1
|
Yang Z, Li J, Xiao R, Zhang C, Ma X, Du G, Li G, Jiang L. Losses of low-germinating, slow-growing species prevent grassland composition recovery from nutrient amendment. GLOBAL CHANGE BIOLOGY 2024; 30:e17264. [PMID: 38556774 DOI: 10.1111/gcb.17264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 02/22/2024] [Accepted: 03/03/2024] [Indexed: 04/02/2024]
Abstract
Nutrient enrichment often alters the biomass and species composition of plant communities, but the extent to which these changes are reversible after the cessation of nutrient addition is not well-understood. Our 22-year experiment (15 years for nutrient addition and 7 years for recovery), conducted in an alpine meadow, showed that soil nitrogen concentration and pH recovered rapidly after cessation of nutrient addition. However, this was not accompanied by a full recovery of plant community composition. An incomplete recovery in plant diversity and a directional shift in species composition from grass dominance to forb dominance were observed 7 years after the nutrient addition ended. Strikingy, the historically dominant sedges with low germination rate and slow growth rate and nitrogen-fixing legumes with low germination rate were unable to re-establish after nutrient addition ceased. By contrast, rapid recovery of aboveground biomass was observed after nutrient cessation as the increase in forb biomass only partially compensated for the decline in grass biomass. These results indicate that anthropogenic nutrient input can have long-lasting effects on the structure, but not the soil chemistry and plant biomass, of grassland communities, and that the recovery of soil chemical properties and plant biomass does not necessarily guarantee the restoration of plant community structure. These findings have important implications for the management and recovery of grassland communities, many of which are experiencing alterations in resource input.
Collapse
Affiliation(s)
- Zhongling Yang
- International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, China
| | - Junyong Li
- International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, China
- Dabieshan National Observation and Research Field Station of Forest Ecosystem, Henan University, Kaifeng, China
| | - Rui Xiao
- International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, China
| | - Chunhui Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Xiaojun Ma
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Guozhen Du
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Guoyong Li
- International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, China
- Dabieshan National Observation and Research Field Station of Forest Ecosystem, Henan University, Kaifeng, China
| | - Lin Jiang
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Yang Y, Shi Y, Wei X, Han J, Wang J, Mu C, Zhang J. Changes in mass allocation play a more prominent role than morphology in resource acquisition of the rhizomatous Leymus chinensis under drought stress. ANNALS OF BOTANY 2023; 132:121-132. [PMID: 37279964 PMCID: PMC10550271 DOI: 10.1093/aob/mcad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/05/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND AND AIMS Plants can respond to drought by changing their relative investments in the biomass and morphology of each organ. The aims of this study were to quantify the relative contribution of changes in morphology vs. allocation and determine how they affect each other. These results should help us understand the mechanisms that plants use to respond to drought events. METHODS In a glasshouse experiment, we applied a drought treatment (well-watered vs. drought) at early and late stages of plant growth, leading to four treatment combinations (well-watered in both early and late periods, WW; drought in the early period and well-watered in the late period, DW; well-watered in the early period and drought in the late period, WD; drought in both early and late periods, DD). We used the variance partitioning method to compare the contribution of organ (leaf and root) biomass allocation and morphology to the leaf area ratio, root length ratio and root area ratio, for the rhizomatous grass Leymus chinensis (Trin.) Tzvelev. KEY RESULTS Compared with the continuously well-watered treatment, the leaf area ratio, root length ratio and root area ratio showed increasing trends under various drought treatments. The contribution of leaf mass allocation to leaf area ratio differed among the drought treatments and was 2.1- to 5.3-fold greater than leaf morphology, and the contribution of root mass allocation to root length ratio was ~2-fold greater than that of root morphology. In contrast, root morphology contributed more to the root area ratio than biomass allocation under drought in both the early and late periods. There was a negative correlation between the ratio of leaf mass fraction to root mass fraction and the ratio of specific leaf area to specific root length (or specific root area). CONCLUSIONS This study suggested that organ biomass allocation drove a larger proportion of variation than morphological traits for the absorption of resources in this rhizomatous grass. These findings should help us understand the adaptive mechanisms of plants when they are confronted with drought stress.
Collapse
Affiliation(s)
- Yuheng Yang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China
| | - Yujie Shi
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China
| | - Xiaowei Wei
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China
| | - Jiayu Han
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China
| | - Junfeng Wang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China
| | - Chunsheng Mu
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China
| | - Jinwei Zhang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
3
|
Zhao C, Lin Q, Tian D, Ji C, Shen H, Fan D, Wang X, Fang J. Nitrogen addition promotes conservative resource-use strategies via aggravating phosphorus limitation of evergreen trees in subtropical forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 889:164047. [PMID: 37187388 DOI: 10.1016/j.scitotenv.2023.164047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/17/2023]
Affiliation(s)
- Changti Zhao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China.
| | - Quanhong Lin
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China.
| | - Di Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China.
| | - Chengjun Ji
- Institute of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China.
| | - Haihua Shen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Dayong Fan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China.
| | - Xiangping Wang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China.
| | - Jingyun Fang
- Institute of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China.
| |
Collapse
|
4
|
Sun K, Sun R, Li Y, Ji H, Jia B, Xu Z. Plant economic strategies in two contrasting forests. BMC PLANT BIOLOGY 2023; 23:366. [PMID: 37479980 PMCID: PMC10362557 DOI: 10.1186/s12870-023-04375-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Predicting relationships between plant functional traits and environmental effects in their habitats is a central issue in terms of classic ecological theories. Yet, only weak correlation with functional trait composition of local plant communities may occur, implying that some essential information might be ignored. In this study, to address this uncertainty, the objective of the study is to test whether and how the consistency of trait relationships occurs by analyzing broad variation in eight traits related to leaf morphological structure, nutrition status and physiological activity, within a large number of plant species in two distinctive but comparable harsh habitats (high-cold alpine fir forest vs. north-cold boreal coniferous forest). RESULTS The contrasting and/or consistent relationships between leaf functional traits in the two distinctive climate regions were observed. Higher specific leaf area, photosynthetic rate, and photosynthetic nitrogen use efficiency (PNUE) with lower N concentration occurred in north-cold boreal forest rather than in high-cold alpine forest, indicating the acquisitive vs. conservative resource utilizing strategies in both habitats. The principal component analysis illuminated the divergent distributions of herb and xylophyta groups at both sites. Herbs tend to have a resource acquisition strategy, particularly in boreal forest. The structural equation modeling revealed that leaf density had an indirect effect on PNUE, primarily mediated by leaf structure and photosynthesis. Most of the traits were strongly correlated with each other, highlighting the coordination and/or trade-offs. CONCLUSIONS We can conclude that the variations in leaf functional traits in north-cold boreal forest were largely distributed in the resource-acquisitive strategy spectrum, a quick investment-return behavior; while those in the high-cold alpine forest tended to be mainly placed at the resource-conservative strategy end. The habitat specificity for the relationships between key functional traits could be a critical determinant of local plant communities. Therefore, elucidating plant economic spectrum derived from variation in major functional traits can provide a fundamental insight into how plants cope with ecological adaptation and evolutionary strategies under environmental changes, particularly in these specific habitats.
Collapse
Affiliation(s)
- Kuo Sun
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruojun Sun
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yibo Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongchao Ji
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bingrui Jia
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenzhu Xu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Xu L, Zhang N, Wei T, Liu B, Shen L, Liu Y, Liu D. Adaptation strategies of leaf traits and leaf economic spectrum of two urban garden plants in China. BMC PLANT BIOLOGY 2023; 23:274. [PMID: 37221486 DOI: 10.1186/s12870-023-04301-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 05/20/2023] [Indexed: 05/25/2023]
Abstract
BACKGROUND Previous studies of the relationships between traits have focused on the natural growth conditions of wild plants. Urban garden plants exhibit some differences in plant traits due to environmental interference. It is unknown whether the relationships between the leaf traits of urban garden plants differ under distinct climates. In this study, we revealed the variation characteristics of the leaf functional traits of trees, shrubs, and vines in two urban locations. Two-way ANOVA was used to reveal the response of plant leaf traits to climate and life forms. Pearson correlation analysis and principal component analysis were used to calculate the correlation coefficient between the leaf functional traits of plants at the two locations. RESULTS Leaf dry matter content (LDMC) and vein density (VD) of different life forms in Mudanjiang were higher than those in Bozhou (P < 0.05), and the relative water content (RWC) in Bozhou was higher, whereas vein density (VD) of trees and shrubs in the two urban locations was significant (P < 0.05), but the vines were not significant. The photosynthetic pigments of tree and shrub species were larger in Mudanjiang, but the opposite was true for the vines. Both leaf vein density (VD) and stomatal density (SD) showed a very significant positive correlation in the two urban locations (P < 0.01), and both were significantly positively correlated with specific leaf area (SLA) (P < 0.05); and negatively correlated with leaf thickness (LT), and the relationship between pigment content were closer. CONCLUSION The response to climate showed obvious differences in leaf traits of different life forms species in urban area, but the correlations between the traits showed convergence, which reflects that the adaptation strategies of garden plant leaves to different habitats are both coordinated and relatively independent.
Collapse
Affiliation(s)
- Liying Xu
- School of Life Science and Technology, Mudanjiang Normal College, Mudanjiang, Heilongjiang, 157011, P. R. China.
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, 150040, P. R. China.
| | - Nana Zhang
- School of Life Science and Technology, Mudanjiang Normal College, Mudanjiang, Heilongjiang, 157011, P. R. China
| | - Tongchao Wei
- School of Life Science and Technology, Mudanjiang Normal College, Mudanjiang, Heilongjiang, 157011, P. R. China
| | - Bingyang Liu
- School of Life Science and Technology, Mudanjiang Normal College, Mudanjiang, Heilongjiang, 157011, P. R. China
| | - Lanyi Shen
- School of Life Science and Technology, Mudanjiang Normal College, Mudanjiang, Heilongjiang, 157011, P. R. China
| | - Yang Liu
- School of Life Science and Technology, Mudanjiang Normal College, Mudanjiang, Heilongjiang, 157011, P. R. China
| | - Dounan Liu
- School of Chemistry and Chemical Engineering, Mudanjiang Normal College, Mudanjiang, Heilongjiang, 157011, P. R. China
| |
Collapse
|
6
|
Chen M, Shi Z, Liu S, Xu G, Cao X, Chen J, Zhang M, Feng Q, Centritto M, Cao J. Leaf functional traits have more contributions than climate to the variations of leaf stable carbon isotope of different plant functional types on the eastern Qinghai-Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162036. [PMID: 36746282 DOI: 10.1016/j.scitotenv.2023.162036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/23/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Elucidating the mechanisms that control the leaf stable carbon isotope values (δ13Cleaf) is the prerequisite for the widespread application of δ13Cleaf. However, the competing effects of physiological and environmental factors on δ13Cleaf variations of the different plant functional types (PFTs) have not been disentangled, and the corresponding mechanisms remain unclear. Based on large-scale δ13Cleaf measurements on the eastern Qinghai-Tibetan Plateau, the relative contributions and regulatory pathways of leaf functional traits (LFTs) and climatic factors to δ13Cleaf variations of the different PFTs were investigated. We found that δ13Cleaf of the different PFTs was correlated with annual mean precipitation negatively, but not a simple linear relationship with annual mean temperature and varied by PFTs. Leaf nitrogen content per unit area and leaf mass per area (correlated with δ13Cleaf positively) had more substantial effects on the δ13Cleaf variations of the different PFTs than other LFTs. The relative contributions of LFTs to the δ13Cleaf variations were greater than that of climatic factors, and the direct and indirect effects of climatic factors on δ13Cleaf variations varied by PFTs. Our findings provide new insights into understanding key drivers of δ13Cleaf variations at the PFT level on a regional scale.
Collapse
Affiliation(s)
- Miao Chen
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County, Sichuan 623100, China
| | - Zuomin Shi
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County, Sichuan 623100, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Institute for Sustainable Plant Protection, National Research Council of Italy, Torino 10135, Italy.
| | - Shun Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County, Sichuan 623100, China
| | - Gexi Xu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County, Sichuan 623100, China
| | - Xiangwen Cao
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County, Sichuan 623100, China
| | - Jian Chen
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County, Sichuan 623100, China
| | - Miaomiao Zhang
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County, Sichuan 623100, China
| | - Qiuhong Feng
- Ecological Restoration and Conservation on Forest and Wetland Key Laboratory of Sichuan Province, Sichuan Academy of Forestry, Chengdu 610081, China
| | - Mauro Centritto
- Institute for Sustainable Plant Protection, National Research Council of Italy, Torino 10135, Italy
| | - Jiahao Cao
- Institute of Forestry Science of Bailongjiang in Gansu Province, Lanzhou 730046, China
| |
Collapse
|
7
|
Lamarque LJ, Félix-Faure J, Deschamps L, Lévesque E, Cusson PO, Fortier D, Giacomazzo M, Guillemette F, Paillassa J, Tremblay M, Maire V. Hydrological Regime and Plant Functional Traits Jointly Mediate the Influence of Salix spp. on Soil Organic Carbon Stocks in a High Arctic Tundra. Ecosystems 2023. [DOI: 10.1007/s10021-023-00829-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
8
|
Zhou F, Matthew C, Yang P, Huang Y, Nie B, Nan Z. Leaf morphology, functional trait and altitude response in perennial vetch (Vicia unijuga A. Braun), alfalfa (Medicago sativa L.) and sainfoin (Onobrychis viciifolia Scop.). PLANTA 2023; 257:75. [PMID: 36879140 DOI: 10.1007/s00425-023-04098-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Species have plasticity across altitude gradients in leaf morphology and function, and their response to high altitude conditions was mainly reflected in leaf cell metabolism and gas exchange. Leaf morphological and functional adaptation to altitude has received research attention in recent years, but there are no studies for forage legumes. Here we report differences in 39 leaf morphology and functional traits of three leguminous forages (alfalfa, sainfoin and perennial vetch) at three sites in Gansu Province, China, ranging from 1768 to 3074 m altitude to provide information for potential use in breeding programmes. With increasing altitude, plant water status increased, reflecting increase in soil water content and decreased average temperature, which lead to leaf intercellular CO2 concentration. Stomatal conductance and evapotranspiration increased significantly but water-use efficiency decreased. At high altitude, ΦPSII decreased but non-photochemical quenching and chlorophyll a:b ratio increased while spongy mesophyll tissue and leaf thickness increased. These changes may be due to UV or low-temperature damage of leaf protein and metabolic cost of plant protection or defence responses. Contrary to many other studies, leaf mass per area decreased significantly at higher altitude. This was consistent with predictions under the worldwide leaf economic spectrum on the basis that soil nutrients increased with increasing altitude. The key species differences were more irregularly shaped epidermal cells and larger stomatal size in perennial vetch compared to alfalfa or sainfoin that enhanced gas exchange and photosynthesis by generating mechanical force, increasing guard cell turgor, and promoting stomatal operation. The lower adaxial stomatal density also enhanced water-use efficiency. These adaptations might confer perennial vetch an advantage in environments with extreme diurnal temperature fluctuation or in frigid conditions.
Collapse
Affiliation(s)
- Fangfang Zhou
- State Key Laboratory of Grassland Agroecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730020, Gansu, China
| | - Cory Matthew
- School of Agriculture and Environment, College of Sciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | - Pengfei Yang
- School of Life Sciences, Lanzhou University, Lanzhou, 730020, Gansu, China
| | - Yafeng Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230031, Anhui, China
| | - Bin Nie
- State Key Laboratory of Grassland Agroecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730020, Gansu, China
| | - Zhibiao Nan
- State Key Laboratory of Grassland Agroecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730020, Gansu, China.
| |
Collapse
|
9
|
Oyanoghafo OO, Miller AD, Toomey M, Ahrens CW, Tissue DT, Rymer PD. Contributions of phenotypic integration, plasticity and genetic adaptation to adaptive capacity relating to drought in Banksia marginata (Proteaceae). FRONTIERS IN PLANT SCIENCE 2023; 14:1150116. [PMID: 37152164 PMCID: PMC10160485 DOI: 10.3389/fpls.2023.1150116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/28/2023] [Indexed: 05/09/2023]
Abstract
The frequency and intensity of drought events are predicted to increase because of climate change, threatening biodiversity and terrestrial ecosystems in many parts of the world. Drought has already led to declines in functionally important tree species, which are documented in dieback events, shifts in species distributions, local extinctions, and compromised ecosystem function. Understanding whether tree species possess the capacity to adapt to future drought conditions is a major conservation challenge. In this study, we assess the capacity of a functionally important plant species from south-eastern Australia (Banksia marginata, Proteaceae) to adapt to water-limited environments. A water-manipulated common garden experiment was used to test for phenotypic plasticity and genetic adaptation in seedlings sourced from seven provenances of contrasting climate-origins (wet and dry). We found evidence of local adaptation relating to plant growth investment strategies with populations from drier climate-origins showing greater growth in well-watered conditions. The results also revealed that environment drives variation in physiological (stomatal conductance, predawn and midday water potential) and structural traits (wood density, leaf dry matter content). Finally, these results indicate that traits are coordinated to optimize conservation of water under water-limited conditions and that trait coordination (phenotypic integration) does not constrain phenotypic plasticity. Overall, this study provides evidence for adaptive capacity relating to drought conditions in B. marginata, and a basis for predicting the response to climate change in this functionally important plant species.
Collapse
Affiliation(s)
- Osazee O. Oyanoghafo
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
- Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Benin, Benin, Nigeria
- *Correspondence: Osazee O. Oyanoghafo, ;
| | - Adam D. Miller
- School of Life and Environmental Sciences, Deakin University, Princes Highway, Warrnambool, VIC, Australia
| | - Madeline Toomey
- School of Life and Environmental Sciences, Deakin University, Princes Highway, Warrnambool, VIC, Australia
| | - Collin W. Ahrens
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
- Cesar Australia, Brunswick, VIC, Australia
| | - David T. Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Richmond, NSW, Australia
| | - Paul D. Rymer
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| |
Collapse
|
10
|
Shao J, Li G, Li Y, Zhou X. Intraspecific responses of plant productivity and crop yield to experimental warming: A global synthesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156685. [PMID: 35714738 DOI: 10.1016/j.scitotenv.2022.156685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/29/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Maintaining plant productivity and crop yield in a warming world requires local adaptation to new environment and selection of high-yield cultivars, which both depend on the genetically-based intraspecific differences in the plant response to warming (referred to as "genetically-based intraspecific responses"). However, how the genetically-based intraspecific responses mediate warming effects on plants remains unclear, especially at the global scale. Here, a dataset was compiled from 118 common-garden experiments to examine the responses of plant growth, productivity, and crop yield to warming among different ecotypes/genotypes/cultivars. Our results showed that the genetically-based intraspecific responses on average accounted for 34.7 % of the total variance in the warming responses across all the studies but with large variability (2 %-77 %). The intraspecific responses of plant productivity and crop yield were larger than those of organ level traits and biomass allocation, suggesting that plant growth was mainly achieved by iterating the relatively invariant terminal modules (e.g., leaves). The warming-induced changes in intraspecific variability of aboveground biomass were larger in woody plants, non-leguminous herbs, perennial herbs and noncrops than those in nonwoody, leguminous, annual and crop ones, respectively, indicating the potential important role of plant longevity in mediating the change in intraspecific variability. Moreover, larger intraspecific responses reduced the consistence of relative performance between control and warming treatments for both plant productivity and crop yield. These results highlight the unneglectable role of genetically-based intraspecific differences in plant responses to warming, indicating the difficulty of maintaining high crop yield and tree productivity under global climate change, and posing a grave threat to the food security and wood supply in the near future.
Collapse
Affiliation(s)
- Junjiong Shao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Gaobo Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Xuhui Zhou
- Northeast Asia ecosystem Carbon sink research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China; Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
11
|
Orwin KH, Mason NWH, Berthet ET, Grelet G, Mudge P, Lavorel S. Integrating design and ecological theory to achieve adaptive diverse pastures. Trends Ecol Evol 2022; 37:861-871. [PMID: 35842324 DOI: 10.1016/j.tree.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022]
Abstract
Increasing plant diversity is often suggested as a way of overcoming some of the challenges faced by managers of intensive pasture systems, but it is unclear how to design the most suitable plant mixtures. Using innovative design theory, we identify two conceptual shifts that foster potentially beneficial design approaches. Firstly, reframing the goal of mixture design to supporting ecological integrity, rather than delivering lists of desired outcomes, leads to flexible design approaches that support context-specific solutions that should operate within identifiable ecological limits. Secondly, embracing, rather than minimising uncertainty in performance leads to adaptive approaches that could enhance current and future benefits of diversifying pasture. These two fundamental shifts could therefore accelerate the successful redesign of intensive pastures.
Collapse
Affiliation(s)
- Kate H Orwin
- Manaaki Whenua - Landcare Research, Lincoln 7640, New Zealand.
| | | | - Elsa T Berthet
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SADAPT, 75231 Paris, France; USC 1339, Centre d'Etudes Biologiques de Chizé, INRAE, 79360 Villiers-en-Bois, France
| | - Gwen Grelet
- Manaaki Whenua - Landcare Research, Lincoln 7640, New Zealand
| | - Paul Mudge
- Manaaki Whenua - Landcare Research, Hamilton 3240, New Zealand
| | - Sandra Lavorel
- Manaaki Whenua - Landcare Research, Lincoln 7640, New Zealand; Université Grenoble Alpes, CNRS, Université Savoie Mont-Blanc, CNRS, Laboratoire d'Ecologie Alpine, 38000 Grenoble, France
| |
Collapse
|
12
|
Xu GQ, Farrell C, Arndt SK. Climate of origin has no influence on drought adaptive traits and the drought responses of a widely distributed polymorphic shrub. TREE PHYSIOLOGY 2022; 42:86-98. [PMID: 34259315 DOI: 10.1093/treephys/tpab085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Climate has a significant influence on species distribution and the expression of functional traits in different plant species. However, it is unknown if subspecies with different climate envelopes also show differences in their expression of plant functional traits or if they respond differently to drought stress. We measured functional traits and drought responses of five subspecies of a widely distributed, cosmopolitan polymorphic shrub, Dodonaea viscosa (L.) Jacq., in an experiment with 1-year-old plants. Functional traits, such as leaf size, specific leaf area, turgor loss point (ΨTLP), maximum stomatal conductance and maximum plant hydraulic conductance, differed among the five subspecies. However, while the were some differences among traits, these were not related to their climate of origin, as measured by mean annual temperature, mean annual precipitation and mean annual aridity index. Drought response was also not related to climate of origin, and all subspecies showed a combination of drought avoiding and drought tolerance responses. All subspecies closed their stomata at very high water potentials (between -1.0 and -1.3 MPa) and had large hydraulic safety margins (drought avoidance). All subspecies adjusted their ΨTLP via osmotic adjustment, and subspecies with inherently lower ΨTLP showed greater osmotic adjustment (drought tolerance). All subspecies adjusted their midday water potentials in response to drought but subspecies from more arid environments did not show greater adjustments. The results indicated that climate niche was not related to plant trait expression or response to drought. The combination of drought avoidance and drought tolerance behavior seems to be a successful strategy for this widely distributed species that occupies many different climate zones and ecosystems. Hence, the wide distribution of D. viscosa seems to be related to plasticity of trait expression and drought response rather than long-term genetic adaptations to different environmental conditions.
Collapse
Affiliation(s)
- Gui-Qing Xu
- State Key Lab of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China
| | - Claire Farrell
- School of Ecosystem and Forest Sciences, University of Melbourne, 500 Yarra Boulevard, Richmond, VIC 3121, Australia
| | - Stefan K Arndt
- School of Ecosystem and Forest Sciences, University of Melbourne, 500 Yarra Boulevard, Richmond, VIC 3121, Australia
| |
Collapse
|
13
|
Cardoni M, Mercado-Blanco J, Villar R. Functional Traits of Olive Varieties and Their Relationship with the Tolerance Level towards Verticillium Wilt. PLANTS 2021; 10:plants10061079. [PMID: 34072219 PMCID: PMC8230176 DOI: 10.3390/plants10061079] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022]
Abstract
Verticillium wilt of olive (VWO), caused by the soil-borne pathogen Verticillium dahliae, is considered one of the most important diseases affecting this tree crop. One of the best VWO management measures is the use of tolerant cultivars. Remarkably, no information is available about olive functional traits and their potential relationship with tolerance to V. dahliae. Twenty-five selected functional traits (for leaf, stem, root and whole plant) were evaluated in six olive varieties differing in their VWO tolerance level to identify possible links between this phenotype and functional traits’ variation. High intervarietal diversity was found among cultivars and several functional traits were related with VWO tolerance. Tolerant varieties showed higher leaf area, dry matter content (leaf, stem and plant) and mass fraction for stems, but lower for leaves. Significant differences were also detected for root functional traits, tolerant cultivars displaying larger fine root diameter and lignin content but smaller specific length and area of thick and fine roots. Correlations were found among functional traits both within varieties and between levels of tolerance/susceptibility to VWO. Associations were observed between biomass allocation, dry matter content and VWO tolerance. The most relevant difference between tolerant and susceptible cultivars was related to root system architecture.
Collapse
Affiliation(s)
- Martina Cardoni
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, CSIC, Campus ‘Alameda del Obispo’ s/n, Avd. Menéndez Pidal s/n, 14004 Córdoba, Spain;
| | - Jesús Mercado-Blanco
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, CSIC, Campus ‘Alameda del Obispo’ s/n, Avd. Menéndez Pidal s/n, 14004 Córdoba, Spain;
- Correspondence:
| | - Rafael Villar
- Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de Córdoba, Campus Universitario de Rabanales, 14014 Córdoba, Spain;
| |
Collapse
|
14
|
Functional segregation of resource-use strategies of native and invasive plants across Mediterranean biome communities. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02368-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Taubert F, Hetzer J, Schmid JS, Huth A. Confronting an individual-based simulation model with empirical community patterns of grasslands. PLoS One 2020; 15:e0236546. [PMID: 32722690 PMCID: PMC7386574 DOI: 10.1371/journal.pone.0236546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 07/09/2020] [Indexed: 11/18/2022] Open
Abstract
Grasslands contribute to global biogeochemical cycles and can host a high number of plant species. Both-species dynamics and biogeochemical fluxes-are influenced by abiotic and biotic environmental factors, management and natural disturbances. In order to understand and project grassland dynamics under global change, vegetation models which explicitly capture all relevant processes and drivers are required. However, the parameterization of such models is often challenging. Here, we report on testing an individual- and process-based model for simulating the dynamics and structure of a grassland experiment in temperate Europe. We parameterized the model for three species and confront simulated grassland dynamics with empirical observations of their monocultures and one two-species mixture. The model reproduces general trends of vegetation patterns (vegetation cover and height, aboveground biomass and leaf area index) for the monocultures and two-species community. For example, the model simulates well an average annual grassland cover of 70% in the species mixture (observed cover of 77%), but also shows mismatches with specific observation values (e.g. for aboveground biomass). By a sensitivity analysis of the applied inverse model parameterization method, we demonstrate that multiple vegetation attributes are important for a successful parameterization while leaf area index revealed to be of highest relevance. Results of our study pinpoint to the need of improved grassland measurements (esp. of temporally higher resolution) in close combination with advanced modelling approaches.
Collapse
Affiliation(s)
- Franziska Taubert
- Department of Ecological Modelling, Helmholtz Centre for Environmental Research–UFZ, Leipzig, Saxony, Germany
- * E-mail:
| | - Jessica Hetzer
- Department of Ecological Modelling, Helmholtz Centre for Environmental Research–UFZ, Leipzig, Saxony, Germany
| | - Julia Sabine Schmid
- Department of Ecological Modelling, Helmholtz Centre for Environmental Research–UFZ, Leipzig, Saxony, Germany
| | - Andreas Huth
- Department of Ecological Modelling, Helmholtz Centre for Environmental Research–UFZ, Leipzig, Saxony, Germany
- Institute of Environmental Systems Research, University of Osnabrück, Osnabrück, Lower Saxony, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Saxony, Germany
| |
Collapse
|
16
|
Franklin O, Harrison SP, Dewar R, Farrior CE, Brännström Å, Dieckmann U, Pietsch S, Falster D, Cramer W, Loreau M, Wang H, Mäkelä A, Rebel KT, Meron E, Schymanski SJ, Rovenskaya E, Stocker BD, Zaehle S, Manzoni S, van Oijen M, Wright IJ, Ciais P, van Bodegom PM, Peñuelas J, Hofhansl F, Terrer C, Soudzilovskaia NA, Midgley G, Prentice IC. Organizing principles for vegetation dynamics. NATURE PLANTS 2020; 6:444-453. [PMID: 32393882 DOI: 10.1038/s41477-020-0655-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Plants and vegetation play a critical-but largely unpredictable-role in global environmental changes due to the multitude of contributing processes at widely different spatial and temporal scales. In this Perspective, we explore approaches to master this complexity and improve our ability to predict vegetation dynamics by explicitly taking account of principles that constrain plant and ecosystem behaviour: natural selection, self-organization and entropy maximization. These ideas are increasingly being used in vegetation models, but we argue that their full potential has yet to be realized. We demonstrate the power of natural selection-based optimality principles to predict photosynthetic and carbon allocation responses to multiple environmental drivers, as well as how individual plasticity leads to the predictable self-organization of forest canopies. We show how models of natural selection acting on a few key traits can generate realistic plant communities and how entropy maximization can identify the most probable outcomes of community dynamics in space- and time-varying environments. Finally, we present a roadmap indicating how these principles could be combined in a new generation of models with stronger theoretical foundations and an improved capacity to predict complex vegetation responses to environmental change.
Collapse
Affiliation(s)
- Oskar Franklin
- International Institute for Applied Systems Analysis, Laxenburg, Austria.
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden.
| | - Sandy P Harrison
- Department of Geography and Environmental Science, University of Reading, Reading, UK
| | - Roderick Dewar
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, Australia
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, Helsinki, Finland
| | - Caroline E Farrior
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Åke Brännström
- International Institute for Applied Systems Analysis, Laxenburg, Austria
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden
| | - Ulf Dieckmann
- International Institute for Applied Systems Analysis, Laxenburg, Austria
- Department of Evolutionary Studies of Biosystems, The Graduate University for Advanced Studies (Sokendai), Hayama, Japan
| | - Stephan Pietsch
- International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Daniel Falster
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Wolfgang Cramer
- Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale (IMBE), Aix Marseille Université, CNRS, IRD, Avignon Université, Technopôle Arbois-Méditerranée, Aix-en-Provence, France
| | - Michel Loreau
- Centre for Biodiversity, Theory, and Modelling, Theoretical and Experimental Ecology Station, CNRS, Moulis, France
| | - Han Wang
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China
| | - Annikki Mäkelä
- Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Karin T Rebel
- Copernicus Institute of Sustainable Development, Environmental Sciences, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - Ehud Meron
- Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
- Department of Physics, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Stanislaus J Schymanski
- Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Elena Rovenskaya
- International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Benjamin D Stocker
- Department of Environmental Systems Sciences, ETH Zurich, Zurich, Switzerland
- CREAF, Cerdanyola del Vallès, Spain
| | - Sönke Zaehle
- Biogeochemical Integration Department, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Stefano Manzoni
- Department of Physical Geography, Stockholm University, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm, Sweden
| | - Marcel van Oijen
- Centre for Ecology and Hydrology (CEH-Edinburgh), Bush Estate, Penicuik, UK
| | - Ian J Wright
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, CEA CNRS UVSQ, Gif-sur-Yvette, France
| | - Peter M van Bodegom
- Environmental Biology Department, Institute of Environmental Sciences, CML, Leiden University, Leiden, The Netherlands
| | - Josep Peñuelas
- CREAF, Cerdanyola del Vallès, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Spain
| | - Florian Hofhansl
- International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Cesar Terrer
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Nadejda A Soudzilovskaia
- Environmental Biology Department, Institute of Environmental Sciences, CML, Leiden University, Leiden, The Netherlands
| | - Guy Midgley
- Department Botany & Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - I Colin Prentice
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, Australia
- AXA Chair of Biosphere and Climate Impacts, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, UK
| |
Collapse
|
17
|
Meilhac J, Deschamps L, Maire V, Flajoulot S, Litrico I. Both selection and plasticity drive niche differentiation in experimental grasslands. NATURE PLANTS 2020; 6:28-33. [PMID: 31873193 DOI: 10.1038/s41477-019-0569-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 11/11/2019] [Indexed: 05/27/2023]
Abstract
The way species avoid each other in a community by using resources differently across space and time is one of the main drivers of species coexistence in nature1,2. This mechanism, known as niche differentiation, has been widely examined theoretically but still lacks thorough experimental validation in plants. To shape niche differences over time, species within communities can reduce the overlap between their niches or find unexploited environmental space3. Selection and phenotypic plasticity have been advanced as two candidate processes driving niche differentiation4,5, but their respective role remains to be quantified6. Here, we tracked changes in plant height, as a candidate trait for light capture7, in 5-year multispecies sown grasslands. We found increasing among-species height differences over time. Phenotypic plasticity promotes this change, which explains the rapid setting of differentiation in our system. Through the inspection of changes in genetic structure, we also highlighted the contribution of selection. Altogether, we experimentally demonstrated the occurrence of species niche differentiation within artificial grassland communities over a short time scale through the joined action of both plasticity and selection.
Collapse
Affiliation(s)
| | - Lucas Deschamps
- Département des Sciences de l'Environnement, UQTR, Trois-Rivières, Québec, Canada
| | - Vincent Maire
- Département des Sciences de l'Environnement, UQTR, Trois-Rivières, Québec, Canada
| | | | | |
Collapse
|
18
|
Kumordzi BB, Aubin I, Cardou F, Shipley B, Violle C, Johnstone J, Anand M, Arsenault A, Bell FW, Bergeron Y, Boulangeat I, Brousseau M, De Grandpré L, Delagrange S, Fenton NJ, Gravel D, Macdonald SE, Hamel B, Higelin M, Hébert F, Isabel N, Mallik A, McIntosh AC, McLaren JR, Messier C, Morris D, Thiffault N, Tremblay J, Munson AD. Geographic scale and disturbance influence intraspecific trait variability in leaves and roots of North American understorey plants. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13402] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Bright B. Kumordzi
- Centre d’étude de la forêt, Département des sciences du bois et de la forêt Université Laval Québec QC Canada
| | - Isabelle Aubin
- Great Lakes Forestry Centre, Canadian Forest Service Natural Resources Canada Sault Ste Marie ON Canada
| | - Françoise Cardou
- Great Lakes Forestry Centre, Canadian Forest Service Natural Resources Canada Sault Ste Marie ON Canada
- Département de biologie Université de Sherbrooke Sherbrooke QC Canada
| | - Bill Shipley
- Département de biologie Université de Sherbrooke Sherbrooke QC Canada
| | - Cyrille Violle
- CEFE, UMR 5175 CNRS – Université de Montpellier – Université Paul‐Valéry Montpellier – EPHE Montpellier France
| | - Jill Johnstone
- Department of Biology University of Saskatchewan Saskatoon SK Canada
| | - Madhur Anand
- School of Environmental Sciences University of Guelph Guelph ON Canada
| | - André Arsenault
- Atlantic Forestry Centre, Canadian Forest Service and School of Science and the Environment Memorial University of Newfoundland Corner Brook NL Canada
| | - F. Wayne Bell
- Ontario Forest Research Institute Ontario Ministry of Natural Resources and Forestry Sault Ste Marie ON Canada
| | - Yves Bergeron
- Institut de recherche sur les forêts Université du Québec en Abitibi‐Témiscamingue Rouyn‐Noranda QC Canada
| | | | - Maxime Brousseau
- Département de biologie and Centre d'étude de la forêt Université Laval Québec QC Canada
| | - Louis De Grandpré
- Laurentian Forestry Centre, Canadian Forest Service Natural Resources Canada Québec QC Canada
| | - Sylvain Delagrange
- Institut des Sciences de la Forêt Tempérée Université du Québec en Outaouais Ripon QC Canada
| | - Nicole J. Fenton
- Institut de recherche sur les forêts Université du Québec en Abitibi‐Témiscamingue Rouyn‐Noranda QC Canada
| | - Dominique Gravel
- Département de biologie Université de Sherbrooke Sherbrooke QC Canada
| | - S. Ellen Macdonald
- Department of Renewable Resources University of Alberta Edmonton AB Canada
| | - Benoit Hamel
- Great Lakes Forestry Centre, Canadian Forest Service Natural Resources Canada Sault Ste Marie ON Canada
| | - Morgane Higelin
- Institut de recherche sur les forêts Université du Québec en Abitibi‐Témiscamingue Rouyn‐Noranda QC Canada
| | - François Hébert
- Direction de la recherche forestière Ministère des Forêts, de la Faune et des Parcs Québec QC Canada
| | - Nathalie Isabel
- Laurentian Forestry Centre, Canadian Forest Service Natural Resources Canada Québec QC Canada
| | - Azim Mallik
- Department of Biology Lakehead University Thunder Bay ON Canada
| | | | - Jennie R. McLaren
- Department of Biological Sciences University of Texas at El Paso El Paso TX USA
| | - Christian Messier
- Institut des Sciences de la Forêt Tempérée Université du Québec en Outaouais Ripon QC Canada
- Centre d'Étude de la Forêt Université du Québec à Montréal Montréal QC Canada
| | - Dave Morris
- Centre for Northern Forest Ecosystem Research Ontario Ministry of Natural Resources and Forestry Thunder Bay ON Canada
| | - Nelson Thiffault
- Centre d’étude de la forêt, Département des sciences du bois et de la forêt Université Laval Québec QC Canada
- Canadian Wood Fibre Centre Natural Resources Canada Québec QC Canada
| | - Jean‐Pierre Tremblay
- Département de biologie and Centre d'étude de la forêt Université Laval Québec QC Canada
| | - Alison D. Munson
- Centre d’étude de la forêt, Département des sciences du bois et de la forêt Université Laval Québec QC Canada
| |
Collapse
|
19
|
Benavides R, Scherer‐Lorenzen M, Valladares F. The functional trait space of tree species is influenced by the species richness of the canopy and the type of forest. OIKOS 2019. [DOI: 10.1111/oik.06348] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Raquel Benavides
- LINCGlobal, Dept of Biogeography and Global Change, Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas ES‐28006 Madrid Spain
| | | | - Fernando Valladares
- LINCGlobal, Dept of Biogeography and Global Change, Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas ES‐28006 Madrid Spain
- Biodiversity and Conservation Area, Universidad Rey Juan Carlos, 28933 Móstoles Madrid Spain
| |
Collapse
|
20
|
Midolo G, De Frenne P, Hölzel N, Wellstein C. Global patterns of intraspecific leaf trait responses to elevation. GLOBAL CHANGE BIOLOGY 2019; 25:2485-2498. [PMID: 31056841 DOI: 10.1111/gcb.14646] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Elevational gradients are often used to quantify how traits of plant species respond to abiotic and biotic environmental variations. Yet, such analyses are frequently restricted spatially and applied along single slopes or mountain ranges. Since we know little on the response of intraspecific leaf traits to elevation across the globe, we here perform a global meta-analysis of leaf traits in 109 plant species located in 4 continents and reported in 71 studies published between 1983 and 2018. We quantified the intraspecific change in seven morpho-ecophysiological leaf traits along global elevational gradients: specific leaf area (SLA), leaf mass per area (LMA), leaf area (LA), nitrogen concentration per unit of area (Narea), nitrogen concentration per unit mass (Nmass), phosphorous concentration per unit mass (Pmass) and carbon isotope composition (δ13 C). We found LMA, Narea, Nmass and δ13 C to significantly increase and SLA to decrease with increasing elevation. Conversely, LA and Pmass showed no significant pattern with elevation worldwide. We found significantly larger increase in Narea, Nmass, Pmass and δ13 C with elevation in warmer regions. Larger responses to increasing elevation were apparent for SLA of herbaceous compared to woody species, but not for the other traits. Finally, we also detected evidences of covariation across morphological and physiological traits within the same elevational gradient. In sum, we demonstrate that there are common cross-species patterns of intraspecific leaf trait variation across elevational gradients worldwide. Irrespective of whether such variation is genetically determined via local adaptation or attributed to phenotypic plasticity, the leaf trait patterns quantified here suggest that plant species are adapted to live on a range of temperature conditions. Since the distribution of mountain biota is predominantly shifting upslope in response to changes in environmental conditions, our results are important to further our understanding of how plants species of mountain ecosystems adapt to global environmental change.
Collapse
Affiliation(s)
- Gabriele Midolo
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Pieter De Frenne
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Melle-Gontrode, Belgium
| | - Norbert Hölzel
- Institute of Landscape Ecology, University of Münster, Münster, Germany
| | - Camilla Wellstein
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| |
Collapse
|
21
|
Movedi E, Bellocchi G, Argenti G, Paleari L, Vesely F, Staglianò N, Dibari C, Confalonieri R. Development of generic crop models for simulation of multi-species plant communities in mown grasslands. Ecol Modell 2019. [DOI: 10.1016/j.ecolmodel.2019.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Zhou SX, Prentice IC, Medlyn BE. Bridging Drought Experiment and Modeling: Representing the Differential Sensitivities of Leaf Gas Exchange to Drought. FRONTIERS IN PLANT SCIENCE 2019; 9:1965. [PMID: 30697222 PMCID: PMC6340983 DOI: 10.3389/fpls.2018.01965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 12/18/2018] [Indexed: 05/15/2023]
Abstract
Global climate change is expected to increase drought duration and intensity in certain regions while increasing rainfall in others. The quantitative consequences of increased drought for ecosystems are not easy to predict. Process-based models must be informed by experiments to determine the resilience of plants and ecosystems from different climates. Here, we demonstrate what and how experimentally derived quantitative information can improve the representation of stomatal and non-stomatal photosynthetic responses to drought in large-scale vegetation models. In particular, we review literature on the answers to four key questions: (1) Which photosynthetic processes are affected under short-term drought? (2) How do the stomatal and non-stomatal responses to short-term drought vary among species originating from different hydro-climates? (3) Do plants acclimate to prolonged water stress, and do mesic and xeric species differ in their degree of acclimation? (4) Does inclusion of experimentally based plant functional type specific stomatal and non-stomatal response functions to drought help Land Surface Models to reproduce key features of ecosystem responses to drought? We highlighted the need for evaluating model representations of the fundamental eco-physiological processes under drought. Taking differential drought sensitivity of different vegetation into account is necessary for Land Surface Models to accurately model drought responses, or the drought impacts on vegetation in drier environments may be over-estimated.
Collapse
Affiliation(s)
- Shuang-Xi Zhou
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
- The New Zealand Institute for Plant and Food Research Ltd., Hawke’s Bay, New Zealand
| | - I. Colin Prentice
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
- AXA Chair of Biosphere and Climate Impacts, Grand Challenges in Ecosystems and the Environment and Grantham Institute – Climate Change and the Environment, Department of Life Sciences, Imperial College London, Ascot, United Kingdom
| | - Belinda E. Medlyn
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
23
|
Yang CK, Huang BH, Ho SW, Huang MY, Wang JC, Gao J, Liao PC. Molecular genetic and biochemical evidence for adaptive evolution of leaf abaxial epicuticular wax crystals in the genus Lithocarpus (Fagaceae). BMC PLANT BIOLOGY 2018; 18:196. [PMID: 30223774 PMCID: PMC6142356 DOI: 10.1186/s12870-018-1420-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Leaf epicuticular wax is an important functional trait for physiological regulation and pathogen defense. This study tests how selective pressure may have forced the trait of leaf abaxial epicuticular wax crystals (LAEWC) and whether the presence/absence of LAEWC is associated with other ecophysiological traits. Scanning Electron Microscopy was conducted to check for LAEWC in different Lithocarpus species. Four wax biosynthesis related genes, including two wax backbone genes ECERIFERUM 1 (CER1) and CER3, one regulatory gene CER7 and one transport gene CER5, were cloned and sequenced. Ecophysiological measurements of secondary metabolites, photosynthesis, water usage efficiency, and nutrition indices were also determined. Evolutionary hypotheses of leaf wax character transition associated with the evolution of those ecophysiological traits as well as species evolution were tested by maximum likelihood. RESULTS Eight of 14 studied Lithocarpus species have obvious LAEWC appearing with various types of trichomes. Measurements of ecophysiological traits show no direct correlations with the presence/absence of LAEWC. However, the content of phenolic acids is significantly associated with the gene evolution of the wax biosynthetic backbone gene CER1, which was detected to be positively selected when LAEWC was gained during the late-Miocene-to-Pliocene period. CONCLUSIONS Changes of landmass and vegetation type accelerated the diversification of tropical and subtropical forest trees and certain herbivores during the late Miocene. As phenolic acids were long thought to be associated with defense against herbivories, co-occurrence of LAEWC and phenolic acids may suggest that LAEWC might be an adaptive defensive mechanism in Lithocarpus.
Collapse
Affiliation(s)
- Chih-Kai Yang
- School of Life Science, National Taiwan Normal University, Postal address: No. 88, Tingchow Rd. Sect. 4, Taipei, 11677 Taiwan
- The Experimental Forest, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Nantou 55750 Taiwan
| | - Bing-Hong Huang
- School of Life Science, National Taiwan Normal University, Postal address: No. 88, Tingchow Rd. Sect. 4, Taipei, 11677 Taiwan
| | - Shao-Wei Ho
- School of Life Science, National Taiwan Normal University, Postal address: No. 88, Tingchow Rd. Sect. 4, Taipei, 11677 Taiwan
| | - Meng-Yuan Huang
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei, 11119 Taiwan
| | - Jenn-Che Wang
- School of Life Science, National Taiwan Normal University, Postal address: No. 88, Tingchow Rd. Sect. 4, Taipei, 11677 Taiwan
| | - Jian Gao
- Faculty of Resources and Environment, Baotou Teachers’ College, Inner Mongolia University of Science and Technology, Inner Mongolia, 014010 China
| | - Pei-Chun Liao
- School of Life Science, National Taiwan Normal University, Postal address: No. 88, Tingchow Rd. Sect. 4, Taipei, 11677 Taiwan
| |
Collapse
|
24
|
Louarn G, Faverjon L. A generic individual-based model to simulate morphogenesis, C-N acquisition and population dynamics in contrasting forage legumes. ANNALS OF BOTANY 2018; 121:875-896. [PMID: 29300872 PMCID: PMC5906914 DOI: 10.1093/aob/mcx154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/17/2017] [Indexed: 05/12/2023]
Abstract
Background and Aims Individual-based models (IBMs) are promising tools to disentangle plant interactions in multi-species grasslands and foster innovative species mixtures. This study describes an IBM dealing with the morphogenesis, growth and C-N acquisition of forage legumes that integrates plastic responses from functional-structural plant models. Methods A generic model was developed to account for herbaceous legume species with contrasting above- and below-ground morphogenetic syndromes and to integrate the responses of plants to light, water and N. Through coupling with a radiative transfer model and a three-dimensional virtual soil, the model allows dynamic resolution of competition for multiple resources at individual plant level within a plant community. The behaviour of the model was assessed on a range of monospecific stands grown along gradients of light, water and N availability. Key Results The model proved able to capture the diversity of morphologies encountered among the forage legumes. The main density-dependent features known about even-age plant populations were correctly anticipated. The model predicted (1) the 'reciprocal yield' law relating average plant mass to density, (2) a self-thinning pattern close to that measured for herbaceous species and (3) consistent changes in the size structure of plant populations with time and pedo-climatic conditions. In addition, plastic changes in the partitioning of dry matter, the N acquisition mode and in the architecture of shoots and roots emerged from the integration of plant responses to their local environment. This resulted in taller plants and thinner roots when competition was dominated by light, and shorter plants with relatively more developed root systems when competition was dominated by soil resources. Conclusions A population dynamic model considering growth and morphogenesis responses to multiple resources heterogeneously distributed in the environment was presented. It should allow scaling plant-plant interactions from individual to community levels without the inconvenience of average plant models.
Collapse
|
25
|
Effects of Climate Change on Grassland Biodiversity and Productivity: The Need for a Diversity of Models. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8020014] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Funk JL, Larson JE, Ames GM, Butterfield BJ, Cavender‐Bares J, Firn J, Laughlin DC, Sutton‐Grier AE, Williams L, Wright J. Revisiting the
H
oly
G
rail: using plant functional traits to understand ecological processes. Biol Rev Camb Philos Soc 2016; 92:1156-1173. [DOI: 10.1111/brv.12275] [Citation(s) in RCA: 389] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 03/14/2016] [Accepted: 03/17/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Jennifer L. Funk
- Schmid College of Science and Technology, Chapman University 1 University Drive Orange CA 92866 USA
| | - Julie E. Larson
- Schmid College of Science and Technology, Chapman University 1 University Drive Orange CA 92866 USA
| | - Gregory M. Ames
- Department of Biology Duke University Box 90338 Durham NC 27708 USA
| | - Bradley J. Butterfield
- Merriam‐Powell Center for Environmental Research and Department of Biological Sciences Northern Arizona University Box 5640 Flagstaff AZ 86011 USA
| | - Jeannine Cavender‐Bares
- Department of Ecology, Evolution and Behavior University of Minnesota 1475 Gortner Avenue St. Paul MN 55108 USA
| | - Jennifer Firn
- School of Earth, Environmental and Biological Sciences, Queensland University of Technology Gardens Point Brisbane Queensland 4000 Australia
| | - Daniel C. Laughlin
- Environmental Research Institute and School of Science University of Waikato Private Bag 3105 Hamilton 3240 New Zealand
| | - Ariana E. Sutton‐Grier
- National Ocean Service National Oceanic and Atmospheric Administration 1305 East‐West Highway Silver Spring MD 20910 USA
- Earth System Science Interdisciplinary Center University of Maryland 5825 University Research Ct #4001 College Park MD 20740 USA
| | - Laura Williams
- Department of Ecology, Evolution and Behavior University of Minnesota 1475 Gortner Avenue St. Paul MN 55108 USA
| | - Justin Wright
- Department of Biology Duke University Box 90338 Durham NC 27708 USA
| |
Collapse
|
27
|
Siefert A, Violle C, Chalmandrier L, Albert CH, Taudiere A, Fajardo A, Aarssen LW, Baraloto C, Carlucci MB, Cianciaruso MV, de L Dantas V, de Bello F, Duarte LDS, Fonseca CR, Freschet GT, Gaucherand S, Gross N, Hikosaka K, Jackson B, Jung V, Kamiyama C, Katabuchi M, Kembel SW, Kichenin E, Kraft NJB, Lagerström A, Bagousse-Pinguet YL, Li Y, Mason N, Messier J, Nakashizuka T, Overton JM, Peltzer DA, Pérez-Ramos IM, Pillar VD, Prentice HC, Richardson S, Sasaki T, Schamp BS, Schöb C, Shipley B, Sundqvist M, Sykes MT, Vandewalle M, Wardle DA. A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecol Lett 2015; 18:1406-19. [PMID: 26415616 DOI: 10.1111/ele.12508] [Citation(s) in RCA: 406] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/03/2015] [Accepted: 08/11/2015] [Indexed: 02/05/2023]
Abstract
Recent studies have shown that accounting for intraspecific trait variation (ITV) may better address major questions in community ecology. However, a general picture of the relative extent of ITV compared to interspecific trait variation in plant communities is still missing. Here, we conducted a meta-analysis of the relative extent of ITV within and among plant communities worldwide, using a data set encompassing 629 communities (plots) and 36 functional traits. Overall, ITV accounted for 25% of the total trait variation within communities and 32% of the total trait variation among communities on average. The relative extent of ITV tended to be greater for whole-plant (e.g. plant height) vs. organ-level traits and for leaf chemical (e.g. leaf N and P concentration) vs. leaf morphological (e.g. leaf area and thickness) traits. The relative amount of ITV decreased with increasing species richness and spatial extent, but did not vary with plant growth form or climate. These results highlight global patterns in the relative importance of ITV in plant communities, providing practical guidelines for when researchers should include ITV in trait-based community and ecosystem studies.
Collapse
Affiliation(s)
- Andrew Siefert
- Department of Evolution and Ecology, University of California, Davis, CA, 95616, USA
| | - Cyrille Violle
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE - 34293, Montpellier, France
| | - Loïc Chalmandrier
- Université Grenoble Alpes, LECA, F-38000, Grenoble, France.,CNRS, LECA, F-3800, Grenoble, France
| | - Cécile H Albert
- Aix Marseille Université, CNRS, IRD, Avignon Université, IMBE, 13397, Marseille, France
| | - Adrien Taudiere
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE - 34293, Montpellier, France
| | - Alex Fajardo
- Centro de Investigación en Ecosistemas de la Patagonia (CIEP) Conicyt-Regional R10C1003, Universidad Austral de Chile, Camino Baguales s/n, Coyhaique, 5951601, Chile
| | - Lonnie W Aarssen
- Department of Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Christopher Baraloto
- International Center for Tropical Botany, Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA.,INRA, UMR Ecologie des Forêts de Guyane, BP 709, 97387, Kourou Cedex, France
| | - Marcos B Carlucci
- Programa de Pós Graduação em Ecologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91501-970, RS, Brazil.,CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, 70040-020, Brazil.,Programa de Pós-Graduação em Ecologia e Evolução, Universidade Federal de Goiás, 74690-900, Goiânia, Goiás, Brazil
| | - Marcus V Cianciaruso
- Departamento de Ecologia, Universidade Federal de Goiás, 74690-900, Goiânia, Goiás, Brazil
| | - Vinícius de L Dantas
- Department of Plant Biology, University of Campinas, 13083-970, Campinas, São Paulo, Brazil
| | - Francesco de Bello
- Institute of Botany, Czech Academy of Sciences, CZ-379 82, Třeboň, Czech Republic.,Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 31, CZ-370 05, České Budějovice, Czech Republic
| | - Leandro D S Duarte
- Programa de Pós Graduação em Ecologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91501-970, RS, Brazil
| | - Carlos R Fonseca
- Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, RN, 59092-350, Brazil
| | - Grégoire T Freschet
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE - 34293, Montpellier, France.,Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umea, 901 83, Sweden
| | - Stéphanie Gaucherand
- IRSTEA, Unité de Recherche sur les Ecosystèmes Montagnards, BP 76, 38402, St-Martin d'Hères, cedex, France
| | - Nicolas Gross
- INRA, USC1339 Chizé (CEBC), F-79360, Villiers en Bois, France.,Centre d'étude biologique de Chizé, CNRS - Université La Rochelle (UMR 7372), F-79360, Villiers en Bois, France
| | - Kouki Hikosaka
- Graduate School of Life Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Benjamin Jackson
- Centre for Ecology and Hydrology, Library Avenue, Bailrigg, LA14AP, Lancaster, UK
| | - Vincent Jung
- CNRS UMR 6553, ECOBIO, Université de Rennes 1, Rennes, 35042, France
| | - Chiho Kamiyama
- Institute for the Advanced Study of Sustainability, United Nations University, 5-53-70 Jingumae, Shibuya, 150-8925, Japan
| | - Masatoshi Katabuchi
- Department of Biology, University of Florida, P.O. Box 118525, Gainesville, FL, 32611, USA
| | - Steven W Kembel
- Département des sciences biologiques, Université du Québec à Montréal, Montréal, Québec, H3C3P8, Canada
| | - Emilie Kichenin
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umea, 901 83, Sweden
| | - Nathan J B Kraft
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
| | - Anna Lagerström
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umea, 901 83, Sweden
| | - Yoann Le Bagousse-Pinguet
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 31, CZ-370 05, České Budějovice, Czech Republic
| | - Yuanzhi Li
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Norman Mason
- Landcare Research, Private Bag 3127, Hamilton 3240, New Zealand
| | - Julie Messier
- Ecology and Evolutionary Biology, University of Arizona, 1041 E. Lowell Street, Tucson, AZ, 85721, USA
| | - Tohru Nakashizuka
- Graduate School of Life Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| | | | | | - I M Pérez-Ramos
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, 41080, Spain
| | - Valério D Pillar
- Programa de Pós Graduação em Ecologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91501-970, RS, Brazil.,Departamento de Ecologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Honor C Prentice
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden
| | | | - Takehiro Sasaki
- Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8563, Japan
| | - Brandon S Schamp
- Department of Biology, Algoma University, Sault Ste. Marie, Ontario, P6A 2G4, Canada
| | - Christian Schöb
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zürich, Switzerland
| | - Bill Shipley
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Maja Sundqvist
- Department of Ecology and Environmental Science, Umeå University, SE901 87 Umeå, Sweden.,Center for Macroecology, Evolution and Climate, The Natural History Museum of Denmark, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Martin T Sykes
- Department of Physical Geography and Ecosystem Science, Lund University, Sölvegatan 12, SE-223 62, Lund, Sweden
| | - Marie Vandewalle
- Department of Physical Geography and Ecosystem Science, Lund University, Sölvegatan 12, SE-223 62, Lund, Sweden
| | - David A Wardle
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umea, 901 83, Sweden
| |
Collapse
|
28
|
Theoretical consequences of trait-based environmental filtering for the breadth and shape of the niche: New testable hypotheses generated by the Traitspace model. Ecol Modell 2015. [DOI: 10.1016/j.ecolmodel.2015.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Freschet GT, Swart EM, Cornelissen JHC. Integrated plant phenotypic responses to contrasting above- and below-ground resources: key roles of specific leaf area and root mass fraction. THE NEW PHYTOLOGIST 2015; 206:1247-60. [PMID: 25783781 DOI: 10.1111/nph.13352] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/03/2015] [Indexed: 05/05/2023]
Abstract
Plants adapt phenotypically to different conditions of light and nutrient supply, supposedly in order to achieve colimitation of these resources. Their key variable of adjustment is the ratio of leaf area to root length, which relies on plant biomass allocation and organ morphology. We recorded phenotypic differences in leaf and root mass fractions (LMF, RMF), specific leaf area (SLA) and specific root length (SRL) of 12 herbaceous species grown in factorial combinations of high/low irradiance and fertilization treatments. Leaf area and root length ratios, and their components, were influenced by nonadditive effects between light and nutrient supply, and differences in the strength of plant responses were partly explained by Ellenberg's species values representing ecological optima. Changes in allocation were critical in plant responses to nutrient availability, as the RMF contribution to changes in root length was 2.5× that of the SRL. Contrastingly, morphological adjustments (SLA rather than LMF) made up the bulk of plant response to light availability. Our results suggest largely predictable differences in responses of species and groups of species to environmental change. Nevertheless, they stress the critical need to account for adjustments in below-ground mass allocation to understand the assembly and responses of communities in changing environments.
Collapse
Affiliation(s)
- Grégoire T Freschet
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 (CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE), 1919 route de Mende, Montpellier, 34293, France
| | - Elferra M Swart
- Systems Ecology, Department of Ecological Sciences, VU University, de Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands
| | - Johannes H C Cornelissen
- Systems Ecology, Department of Ecological Sciences, VU University, de Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands
| |
Collapse
|
30
|
Roscher C, Schumacher J, Schmid B, Schulze ED. Contrasting effects of intraspecific trait variation on trait-based niches and performance of legumes in plant mixtures. PLoS One 2015; 10:e0119786. [PMID: 25781938 PMCID: PMC4363318 DOI: 10.1371/journal.pone.0119786] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 01/28/2015] [Indexed: 11/29/2022] Open
Abstract
Niche differentiation, assumed to be a key mechanism of species coexistence, requires that species differ in their functional traits. So far it remains unclear to which extent trait plasticity leads to niche shifts of species at higher plant diversity, thereby increasing or decreasing niche overlap between species. To analyse this question it is convenient to measure niches indirectly via the variation in resource-uptake traits rather than directly via the resources used. We provisionally call these indirectly measured niches trait-based niches. We studied shoot- and leaf-morphological characteristics in seven legume species in monoculture and multi-species mixture in experimental grassland. Legume species varied in the extent of trait variation in response to plant diversity. Trait plasticity led to significant shifts in species niches in multiple dimensions. Single-species niches in several traits associated with height growth and filling of canopy space were expanded, while other niche dimensions were compressed or did not change with plant diversity. Niche separation among legumes decreased in dimensions related to height growth and space filling, but increased in dimensions related to leaf size and morphology. The total extent of occupied niche space was larger in mixture than in the combined monocultures for dimensions related to leaf morphology and smaller for dimensions related to whole-plant architecture. Taller growth, greater space filling and greater plasticity in shoot height were positively, while larger values and greater plasticity in specific leaf area were negatively related with increased performance of species in mixture. Our study shows that trait variation in response to plant diversity shifts species niches along trait axes. Plastically increased niche differentiation is restricted to niche dimensions that are apparently not related to size-dependent differences between species, but functional equivalence (convergence in height growth) rather than complementarity (divergence in traits associated with light acquisition) explains increased performance of legumes in mixture.
Collapse
Affiliation(s)
- Christiane Roscher
- UFZ, Helmholtz Centre for Environmental Research, Department of Community Ecology, Halle, Germany
- * E-mail:
| | - Jens Schumacher
- Institute of Stochastics, Friedrich Schiller University, Jena, Germany
| | - Bernhard Schmid
- Institute of Evolutionary Biology and Environmental Studies and Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
31
|
Deraison H, Badenhausser I, Börger L, Gross N. Herbivore effect traits and their impact on plant community biomass: an experimental test using grasshoppers. Funct Ecol 2014. [DOI: 10.1111/1365-2435.12362] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hélène Deraison
- Station d'Ecologie de Chizé‐La Rochelle CNRS–Université de La Rochelle UMR7372 F‐79360 Villiers en Bois Beauvoir sur Niort France
- Station d'Ecologie de Chizé‐La Rochelle INRA USC1339 F‐79360Villiers en Bois Beauvoir sur Niort France
- LTER <<Zone Atelier Plaine & Val de Sèvre>> Centre d'Etudes Biologiques de Chizé CNRS F‐79360 Villiers‐en‐Bois France
| | - Isabelle Badenhausser
- Station d'Ecologie de Chizé‐La Rochelle CNRS–Université de La Rochelle UMR7372 F‐79360 Villiers en Bois Beauvoir sur Niort France
- Station d'Ecologie de Chizé‐La Rochelle INRA USC1339 F‐79360Villiers en Bois Beauvoir sur Niort France
- LTER <<Zone Atelier Plaine & Val de Sèvre>> Centre d'Etudes Biologiques de Chizé CNRS F‐79360 Villiers‐en‐Bois France
| | - Luca Börger
- Station d'Ecologie de Chizé‐La Rochelle CNRS–Université de La Rochelle UMR7372 F‐79360 Villiers en Bois Beauvoir sur Niort France
- LTER <<Zone Atelier Plaine & Val de Sèvre>> Centre d'Etudes Biologiques de Chizé CNRS F‐79360 Villiers‐en‐Bois France
- Department of Biosciences College of Science Swansea University Singleton Park Swansea SA2 8PP UK
| | - Nicolas Gross
- Station d'Ecologie de Chizé‐La Rochelle CNRS–Université de La Rochelle UMR7372 F‐79360 Villiers en Bois Beauvoir sur Niort France
- Station d'Ecologie de Chizé‐La Rochelle INRA USC1339 F‐79360Villiers en Bois Beauvoir sur Niort France
- LTER <<Zone Atelier Plaine & Val de Sèvre>> Centre d'Etudes Biologiques de Chizé CNRS F‐79360 Villiers‐en‐Bois France
| |
Collapse
|
32
|
CoSMo: A simple approach for reproducing plant community dynamics using a single instance of generic crop simulators. Ecol Modell 2014. [DOI: 10.1016/j.ecolmodel.2014.04.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Can transgenerational plasticity contribute to the invasion success of annual plant species? Oecologia 2014; 176:95-106. [PMID: 24929349 DOI: 10.1007/s00442-014-2994-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 06/05/2014] [Indexed: 10/25/2022]
Abstract
Adaptive transgenerational plasticity (TGP), i.e., significantly higher fitness when maternal and offspring conditions match, might contribute to the population growth of non-native species in highly variable environments. However, comparative studies that directly test this hypothesis are lacking. Therefore, we performed a reciprocal split-brood experiment to compare TGP in response to N and water availability in single populations of two invasive (Amaranthus retroflexus, Galinsoga parviflora) and two congeneric non-invasive introduced species (Amaranthus albus, Galinsoga ciliata). We hypothesized that the transgenerational effect is adaptive: (1) in invasive species compared with non-invasive adventives, and (2) in stressful conditions compared with resource-rich environments. The phenotypic variation among offspring was generated, in large part, by our experimental treatments in the maternal generation; therefore, we demonstrated a direct TGP effect on the offspring's adult fitness. We found evidence, for the first time, that invasive and non-invasive adventive species differ regarding the expression of TGP in the adult stage, as adaptive responses were found exclusively in the invasive species. The manifestation of TGP was more explicit under resource-rich conditions; therefore, it might contribute to the population dynamics of non-native species in resource-rich sites rather than to their ecological tolerance spectra.
Collapse
|