaner
- The Hopkirk Research Institute, AgResearch Ltd, Palmerston North, New Zealand
| |
Collapse
|
37
|
The biology of Theileria parva and control of East Coast fever – Current status and future trends. Ticks Tick Borne Dis 2016; 7:549-64. [DOI: 10.1016/j.ttbdis.2016.02.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 01/02/2023]
|
38
|
Vaumourin E, Vourc'h G, Gasqui P, Vayssier-Taussat M. The importance of multiparasitism: examining the consequences of co-infections for human and animal health. Parasit Vectors 2015; 8:545. [PMID: 26482351 PMCID: PMC4617890 DOI: 10.1186/s13071-015-1167-9] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/14/2015] [Indexed: 11/23/2022] Open
Abstract
Most parasites co-occur with other parasites, although the importance of such multiparasitism has only recently been recognised. Co-infections may result when hosts are independently infected by different parasites at the same time or when interactions among parasite species facilitate co-occurrence. Such interactions can have important repercussions on human or animal health because they can alter host susceptibility, infection duration, transmission risks, and clinical symptoms. These interactions may be synergistic or antagonistic and thus produce diverse effects in infected humans and animals. Interactions among parasites strongly influence parasite dynamics and therefore play a major role in structuring parasite populations (both within and among hosts) as well as host populations. However, several methodological challenges remain when it comes to detecting parasite interactions. The goal of this review is to summarise current knowledge on the causes and consequences of multiparasitism and to discuss the different methods and tools that researchers have developed to study the factors that lead to multiparasitism. It also identifies new research directions to pursue.
Collapse
Affiliation(s)
- Elise Vaumourin
- UR346 Animal Epidemiology Research Unit, INRA, Saint Genès Champanelle, France. .,USC BIPAR, INRA-ANSES-ENVA, Maisons-Alfort, France.
| | - Gwenaël Vourc'h
- UR346 Animal Epidemiology Research Unit, INRA, Saint Genès Champanelle, France.
| | - Patrick Gasqui
- UR346 Animal Epidemiology Research Unit, INRA, Saint Genès Champanelle, France.
| | | |
Collapse
|
39
|
Bahbahani H, Clifford H, Wragg D, Mbole-Kariuki MN, Van Tassell C, Sonstegard T, Woolhouse M, Hanotte O. Signatures of positive selection in East African Shorthorn Zebu: A genome-wide single nucleotide polymorphism analysis. Sci Rep 2015; 5:11729. [PMID: 26130263 PMCID: PMC4486961 DOI: 10.1038/srep11729] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 06/03/2015] [Indexed: 12/02/2022] Open
Abstract
The small East African Shorthorn Zebu (EASZ) is the main indigenous cattle across East Africa. A recent genome wide SNP analysis revealed an ancient stable African taurine x Asian zebu admixture. Here, we assess the presence of candidate signatures of positive selection in their genome, with the aim to provide qualitative insights about the corresponding selective pressures. Four hundred and twenty-five EASZ and four reference populations (Holstein-Friesian, Jersey, N’Dama and Nellore) were analysed using 46,171 SNPs covering all autosomes and the X chromosome. Following FST and two extended haplotype homozygosity-based (iHS and Rsb) analyses 24 candidate genome regions within 14 autosomes and the X chromosome were revealed, in which 18 and 4 were previously identified in tropical-adapted and commercial breeds, respectively. These regions overlap with 340 bovine QTL. They include 409 annotated genes, in which 37 were considered as candidates. These genes are involved in various biological pathways (e.g. immunity, reproduction, development and heat tolerance). Our results support that different selection pressures (e.g. environmental constraints, human selection, genome admixture constrains) have shaped the genome of EASZ. We argue that these candidate regions represent genome landmarks to be maintained in breeding programs aiming to improve sustainable livestock productivity in the tropics.
Collapse
Affiliation(s)
- Hussain Bahbahani
- 1] School of Life Sciences, University of Nottingham, NG7 2RD, Nottingham, UK [2] Department of Biological Sciences, Faculty of Science, Kuwait University, Safat 13060, Kuwait
| | - Harry Clifford
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX, Oxford, UK
| | - David Wragg
- Institut National de la Recherche Agronomique (INRA), UMR 1338 Génétique, Physiologie et Systèmes d'Elevage (GenPhySE), 31326 Castanet Tolosan, France
| | - Mary N Mbole-Kariuki
- African Union - InterAfrican Bureau of Animal Resources (AU-IBAR), P. O. Box 30786, 00100 Nairobi, Kenya
| | - Curtis Van Tassell
- United States Department of Agriculture, Agricultural Research Service, Animal Genomics and Improvement Laboratory, USA
| | - Tad Sonstegard
- United States Department of Agriculture, Agricultural Research Service, Animal Genomics and Improvement Laboratory, USA
| | - Mark Woolhouse
- Centre for Immunity, Infection &Evolution, Ashworth Laboratories, Kings Buildings, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Olivier Hanotte
- School of Life Sciences, University of Nottingham, NG7 2RD, Nottingham, UK
| |
Collapse
|
40
|
Woolhouse MEJ, Thumbi SM, Jennings A, Chase-Topping M, Callaby R, Kiara H, Oosthuizen MC, Mbole-Kariuki MN, Conradie I, Handel IG, Poole EJ, Njiiri E, Collins NE, Murray G, Tapio M, Auguet OT, Weir W, Morrison WI, Kruuk LEB, Bronsvoort BMDC, Hanotte O, Coetzer K, Toye PG. Co-infections determine patterns of mortality in a population exposed to parasite infection. SCIENCE ADVANCES 2015; 1:e1400026. [PMID: 26601143 PMCID: PMC4643819 DOI: 10.1126/sciadv.1400026] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/11/2015] [Indexed: 05/11/2023]
Abstract
Many individual hosts are infected with multiple parasite species, and this may increase or decrease the pathogenicity of the infections. This phenomenon is termed heterologous reactivity and is potentially an important determinant of both patterns of morbidity and mortality and of the impact of disease control measures at the population level. Using infections with Theileria parva (a tick-borne protozoan, related to Plasmodium) in indigenous African cattle [where it causes East Coast fever (ECF)] as a model system, we obtain the first quantitative estimate of the effects of heterologous reactivity for any parasitic disease. In individual calves, concurrent co-infection with less pathogenic species of Theileria resulted in an 89% reduction in mortality associated with T. parva infection. Across our study population, this corresponds to a net reduction in mortality due to ECF of greater than 40%. Using a mathematical model, we demonstrate that this degree of heterologous protection provides a unifying explanation for apparently disparate epidemiological patterns: variable disease-induced mortality rates, age-mortality profiles, weak correlations between the incidence of infection and disease (known as endemic stability), and poor efficacy of interventions that reduce exposure to multiple parasite species. These findings can be generalized to many other infectious diseases, including human malaria, and illustrate how co-infections can play a key role in determining population-level patterns of morbidity and mortality due to parasite infections.
Collapse
Affiliation(s)
- Mark E. J. Woolhouse
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Ashworth Laboratories, Kings Buildings, West Mains Road, Edinburgh EH9 3JT, UK
- Corresponding author. E-mail:
| | - Samuel M. Thumbi
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Ashworth Laboratories, Kings Buildings, West Mains Road, Edinburgh EH9 3JT, UK
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164–7090, USA
| | - Amy Jennings
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, The Roslin Building, Easter Bush, Midlothian EH25 9RG, UK
- The Roslin Institute, University of Edinburgh, The Roslin Building, Easter Bush, Midlothian EH25 9RG, UK
| | - Margo Chase-Topping
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Ashworth Laboratories, Kings Buildings, West Mains Road, Edinburgh EH9 3JT, UK
| | - Rebecca Callaby
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Ashworth Laboratories, Kings Buildings, West Mains Road, Edinburgh EH9 3JT, UK
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - Henry Kiara
- International Livestock Research Institute, P.O. Box 30709, Nairobi 00100, Kenya
| | - Marinda C. Oosthuizen
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - Mary N. Mbole-Kariuki
- International Livestock Research Institute, P.O. Box 30709, Nairobi 00100, Kenya
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Ilana Conradie
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - Ian G. Handel
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, The Roslin Building, Easter Bush, Midlothian EH25 9RG, UK
- The Roslin Institute, University of Edinburgh, The Roslin Building, Easter Bush, Midlothian EH25 9RG, UK
| | - E. Jane Poole
- International Livestock Research Institute, P.O. Box 30709, Nairobi 00100, Kenya
| | - Evalyne Njiiri
- International Livestock Research Institute, P.O. Box 30709, Nairobi 00100, Kenya
| | - Nicola E. Collins
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - Gemma Murray
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Ashworth Laboratories, Kings Buildings, West Mains Road, Edinburgh EH9 3JT, UK
| | - Miika Tapio
- Natural Resources Institute Finland (Luke), Green technology, FI-31600 Jokioinen, Finland
| | - Olga Tosas Auguet
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Ashworth Laboratories, Kings Buildings, West Mains Road, Edinburgh EH9 3JT, UK
| | - Willie Weir
- Henry Wellcome Building, Institute of Biodiversity, Animal Health and Comparative Medicine, Garscube Campus, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - W. Ivan Morrison
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, The Roslin Building, Easter Bush, Midlothian EH25 9RG, UK
- The Roslin Institute, University of Edinburgh, The Roslin Building, Easter Bush, Midlothian EH25 9RG, UK
| | - Loeske E. B. Kruuk
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Ashworth Laboratories, Kings Buildings, West Mains Road, Edinburgh EH9 3JT, UK
- Division of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - B. Mark de C. Bronsvoort
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, The Roslin Building, Easter Bush, Midlothian EH25 9RG, UK
- The Roslin Institute, University of Edinburgh, The Roslin Building, Easter Bush, Midlothian EH25 9RG, UK
| | - Olivier Hanotte
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Koos Coetzer
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - Philip G. Toye
- International Livestock Research Institute, P.O. Box 30709, Nairobi 00100, Kenya
| |
Collapse
|
41
|
Genetic diversity and phylogenetic analysis of Tams1 of Theileria annulata isolates from three continents between 2000 and 2012. Cent Eur J Immunol 2014; 39:476-84. [PMID: 26155166 PMCID: PMC4439959 DOI: 10.5114/ceji.2014.47732] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/24/2014] [Indexed: 11/17/2022] Open
Abstract
Theileria annulata, which is part of the Theileria sergenti/Theileria buffeli/Theileria orientalis group, preferentially infects cattle and results in high mortality and morbidity in the Mediterranean, Middle East, and Central Asia. The polypeptide Tams1 is an immunodominant major merozoite piroplasm surface antigen of T. annulata that could be used as a marker for epidemiological studies and phylogenetic analysis. In the present study, a total of 155 Tams1 sequences were investigated for genetic diversity and phylogenetic relationships through phylogenetic analysis. Results showed that the Tams1 sequences were divided into two major groups and that distribution for some isolates also exhibited geographic specificity. As targeting polymorphic genes for parasite detection may result in underestimation of infection, polymerase chain reaction (PCR) assay using two different probes targeting tams-1 genes of these two groups can be more credible. In addition, the direction of the spread of the disease was discovered to be from the Mediterranean or the tropical zone to the Eurasian peninsula, Middle East, Southern Asia, and Africa, particularly for Group 2. A similar occurrence was also found between the Ms1 gene of Theileria lestoquardi and the Tams1 gene of T. annulata, which explains cross-immunogenicity to a certain extent. However, no potential glycosylation site in the Tams1 of T. annulata was found in this study, which illustrated that instead of N-glycosylation, other modifications have more significant effects on the immunogenicity of the Tams1 protein.
Collapse
|
42
|
Gorsich EE, Ezenwa VO, Jolles AE. Nematode-coccidia parasite co-infections in African buffalo: Epidemiology and associations with host condition and pregnancy. Int J Parasitol Parasites Wildl 2014; 3:124-34. [PMID: 25161911 PMCID: PMC4142258 DOI: 10.1016/j.ijppaw.2014.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/06/2014] [Accepted: 05/28/2014] [Indexed: 01/13/2023]
Abstract
Co-infections are common in natural populations and interactions among co-infecting parasites can significantly alter the transmission and host fitness costs of infection. Because both exposure and susceptibility vary over time, predicting the consequences of parasite interactions on host fitness and disease dynamics may require detailed information on their effects across different environmental (season) and host demographic (age, sex) conditions. This study examines five years of seasonal health and co-infection patterns in African buffalo (Syncerus caffer). We use data on two groups of gastrointestinal parasites, coccidia and nematodes, to test the hypothesis that co-infection and season interact to influence (1) parasite prevalence and intensity and (2) three proxies for host fitness: host pregnancy, host body condition, and parasite aggregation. Our results suggest that season-dependent interactions between nematodes and coccidia affect the distribution of infections. Coccidia prevalence, coccidia intensity and nematode prevalence were sensitive to factors that influence host immunity and exposure (age, sex, and season) but nematode intensity was most strongly predicted by co-infection with coccidia and its interaction with season. The influence of co-infection on host body condition and parasite aggregation occurred in season-dependent manner. Co-infected buffalo in the early wet season were in worse condition, had a less aggregated distribution of nematode parasites, and lower nematode infection intensity than buffalo infected with nematodes alone. We did not detect an effect of infection or co-infection on host pregnancy. These results suggest that demographic and seasonal variation may mediate the effects of parasites, and their interactions, on the distribution and fitness costs of infection.
Collapse
Affiliation(s)
- Erin E. Gorsich
- Department of Integrative Biology, Oregon State University, Corvallis, USA
| | - Vanessa O. Ezenwa
- Odum School of Ecology and Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, USA
| | - Anna E. Jolles
- Department of Integrative Biology, Oregon State University, Corvallis, USA
- Department of Biomedical Sciences, Oregon State University, Corvallis, USA
| |
Collapse
|
43
|
Bettridge JM, Lynch SE, Brena MC, Melese K, Dessie T, Terfa ZG, Desta TT, Rushton S, Hanotte O, Kaiser P, Wigley P, Christley RM. Infection-interactions in Ethiopian village chickens. Prev Vet Med 2014; 117:358-66. [PMID: 25085600 PMCID: PMC4235779 DOI: 10.1016/j.prevetmed.2014.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/12/2014] [Accepted: 07/03/2014] [Indexed: 11/19/2022]
Abstract
Chickens raised under village production systems are exposed to a wide variety of pathogens, and current or previous infections may affect their susceptibility to further infections with another parasite, and/or can alter the manifestation of each infection. It is possible that co-infections may be as important as environmental risk factors. However, in cross-sectional studies, where the timing of infection is unknown, apparent associations between infections may be observed due to parasites sharing common risk factors. This study measured antibody titres to 3 viral (Newcastle disease, Marek's disease and infectious bursal disease) and 2 bacterial (Pasteurella multocida and Salmonella) diseases, and the infection prevalence of 3 families of endo- and ecto-parasites (Ascaridida, Eimeria and lice) in 1056 village chickens from two geographically distinct populations in Ethiopia. Samples were collected during 4 cross-sectional surveys, each approximately 6 months apart. Constrained ordination, a technique for analysis of ecological community data, was used to explore this complex dataset and enabled potential relationships to be uncovered and tested despite the different measurements used for the different parasites. It was found that only a small proportion of variation in the data could be explained by the risk factors measured. Very few birds (9/1280) were found to be seropositive to Newcastle disease. Positive relationships were identified between Pasteurella and Salmonella titres; and between Marek's disease and parasitic infections, and these two groups of diseases were correlated with females and males, respectively. This may suggest differences in the way that the immune systems of male and female chickens interact with these parasites. In conclusion, we find that a number of infectious pathogens and their interactions are likely to impact village chicken health and production. Control of these infections is likely to be of importance in future development planning.
Collapse
Affiliation(s)
- J M Bettridge
- Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Liverpool CH64 7TE, United Kingdom; International Livestock Research Institute, Addis Ababa, Ethiopia.
| | - S E Lynch
- Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Liverpool CH64 7TE, United Kingdom; International Livestock Research Institute, Addis Ababa, Ethiopia
| | - M C Brena
- Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Liverpool CH64 7TE, United Kingdom
| | - K Melese
- Debre Zeit Agricultural Research Centre, Ethiopian Institute for Agriculture Research, Debre Zeit, Ethiopia
| | - T Dessie
- International Livestock Research Institute, Addis Ababa, Ethiopia
| | - Z G Terfa
- Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Liverpool CH64 7TE, United Kingdom; International Livestock Research Institute, Addis Ababa, Ethiopia
| | - T T Desta
- International Livestock Research Institute, Addis Ababa, Ethiopia; Centre for Genetics and Genomics, School of Biology, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - S Rushton
- School of Biology, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| | - O Hanotte
- Centre for Genetics and Genomics, School of Biology, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - P Kaiser
- The Roslin Institute and Royal (Dick) School of Veterinary Science, University of Edinburgh, Midlothian EH25 9RG, United Kingdom
| | - P Wigley
- Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Liverpool CH64 7TE, United Kingdom
| | - R M Christley
- Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Liverpool CH64 7TE, United Kingdom; NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, L69 7BE, United Kingdom
| |
Collapse
|