1
|
Kim SH, Chang SJC, Dobri G, Strauss S, Lin E, Zavaletta V, Pannullo SC, Osborne JR, Schwartz TH, Knisely JPS, Ivanidze J. [68 Ga]-DOTATATE PET/MR-based evaluation of physiologic somatostatin receptor 2 expression in the adult pituitary gland as a function of age and sex in a prospective cohort. Pituitary 2023:10.1007/s11102-023-01329-0. [PMID: 37285059 DOI: 10.1007/s11102-023-01329-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 06/08/2023]
Abstract
PURPOSE The pituitary gland has the fourth highest physiologic avidity of [68 Ga]-DOTATATE. In order to guide our understanding of [68 Ga]-DOTATATE PET in clinical contexts, accurate characterization of the normal pituitary gland is first required. This study aimed to characterize the normal pituitary gland using dedicated brain [68 Ga]-DOTATATE PET/MRI as a function of age and sex. METHODS A total of 95 patients with a normal pituitary gland underwent brain [68 Ga]-DOTATATE PET examinations for the purpose of diagnosing CNS SSTR2 positive tumors (mean age: 58.9, 73% female). Maximum SUV of the pituitary gland was obtained in each patient. SUV of superior sagittal sinus was obtained to calculate normalized SUV score (SUVR) of the gland. The anatomic size of the gland was collected as maximum sagittal height (MSH). Correlations with age and sex were analyzed. RESULTS The mean SUV and SUVR of the pituitary gland were 17.6 (range: 7-59.5, SD = 7.1) and 13.8 (range: 3.3-52.6, SD = 7.2), respectively. Older females had significantly higher SUV of the pituitary gland compared to younger females. When stratified by age and sex, both older and younger females had significantly higher pituitary SUV than older males. SUVR did not differ significantly by age or sex. MSH of the pituitary gland in younger females was significantly greater than in younger males at all age cutoffs. CONCLUSION This study provides an empiric profiling of the physiological [68 Ga]-DOTATATE avidity of the pituitary gland. The findings suggest that SUV may vary by age and sex and can help guide the use of [68 Ga]-DOTATATE PET/MRI in clinical and research settings. Future studies can build on these findings to investigate further the relationship between pituitary biology and demographic factors.
Collapse
Affiliation(s)
- Sean H Kim
- Department of Radiology, New York-Presbyterian Hospital, Weill Cornell Medical Center, 525 E. 68Th St, New York, NY, 10021, USA
| | - Se Jung Chris Chang
- Department of Radiology, New York-Presbyterian Hospital, Weill Cornell Medical Center, 525 E. 68Th St, New York, NY, 10021, USA
| | - Georgiana Dobri
- Department of Endocrinology, Weill Cornell Medical Center, New York-Presbyterian Hospital, New York, NY, USA
| | - Sara Strauss
- Department of Radiology, New York-Presbyterian Hospital, Weill Cornell Medical Center, 525 E. 68Th St, New York, NY, 10021, USA
| | - Eaton Lin
- Department of Radiology, New York-Presbyterian Hospital, Weill Cornell Medical Center, 525 E. 68Th St, New York, NY, 10021, USA
| | - Vaz Zavaletta
- Department of Radiology, University of Colorado Hospital, Aurora, CO, USA
| | - Susan C Pannullo
- Department of Neurological Surgery, Weill Cornell Medical Center, New York-Presbyterian Hospital, New York, NY, USA
| | - Joseph R Osborne
- Department of Radiology, New York-Presbyterian Hospital, Weill Cornell Medical Center, 525 E. 68Th St, New York, NY, 10021, USA
| | - Theodore H Schwartz
- Department of Neurological Surgery, Weill Cornell Medical Center, New York-Presbyterian Hospital, New York, NY, USA
| | - Jonathan P S Knisely
- Department of Radiation Oncology, Weill Cornell Medical Center, New York-Presbyterian Hospital, New York, NY, USA
| | - Jana Ivanidze
- Department of Radiology, New York-Presbyterian Hospital, Weill Cornell Medical Center, 525 E. 68Th St, New York, NY, 10021, USA.
| |
Collapse
|
2
|
Gil J, Marques-Pamies M, Valassi E, Serra G, Salinas I, Xifra G, Casano-Sancho P, Carrato C, Biagetti B, Sesmilo G, Marcos-Ruiz J, Rodriguez-Lloveras H, Rueda-Pujol A, Aulinas A, Blanco A, Hostalot C, Simó-Servat A, Muñoz F, Rico M, Ibáñez-Domínguez J, Cordero E, Webb SM, Jordà M, Puig-Domingo M. Molecular characterization of epithelial-mesenchymal transition and medical treatment related-genes in non-functioning pituitary neuroendocrine tumors. Front Endocrinol (Lausanne) 2023; 14:1129213. [PMID: 37033229 PMCID: PMC10074986 DOI: 10.3389/fendo.2023.1129213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/23/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Different medical therapies have been developed for pituitary adenomas. However, Non-Functioning Pituitary Neuroendocrine Tumors (NF-PitNET) have shown little response to them. Furthermore, epithelial-mesenchymal transition (EMT) has been linked to resistance to medical treatment in a significant number of tumors, including pituitary adenomas. Methods We aimed to evaluate the expression of EMT-related markers in 72 NF-PitNET and 16 non-tumoral pituitaries. To further explore the potential usefulness of medical treatment for NF-PitNET we assessed the expression of somatostatin receptors and dopamine-associated genes. Results We found that SNAI1, SNAI2, Vimentin, KLK10, PEBP1, Ki-67 and SSTR2 were associated with invasive NF-PitNET. Furthermore, we found that the EMT phenomenon was more common in NF-PitNET than in GH-secreting pituitary tumors. Interestingly, PEBP1 was overexpressed in recurrent NF-PitNET, and could predict growth recurrence with 100% sensitivity but only 43% specificity. In parallel with previously reported studies, SSTR3 is highly expressed in our NF-PitNET cohort. However, SSTR3 expression is highly heterogeneous among the different histological variants of NF-PitNET with very low levels in silent corticotroph adenomas. Conclusion NF-PitNET showed an enhanced EMT phenomenon. SSTR3 targeting could be a good therapeutic candidate in NF-PitNET except for silent corticotroph adenomas, which express very low levels of this receptor. In addition, PEBP1 could be an informative biomarker of tumor regrowth, useful for predictive medicine in NF-PitNET.
Collapse
Affiliation(s)
- Joan Gil
- Endocrine Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Department of Endocrinology, Research Center for Pituitary Diseases, Hospital Sant Pau, IIB-SPau, Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Raras, CIBERER, Unit 747, Instituto de Salud Carlos III, Madrid, Spain
| | - Montserrat Marques-Pamies
- Endocrine Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Department of Endocrinology, Hospital Municipal de Badalona, Badalona, Catalonia, Spain
| | - Elena Valassi
- Endocrine Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Department of Endocrinology, Research Center for Pituitary Diseases, Hospital Sant Pau, IIB-SPau, Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Raras, CIBERER, Unit 747, Instituto de Salud Carlos III, Madrid, Spain
| | - Guillermo Serra
- Department of Endocrinology, Son Espases University Hospital, Palma de Mallorca, Spain
| | - Isabel Salinas
- Department of Endocrinology and Nutrition, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Gemma Xifra
- Department of Endocrinology, Josep Trueta University Hospital, Girona, Spain
| | - Paula Casano-Sancho
- Centro de Investigación en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Pediatric Endocrinology Unit, Institut de Recerca SJS 39-57, Hospital Sant Joan de Déu, University of Barcelona, Esplugues, Spain
| | - Cristina Carrato
- Department of Pathology, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Betina Biagetti
- Department of Endocrinology, University Hospital Vall d’Hebron, Barcelona, Spain
| | - Gemma Sesmilo
- Department of Endocrinology, Dexeus University Hospital, Barcelona, Spain
| | - Jennifer Marcos-Ruiz
- Endocrine Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | | | - Anna Rueda-Pujol
- Endocrine Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Anna Aulinas
- Department of Endocrinology, Research Center for Pituitary Diseases, Hospital Sant Pau, IIB-SPau, Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Raras, CIBERER, Unit 747, Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto Blanco
- Department of Neurosurgery, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Cristina Hostalot
- Department of Neurosurgery, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Andreu Simó-Servat
- Department of Endocrinology, Hospital Universitari Mútua de Terrassa, Terrassa, Spain
| | - Fernando Muñoz
- Department of Neurosurgery, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Marta Rico
- Department of Neurosurgery, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | - Esteban Cordero
- Department of Neurosurgery, University Hospital Vall d’Hebron, Barcelona, Spain
| | - Susan M. Webb
- Department of Endocrinology, Research Center for Pituitary Diseases, Hospital Sant Pau, IIB-SPau, Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Raras, CIBERER, Unit 747, Instituto de Salud Carlos III, Madrid, Spain
| | - Mireia Jordà
- Endocrine Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Manel Puig-Domingo
- Endocrine Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Centro de Investigación en Red de Enfermedades Raras, CIBERER, Unit 747, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology, Hospital Municipal de Badalona, Badalona, Catalonia, Spain
| |
Collapse
|
3
|
Portovedo S, Neto LV, Soares P, Carvalho DPD, Takiya CM, Miranda-Alves L. Aggressive nonfunctioning pituitary neuroendocrine tumors. Brain Tumor Pathol 2022; 39:183-199. [PMID: 35725837 DOI: 10.1007/s10014-022-00441-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022]
Abstract
Nonfunctioning pituitary neuroendocrine tumors (NF-PitNETs) are tumors that are not associated with clinical evidence of hormonal hypersecretion. According to the World Health Organization (WHO), there are some subtypes of PitNETs that exhibit more aggressive behavior than others. Among the types of potentially aggressive PitNETs, three are nonfunctional: silent sparsely granulated somatotropinomas, silent corticotropinomas, and poorly differentiated PIT-1 lineage tumors. Several biological markers have been investigated in NF-PitNETs. However, there is no single biomarker able to independently predict aggressive behavior in NF-PitNETs. Thus, a more complex and multidisciplinary proposal of a comprehensive definition of aggressive NF-PitNETs is necessary. Here, we suggest a combined and more complete criterion for the NF-PitNETs classification. We propose that aggressiveness is due to a multifactorial combination, and we emphasize the need to include new emerging markers that are involved in the aggressiveness of NF-PitNETs and the need to identify.
Collapse
Affiliation(s)
- Sérgio Portovedo
- Laboratório de Endocrinologia Experimental-LEEx, Centro de Ciências da Saúde, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco F - Sala F1-015 - Ilha do Fundão, Rio de Janeiro, RJ, 21941-912, Brazil.,Programa de Pós-Graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Vieira Neto
- Programa de Pós-Graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Serviço de Endocrinologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paula Soares
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal.,Departamento de Patologia, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| | - Denise Pires de Carvalho
- Programa de Pós-Graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christina Maeda Takiya
- Laboratório de Imunopatologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leandro Miranda-Alves
- Laboratório de Endocrinologia Experimental-LEEx, Centro de Ciências da Saúde, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco F - Sala F1-015 - Ilha do Fundão, Rio de Janeiro, RJ, 21941-912, Brazil. .,Programa de Pós-Graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. .,Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. .,Programa de Pós-Graduação em Ciências Morfológicas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Current and Emerging Medical Therapies in Pituitary Tumors. J Clin Med 2022; 11:jcm11040955. [PMID: 35207228 PMCID: PMC8877616 DOI: 10.3390/jcm11040955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/01/2022] [Accepted: 02/10/2022] [Indexed: 12/04/2022] Open
Abstract
Pituitary tumors (PT) represent in, the majority of cases, benign tumors for which surgical treatment still remains, except for prolactin-secreting PT, the first-line therapeutic option. Nonetheless, the role played by medical therapies for the management of such tumors, before or after surgery, has evolved considerably, due in part to the recent development of well-tolerated and highly efficient molecules. In this review, our aim was to present a state-of-the-art of the current medical therapies used in the field of PT and the benefits and caveats for each of them, and further specify their positioning in the therapeutic algorithm of each phenotype. Finally, we discuss the future of PT medical therapies, based on the most recent studies published in this field.
Collapse
|
5
|
Tebani A, Jotanovic J, Hekmati N, Sivertsson Å, Gudjonsson O, Edén Engström B, Wikström J, Uhlèn M, Casar-Borota O, Pontén F. Annotation of pituitary neuroendocrine tumors with genome-wide expression analysis. Acta Neuropathol Commun 2021; 9:181. [PMID: 34758873 PMCID: PMC8579660 DOI: 10.1186/s40478-021-01284-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022] Open
Abstract
Pituitary neuroendocrine tumors (PitNETs) are common, generally benign tumors with complex clinical characteristics related to hormone hypersecretion and/or growing sellar tumor mass. PitNETs can be classified based on the expression pattern of anterior pituitary hormones and three main transcriptions factors (TF), SF1, PIT1 and TPIT that regulate differentiation of adenohypophysial cells. Here, we have extended this classification based on the global transcriptomics landscape using tumor tissue from a well-defined cohort comprising 51 PitNETs of different clinical and histological types. The molecular profiles were compared with current classification schemes based on immunohistochemistry. Our results identified three main clusters of PitNETs that were aligned with the main pituitary TFs expression patterns. Our analyses enabled further identification of specific genes and expression patterns, including both known and unknown genes, that could distinguish the three different classes of PitNETs. We conclude that the current classification of PitNETs based on the expression of SF1, PIT1 and TPIT reflects three distinct subtypes of PitNETs with different underlying biology and partly independent from the expression of corresponding hormones. The transcriptomic analysis reveals several potentially targetable tumor-driving genes with previously unknown role in pituitary tumorigenesis.
Collapse
|
6
|
Lamback EB, Wildemberg LE, Gadelha MR. Current opinion on the diagnosis and management of non-functioning pituitary adenomas. Expert Rev Endocrinol Metab 2021; 16:309-320. [PMID: 34678108 DOI: 10.1080/17446651.2021.1988851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/30/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Non-functioning pituitary adenomas (NFPAs) are clinically silent tumors and the second most common pituitary adenoma. Surgery is the mainstay of treatment as there is, as yet, no effective medical treatment. AREAS COVERED We present current knowledge on the clinical diagnosis, histopathological classification, molecular data, and management strategies in NFPA. EXPERT OPINION NFPA is a heterogeneous group of tumors, in respect to their origin and clinical course. In recent years, research on pathology and molecular biology have advanced our knowledge of NFPA pathogenesis. NFPA exhibit, in the majority of cases, an indolent behavior, with satisfactory response to treatment. In aggressive cases, multimodal management is needed; however, even this approach may be insufficient, so the development of new treatments is warranted for better management. In this setting, the understanding of the mechanisms involved in the genesis and progression of NFPA is crucial for the identification and development of directed treatments with higher chances of response.
Collapse
Affiliation(s)
- Elisa B Lamback
- Neuroendocrinology Research Center/Endocrinology Division, Medical School and Hospital Universitário Clementino Fraga Filho, Rio De Janeiro, Brazil
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual Do Cérebro Paulo Niemeyer, Rio De Janeiro, Brazil
- Neuroendocrine Unit, Instituto Estadual Do Cérebro Paulo Niemeyer, Rio De Janeiro, Brazil
| | - Luiz Eduardo Wildemberg
- Neuroendocrinology Research Center/Endocrinology Division, Medical School and Hospital Universitário Clementino Fraga Filho, Rio De Janeiro, Brazil
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual Do Cérebro Paulo Niemeyer, Rio De Janeiro, Brazil
- Neuroendocrine Unit, Instituto Estadual Do Cérebro Paulo Niemeyer, Rio De Janeiro, Brazil
| | - Mônica R Gadelha
- Neuroendocrinology Research Center/Endocrinology Division, Medical School and Hospital Universitário Clementino Fraga Filho, Rio De Janeiro, Brazil
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual Do Cérebro Paulo Niemeyer, Rio De Janeiro, Brazil
- Neuroendocrine Unit, Instituto Estadual Do Cérebro Paulo Niemeyer, Rio De Janeiro, Brazil
| |
Collapse
|
7
|
Gulde S, Wiedemann T, Schillmaier M, Valença I, Lupp A, Steiger K, Yen HY, Bäuerle S, Notni J, Luque R, Schmid H, Schulz S, Ankerst DP, Schilling F, Pellegata NS. Gender-Specific Efficacy Revealed by Head-to-Head Comparison of Pasireotide and Octreotide in a Representative In Vivo Model of Nonfunctioning Pituitary Tumors. Cancers (Basel) 2021; 13:cancers13123097. [PMID: 34205778 PMCID: PMC8235746 DOI: 10.3390/cancers13123097] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary No effective medical therapy exists for residual/recurrent nonfunctioning pituitary tumors (NFPTs). First-generation somatostatin analogs (SSAs) like octreotide targeting somatostatin receptor type 2 (SSTR2) are the mainstay therapy for functioning PTs, but have shown little effect in NFPTs. This is in agreement with an SSTR profile characterized by low SSTR2, and high SSTR3 levels in the latter. Pasireotide a multi-SSTR-preferring SSA, should be effective against NFPTs. To test this hypothesis, we conducted a head-to-head comparison of octreotide and pasireotide in the only spontaneous in vivo model of NFPTs (MENX rats), which recapitulates the human disease. Pasireotide showed a superior anti-tumor effect vs. octreotide, especially in females. Interestingly, Sstr3 levels were higher in female vs. male NFPTs. A sex-related SSTR3 expression may extend to human NFPTs, thereby representing a tool for patient stratification. Our results have translational relevance for the medical treatment of patients with residual/recurrent NFPTs currently lacking efficacious therapeutic options. Abstract Invasive nonfunctioning pituitary tumors (NFPTs) are non-resectable neoplasms associated with frequent relapse and significant comorbidities. Current treatments, including somatostatin receptor 2 (SSTR2)-directed somatostatin analogs (SSAs), often fail against NFPTs. Thus, identifying effective therapies is clinically relevant. As NFPTs express SSTR3 at high levels, pasireotide, a multireceptor-targeted SSA, might be beneficial. Here we evaluated pasireotide in the only representative model of spontaneous NFPTs (MENX rats) in vivo. Octreotide long-acting release (LAR), pasireotide LAR, or placebo, were administered to age-matched, tumor-bearing MENX rats of both sexes for 28 d or 56 d. Longitudinal high-resolution magnetic resonance imaging monitored tumor growth. While tumors in placebo-treated rats increased in volume over time, PTs in drug-treated rats displayed significant growth suppression, and occasional tumor shrinkage. Pasireotide elicited stronger growth inhibition. Radiological responses correlated with tumors’ proliferation rates. Both SSAs, but especially pasireotide, were more effective in female vs. male rats. Basal Sstr3 expression was significantly higher in the former group. It is noteworthy that female human NFPTs patients also have a trend towards higher SSTR3 expression. Altogether, our studies provide the rationale for testing pasireotide in patients with residual/recurrent NFPTs. If confirmed, the sex-related SSTR3 expression might be used as criteria to stratify NFPTs patients for treatment with pasireotide.
Collapse
Affiliation(s)
- Sebastian Gulde
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (S.G.); (T.W.); (I.V.)
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Tobias Wiedemann
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (S.G.); (T.W.); (I.V.)
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Mathias Schillmaier
- Department of Nuclear Medicine, School of Medicine, Technical University of Munich, 80333 Munich, Germany; (M.S.); (F.S.)
| | - Isabel Valença
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (S.G.); (T.W.); (I.V.)
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, 07743 Jena, Germany; (A.L.); (S.S.)
| | - Katja Steiger
- Institute of Pathology, School of Medicine, Technical University of Munich, 80333 Munich, Germany; (K.S.); (H.-Y.Y.); (J.N.)
| | - Hsi-Yu Yen
- Institute of Pathology, School of Medicine, Technical University of Munich, 80333 Munich, Germany; (K.S.); (H.-Y.Y.); (J.N.)
| | - Stephen Bäuerle
- Department of Mathematics, Technical University of Munich, 85748 Garching, Germany; (S.B.); (D.P.A.)
| | - Johannes Notni
- Institute of Pathology, School of Medicine, Technical University of Munich, 80333 Munich, Germany; (K.S.); (H.-Y.Y.); (J.N.)
- Experimental Radiopharmacy, Clinic for Nuclear Medicine, University Hospital Essen, 45147 Essen, Germany
| | - Raul Luque
- Department of Cell Biology, Physiology, and Immunology, Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), University of Córdoba and Hospital Universitario Reina Sofía (HURS), 14004 Cordoba, Spain;
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), 14004 Cordoba, Spain
| | - Herbert Schmid
- Department of Oncology Research, Novartis Institute for BioMedical Research, Novartis Pharma AG, 4033 Basel, Switzerland;
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, 07743 Jena, Germany; (A.L.); (S.S.)
| | - Donna P. Ankerst
- Department of Mathematics, Technical University of Munich, 85748 Garching, Germany; (S.B.); (D.P.A.)
| | - Franz Schilling
- Department of Nuclear Medicine, School of Medicine, Technical University of Munich, 80333 Munich, Germany; (M.S.); (F.S.)
| | - Natalia S. Pellegata
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (S.G.); (T.W.); (I.V.)
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
- Correspondence: ; Tel.: +49-089-3187263; Fax: +49-089-31873360
| |
Collapse
|
8
|
Ilie MD, Raverot G. Treatment Options for Gonadotroph Tumors: Current State and Perspectives. J Clin Endocrinol Metab 2020; 105:5879370. [PMID: 32735647 DOI: 10.1210/clinem/dgaa497] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022]
Abstract
CONTEXT Gonadotroph tumors represent approximatively one-third of anterior pituitary tumors, but despite their frequency, no medical treatment is currently recommended for them. This would be greatly needed because following surgery, which is the first-line treatment, a significant percentage of gonadotroph tumors regrow. EVIDENCE ACQUISITION We performed PubMed searches in March 2020 using the term "gonadotroph" in combination with 36 different keywords related to dopamine type 2 receptor agonists, somatostatin receptor (SST) ligands, temozolomide, peptide receptor radionuclide therapy (PRRT), immunotherapy, vascular endothelial growth factor receptor (VEGFR)-targeted therapy, mammalian target of rapamycin (mTOR) inhibitors, and tyrosine kinase inhibitors. Articles resulting from these searches, as well as relevant references cited by these articles were reviewed. EVIDENCE SYNTHESIS SST2 analogs have demonstrated only very limited antitumor effect, while high-dose cabergoline has been more effective in preventing tumor regrowth, but still in only a minority of cases. In the setting of an aggressive gonadotroph tumor, temozolomide is the recommended medical treatment, but has demonstrated also only limited efficacy. Still, its efficacy has been so far better than that of PRRT. No case of a gonadotroph tumor treated with pasireotide, VEGFR-targeted therapy, mTOR inhibitors, tyrosine kinase inhibitors, or immune checkpoint inhibitors is reported in literature. CONCLUSIONS Gonadotroph tumors need better phenotyping in terms of both tumor cells and associated tumor microenvironment to improve their treatment. Until formal recommendations will be available, we provide the readers with our suggested approach for the management of gonadotroph tumors, management that should be discussed within multidisciplinary teams.
Collapse
Affiliation(s)
- Mirela Diana Ilie
- Endocrinology Department, "C. I. Parhon" National Institute of Endocrinology, Bucharest, Bucharest-Ilfov, Romania
| | - Gérald Raverot
- Endocrinology Department, Reference Center for Rare Pituitary Diseases HYPO, "Groupement Hospitalier Est" Hospices Civils de Lyon, Bron, Auvergne-Rhône-Alpes, France
| |
Collapse
|
9
|
Drummond J, Roncaroli F, Grossman AB, Korbonits M. Clinical and Pathological Aspects of Silent Pituitary Adenomas. J Clin Endocrinol Metab 2019; 104:2473-2489. [PMID: 30020466 PMCID: PMC6517166 DOI: 10.1210/jc.2018-00688] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/12/2018] [Indexed: 12/22/2022]
Abstract
CONTEXT Silent pituitary adenomas are anterior pituitary tumors with hormone synthesis but without signs or symptoms of hormone hypersecretion. They have been increasingly recognized and represent challenging diagnostic issues. EVIDENCE ACQUISITION A comprehensive literature search was performed using MEDLINE and EMBASE databases from January 2000 to March 2018 with the following key words: (i) pituitary adenoma/tumor and nonfunctioning; or (ii) pituitary adenoma/tumor and silent. All titles and abstracts of the retrieved articles were reviewed, and recent advances in the field of silent pituitary adenomas were summarized. EVIDENCE SYNTHESIS The clinical and biochemical picture of pituitary adenomas reflects a continuum between functional and silent adenomas. Although some adenomas are truly silent, others will show some evidence of biochemical hypersecretion or could have subtle clinical signs and, therefore, can be referred to as clinically silent or "whispering" adenomas. Silent tumors seem to be more aggressive than their secreting counterparts, with a greater recurrence rate. Transcription factors for pituitary cell lineages have been introduced into the 2017 World Health Organization guidelines: steroidogenic factor 1 staining for gonadotroph lineage; PIT1 (pituitary-specific positive transcription factor 1) for growth hormone, prolactin, and TSH lineage, and TPIT for the corticotroph lineage. Prospective studies applying these criteria will establish the value of the new classification. CONCLUSIONS A concise review of the clinical and pathological aspects of silent pituitary adenomas was conducted in view of the new World Health Organization classification of pituitary adenomas. New classifications, novel prognostics markers, and emerging imaging and therapeutic approaches need to be evaluated to better serve this unique group of patients.
Collapse
MESH Headings
- Biomarkers, Tumor/blood
- Chemotherapy, Adjuvant/methods
- Humans
- Magnetic Resonance Angiography
- Neoplasm Recurrence, Local/epidemiology
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/prevention & control
- Pituitary Gland, Anterior/diagnostic imaging
- Pituitary Gland, Anterior/pathology
- Pituitary Gland, Anterior/surgery
- Pituitary Hormones, Anterior/blood
- Pituitary Hormones, Anterior/metabolism
- Pituitary Neoplasms/blood
- Pituitary Neoplasms/diagnosis
- Pituitary Neoplasms/pathology
- Pituitary Neoplasms/therapy
- Prognosis
Collapse
Affiliation(s)
- Juliana Drummond
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Federico Roncaroli
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Ashley B Grossman
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Correspondenceand Reprint Requests: Márta Korbonits, MD, PhD, Department of Endocrinology, Barts and the London School of Medicine and Dentistry, Charterhouse Square, London EC1M 6BQ, United Kingdom. E-mail:
| |
Collapse
|
10
|
Kumar Nagarajan S, Babu S, Sohn H, Devaraju P, Madhavan T. Toward a better understanding of the interaction between somatostatin receptor 2 and its ligands: a structural characterization study using molecular dynamics and conceptual density functional theory. J Biomol Struct Dyn 2018; 37:3081-3102. [PMID: 30079808 DOI: 10.1080/07391102.2018.1508368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study is a part of the extensive research intending to provide the structural insights on somatostatin and its receptor. Herein, we have studied the structural complexity involved in the binding of somatostatin receptor 2 (SSTR2) with its agonists and antagonist. A 3D QSAR study based on comparative molecular field analysis and comparative molecular similarity analysis (CoMSIA) discerned that a SSTR2 ligand with electronegative, less-bulkier, and hydrogen atom donating/accepting substitutions is important for their biological activity. A conceptual density functional theory (DFT) study was followed to study the chemical behavior of the ligands based on the molecular descriptors derived using the Fukui's molecular orbital theory. We have performed molecular dynamics simulations of receptor-ligand complexes for 100 ns to analyze the dynamic stability of the backbone Cα atoms of the receptor and strength and approachability of the receptor-ligand complex. The findings of this study could be efficacious in the further studies understanding intricate structural features of the somatostatin receptors and in discovering novel subtype-specific ligands with higher affinity. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Santhosh Kumar Nagarajan
- a Department of Genetic Engineering School of Bioengineering , SRM Institute of Science and Technology , Kattankulathur, Chennai , India
| | - Sathya Babu
- a Department of Genetic Engineering School of Bioengineering , SRM Institute of Science and Technology , Kattankulathur, Chennai , India
| | - Honglae Sohn
- b Department of Chemistry and Department of Carbon Materials , Chosun University , Gwangju , South Korea
| | - Panneer Devaraju
- c Division of Microbiology and Molecular Biology , Vector Control Research Centre, Indian Council of Medical Research , Pondicherry , India
| | - Thirumurthy Madhavan
- a Department of Genetic Engineering School of Bioengineering , SRM Institute of Science and Technology , Kattankulathur, Chennai , India
| |
Collapse
|
11
|
Vega-Benedetti AF, Saucedo CN, Zavattari P, Vanni R, Royo F, Llavero F, Zugaza JL, Parada LA. PLAGL1 gene function during hepatoma cells proliferation. Oncotarget 2018; 9:32775-32794. [PMID: 30214684 PMCID: PMC6132347 DOI: 10.18632/oncotarget.25996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/31/2018] [Indexed: 01/15/2023] Open
Abstract
Hepatocellular carcinoma develops as a multistep process, in which cell cycle deregulation is a central feature, resulting in unscheduled proliferation. The PLAGL1 gene encodes a homonym zinc finger protein that is involved in cell-proliferation control. We determined the genomic profile and the transcription and expression level of PLAGL1, simultaneously with that of its molecular partners p53, PPARγ and p21, in cell-lines derived from patients with liver cancer, during in vitro cell growth. Our investigations revealed that genomic and epigenetic changes of PLAGL1 are also present in hepatoma cell-lines. Transcription of PLAGL1 in tumor cells is significantly lower than in normal fibroblasts, but no significant differences in terms of protein expression were detected between these two cell-types, indicating that there is not a direct relationship between the gene transcriptional activity and protein expression. RT-PCR analyses on normal fibroblasts, used as control, also showed that PLAGL1 and p53 genes transcription occurs as an apparent orchestrated process during normal cells proliferation, which gets disturbed in cancer cells. Furthermore, abnormal trafficking of the PLAGL1 protein may occur in hepatocarcinogenesis.
Collapse
Affiliation(s)
| | | | - Patrizia Zavattari
- Biochemistry, Biology and Genetics Unit, Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato SP 8, Monserrato, Cagliari, Italy
| | - Roberta Vanni
- Biochemistry, Biology and Genetics Unit, Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato SP 8, Monserrato, Cagliari, Italy
| | - Felix Royo
- CIC BioGUNE-CIBERehd, Bizkaia Technology Park, Derio, Spain
| | - Francisco Llavero
- Achucarro Basque Center for Neuroscience, UPV/EHU Technology Park, Leioa, Spain.,Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Dentistry, University of the Basque Country, Leioa, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - José L Zugaza
- Achucarro Basque Center for Neuroscience, UPV/EHU Technology Park, Leioa, Spain.,Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Dentistry, University of the Basque Country, Leioa, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Luis A Parada
- Institute of Experimental Pathology, CONICET-UNSa, Salta, Argentina
| |
Collapse
|
12
|
Ibáñez-Costa A, Korbonits M. AIP and the somatostatin system in pituitary tumours. J Endocrinol 2017; 235:R101-R116. [PMID: 28835453 DOI: 10.1530/joe-17-0254] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/22/2017] [Indexed: 12/22/2022]
Abstract
Classic somatostatin analogues aimed at somatostatin receptor type 2, such as octreotide and lanreotide, represent the mainstay of medical treatment for acromegaly. These agents have the potential to decrease hormone secretion and reduce tumour size. Patients with a germline mutation in the aryl hydrocarbon receptor-interacting protein gene, AIP, develop young-onset acromegaly, poorly responsive to pharmacological therapy. In this review, we summarise the most recent studies on AIP-related pituitary adenomas, paying special attention to the causes of somatostatin resistance; the somatostatin receptor profile including type 2, type 5 and truncated variants; the role of G proteins in this pathology; the use of first and second generation somatostatin analogues; and the role of ZAC1, a zinc-finger protein with expression linked to AIP in somatotrophinoma models and acting as a key mediator of octreotide response.
Collapse
Affiliation(s)
- Alejandro Ibáñez-Costa
- Centre for EndocrinologyWilliam Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | - Márta Korbonits
- Centre for EndocrinologyWilliam Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| |
Collapse
|
13
|
Abstract
Although most of pituitary adenomas are benign, they may cause significant burden to patients. Sporadic adenomas represent the vast majority of the cases, where recognized somatic mutations (eg, GNAS or USP8), as well as altered gene-expression profile often affecting cell cycle proteins have been identified. More rarely, germline mutations predisposing to pituitary adenomas -as part of a syndrome (eg, MEN1 or Carney complex), or isolated to the pituitary (AIP or GPR101) can be identified. These alterations influence the biological behavior, clinical presentations and therapeutic responses, and their full understanding helps to provide appropriate care for these patients.
Collapse
Affiliation(s)
- Pedro Marques
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
14
|
Øystese KA, Evang JA, Bollerslev J. Non-functioning pituitary adenomas: growth and aggressiveness. Endocrine 2016; 53:28-34. [PMID: 27066792 DOI: 10.1007/s12020-016-0940-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/23/2016] [Indexed: 10/22/2022]
Abstract
Pituitary adenomas (PAs) are common, comprising approximately one third of all intracranial tumors. Non-functioning pituitary adenomas (NFPAs) are the most common PAs. Although usually benign, the NFPAs represent therapeutic challenges because of their location close to the optic chiasm and nerves, and the proximity to the pituitary gland. The therapeutic alternatives are surgery and radiation. To date there is no effective medical treatment. NFPAs are classified according to different modalities, but there are no reliable marker of aggressiveness to guide the clinician in monitoring the patient. More information on growth patterns with constituent biological markers are needed to tailor the care of this patient group. Studies characterizing the membrane receptors of NFPAs have shown promising results, which may give rise to the development of medical treatment.
Collapse
Affiliation(s)
- Kristin Astrid Øystese
- Department of Specialized Endocrinology, Rikshospitalet, Oslo University Hospital, Pb 4950 Nydalen, 0424, Oslo, Norway.
- Faculty of Medicine, University of Oslo, Klaus Torgårdsvei 3, 0372, Oslo, Norway.
| | - Johan Arild Evang
- Department of Specialized Endocrinology, Rikshospitalet, Oslo University Hospital, Pb 4950 Nydalen, 0424, Oslo, Norway
- Faculty of Medicine, University of Oslo, Klaus Torgårdsvei 3, 0372, Oslo, Norway
| | - Jens Bollerslev
- Department of Specialized Endocrinology, Rikshospitalet, Oslo University Hospital, Pb 4950 Nydalen, 0424, Oslo, Norway
- Faculty of Medicine, University of Oslo, Klaus Torgårdsvei 3, 0372, Oslo, Norway
| |
Collapse
|
15
|
Vega-Benedetti AF, Saucedo C, Zavattari P, Vanni R, Zugaza JL, Parada LA. PLAGL1: an important player in diverse pathological processes. J Appl Genet 2016; 58:71-78. [PMID: 27311313 DOI: 10.1007/s13353-016-0355-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/02/2016] [Accepted: 06/02/2016] [Indexed: 12/23/2022]
Abstract
The PLAGL1 gene encodes a homonymous zinc finger protein that promotes cell cycle arrest and apoptosis through multiple pathways. The protein has been implicated in metabolic, genetic, and neoplastic illnesses, but the molecular mechanisms by which the protein PLAGL1 participates in such diverse processes remains to be elucidated. In this review, we focus mainly on the molecular biology of PLAGL1 and the relevance of its abnormalities to several pathological processes.
Collapse
Affiliation(s)
- Ana F Vega-Benedetti
- Institute of Experimental Pathology, UNSa-CONICET, Ave. Bolivia 5150, 4400, Salta, Argentina
| | - Cinthia Saucedo
- Institute of Experimental Pathology, UNSa-CONICET, Ave. Bolivia 5150, 4400, Salta, Argentina
| | - Patrizia Zavattari
- Biochemistry, Biology and Genetics Unit, Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato SP 8, Km 0.700, 09042, Monserrato, Cagliari, Italy
| | - Roberta Vanni
- Biochemistry, Biology and Genetics Unit, Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato SP 8, Km 0.700, 09042, Monserrato, Cagliari, Italy
| | - José L Zugaza
- IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.,Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Building 205, Zamudio, Spain.,Department of Genetics, Physic Anthropology and Animal Physiology, Faculty of Medicine and Dentistry, University of the Basque Country, Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Luis Antonio Parada
- Institute of Experimental Pathology, UNSa-CONICET, Ave. Bolivia 5150, 4400, Salta, Argentina.
| |
Collapse
|
16
|
Chunharojrith P, Nakayama Y, Jiang X, Kery RE, Ma J, De La Hoz Ulloa CS, Zhang X, Zhou Y, Klibanski A. Tumor suppression by MEG3 lncRNA in a human pituitary tumor derived cell line. Mol Cell Endocrinol 2015; 416:27-35. [PMID: 26284494 PMCID: PMC4605874 DOI: 10.1016/j.mce.2015.08.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 01/01/2023]
Abstract
Human clinically non-functioning pituitary adenomas (NFAs) account for approximately 40% of diagnosed pituitary tumors. Epigenetic mutations in tumor suppressive genes play an important role in NFA development. Maternally expressed gene 3 (MEG3) is a long non-coding RNA (lncRNA) and we hypothesized that it is a candidate tumor suppressor whose epigenetic silencing is specifically linked to NFA development. In this study, we introduced MEG3 expression into PDFS cells, derived from a human NFA, using both inducible and constitutively active expression systems. MEG3 expression significantly suppressed xenograft tumor growth in vivo in nude mice. When induced in culture, MEG3 caused cell cycle arrest at the G1 phase. In addition, inactivation of p53 completely abolished tumor suppression by MEG3, indicating that MEG3 tumor suppression is mediated by p53. In conclusion, our data support the hypothesis that MEG3 is a lncRNA tumor suppressor in the pituitary and its inactivation contributes to NFA development.
Collapse
Affiliation(s)
- Paweena Chunharojrith
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Yuki Nakayama
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Xiaobing Jiang
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Rachel E Kery
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jun Ma
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | - Xun Zhang
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Yunli Zhou
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Anne Klibanski
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
17
|
Vieira Neto L, Wildemberg LE, Moraes AB, Colli LM, Kasuki L, Marques NV, Gasparetto EL, de Castro M, Takiya CM, Gadelha MR. Dopamine receptor subtype 2 expression profile in nonfunctioning pituitary adenomas and in vivo response to cabergoline therapy. Clin Endocrinol (Oxf) 2015; 82:739-46. [PMID: 25418156 DOI: 10.1111/cen.12684] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 11/05/2014] [Accepted: 11/17/2014] [Indexed: 01/24/2023]
Abstract
OBJECTIVES To determine the dopamine receptor subtype 2 (DR2) mRNA levels and protein expression and to evaluate the effect of adjuvant cabergoline therapy on tumour volume (TV) in patients with postoperative residual nonfunctioning pituitary adenoma (NFPA). METHODS The mRNA expression was quantified by real-time RT-PCR (TaqMan(®)), and protein expression was evaluated by immunohistochemistry. Tumours were classified according to the percentage of immunostained cells for DR2 as scores 1 (<50% of stained cells) or 2 (≥50%). Cabergoline was started at least 6 months after surgery in nine patients with residual tumours (3 mg/week). The cabergoline effect was prospectively evaluated by magnetic resonance imaging using three-dimensional volume calculation. TV reduction >25% was considered significant. RESULTS The DR2 mRNA expression was variable but was observed in 100% of the samples (N = 20). DR2 protein expression was also observed in all the tumours (N = 34). Twenty-nine tumours (85%) were classified as score 2. The median DR2 mRNA expression was higher in the tumours classified as score 2 compared with score 1 (P = 0·007). TV reduction with cabergoline therapy was observed in 67% of the patients (6/9). The median TV before and after 6 months of treatment was 1·90 cm(3) (0·61-8·74) and 1·69 cm(3) (0·36-4·20) [P = 0·02], respectively. CONCLUSION In conclusion, DR2 is expressed in all adenomas and the majority of the patients in this study displayed tumour shrinkage on cabergoline (CAB) therapy. Thus, CAB might be useful in adjuvant therapy in NFPA patients with residual tumours after surgery.
Collapse
Affiliation(s)
- Leonardo Vieira Neto
- Neuroendocrinology Research Center/Endocrinology Section, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Endocrinology Unit, Hospital Federal da Lagoa, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Cuny T, Barlier A, Feelders R, Weryha G, Hofland LJ, Ferone D, Gatto F. Medical therapies in pituitary adenomas: Current rationale for the use and future perspectives. ANNALES D'ENDOCRINOLOGIE 2015; 76:43-58. [DOI: 10.1016/j.ando.2014.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/01/2014] [Accepted: 10/13/2014] [Indexed: 01/07/2023]
|
19
|
Cuevas-Ramos D, Fleseriu M. Somatostatin receptor ligands and resistance to treatment in pituitary adenomas. J Mol Endocrinol 2014; 52:R223-40. [PMID: 24647046 DOI: 10.1530/jme-14-0011] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Somatostatin (SST), an inhibitory polypeptide with two biologically active forms SST14 and SST28, inhibits GH, prolactin (PRL), TSH, and ACTH secretion in the anterior pituitary gland. SST also has an antiproliferative effect inducing cell cycle arrest and apoptosis. Such actions are mediated through five G-protein-coupled somatostatin receptors (SSTR): SSTR1-SSTR5. In GH-secreting adenomas, SSTR2 expression predominates, and somatostatin receptor ligands (SRLs; octreotide and lanreotide) directed to SSTR2 are presently the mainstays of medical therapy. However, about half of patients show incomplete biochemical remission, but the definition of resistance per se remains controversial. We summarize here the determinants of SRL resistance in acromegaly patients, including clinical, imaging features as well as molecular (mutations, SSTR variants, and polymorphisms), and histopathological (granulation pattern, and proteins and receptor expression) predictors. The role of SSTR5 may explain the partial responsiveness to SRLs in patients with adequate SSTR2 density in the cell membrane. In patients with ACTH-secreting pituitary adenomas, i.e. Cushing's disease (CD), SSTR5 is the most abundant receptor expressed and tumors show low SSTR2 density due to hypercortisolism-induced SSTR2 down-regulation. Clinical studies with pasireotide, a multireceptor-targeted SRL with increased SSTR5 activity, lead to approval of pasireotide for treatment of patients with CD. Other SRL delivery modes (oral octreotide), multireceptor-targeted SRL (somatoprim) or chimeric compounds targeting dopamine D2 receptors and SSTR2 (dopastatin), are briefly discussed.
Collapse
Affiliation(s)
- Daniel Cuevas-Ramos
- Department of MedicinePituitary Center, Cedars-Sinai Medical Center, Los Angeles, California, USANorthwest Pituitary Center and Departments of Medicine and Neurological SurgeryOregon Health and Science University, 3181 SW Sam Jackson Park Road (BTE 472), Portland, Oregon 97239, USA
| | - Maria Fleseriu
- Department of MedicinePituitary Center, Cedars-Sinai Medical Center, Los Angeles, California, USANorthwest Pituitary Center and Departments of Medicine and Neurological SurgeryOregon Health and Science University, 3181 SW Sam Jackson Park Road (BTE 472), Portland, Oregon 97239, USA
| |
Collapse
|