1
|
Almeida EAB, Bossert S, Danforth BN, Porto DS, Freitas FV, Davis CC, Murray EA, Blaimer BB, Spasojevic T, Ströher PR, Orr MC, Packer L, Brady SG, Kuhlmann M, Branstetter MG, Pie MR. The evolutionary history of bees in time and space. Curr Biol 2023; 33:3409-3422.e6. [PMID: 37506702 DOI: 10.1016/j.cub.2023.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023]
Abstract
Bees are the most significant pollinators of flowering plants. This partnership began ca. 120 million years ago, but the uncertainty of how and when bees spread across the planet has greatly obscured investigations of this key mutualism. We present a novel analysis of bee biogeography using extensive new genomic and fossil data to demonstrate that bees originated in Western Gondwana (Africa and South America). Bees likely originated in the Early Cretaceous, shortly before the breakup of Western Gondwana, and the early evolution of any major bee lineage is associated with either the South American or African land masses. Subsequently, bees colonized northern continents via a complex history of vicariance and dispersal. The notable early absences from large landmasses, particularly in Australia and India, have important implications for understanding the assembly of local floras and diverse modes of pollination. How bees spread around the world from their hypothesized Southern Hemisphere origin parallels the histories of numerous flowering plant clades, providing an essential step to studying the evolution of angiosperm pollination syndromes in space and time.
Collapse
Affiliation(s)
- Eduardo A B Almeida
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil.
| | - Silas Bossert
- Department of Entomology, Washington State University, Pullman, WA 99164, USA; Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA.
| | - Bryan N Danforth
- Department of Entomology, Cornell University, Comstock Hall, Ithaca, NY 14853, USA
| | - Diego S Porto
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil; Finnish Museum of Natural History - LUOMUS, University of Helsinki, Helsinki 00014, Finland
| | - Felipe V Freitas
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil; Department of Entomology, Washington State University, Pullman, WA 99164, USA
| | - Charles C Davis
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Avenue, Cambridge, MA 02138, USA
| | - Elizabeth A Murray
- Department of Entomology, Washington State University, Pullman, WA 99164, USA; Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Bonnie B Blaimer
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA; Center for Integrative Biodiversity Discovery, Museum für Naturkunde, Leibniz-Institute for Evolution and Biodiversity Science, 10115 Berlin, Germany
| | - Tamara Spasojevic
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA; Life Sciences, Natural History Museum Basel, 4051 Basel, Switzerland; Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Patrícia R Ströher
- Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Paraná 81531-990, Brazil; Department of Anthropology and Archaeology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Michael C Orr
- Entomologie, Staatliches Museum für Naturkunde Stuttgart, 70191 Stuttgart, Germany; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Laurence Packer
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Seán G Brady
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Michael Kuhlmann
- Zoological Museum, University of Kiel, Hegewischstr. 3, 24105 Kiel, Germany
| | - Michael G Branstetter
- U.S. Department of Agriculture, Agricultural Research Service, Pollinating Insects Research Unit, Utah State University, Logan, UT 84322, USA
| | - Marcio R Pie
- Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Paraná 81531-990, Brazil; Department of Biology, Edge Hill University, St Helens Rd, Ormskirk, Lancashire L39 4QP, UK
| |
Collapse
|
2
|
Tsz Long Wong D, Norman H, Creedy TJ, Jordaens K, Moran KM, Young A, Mengual X, Skevington JH, Vogler AP. The phylogeny and evolutionary ecology of hoverflies (Diptera: Syrphidae) inferred from mitochondrial genomes. Mol Phylogenet Evol 2023; 184:107759. [PMID: 36921697 DOI: 10.1016/j.ympev.2023.107759] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023]
Abstract
Hoverflies (Diptera: Syrphidae) are a diverse group of pollinators and a major research focus in ecology, but their phylogenetic relationships remain incompletely known. Using a genome skimming approach we generated mitochondrial genomes for 91 species, capturing a wide taxonomic diversity of the family. To reduce the required amount of input DNA and overall cost of the library construction, sequencing and assembly was conducted on mixtures of specimens, which raises the problem of chimera formation of mitogenomes. We present a novel chimera detection test based on gene tree incongruence, but identified only a single mitogenome of chimeric origin. Together with existing data for a final set of 127 taxa, phylogenetic analysis on nucleotide and amino acid sequences using Maximum Likelihood and Bayesian Inference revealed a basal split of Microdontinae from all other syrphids. The remainder consists of several deep clades assigned to the subfamily Eristalinae in the current classification, including a clade comprising the subfamily Syrphinae (plus Pipizinae). These findings call for a re-definition of subfamilies, but basal nodes had insufficient support to allow such action. Molecular-clock dating placed the origin of the Syrphidae crown group in the mid-Cretaceous while the Eristalinae-Syrphinae clade likely originated near the K/Pg boundary. Transformation of larval life history characters on the tree suggests that Syrphidae initially had sap feeding larvae, which diversified greatly in diet and habitat association during the Eocene and Oligocene, coinciding with the diversification of angiosperms and the evolution of various insect groups used as larval host, prey, or mimicry models. Mitogenomes proved to be a powerful phylogenetic marker for studies of Syrphidae at subfamily and tribe levels, allowing dense taxon sampling that provided insight into the great ecological diversity and rapid evolution of larval life history traits of the hoverflies.
Collapse
Affiliation(s)
- Daniel Tsz Long Wong
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2BX, U.K; Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, U.K.
| | - Hannah Norman
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2BX, U.K; Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, U.K.
| | - Thomas J Creedy
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2BX, U.K; Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, U.K.
| | - Kurt Jordaens
- Department of Biology-Invertebrates Unit, Royal Museum for Central Africa, Joint Experimental Molecular Unit Leuvensesteenweg 13, B-3080 Tervuren, Belgium.
| | - Kevin M Moran
- Canadian National Collection of Insects, Arachnids and Nematodes, Agriculture and Agri-Food Canada, K.W. Neatby Building, 960 Carling Avenue, Ottawa, Ontario, ON K1A 0C6, Canada; Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, ON K1S 5B6, Canada.
| | - Andrew Young
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, ON N1G 2W1, Canada.
| | - Ximo Mengual
- Zoologisches Forschungsmuseum Alexander Koenig, Leibniz Institute for the Analysis of Biodiversity Change, Adenauerallee 127, 53113 Bonn, Germany.
| | - Jeffrey H Skevington
- Canadian National Collection of Insects, Arachnids and Nematodes, Agriculture and Agri-Food Canada, K.W. Neatby Building, 960 Carling Avenue, Ottawa, Ontario, ON K1A 0C6, Canada; Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, ON K1S 5B6, Canada.
| | - Alfried P Vogler
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2BX, U.K; Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, U.K.
| |
Collapse
|
3
|
Huang CH, Qi X, Chen D, Qi J, Ma H. Recurrent genome duplication events likely contributed to both the ancient and recent rise of ferns. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:433-455. [PMID: 31628713 DOI: 10.1111/jipb.12877] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/17/2019] [Indexed: 05/07/2023]
Abstract
Ferns, the second largest group of vascular plants, originated ~400 million years ago (Mya). They became dominant in the ancient Earth landscape before the angiosperms and are still important in current ecosystems. Many ferns have exceptionally high chromosome numbers, possibly resulting from whole-genome duplications (WGDs). However, WGDs have not been investigated molecularly across fern diversity. Here we detected and dated fern WGDs using a phylogenomic approach and by calculating synonymous substitution rates (Ks). We also investigated a possible correlation between proposed WGDs and shifts in species diversification rates. We identified 19 WGDs: three ancient events along the fern phylogenetic backbone that are shared by 66%-97% of extant ferns, with additional lineage-specific WGDs for eight orders, providing strong evidence for recurring genome duplications across fern evolutionary history. We also observed similar Ks peak values for more than half of these WGDs, with multiple WGDs occurring close to the Cretaceous (~145-66 Mya). Despite the repeated WGD events, the biodiversity of ferns declined during the Cretaceous, implying that other factors probably contributed to the floristic turnover from ferns to angiosperms. This study provides molecular evidence for recurring WGDs in ferns and offers important clues to the genomic evolutionary history of ferns.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Institute of Biodiversity Sciences, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Xinping Qi
- Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Institute of Biodiversity Sciences, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Duoyuan Chen
- Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Institute of Biodiversity Sciences, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Ji Qi
- Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Institute of Biodiversity Sciences, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Hong Ma
- Department of Biology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
4
|
Biotic and Abiotic Factors Associated with Colonies Mortalities of Managed Honey Bee (Apis mellifera). DIVERSITY 2019. [DOI: 10.3390/d11120237] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite the presence of a large number of pollinators of flowering plants worldwide, the European honey bee, Apis melifera, plays the most important role in the pollination of a number of crops, including all vegetables, non-food crops and oilseed crops, decorative and medical plants, and others. The experience of isolated cases of complete extinction of honey bees in individual regions has shown that this phenomenon leads to a dramatic pollination crisis and reduced ability or even total inability to grow insect-pollinated crops if relying solely on native, naturally occurring pollinators. Current scientific data indicate that the global bee extinction between the Cretaceous and the Paleogene (Cretaceous-Tertiary) occurred, which led to the disappearance of flowers because they could not produce viable fruit and germinate due to lack of pollination by bees or other animals. From the Middle Ages to the present day, there has been evidence that honey bees have always overcome the adverse factors affecting them throughout the ages, after which their population has fully recovered. This fact must be treated with great care given the emergence of a new, widespread stress factor in the second half of the 20th century—intoxication of beehives with antibiotics and acaricides, and treatment of crops with pesticides. Along with acute and chronic intoxication of bees and bee products, there are other new major stressors of global importance reducing the number of bee colonies: widespread prevalence of pathogenic organisms and pest beetles, climate change and adverse climatic conditions, landscape changes and limitation of natural habitats, intensification of agricultural production, inadequate nutrition, and introduction of invasive species. This report summarizes the impact of individual negative factors on the health and behavior of bees to limit the combined effects of the above stressors.
Collapse
|
5
|
Nyman T, Onstein RE, Silvestro D, Wutke S, Taeger A, Wahlberg N, Blank SM, Malm T. The early wasp plucks the flower: disparate extant diversity of sawfly superfamilies (Hymenoptera: ‘Symphyta’) may reflect asynchronous switching to angiosperm hosts. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz071] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractThe insect order Hymenoptera originated during the Permian nearly 300 Mya. Ancestrally herbivorous hymenopteran lineages today make up the paraphyletic suborder ‘Symphyta’, which encompasses c. 8200 species with very diverse host-plant associations. We use phylogeny-based statistical analyses to explore the drivers of diversity dynamics within the ‘Symphyta’, with a particular focus on the hypothesis that diversification of herbivorous insects has been driven by the explosive radiation of angiosperms during and after the Cretaceous. Our ancestral-state estimates reveal that the first symphytans fed on gymnosperms, and that shifts onto angiosperms and pteridophytes – and back – have occurred at different time intervals in different groups. Trait-dependent analyses indicate that average net diversification rates do not differ between symphytan lineages feeding on angiosperms, gymnosperms or pteridophytes, but trait-independent models show that the highest diversification rates are found in a few angiosperm-feeding lineages that may have been favoured by the radiations of their host taxa during the Cenozoic. Intriguingly, lineages-through-time plots show signs of an early Cretaceous mass extinction, with a recovery starting first in angiosperm-associated clades. Hence, the oft-invoked assumption of herbivore diversification driven by the rise of flowering plants may overlook a Cretaceous global turnover in insect herbivore communities during the rapid displacement of gymnosperm- and pteridophyte-dominated floras by angiosperms.
Collapse
Affiliation(s)
- Tommi Nyman
- Department of Ecosystems in the Barents Region, Norwegian Institute of Bioeconomy Research, Svanvik, Norway
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Renske E Onstein
- German Centre for Integrative Biodiversity Research (iDiv) Halle–Jena–Leipzig, Leipzig, Germany
| | - Daniele Silvestro
- Department of Biological and Environmental Sciences, University of Gothenburg and Gothenburg Global Biodiversity Centre, Sweden
| | - Saskia Wutke
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Andreas Taeger
- Senckenberg Deutsches Entomologisches Institut Müncheberg, Germany
| | | | - Stephan M Blank
- Senckenberg Deutsches Entomologisches Institut Müncheberg, Germany
| | - Tobias Malm
- Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden
| |
Collapse
|
6
|
Mikát M, Franchino C, Rehan SM. Sociodemographic variation in foraging behavior and the adaptive significance of worker production in the facultatively social small carpenter bee, Ceratina calcarata. Behav Ecol Sociobiol 2017. [DOI: 10.1007/s00265-017-2365-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Zeng L, Zhang N, Zhang Q, Endress PK, Huang J, Ma H. Resolution of deep eudicot phylogeny and their temporal diversification using nuclear genes from transcriptomic and genomic datasets. THE NEW PHYTOLOGIST 2017; 214:1338-1354. [PMID: 28294342 DOI: 10.1111/nph.14503] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/25/2016] [Indexed: 05/21/2023]
Abstract
Explosive diversification is widespread in eukaryotes, making it difficult to resolve phylogenetic relationships. Eudicots contain c. 75% of extant flowering plants, are important for human livelihood and terrestrial ecosystems, and have probably experienced explosive diversifications. The eudicot phylogenetic relationships, especially among those of the Pentapetalae, remain unresolved. Here, we present a highly supported eudicot phylogeny and diversification rate shifts using 31 newly generated transcriptomes and 88 other datasets covering 70% of eudicot orders. A highly supported eudicot phylogeny divided Pentapetalae into two groups: one with rosids, Saxifragales, Vitales and Santalales; the other containing asterids, Caryophyllales and Dilleniaceae, with uncertainty for Berberidopsidales. Molecular clock analysis estimated that crown eudicots originated c. 146 Ma, considerably earlier than earliest tricolpate pollen fossils and most other molecular clock estimates, and Pentapetalae sequentially diverged into eight major lineages within c. 15 Myr. Two identified increases of diversification rate are located in the stems leading to Pentapetalae and asterids, and lagged behind the gamma hexaploidization. The nuclear genes from newly generated transcriptomes revealed a well-resolved eudicot phylogeny, sequential separation of major core eudicot lineages and temporal mode of diversifications, providing new insights into the evolutionary trend of morphologies and contributions to the diversification of eudicots.
Collapse
Affiliation(s)
- Liping Zeng
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92507, USA
| | - Ning Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC, 20013, USA
| | - Qiang Zhang
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and the Chinese Academy of Sciences, Guilin, 541006, China
| | - Peter K Endress
- Institute of Systematic Botany, University of Zurich, Zurich, 8008, Switzerland
| | - Jie Huang
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and the Chinese Academy of Sciences, Guilin, 541006, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| |
Collapse
|
8
|
Gunter NL, Weir TA, Slipinksi A, Bocak L, Cameron SL. If Dung Beetles (Scarabaeidae: Scarabaeinae) Arose in Association with Dinosaurs, Did They Also Suffer a Mass Co-Extinction at the K-Pg Boundary? PLoS One 2016; 11:e0153570. [PMID: 27145126 PMCID: PMC4856399 DOI: 10.1371/journal.pone.0153570] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/31/2016] [Indexed: 12/03/2022] Open
Abstract
The evolutionary success of beetles and numerous other terrestrial insects is generally attributed to co-radiation with flowering plants but most studies have focused on herbivorous or pollinating insects. Non-herbivores represent a significant proportion of beetle diversity yet potential factors that influence their diversification have been largely unexamined. In the present study, we examine the factors driving diversification within the Scarabaeidae, a speciose beetle family with a range of both herbivorous and non-herbivorous ecologies. In particular, it has been long debated whether the key event in the evolution of dung beetles (Scarabaeidae: Scarabaeinae) was an adaptation to feeding on dinosaur or mammalian dung. Here we present molecular evidence to show that the origin of dung beetles occurred in the middle of the Cretaceous, likely in association with dinosaur dung, but more surprisingly the timing is consistent with the rise of the angiosperms. We hypothesize that the switch in dinosaur diet to incorporate more nutritious and less fibrous angiosperm foliage provided a palatable dung source that ultimately created a new niche for diversification. Given the well-accepted mass extinction of non-avian dinosaurs at the Cretaceous-Paleogene boundary, we examine a potential co-extinction of dung beetles due to the loss of an important evolutionary resource, i.e., dinosaur dung. The biogeography of dung beetles is also examined to explore the previously proposed “out of Africa” hypothesis. Given the inferred age of Scarabaeinae as originating in the Lower Cretaceous, the major radiation of dung feeders prior to the Cenomanian, and the early divergence of both African and Gondwanan lineages, we hypothesise that that faunal exchange between Africa and Gondwanaland occurred during the earliest evolution of the Scarabaeinae. Therefore we propose that both Gondwanan vicariance and dispersal of African lineages is responsible for present day distribution of scarabaeine dung beetles and provide examples.
Collapse
Affiliation(s)
- Nicole L Gunter
- Department of Zoology, Faculty of Science, Palacky University, Olomouc, Czech Republic.,Australian National Insect Collection, National Research Collections Australia, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| | - Tom A Weir
- Australian National Insect Collection, National Research Collections Australia, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| | - Adam Slipinksi
- Australian National Insect Collection, National Research Collections Australia, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| | - Ladislav Bocak
- Department of Zoology, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Stephen L Cameron
- Earth, Environmental and Biological Sciences School, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Huang DY, Bechly G, Nel P, Engel MS, Prokop J, Azar D, Cai CY, van de Kamp T, Staniczek AH, Garrouste R, Krogmann L, dos Santos Rolo T, Baumbach T, Ohlhoff R, Shmakov AS, Bourgoin T, Nel A. New fossil insect order Permopsocida elucidates major radiation and evolution of suction feeding in hemimetabolous insects (Hexapoda: Acercaria). Sci Rep 2016; 6:23004. [PMID: 26961785 PMCID: PMC4785345 DOI: 10.1038/srep23004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 02/26/2016] [Indexed: 11/12/2022] Open
Abstract
With nearly 100,000 species, the Acercaria (lice, plant lices, thrips, bugs) including number of economically important species is one of the most successful insect lineages. However, its phylogeny and evolution of mouthparts among other issues remain debatable. Here new methods of preparation permitted the comprehensive anatomical description of insect inclusions from mid-Cretaceous Burmese amber in astonishing detail. These "missing links" fossils, attributed to a new order Permopsocida, provide crucial evidence for reconstructing the phylogenetic relationships in the Acercaria, supporting its monophyly, and questioning the position of Psocodea as sister group of holometabolans in the most recent phylogenomic study. Permopsocida resolves as sister group of Thripida + Hemiptera and represents an evolutionary link documenting the transition from chewing to piercing mouthparts in relation to suction feeding. Identification of gut contents as angiosperm pollen documents an ecological role of Permopsocida as early pollen feeders with relatively unspecialized mouthparts. This group existed for 185 million years, but has never been diverse and was superseded by new pollenivorous pollinators during the Cretaceous co-evolution of insects and flowers. The key innovation of suction feeding with piercing mouthparts is identified as main event that triggered the huge post-Carboniferous radiation of hemipterans, and facilitated the spreading of pathogenic vectors.
Collapse
Affiliation(s)
- Di-Ying Huang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, People’s Republic of China
| | - Günter Bechly
- Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany
| | - Patricia Nel
- Institut de Systématique, Évolution, Biodiversité, Muséum national d’Histoire naturelle, Paris, France
- AgroParisTech, Paris, France
| | - Michael S. Engel
- Division of Entomology, Natural History Museum, and Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
- Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, United States of America
| | - Jakub Prokop
- Charles University, Faculty of Science, Department of Zoology, Prague, Czech Republic
| | - Dany Azar
- Lebanese University, Faculty of Sciences II, Department of Biology, Beirut, Lebanon
| | - Chen-Yang Cai
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, People’s Republic of China
| | - Thomas van de Kamp
- ANKA/ Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
- Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | | | - Romain Garrouste
- Institut de Systématique, Évolution, Biodiversité, Muséum national d’Histoire naturelle, Paris, France
| | - Lars Krogmann
- Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany
| | - Tomy dos Santos Rolo
- ANKA/ Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Tilo Baumbach
- ANKA/ Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
- Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | | | - Alexey S. Shmakov
- Arthropoda Laboratory, Palaeontological Institute, Russian Academy of Sciences, Moscow, Russia
| | - Thierry Bourgoin
- Institut de Systématique, Évolution, Biodiversité, Muséum national d’Histoire naturelle, Paris, France
| | - André Nel
- Institut de Systématique, Évolution, Biodiversité, Muséum national d’Histoire naturelle, Paris, France
| |
Collapse
|
10
|
Condamine FL, Hines HM. Historical species losses in bumblebee evolution. Biol Lett 2015; 11:20141049. [PMID: 25762572 PMCID: PMC4387497 DOI: 10.1098/rsbl.2014.1049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/16/2015] [Indexed: 11/12/2022] Open
Abstract
Investigating how species coped with past environmental changes informs how modern species might face human-induced global changes, notably via the study of historical extinction, a dominant feature that has shaped current biodiversity patterns. The genus Bombus, which comprises 250 mostly cold-adapted species, is an iconic insect group sensitive to current global changes. Through a combination of habitat loss, pathogens and climate change, bumblebees have experienced major population declines, and several species are threatened with extinction. Using a time-calibrated tree of Bombus, we analyse their diversification dynamics and test hypotheses about the role of extinction during major environmental changes in their evolutionary history. These analyses support a history of fluctuating species dynamics with two periods of historical species loss in bumblebees. Dating estimates gauge that one of these events started after the middle Miocene climatic optimum and one during the early Pliocene. Both periods are coincident with global climate change that may have extirpated Bombus species. Interestingly, bumblebees experienced high diversification rates during the Plio-Pleistocene glaciations. We also found evidence for a major species loss in the past one million years that may be continuing today.
Collapse
Affiliation(s)
- Fabien L Condamine
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30, Göteborg, Sweden
| | - Heather M Hines
- Department of Biology, Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA
| |
Collapse
|
11
|
Kergoat GJ, Bouchard P, Clamens AL, Abbate JL, Jourdan H, Jabbour-Zahab R, Genson G, Soldati L, Condamine FL. Cretaceous environmental changes led to high extinction rates in a hyperdiverse beetle family. BMC Evol Biol 2014; 14:220. [PMID: 25331733 PMCID: PMC4210489 DOI: 10.1186/s12862-014-0220-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/06/2014] [Indexed: 12/25/2022] Open
Abstract
Background As attested by the fossil record, Cretaceous environmental changes have significantly impacted the diversification dynamics of several groups of organisms. A major biome turnover that occurred during this period was the rise of angiosperms starting ca. 125 million years ago. Though there is evidence that the latter promoted the diversification of phytophagous insects, the response of other insect groups to Cretaceous environmental changes is still largely unknown. To gain novel insights on this issue, we assess the diversification dynamics of a hyperdiverse family of detritivorous beetles (Tenebrionidae) using molecular dating and diversification analyses. Results Age estimates reveal an origin after the Triassic-Jurassic mass extinction (older than previously thought), followed by the diversification of major lineages during Pangaean and Gondwanan breakups. Dating analyses indicate that arid-adapted species diversified early, while most of the lineages that are adapted to more humid conditions diversified much later. Contrary to other insect groups, we found no support for a positive shift in diversification rates during the Cretaceous; instead there is evidence for an 8.5-fold increase in extinction rates that was not compensated by a joint increase in speciation rates. Conclusions We hypothesize that this pattern is better explained by the concomitant reduction of arid environments starting in the mid-Cretaceous, which likely negatively impacted the diversification of arid-adapted species that were predominant at that time. Electronic supplementary material The online version of this article (doi:10.1186/s12862-014-0220-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gael J Kergoat
- INRA - UMR 1062 CBGP (INRA, IRD, CIRAD, Montpellier SupAgro), Campus de Baillarguet, Montferrier-sur-Lez, 34988, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Groom SVC, Stevens MI, Schwarz MP. Parallel responses of bees to Pleistocene climate change in three isolated archipelagos of the southwestern Pacific. Proc Biol Sci 2014; 281:20133293. [PMID: 24807250 DOI: 10.1098/rspb.2013.3293] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The impacts of glacial cycles on the geographical distribution and size of populations have been explored for numerous terrestrial and marine taxa. However, most studies have focused on high latitudes, with only a few focused on the response of biota to the last glacial maximum (LGM) in equatorial regions. Here, we examine how population sizes of key bee fauna in the southwest Pacific archipelagos of Fiji, Vanuatu and Samoa have fluctuated over the Quaternary. We show that all three island faunas suffered massive population declines, roughly corresponding in time to the LGM, followed by rapid expansion post-LGM. Our data therefore suggest that Pleistocene climate change has had major impacts across a very broad tropical region. While other studies indicate widespread Holarctic effects of the LGM, our data suggest a much wider range of latitudes, extending to the tropics, where these climate change repercussions were important. As key pollinators, the inferred changes in these bee faunas may have been critical in the development of the diverse Pacific island flora. The magnitude of these responses indicates future climate change scenarios may have alarming consequences for Pacific island systems involving pollinator-dependent plant communities and agricultural crops.
Collapse
Affiliation(s)
- Scott V C Groom
- School of Biological Sciences, Flinders University, , GPO Box 2100, Adelaide, South Australia 5001, Australia, South Australian Museum, , GPO Box 234, Adelaide, South Australia 5000, Australia, School of Pharmacy and Medical Sciences, University of South Australia, , Adelaide, South Australia 5000, Australia
| | | | | |
Collapse
|