1
|
Yuan L, Jiang X, Jia G, Li Z, Wang M, Hu S, Yang J, Liang F, Zhang F, Gao L, Gao N. Minnelide exhibits antileukemic activity by targeting the Ars2/miR-190a-3p axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155724. [PMID: 38759317 DOI: 10.1016/j.phymed.2024.155724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/25/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND The identification of a novel and effective strategy for the clinical treatment of acute leukemia (AL) is a long-term goal. Minnelide, a water-soluble prodrug of triptolide, has recently been evaluated in phase I and II clinical trials in patients with multiple cancers and has shown promise as an antileukemic agent. However, the molecular mechanism underlying minnelide's antileukemic activity remains unclear. PURPOSE To explore the molecular mechanisms by which minnelide exhibits antileukemic activity. METHODS AL cells, primary human leukemia cells, and a xenograft mouse model were treated with triptolide and minnelide. The molecular mechanism was elucidated using western blotting, immunoprecipitation, flow cytometry, GSEA and liquid chromatography-mass spectrometry analysis. RESULTS Minnelide was highly effective in inhibiting leukemogenesis and improving survival in two complementary AL mouse models. Triptolide, an active form of minnelide, causes cell cycle arrest in G1 phase and induces apoptosis in both human AL cell lines and primary AL cells. Mechanistically, we identified Ars2 as a new chemotherapeutic target of minnelide for AL treatment. We found that triptolide directly targeted Ars2, resulting in the downregulation of miR-190a-3p, which led to the disturbance of PTEN/Akt signaling and culminated in G1 cell cycle arrest and apoptosis. CONCLUSIONS Our findings demonstrate that targeting Ars2/miR-190a-3p signaling using minnelide could represent a novel chemotherapeutic strategy for AL treatment and support the evaluation of minnelide for the treatment of AL in clinical trials.
Collapse
Affiliation(s)
- Liang Yuan
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563006, PR China
| | - Xiuxing Jiang
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China
| | - Guanfei Jia
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China
| | - Zhiqiang Li
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China
| | - Mei Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563006, PR China
| | - Siyi Hu
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563006, PR China
| | - Jiawang Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563006, PR China
| | - Feng Liang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563006, PR China
| | - Fenglin Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563006, PR China
| | - Lu Gao
- Department of Hematology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, PR China.
| | - Ning Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563006, PR China.
| |
Collapse
|
2
|
Han L, He J, Xie H, Gong Y, Xie C. Pan-cell death-related signature reveals tumor immune microenvironment and optimizes personalized therapy alternations in lung adenocarcinoma. Sci Rep 2024; 14:15682. [PMID: 38977778 PMCID: PMC11231366 DOI: 10.1038/s41598-024-66662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024] Open
Abstract
This study constructed a comprehensive analysis of cell death modules in eliminating aberrant cells and remodeling tumor microenvironment (TME). Consensus analysis was performed in 490 lung adenocarcinoma (LUAD) patients based on 4 types of cell death prognostic genes. Intersection method divided these LUAD samples into 5 cell death risk (CDR) clusters, and COX regression analysis were used to construct the CDR signature (CDRSig) with risk scores. Significant differences of TME phenotypes, clinical factors, genome variations, radiosensitivity and immunotherapy sensitivity were observed in different CDR clusters. Patients with higher risk scores in the CDRSig tended to be immune-excluded or immune-desert, and those with lower risk scores were more sensitive to radiotherapy and immunotherapy. The results from mouse model showed that intense expression of the high-risk gene PFKP was associated with low CD8+ T cell infiltration upon radiotherapy and anti-PD-L1 treatment. Deficient assays in vitro confirmed that PFKP downregulation enhanced cGAS/STING pathway activation and radiosensitivity in LUAD cells. In conclusion, our studies originally performed a comprehensive cell death analysis, suggesting the importance of CDR patterns in reprogramming TME and providing novel clues for LUAD personalized therapies.
Collapse
Affiliation(s)
- Linzhi Han
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Jingyi He
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Hongxin Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Yan Gong
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China.
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China.
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Copsel SN, Garrido VT, Barreras H, Bader CS, Pfeiffer B, Mateo-Victoriano B, Wolf D, Gallardo M, Paczesny S, Komanduri KV, Benjamin CL, Villarino AV, Saluja AK, Levy RB. Minnelide suppresses GVHD and enhances survival while maintaining GVT responses. JCI Insight 2024; 9:e165936. [PMID: 38602775 PMCID: PMC11141936 DOI: 10.1172/jci.insight.165936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (aHSCT) can cure patients with otherwise fatal leukemias and lymphomas. However, the benefits of aHSCT are limited by graft-versus-host disease (GVHD). Minnelide, a water-soluble analog of triptolide, has demonstrated potent antiinflammatory and antitumor activity in several preclinical models and has proven both safe and efficacious in clinical trials for advanced gastrointestinal malignancies. Here, we tested the effectiveness of Minnelide in preventing acute GVHD as compared with posttransplant cyclophosphamide (PTCy). Strikingly, we found Minnelide improved survival, weight loss, and clinical scores in an MHC-mismatched model of aHSCT. These benefits were also apparent in minor MHC-matched aHSCT and xenogeneic HSCT models. Minnelide was comparable to PTCy in terms of survival, GVHD clinical score, and colonic length. Notably, in addition to decreased donor T cell infiltration early after aHSCT, several regulatory cell populations, including Tregs, ILC2s, and myeloid-derived stem cells in the colon were increased, which together may account for Minnelide's GVHD suppression after aHSCT. Importantly, Minnelide's GVHD prevention was accompanied by preservation of graft-versus-tumor activity. As Minnelide possesses anti-acute myeloid leukemia (anti-AML) activity and is being applied in clinical trials, together with the present findings, we conclude that this compound might provide a new approach for patients with AML undergoing aHSCT.
Collapse
Affiliation(s)
| | | | | | | | - Brent Pfeiffer
- Department of Pediatrics, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | | | | | | | - Sophie Paczesny
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Krishna V. Komanduri
- Department of Microbiology and Immunology
- Sylvester Comprehensive Cancer Center
- Department of Medicine, and
| | - Cara L. Benjamin
- Sylvester Comprehensive Cancer Center
- Department of Medicine, and
| | | | - Ashok K. Saluja
- Department of Surgery, and
- Sylvester Comprehensive Cancer Center
| | - Robert B. Levy
- Department of Microbiology and Immunology
- Sylvester Comprehensive Cancer Center
- Department of Ophthalmology, University of Miami, Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
4
|
Liu C, Wang J, Ko YZ, Shiao MS, Wang Y, Sun J, Yuan Q, Wang L, Chiang YC, Guo L. Genetic diversities in wild and cultivated populations of the two closely-related medical plants species, Tripterygium Wilfordii and T. Hypoglaucum (Celastraceae). BMC PLANT BIOLOGY 2024; 24:195. [PMID: 38493110 PMCID: PMC10944624 DOI: 10.1186/s12870-024-04826-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/15/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND The sustainable supply of medicinal plants is important, and cultivating and domesticating them has been suggested as an optimal strategy. However, this can lead to a loss of genetic diversity. Tripterygium wilfordii Hook. f. is a medicinal plant commonly used in traditional Chinese medicine, but its wild populations are dwindling due to excessive harvesting. To protect the species and meet the increasing demand, it is urgent to cultivate it on a large scale. However, distinguishing between T. wilfordii and T. hypoglaucum, two similar species with different medicinal properties, is challenging. Therefore, it is crucial to understand the genetic diversity and population structure of these species for their sustainable utilization. RESULTS In this study, we investigated the genetic diversity and population structure of the two traditional medicinal semiwoody vines plant species, Tripterygium wilfordii and T. hypoglaucum, including wild and cultivated populations using chloroplast DNA (cpDNA) sequences and microsatellite loci. Our results indicated that the two species maintain a high level of genetic divergence, indicating possible genetic bases for the different contents of bioactive compounds of the two species. T. wilfordii showed lower genetic diversity and less subdivided population structures of both markers than T. hypoglaucum. The potential factors in shaping these interesting differences might be differentiated pollen-to-seed migration rates, interbreeding, and history of population divergence. Analyses of cpDNA and microsatellite loci supported that the two species are genetically distinct entities. In addition, a significant reduction of genetic diversity was observed for cultivated populations of the two species, which mainly resulted from the small initial population size and propagated vegetative practice during their cultivation. CONCLUSION Our findings indicate significant genetic divergence between T. wilfordii and T. hypoglaucum. The genetic diversity and population structure analyses provide important insights into the sustainable cultivation and utilization of these medicinal plants. Accurate identification and conservation efforts are necessary for both species to ensure the safety and effectiveness of crude drug use. Our study also highlighted the importance of combined analyses of different DNA markers in addressing population genetics of medicinal plants because of the contrasts of inheritance and rates of gene flow. Large-scale cultivation programs should consider preserving genetic diversity to enhance the long-term sustainability of T. wilfordii and T. hypoglaucum. Our study proposed that some populations showed higher genetic diversity and distinctness, which can be considered with priority for conservation and as the sources for future breeding and genetic improvement.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jingyi Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ya-Zhu Ko
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Meng-Shin Shiao
- Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Yiheng Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jiahui Sun
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qingjun Yuan
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Lisong Wang
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, 332900, China.
| | - Yu-Chung Chiang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung City, Taiwan.
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung City, Taiwan.
- The Multidisciplinary and Data Science Research Center(MDSRC), National Sun Yat-sen University, Kaohsiung, 804, Taiwan.
| | - Lanping Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
5
|
Li S, Wang A, Wu Y, He S, Shuai W, Zhao M, Zhu Y, Hu X, Luo Y, Wang G. Targeted therapy for non-small-cell lung cancer: New insights into regulated cell death combined with immunotherapy. Immunol Rev 2024; 321:300-334. [PMID: 37688394 DOI: 10.1111/imr.13274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Non-small-cell lung cancer (NSCLC), which has a high rate of metastatic spread and drug resistance, is the most common subtype of lung cancer. Therefore, NSCLC patients have a very poor prognosis and a very low chance of survival. Human cancers are closely linked to regulated cell death (RCD), such as apoptosis, autophagy, ferroptosis, pyroptosis, and necroptosis. Currently, small-molecule compounds targeting various types of RCD have shown potential as anticancer treatments. Moreover, RCD appears to be a specific part of the antitumor immune response; hence, the combination of RCD and immunotherapy might increase the inhibitory effect of therapy on tumor growth. In this review, we summarize small-molecule compounds used for the treatment of NSCLC by focusing on RCD and pharmacological systems. In addition, we describe the current research status of an immunotherapy combined with an RCD-based regimen for NSCLC, providing new ideas for targeting RCD pathways in combination with immunotherapy for patients with NSCLC in the future.
Collapse
Affiliation(s)
- Shutong Li
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Aoxue Wang
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yongya Wu
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Shengyuan He
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Wen Shuai
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Min Zhao
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yumeng Zhu
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Xiuying Hu
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yubin Luo
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Guan Wang
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Zhao K, Zhou G, Liu Y, Zhang J, Chen Y, Liu L, Zhang G. HSP70 Family in Cancer: Signaling Mechanisms and Therapeutic Advances. Biomolecules 2023; 13:601. [PMID: 37189349 PMCID: PMC10136146 DOI: 10.3390/biom13040601] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
The 70 kDa heat shock proteins (HSP70s) are a group of highly conserved and inducible heat shock proteins. One of the main functions of HSP70s is to act as molecular chaperones that are involved in a large variety of cellular protein folding and remodeling processes. HSP70s are found to be over-expressed and may serve as prognostic markers in many types of cancers. HSP70s are also involved in most of the molecular processes of cancer hallmarks as well as the growth and survival of cancer cells. In fact, many effects of HSP70s on cancer cells are not only related to their chaperone activities but rather to their roles in regulating cancer cell signaling. Therefore, a number of drugs directly or indirectly targeting HSP70s, and their co-chaperones have been developed aiming to treat cancer. In this review, we summarized HSP70-related cancer signaling pathways and corresponding key proteins regulated by the family of HSP70s. In addition, we also summarized various treatment approaches and progress of anti-tumor therapy based on targeting HSP70 family proteins.
Collapse
Affiliation(s)
- Kejia Zhao
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Chengdu 610041, China
| | - Guanyu Zhou
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Chengdu 610041, China
- Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Liu
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong 999077, China
| | - Jian Zhang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Chengdu 610041, China
| | - Yaohui Chen
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Chengdu 610041, China
| | - Lunxu Liu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Chengdu 610041, China
| | - Gao Zhang
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong 999077, China
| |
Collapse
|
7
|
Lim YX, Lin H, Seah SH, Lim YP. Reciprocal Regulation of Hippo and WBP2 Signalling-Implications in Cancer Therapy. Cells 2021; 10:cells10113130. [PMID: 34831354 PMCID: PMC8625973 DOI: 10.3390/cells10113130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/08/2021] [Accepted: 11/08/2021] [Indexed: 11/23/2022] Open
Abstract
Cancer is a global health problem. The delineation of molecular mechanisms pertinent to cancer initiation and development has spurred cancer therapy in the form of precision medicine. The Hippo signalling pathway is a tumour suppressor pathway implicated in a multitude of cancers. Elucidation of the Hippo pathway has revealed an increasing number of regulators that are implicated, some being potential therapeutic targets for cancer interventions. WW domain-binding protein 2 (WBP2) is an oncogenic transcriptional co-factor that interacts, amongst others, with two other transcriptional co-activators, YAP and TAZ, in the Hippo pathway. WBP2 was recently discovered to modulate the upstream Hippo signalling components by associating with LATS2 and WWC3. Exacerbating the complexity of the WBP2/Hippo network, WBP2 itself is reciprocally regulated by Hippo-mediated microRNA biogenesis, contributing to a positive feedback loop that further drives carcinogenesis. Here, we summarise the biological mechanisms of WBP2/Hippo reciprocal regulation and propose therapeutic strategies to overcome Hippo defects in cancers through targeting WBP2.
Collapse
Affiliation(s)
- Yvonne Xinyi Lim
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore 119077, Singapore; (Y.X.L.); (H.L.); (S.H.S.)
- Department of Biochemistry, National University of Singapore, Singapore 117596, Singapore
| | - Hexian Lin
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore 119077, Singapore; (Y.X.L.); (H.L.); (S.H.S.)
- Department of Biochemistry, National University of Singapore, Singapore 117596, Singapore
| | - Sock Hong Seah
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore 119077, Singapore; (Y.X.L.); (H.L.); (S.H.S.)
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Yoon Pin Lim
- Department of Biochemistry, National University of Singapore, Singapore 117596, Singapore
- Correspondence:
| |
Collapse
|
8
|
Geskovski N, Matevska-Geshkovska N, Dimchevska Sazdovska S, Glavas Dodov M, Mladenovska K, Goracinova K. The impact of molecular tumor profiling on the design strategies for targeting myeloid leukemia and EGFR/CD44-positive solid tumors. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:375-401. [PMID: 33981532 PMCID: PMC8093552 DOI: 10.3762/bjnano.12.31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/12/2021] [Indexed: 05/21/2023]
Abstract
Nanomedicine has emerged as a novel cancer treatment and diagnostic modality, whose design constantly evolves towards increasing the safety and efficacy of the chemotherapeutic and diagnostic protocols. Molecular diagnostics, which create a great amount of data related to the unique molecular signatures of each tumor subtype, have emerged as an important tool for detailed profiling of tumors. They provide an opportunity to develop targeting agents for early detection and diagnosis, and to select the most effective combinatorial treatment options. Alongside, the design of the nanoscale carriers needs to cope with novel trends of molecular screening. Also, multiple targeting ligands needed for robust and specific interactions with the targeted cell populations have to be introduced, which should result in substantial improvements in safety and efficacy of the cancer treatment. This article will focus on novel design strategies for nanoscale drug delivery systems, based on the unique molecular signatures of myeloid leukemia and EGFR/CD44-positive solid tumors, and the impact of novel discoveries in molecular tumor profiles on future chemotherapeutic protocols.
Collapse
Affiliation(s)
- Nikola Geskovski
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, Skopje, North Macedonia
| | - Nadica Matevska-Geshkovska
- Center for Pharmaceutical Biomolecular Analyses, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, Skopje, North Macedonia
| | - Simona Dimchevska Sazdovska
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, Skopje, North Macedonia
- Department of Nanobiotechnology, Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Marija Glavas Dodov
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, Skopje, North Macedonia
| | - Kristina Mladenovska
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, Skopje, North Macedonia
| | - Katerina Goracinova
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, Skopje, North Macedonia
- College of Pharmacy, Qatar University, PO Box 2713, Doha, Qatar
| |
Collapse
|
9
|
Albakova Z, Mangasarova Y, Sapozhnikov A. Heat Shock Proteins in Lymphoma Immunotherapy. Front Immunol 2021; 12:660085. [PMID: 33815422 PMCID: PMC8012763 DOI: 10.3389/fimmu.2021.660085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy harnessing the host immune system for tumor destruction revolutionized oncology research and advanced treatment strategies for lymphoma patients. Lymphoma is a heterogeneous group of cancer, where the central roles in pathogenesis play immune evasion and dysregulation of multiple signaling pathways. Immunotherapy-based approaches such as engineered T cells (CAR T), immune checkpoint modulators and NK cell-based therapies are now in the frontline of lymphoma research. Even though emerging immunotherapies showed promising results in treating lymphoma patients, low efficacy and on-target/off-tumor toxicity are of a major concern. To address that issue it is suggested to look into the emerging role of heat shock proteins. Heat shock proteins (HSPs) showed to be highly expressed in lymphoma cells. HSPs are known for their abilities to modulate immune responses and inhibit apoptosis, which made their successful entry into cancer clinical trials. Here, we explore the role of HSPs in Hodgkin and Non-Hodgkin lymphoma and their involvement in CAR T therapy, checkpoint blockade and NK cell- based therapies. Understanding the role of HSPs in lymphoma pathogenesis and the ways how HSPs may enhance anti-tumor responses, may help in the development of more effective, specific and safe immunotherapy.
Collapse
Affiliation(s)
- Zarema Albakova
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | | | - Alexander Sapozhnikov
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| |
Collapse
|
10
|
Ren Y, Kinghorn AD. Development of Potential Antitumor Agents from the Scaffolds of Plant-Derived Terpenoid Lactones. J Med Chem 2020; 63:15410-15448. [PMID: 33289552 PMCID: PMC7812702 DOI: 10.1021/acs.jmedchem.0c01449] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Naturally occurring terpenoid lactones and their synthetic derivatives have attracted increasing interest for their promising antitumor activity and potential utilization in the discovery and design of new antitumor agents. In the present perspective article, selected plant-derived five-membered γ-lactones and six-membered δ-lactones that occur with terpenoid scaffolds are reviewed, with their structures, cancer cell line cytotoxicity and in vivo antitumor activity, structure-activity relationships, mechanism of action, and the potential for developing cancer chemotherapeutic agents discussed in each case. The compounds presented include artemisinin (ART, 1), parthenolide (PTL, 2), thapsigargin (TPG, 3), andrographolide (AGL, 4), ginkgolide B (GKL B, 5), jolkinolide B (JKL B, 6), nagilactone E (NGL E, 7), triptolide (TPL, 8), bruceantin (BRC, 9), dichapetalin A (DCT A, 10), and limonin (LMN, 11), and their naturally occurring analogues and synthetic derivatives. It is hoped that this contribution will be supportive of the future development of additional efficacious anticancer agents derived from natural products.
Collapse
Affiliation(s)
- Yulin Ren
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - A. Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
11
|
Philips BJ, Kumar A, Burki S, Ryan JP, Noda K, D'Cunha J. Triptolide-induced apoptosis in non-small cell lung cancer via a novel miR204-5p/Caveolin-1/Akt-mediated pathway. Oncotarget 2020; 11:2793-2806. [PMID: 32733649 PMCID: PMC7367654 DOI: 10.18632/oncotarget.27672] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is one of the most prevalent malignancies world-wide with non-small cell lung cancer (NSCLC) comprising nearly 80% of all cases. Unfortunately, many lung cancer patients are diagnosed at advanced stages of the disease with an associated poor prognosis. Recently, the Chinese herb root extract Triptolide/Minnelide (TL) has shown significant promise as a therapeutic agent for NSCLC treatment both in vitro and in vivo. The aim of this study was to investigate the underlying mechanism(s) of action regarding TL-induced cytotoxicity in NSCLC. We demonstrate that triptolide treatment of A549 and H460 NSCLC cells decreases Caveolin-1 (CAV-1) mRNA/protein expression, resulting in activation of the Akt/Bcl-2-mediated mitochondrial apoptosis pathway. CAV-1 down-regulation was triggered by Micro-RNA 204-5p (miR204-5p) up-regulation and could be significantly blocked by pre-treatment with both Sirt-1/Sirt-3 specific siRNA and SIRT-1/SIRT-3 enzyme inhibitors, EX-527 and nicotinamide. Overall, our results provide evidence for a novel mechanism by which TL exerts its cytotoxic effects on NSCLC via CAV-1 down-regulation. Furthermore, these findings demonstrate a pivotal role for TL induction of the Akt/Bax pathway in apoptosis of human lung cancer.
Collapse
Affiliation(s)
- Brian J Philips
- Division of Lung Transplantation and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ajay Kumar
- Division of Lung Transplantation and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah Burki
- Division of Lung Transplantation and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - John P Ryan
- Division of Lung Transplantation and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kentaro Noda
- Division of Lung Transplantation and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan D'Cunha
- Department of Cardiothoracic Surgery, Mayo Clinic, Phoenix, AZ, USA
| |
Collapse
|
12
|
Albakova Z, Armeev GA, Kanevskiy LM, Kovalenko EI, Sapozhnikov AM. HSP70 Multi-Functionality in Cancer. Cells 2020; 9:cells9030587. [PMID: 32121660 PMCID: PMC7140411 DOI: 10.3390/cells9030587] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 12/20/2022] Open
Abstract
The 70-kDa heat shock proteins (HSP70s) are abundantly present in cancer, providing malignant cells selective advantage by suppressing multiple apoptotic pathways, regulating necrosis, bypassing cellular senescence program, interfering with tumor immunity, promoting angiogenesis and supporting metastasis. This direct involvement of HSP70 in most of the cancer hallmarks explains the phenomenon of cancer "addiction" to HSP70, tightly linking tumor survival and growth to the HSP70 expression. HSP70 operates in different states through its catalytic cycle, suggesting that it can multi-function in malignant cells in any of these states. Clinically, tumor cells intensively release HSP70 in extracellular microenvironment, resulting in diverse outcomes for patient survival. Given its clinical significance, small molecule inhibitors were developed to target different sites of the HSP70 machinery. Furthermore, several HSP70-based immunotherapy approaches were assessed in clinical trials. This review will explore different roles of HSP70 on cancer progression and emphasize the importance of understanding the flexibility of HSP70 nature for future development of anti-cancer therapies.
Collapse
Affiliation(s)
- Zarema Albakova
- Department of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia; (G.A.A.); (A.M.S.)
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.M.K.); (E.I.K.)
- Correspondence:
| | - Grigoriy A. Armeev
- Department of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia; (G.A.A.); (A.M.S.)
| | - Leonid M. Kanevskiy
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.M.K.); (E.I.K.)
| | - Elena I. Kovalenko
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.M.K.); (E.I.K.)
| | - Alexander M. Sapozhnikov
- Department of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia; (G.A.A.); (A.M.S.)
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.M.K.); (E.I.K.)
| |
Collapse
|
13
|
The Mitochondrion as an Emerging Therapeutic Target in Cancer. Trends Mol Med 2019; 26:119-134. [PMID: 31327706 DOI: 10.1016/j.molmed.2019.06.009] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022]
Abstract
Mitochondria have emerged as important pharmacological targets because of their key role in cellular proliferation and death. In tumor tissues, mitochondria can switch metabolic phenotypes to meet the challenges of high energy demand and macromolecular synthesis. Furthermore, mitochondria can engage in crosstalk with the tumor microenvironment, and signals from cancer-associated fibroblasts can impinge on mitochondria. Cancer cells can also acquire a hybrid phenotype in which both glycolysis and oxidative phosphorylation (OXPHOS) can be utilized. This hybrid phenotype can facilitate metabolic plasticity of cancer cells more specifically in metastasis and therapy-resistance. In light of the metabolic heterogeneity and plasticity of cancer cells that had until recently remained unappreciated, strategies targeting cancer metabolic dependency appear to be promising in the development of novel and effective cancer therapeutics.
Collapse
|
14
|
Wei J, Yan Y, Chen X, Qian L, Zeng S, Li Z, Dai S, Gong Z, Xu Z. The Roles of Plant-Derived Triptolide on Non-Small Cell Lung Cancer. Oncol Res 2019; 27:849-858. [PMID: 30982492 PMCID: PMC7848329 DOI: 10.3727/096504018x15447833065047] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Over the past decade, natural compounds have been proven to be effective against many human diseases, including cancers. Triptolide (TPL), a diterpenoid triepoxide from the Chinese herb Tripterygium wilfordii Hook F, has exhibited attractive cytotoxic activity on several cancer cells. An increasing number of studies have emphasized the antitumor effects of TPL on non-small cell lung cancer (NSCLC). Here we mainly focused on the key molecular signaling pathways that lead to the inhibitory effects of TPL on human NSCLC, such as mitogen-activated protein kinases (MAPKs) modulation, inhibition of NF-κB activation, suppression of miRNA expression, etc. In addition, the effect of TIG on immune response in cancer patients is summarized for improved immune modulation utilization. However, the clinical use of TPL is often limited by its severe toxicity and water insolubility. Future clinical trials and drug delivery strategies that will evaluate the security and validate the underlying tumor-killing properties of TPL in human NSCLC are also to be discussed.
Collapse
Affiliation(s)
- Jie Wei
- *Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- †National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Yuanliang Yan
- *Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- †National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Xi Chen
- *Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- †National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Long Qian
- *Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- †National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Shuangshuang Zeng
- *Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- †National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Zhi Li
- ‡Center for Molecular Medicine, Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Shuang Dai
- *Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- †National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Zhicheng Gong
- *Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- †National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Zhijie Xu
- §Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
15
|
An W, Lai H, Zhang Y, Liu M, Lin X, Cao S. Apoptotic Pathway as the Therapeutic Target for Anticancer Traditional Chinese Medicines. Front Pharmacol 2019; 10:758. [PMID: 31354479 PMCID: PMC6639427 DOI: 10.3389/fphar.2019.00758] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer is a leading cause of morbidity and mortality worldwide. Apoptosis is a process of programmed cell death and it plays a vital role in human development and tissue homeostasis. Mounting evidence indicates that apoptosis is closely related to the survival of cancer and it has emerged as a key target for the discovery and development of novel anticancer drugs. Various studies indicate that targeting the apoptotic signaling pathway by anticancer drugs is an important mechanism in cancer therapy. Therefore, numerous novel anticancer agents have been discovered and developed from traditional Chinese medicines (TCMs) by targeting the cellular apoptotic pathway of cancer cells and shown clinically beneficial effects in cancer therapy. This review aims to provide a comprehensive discussion for the role, pharmacology, related biology, and possible mechanism(s) of a number of important anticancer TCMs and their derivatives mainly targeting the cellular apoptotic pathway. It may have important clinical implications in cancer therapy.
Collapse
Affiliation(s)
- Weixiao An
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Nanchong Central Hospital, Nanchong, China
| | - Honglin Lai
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Affliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| | - Yangyang Zhang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Minghua Liu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiukun Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
16
|
Giri B, Gupta VK, Yaffe B, Modi S, Roy P, Sethi V, Lavania SP, Vickers SM, Dudeja V, Banerjee S, Watts J, Saluja A. Pre-clinical evaluation of Minnelide as a therapy for acute myeloid leukemia. J Transl Med 2019; 17:163. [PMID: 31109340 PMCID: PMC6528210 DOI: 10.1186/s12967-019-1901-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/30/2019] [Indexed: 01/22/2023] Open
Abstract
Background There is an urgent need for novel and effective treatment options for acute myeloid leukemia (AML). Triptolide, a diterpenoid tri-epoxide compound isolated from the herb Tripterygium wilfordii and its water-soluble pro-drug-Minnelide have shown promising anti-cancer activity. A recent clinical trial for patients with solid tumors confirmed the safety and efficacy at biologically equivalent doses of 0.2 mg/kg/day and lower. Methods Cell viability of multiple AML cell lines as well as patient apheresis samples were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) based assay. Apoptosis was evaluated by estimating the amount of cleaved caspase. AML cell line (THP1-Luc) was implanted in immunocompromised mice and treated with indicated doses of Minnelide. Leukemic burden before and after treatment was evaluated by imaging in an In Vivo Imaging System (IVIS). Results In the current study, we show that Minnelide, at doses below maximum tolerated dose (MTD) demonstrates leukemic clearance of both primary AML blasts and luciferase expressing THP-1 cells in mice. In vitro, multiple primary AML apheresis samples and AML cell lines (THP-1, KG1, Kasumi-1, HL-60) were sensitive to triptolide mediated cell death and apoptosis in low doses. Treatment with triptolide led to a significant decrease in the colony forming ability of AML cell lines as well as in the expression of stem cell markers. Additionally, it resulted in the cell cycle arrest in the G1/S phase with significant downregulation of c-Myc, a major transcriptional regulator mediating cancer cell growth and stemness. Conclusion Our results suggest that Minnelide, with confirmed safety and activity in the clinic, exerts a potent anti-leukemic effect in multiple models of AML at doses easily achievable in patients. Electronic supplementary material The online version of this article (10.1186/s12967-019-1901-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bhuwan Giri
- Sylvester Comprehensive Cancer Center and DeWitt Daughtry Family Department of Surgery, University of Miami, 460C CRB Research Building, 1140 NW 14th St, Miami, FL, 33136, USA
| | - Vineet K Gupta
- Sylvester Comprehensive Cancer Center and DeWitt Daughtry Family Department of Surgery, University of Miami, 460C CRB Research Building, 1140 NW 14th St, Miami, FL, 33136, USA
| | - Brianna Yaffe
- Sylvester Comprehensive Cancer Center and DeWitt Daughtry Family Department of Surgery, University of Miami, 460C CRB Research Building, 1140 NW 14th St, Miami, FL, 33136, USA
| | - Shrey Modi
- Sylvester Comprehensive Cancer Center and DeWitt Daughtry Family Department of Surgery, University of Miami, 460C CRB Research Building, 1140 NW 14th St, Miami, FL, 33136, USA
| | - Pooja Roy
- Sylvester Comprehensive Cancer Center and DeWitt Daughtry Family Department of Surgery, University of Miami, 460C CRB Research Building, 1140 NW 14th St, Miami, FL, 33136, USA
| | - Vrishketan Sethi
- Sylvester Comprehensive Cancer Center and DeWitt Daughtry Family Department of Surgery, University of Miami, 460C CRB Research Building, 1140 NW 14th St, Miami, FL, 33136, USA
| | - Shweta P Lavania
- Sylvester Comprehensive Cancer Center and DeWitt Daughtry Family Department of Surgery, University of Miami, 460C CRB Research Building, 1140 NW 14th St, Miami, FL, 33136, USA
| | - Selwyn M Vickers
- Sylvester Comprehensive Cancer Center and DeWitt Daughtry Family Department of Surgery, University of Miami, 460C CRB Research Building, 1140 NW 14th St, Miami, FL, 33136, USA
| | - Vikas Dudeja
- Sylvester Comprehensive Cancer Center and DeWitt Daughtry Family Department of Surgery, University of Miami, 460C CRB Research Building, 1140 NW 14th St, Miami, FL, 33136, USA
| | - Sulagna Banerjee
- Sylvester Comprehensive Cancer Center and DeWitt Daughtry Family Department of Surgery, University of Miami, 460C CRB Research Building, 1140 NW 14th St, Miami, FL, 33136, USA
| | - Justin Watts
- Sylvester Comprehensive Cancer Center and DeWitt Daughtry Family Department of Surgery, University of Miami, 460C CRB Research Building, 1140 NW 14th St, Miami, FL, 33136, USA
| | - Ashok Saluja
- Sylvester Comprehensive Cancer Center and DeWitt Daughtry Family Department of Surgery, University of Miami, 460C CRB Research Building, 1140 NW 14th St, Miami, FL, 33136, USA.
| |
Collapse
|
17
|
Noel P, Von Hoff DD, Saluja AK, Velagapudi M, Borazanci E, Han H. Triptolide and Its Derivatives as Cancer Therapies. Trends Pharmacol Sci 2019; 40:327-341. [DOI: 10.1016/j.tips.2019.03.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/15/2019] [Accepted: 03/06/2019] [Indexed: 11/30/2022]
|
18
|
Liu J, Cheng H, Han L, Qiang Z, Zhang X, Gao W, Zhao K, Song Y. Synergistic combination therapy of lung cancer using paclitaxel- and triptolide-coloaded lipid-polymer hybrid nanoparticles. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3199-3209. [PMID: 30288024 PMCID: PMC6161729 DOI: 10.2147/dddt.s172199] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Purpose Non-small cell lung cancer (NSCLC) accounts for the majority of lung cancer. Lipid–polymer hybrid nanoparticles (LPNs) combine the advantages of both polymeric nanoparticles and liposomes into a single delivery platform. In this study, we engineered LPNs as the co-delivery system of paclitaxel (PTX) and triptolide (TL) to achieve synergistic therapeutic effect and reduced drug resistance. Materials and methods In this study, PTX- and TL-coloaded LPNs (P/T-LPNs) were fabricated by nanoprecipitation method using lipid and polymeric materials. The P/T-LPNs combination effects on human lung cancer cells were studied. Therapeutic potentials of P/T-LPNs were further determined using lung cancer cells-bearing mice model. Results The average particle sizes of LPNs were around 160 nm, with narrow size distribution below 0.2. The zeta potential value of LPNs was about −30 mV. The encapsulating efficiency (EE) of PTX and TL loaded in LPNs was over 85%. The cytotoxicity of dual drug loaded LPNs was higher than single drug loaded LPNs. The combination therapy showed synergistic when PTX:TL weight ratio was 5:3, indicating the synergy effects of the LPNs. In vivo tumor growth curve of the experimental group was more gentle opposed to the control group, and tumor volumes of P/T-LPNs and control group were 392 and 1,737 mm3, respectively. The inhibition rate on day 20 was 77.4% in the P/T-LPNs group, which is higher than the free drugs solution. Conclusion The in vivo and in vitro results proved the synergetic effect of the two drugs coloaded in LPNs on the lung cancer xenografts, with the least systemic toxic side effect.
Collapse
Affiliation(s)
- Jia Liu
- Department of Thoracic Surgery, Tumor Hospital of Shaanxi Province, Xi'an, Shaanxi, People's Republic of China,
| | - Hao Cheng
- Department of Thoracic Surgery, Tumor Hospital of Shaanxi Province, Xi'an, Shaanxi, People's Republic of China,
| | - Le Han
- Department of Thoracic Surgery, Tumor Hospital of Shaanxi Province, Xi'an, Shaanxi, People's Republic of China,
| | - Zhun Qiang
- Department of Thoracic Surgery, Tumor Hospital of Shaanxi Province, Xi'an, Shaanxi, People's Republic of China,
| | - Xinwei Zhang
- Department of Thoracic Surgery, Tumor Hospital of Shaanxi Province, Xi'an, Shaanxi, People's Republic of China,
| | - Wei Gao
- Department of Thoracic Surgery, Tumor Hospital of Shaanxi Province, Xi'an, Shaanxi, People's Republic of China,
| | - Kun Zhao
- Department of Thoracic Surgery, Tumor Hospital of Shaanxi Province, Xi'an, Shaanxi, People's Republic of China,
| | - Yangrong Song
- Department of Thoracic Surgery, Tumor Hospital of Shaanxi Province, Xi'an, Shaanxi, People's Republic of China,
| |
Collapse
|
19
|
Sun JY, Zhu ZR, Wang H, Li WW, Cao CH, Liu L, Wu DH. Knockdown of UACA inhibitsproliferation and invasion and promotes senescence of hepatocellular carcinoma cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:4666-4675. [PMID: 31949867 PMCID: PMC6962967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/14/2018] [Indexed: 06/10/2023]
Abstract
Uveal autoantigen with coiled-coil domains and ankyrin repeats (UACA/Nucling), has been reported to be upregulated in various cancers. However, its expression and function have not been studied in hepatocellular carcinoma (HCC). In the present study, expression of UACA was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and the results revealed that UACA was upregulated in 23 cases of HCC compared with paired corresponding non-tumor liver tissues. In addition, the upregulation of UACA in HCC was further validated by analyzing the datasets from The Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC) and GSE36376. Furthermore, knockdown of UACA suppressed the proliferative and invasive ability as well as inducing senescence of HCC cells. Besides, the expression level of UACA was positively associated with Hif1α (hypoxia-inducible factor 1α) in HCC datasets from TCGA-LIHC and GSE54236. Moreover, treatment with CoCl2 led to the increased expression and the localization alteration of UACA in HCC cells. In summary, UACA is upregulated in HCC and knockdown of UACA ameliorated malignant behaviors of HCC cells, and UACA was correlated with and under control of Hif1α.
Collapse
Affiliation(s)
- Jing-Yuan Sun
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical UniversityGuangzhou, Guangdong, P. R. China
| | - Zhen-Ru Zhu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical UniversityGuangzhou, Guangdong, P. R. China
| | - Hui Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical UniversityGuangzhou, Guangdong, P. R. China
| | - Wen-Wen Li
- Hepatology Unit, Department of Infectious Diseases, Nanfang Hospital, Southern Medical UniversityGuangzhou, Guangdong, P. R. China
| | - Chuan-Hui Cao
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical UniversityGuangzhou, Guangdong, P. R. China
| | - Li Liu
- Hepatology Unit, Department of Infectious Diseases, Nanfang Hospital, Southern Medical UniversityGuangzhou, Guangdong, P. R. China
| | - De-Hua Wu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical UniversityGuangzhou, Guangdong, P. R. China
| |
Collapse
|
20
|
Hamdi AM, Jiang ZZ, Guerram M, Yousef BA, Hassan HM, Ling JW, Zhang LY. Biochemical and computational evaluation of Triptolide-induced cytotoxicity against NSCLC. Biomed Pharmacother 2018; 103:1557-1566. [PMID: 29864943 DOI: 10.1016/j.biopha.2018.04.198] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/26/2018] [Accepted: 04/29/2018] [Indexed: 12/14/2022] Open
Abstract
Triptolide is the major bioactive component isolated from the Chinese Medicinal plant Tripterygium wilfordii. Despite the growing interest and the plethora of reports discussing the pharmacological activity of this diterpenoid, no clear consensus regarding its cellular targets and full mechanism of action has been reached. In the present work, a combined in vitro and in silico approach was used to evaluate the biological activity of Triptolide on Non-small cell lung cancer (NSCLC). In vitro, Triptolide treatment induced apoptosis in NSCLC cell lines and down-regulated the phosphorylation of AKT, mTOR, and p70S6K. Triptolide also impacted cellular glycolysis as well as the antioxidant response through the impairment of glucose utilization, HKII, glutathione, and NRF2 levels. Molecular docking results examined the possible interactions between Triptolide and AKT and predicted an allosteric binding to AKT-1 structure. Molecular dynamics simulations were further used to evaluate the stability of the complex formed by Triptolide's best conformer and AKT. These findings provide an insightful approach to the anticancer effect of Triptolide against NSCLC and highlight a possible new role for AKT/mTOR HKII inhibition.
Collapse
Affiliation(s)
- Aida M Hamdi
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Zhen-Zhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing, China
| | - Mounia Guerram
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Bashir A Yousef
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China; Department of Pharmacology, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Hozeifa M Hassan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Jia-Wei Ling
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Lu-Yong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China; Center for Drug Screening and Pharmacodynamics Evaluation, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
21
|
Song JM, Molla K, Anandharaj A, Cornax I, O Sullivan MG, Kirtane AR, Panyam J, Kassie F. Triptolide suppresses the in vitro and in vivo growth of lung cancer cells by targeting hyaluronan-CD44/RHAMM signaling. Oncotarget 2018; 8:26927-26940. [PMID: 28460475 PMCID: PMC5432308 DOI: 10.18632/oncotarget.15879] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/15/2017] [Indexed: 12/11/2022] Open
Abstract
Higher levels of hyaluronan (HA) and its receptors CD44 and RHAMM have been associated with poor prognosis and metastasis in NSCLC. In the current study, our goal was to define, using cellular and orthotopic lung tumor models, the role of HA-CD44/RHAMM signaling in lung carcinogenesis and to assess the potential of triptolide to block HA-CD44/RHAMM signaling and thereby suppress the development and progression of lung cancer. Triptolide reduced the viability of five non-small cell lung cancer (NSCLC) cells, the proliferation and self-renewal of pulmospheres, and levels of HA synthase 2 (HAS2), HAS3, HA, CD44, RHAMM, EGFR, Akt and ERK, but increased the cleavage of caspase 3 and PARP. Silencing of HAS2, CD44 or RHAMM induced similar effects. Addition of excess HA to the culture media completely abrogated the effects of triptolide and siRNAs targeting HAS2, CD44, or RHAMM. In an orthotopic lung cancer model in nude rats, intranasal administration of liposomal triptolide (400 μg/kg) for 8 weeks significantly reduced lung tumor growth as determined by bioluminescence imaging, lung weight measurements and gross and histopathological analysis of tumor burden. Also, triptolide suppressed expressions of Ki-67, a marker for cell proliferation, HAS2, HAS3, HA, CD44, and RHAMM in lung tumors. Overall, our results provide a strong rationale for mitigating lung cancer by targeting the HA-CD44/RHAMM signaling axis.
Collapse
Affiliation(s)
- Jung Min Song
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kalkidan Molla
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Ingrid Cornax
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - M Gerard O Sullivan
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA
| | - Ameya R Kirtane
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jayanth Panyam
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Fekadu Kassie
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|
22
|
Li G, Lou HX. Strategies to diversify natural products for drug discovery. Med Res Rev 2017; 38:1255-1294. [PMID: 29064108 DOI: 10.1002/med.21474] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/18/2017] [Accepted: 09/28/2017] [Indexed: 12/11/2022]
Abstract
Natural product libraries contain specialized metabolites derived from plants, animals, and microorganisms that play a pivotal role in drug discovery due to their immense structural diversity and wide variety of biological activities. The strategies to greatly extend natural product scaffolds through available biological and chemical approaches offer unique opportunities to access a new series of natural product analogues, enabling the construction of diverse natural product-like libraries. The affordability of these structurally diverse molecules has been a crucial step in accelerating drug discovery. This review provides an overview of various approaches to exploit the diversity of compounds for natural product-based drug development, drawing upon a series of examples to illustrate each strategy.
Collapse
Affiliation(s)
- Gang Li
- Department of Natural Medicine and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, China
| | - Hong-Xiang Lou
- Department of Natural Medicine and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, China.,Department of Natural Products Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
23
|
Ma B, Hu T, Li P, Yuan Q, Lin Z, Tu Y, Li J, Zhang X, Wu X, Wang X, Huang L, Gao W. Phylogeographic and phylogenetic analysis for Tripterygium species delimitation. Ecol Evol 2017; 7:8612-8623. [PMID: 29075476 PMCID: PMC5648662 DOI: 10.1002/ece3.3344] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/22/2017] [Accepted: 07/23/2017] [Indexed: 12/24/2022] Open
Abstract
Tripterygium wilfordii (Celastraceae) is a traditional Chinese medicine; and the dried root and rhizome constitute the main officinal parts. Tripterygium wilfordii has been identified as a potential candidate for the treatment of systemic lupus erythematosus, rheumatoid arthritis, nephritis, asthma, leprosy, and cancer. The phylogenetic relationships within the Tripterygium genus are ambiguous; thus, our aim is to clarify the relationships within this genus using phylogeographic and phylogenetic analyses. Here, we first sequenced three plastid DNA regions (i.e., psbA‐trnH, rpl32‐trnL, and trnL‐trnF) and found that Tripterygium hypoglaucum and T. wilfordii were clustered together based on the strength of the topology in the phylogenetic analysis: T. hypoglaucum is polyphyletic, and T. wilfordii is paraphyletic. A spatial analysis of molecular variance showed that the best group value is 4, and the groups were almost consistent with the topology of in the phylogenetic analysis. The Mantel analyses of Tripterygium using IBD web showed statistically significant relationships between genetic and geographical distance distributions (r = .3479, p < .0001). The molecular dating using Fossil calibration indicated that the divergence in Tripterygium was approximately 8.13 Ma. Furthermore, we also analyzed four DNA regions (i.e., ITS2, psbA‐trnH, matK, and rbcL) that were obtained from the NCBI nucleotide database; these results showed that T. wilfordii and T. hypoglaucum clustered together, while Tripterygium regelii represented a separate cluster. Tripterygium hypoglaucum and T. wilfordii were never distinct lineages, and the species circumscriptions are artificial. We propose that T. wilfordii and T. hypoglaucum are conspecific, while T. regelii likely constitutes a separate species.
Collapse
Affiliation(s)
- Baowei Ma
- School of Traditional Chinese Medicine Capital Medical University Beijing China
| | - Tianyuan Hu
- School of Traditional Chinese Medicine Capital Medical University Beijing China
| | - Pei Li
- School of Traditional Chinese Medicine Capital Medical University Beijing China
| | - Qingjun Yuan
- State Key Laboratory Breeding Base of Dao-di Herbs National Resource Center for Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing China
| | - Zhaoshou Lin
- Datian Taoyuan State Forest Farm in Fujian Province Datian China
| | - Yuhe Tu
- Yongan State Forest Farm in Fujian Province Yongan China
| | - Jia Li
- School of Traditional Chinese Medicine Capital Medical University Beijing China
| | - Xianan Zhang
- School of Traditional Chinese Medicine Capital Medical University Beijing China
| | - Xiaoyi Wu
- School of Traditional Chinese Medicine Capital Medical University Beijing China
| | - Xiujuan Wang
- School of Traditional Chinese Medicine Capital Medical University Beijing China
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs National Resource Center for Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing China
| | - Wei Gao
- School of Traditional Chinese Medicine Capital Medical University Beijing China
| |
Collapse
|
24
|
Wang JP, Hsieh CH, Liu CY, Lin KH, Wu PT, Chen KM, Fang K. Reactive oxygen species-driven mitochondrial injury induces apoptosis by teroxirone in human non-small cell lung cancer cells. Oncol Lett 2017; 14:3503-3509. [PMID: 28927105 PMCID: PMC5588047 DOI: 10.3892/ol.2017.6586] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/19/2017] [Indexed: 11/05/2022] Open
Abstract
Teroxirone as an anticancer agent is used to treat human lung cancer by inducing apoptotic cell death. Previous studies have demonstrated that the status of the tumor suppressor p53 determined the onset of apoptotic cell death in human non-small cell lung cancer cells (NSCLC). In order to further understand the underlying mechanisms of lung cancer, the present study explored the targets of teroxirone. By including antioxidants, the present study analyzed changes in cell proliferation, cell cycle division, mitochondrial membrane potential (MMP), reactive oxygen species (ROS), expression of apoptosis markers and cytochrome c distribution. Subsequent to a 12 h treatment with low concentrations of teroxirone, MMP was suppressed, followed by ROS production and apoptosis in lung cancer cells carrying wild type p53. N-acetylcysteine inhibited apoptotic cell death. The depleted expression of p53, reduction of apoptosis-associated active caspase-3 and poly ADP-ribose polymerase cleavage with resurgence of the pro-survival signal protein kinase B, all demonstrated an antioxidant-mediated reduction of apoptosis by teroxirone. The diminished ROS intensity inhibited the release of mitochondrial cytochrome c and DNA damage. The present study provided evidence that teroxirone treatment induced the ROS-activated intrinsic apoptotic pathway, which led to cell death in human NSCLC cells.
Collapse
Affiliation(s)
- Jing-Ping Wang
- Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan, R.O.C
| | - Chang-Heng Hsieh
- Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan, R.O.C
| | - Chun-Yen Liu
- Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan, R.O.C
| | - Kai-Han Lin
- Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan, R.O.C
| | - Pei-Tsun Wu
- Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan, R.O.C
| | - Kwun-Min Chen
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan, R.O.C
| | - Kang Fang
- Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan, R.O.C
| |
Collapse
|
25
|
Isharwal S, Modi S, Arora N, Uhlrich C, Giri B, Barlass U, Soubra A, Chugh R, Dehm SM, Dudeja V, Saluja A, Banerjee S, Konety B. Minnelide Inhibits Androgen Dependent, Castration Resistant Prostate Cancer Growth by Decreasing Expression of Androgen Receptor Full Length and Splice Variants. Prostate 2017; 77:584-596. [PMID: 28144973 PMCID: PMC6449155 DOI: 10.1002/pros.23298] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 12/08/2016] [Indexed: 11/06/2022]
Abstract
BACKGROUND With almost 30,000 deaths per year, prostate cancer is the second-leading cause of cancer-related death in men. Androgen Deprivation Therapy (ADT) has been the corner stone of prostate cancer treatment for decades. However, despite an initial response of prostate cancer to ADT, this eventually fails and the tumors recur, resulting in Castration Resistant Prostate Cancer (CRPC). Triptolide, a diterpene triepoxide, has been tested for its anti-tumor properties in a number of cancers for over a decade. Owing to its poor solubility in aqueous medium, its clinical application had been limited. To circumvent this problem, we have synthesized a water-soluble pro-drug of triptolide, Minnelide, that is currently being evaluated in a Phase 1 clinical trial against gastrointestinal tumors. In the current study, we assessed the therapeutic potential of Minnelide and its active compound triptolide against androgen dependent prostate cancer both in vitro as well as in vivo. METHODS Cell viability was measured by a MTT based assay after treating prostate cancer cells with multiple doses of triptolide. Apoptotic cell death was measured using a caspase 3/7 activity. Androgen Receptor (AR) promoter-binding activity was evaluated by using luciferase reporter assay. For evaluating the effect in vivo, 22Rv1 cells were implanted subcutaneously in animals, following which, treatment was started with 0.21 mg/kg Minnelide. RESULTS Our study showed that treatment with triptolide induced apoptotic cell death in CRPC cells. Triptolide treatment inhibited AR transcriptional activity and decreased the expression of AR and its splice variants both at the mRNA and the protein level. Our studies show that triptolide inhibits nuclear translocation of Sp1, resulting in its decreased transcriptional activity leading to downregulation of AR and its splice variants in prostate cancer cells. In vivo, Minnelide (0.21 mg/kg) regressed subcutaneous tumors derived from CRPC 22RV1 at our study endpoint. Our animal studies further confirmed that Minnelide was more efficacious than the standard of care therapies, Docetaxel and Enzalutamide. CONCLUSION Our study indicates that Minnelide is very effective as a therapeutic option against CRPC at a dose that is currently tolerated by patients in the ongoing clinical trials. Prostate 77: 584-596, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sumit Isharwal
- Department of Urology, Institute for Prostate and Urologic Cancers, University of Minnesota, Minneapolis, Minnesota
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Shrey Modi
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Nivedita Arora
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Charles Uhlrich
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Bhuwan Giri
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Usman Barlass
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Ayman Soubra
- Department of Urology, Institute for Prostate and Urologic Cancers, University of Minnesota, Minneapolis, Minnesota
| | - Rohit Chugh
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Scott M. Dehm
- Department of Urology, Institute for Prostate and Urologic Cancers, University of Minnesota, Minneapolis, Minnesota
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Vikas Dudeja
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota
- Miller School of Medicine, University of Miami, Miami, Florida
| | - Ashok Saluja
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota
- Miller School of Medicine, University of Miami, Miami, Florida
| | - Sulagna Banerjee
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota
- Miller School of Medicine, University of Miami, Miami, Florida
| | - Badrinath Konety
- Department of Urology, Institute for Prostate and Urologic Cancers, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
26
|
Ratovitski EA. Anticancer Natural Compounds as Epigenetic Modulators of Gene Expression. Curr Genomics 2017; 18:175-205. [PMID: 28367075 PMCID: PMC5345332 DOI: 10.2174/1389202917666160803165229] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/24/2015] [Accepted: 11/29/2015] [Indexed: 11/30/2022] Open
Abstract
Accumulating evidence shows that hallmarks of cancer include: "genetic and epigenetic alterations leading to inactivation of cancer suppressors, overexpression of oncogenes, deregulation of intracellular signaling cascades, alterations of cancer cell metabolism, failure to undergo cancer cell death, induction of epithelial to mesenchymal transition, invasiveness, metastasis, deregulation of immune response and changes in cancer microenvironment, which underpin cancer development". Natural compounds as bioactive ingredients isolated from natural sources (plants, fungi, marine life forms) have revolutionized the field of anticancer therapeutics and rapid developments in preclinical studies are encouraging. Natural compounds could affect the epigenetic molecular mechanisms that modulate gene expression, as well as DNA damage and repair mechanisms. The current review will describe the latest achievements in using naturally produced compounds targeting epigenetic regulators and modulators of gene transcription in vitro and in vivo to generate novel anticancer therapeutics.
Collapse
Affiliation(s)
- Edward A. Ratovitski
- Head and Neck Cancer Research Division, Department of Otolaryngology/Head and Neck Surgery, The Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
27
|
Nomura A, Majumder K, Giri B, Dauer P, Dudeja V, Roy S, Banerjee S, Saluja AK. Inhibition of NF-kappa B pathway leads to deregulation of epithelial-mesenchymal transition and neural invasion in pancreatic cancer. J Transl Med 2016; 96:1268-1278. [PMID: 27775688 PMCID: PMC5121017 DOI: 10.1038/labinvest.2016.109] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/07/2016] [Accepted: 09/12/2016] [Indexed: 01/04/2023] Open
Abstract
NF-κB has an essential role in the initiation and progression of pancreatic cancer and specifically mediates the induction of epithelial-mesenchymal transition and invasiveness. In this study, we demonstrate the importance of activated NF-κB signaling in EMT induction, lymphovascular metastasis, and neural invasion. Modulation of NF-κB activity was accomplished through the specific NF-κB inhibitor (BAY 11-7085), triptolide, and Minnelide treatment, as well as overexpression of IKBα repressor and IKK activator plasmids. In the classical lymphovascular metastatic cascade, inhibition of NF-κB decreased the expression of several EMT transcription factors (SNAI1, SNAI2, and ZEB1) and mesenchymal markers (VIM and CDH2) and decreased in vitro invasion, which was rescued by IKK activation. This was further demonstrated in vivo via BAY 11-7085 treatment in a orthotopic model of pancreatic cancer. In vivo NF-κB inhibition decreased tumor volume; decreased tumor EMT gene expression, while restoring cell-cell junctions; and decreasing overall metastasis. Furthermore, we demonstrate the importance of active NF-κB signaling in neural invasion. Triptolide treatment inhibits Nerve Growth Factor (NGF) mediated, neural-tumor co-culture in vitro invasion, and dorsal root ganglia (DRG) neural outgrowth through a disruption in tumor-neural cross talk. In vivo, Minnelide treatment decreased neurotrophin expression, nerve density, and sciatic nerve invasion. Taken together, this study demonstrates the importance of NF-κB signaling in the progression of pancreatic cancer through the modulation of EMT induction, lymphovascular invasion, and neural invasion.
Collapse
Affiliation(s)
- Alice Nomura
- Division of Surgical Oncology, Department of Surgery Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Kaustav Majumder
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Bhuwan Giri
- Division of Surgical Oncology, Department of Surgery Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Patricia Dauer
- Division of Surgical Oncology, Department of Surgery Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Vikas Dudeja
- Division of Surgical Oncology, Department of Surgery Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Sabita Roy
- Division of Surgical Oncology, Department of Surgery Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Sulagna Banerjee
- Division of Surgical Oncology, Department of Surgery Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Ashok K. Saluja
- Division of Surgical Oncology, Department of Surgery Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
28
|
Szabo R, Skropeta D. Advancement of Sialyltransferase Inhibitors: Therapeutic Challenges and Opportunities. Med Res Rev 2016; 37:219-270. [DOI: 10.1002/med.21407] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/14/2016] [Accepted: 08/03/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Rémi Szabo
- School of Chemistry; University of Wollongong; Wollongong NSW 2522 Australia
| | - Danielle Skropeta
- School of Chemistry; University of Wollongong; Wollongong NSW 2522 Australia
- Centre for Medical & Molecular Bioscience; University of Wollongong; Wollongong NSW 2522 Australia
| |
Collapse
|
29
|
Kumar A, Corey C, Scott I, Shiva S, D’Cunha J. Minnelide/Triptolide Impairs Mitochondrial Function by Regulating SIRT3 in P53-Dependent Manner in Non-Small Cell Lung Cancer. PLoS One 2016; 11:e0160783. [PMID: 27501149 PMCID: PMC4976872 DOI: 10.1371/journal.pone.0160783] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/25/2016] [Indexed: 02/06/2023] Open
Abstract
Minnelide/Triptolide (TL) has recently emerged as a potent anticancer drug in non-small cell lung cancer (NSCLC). However, the precise mechanism of its action remains ambiguous. In this study, we elucidated the molecular basis for TL-induced cell death in context to p53 status. Cell death was attributed to dysfunction of mitochondrial bioenergetics in p53-deficient cells, which was characterized by decreased mitochondrial respiration, steady-state ATP level and membrane potential, but augmented reactive oxygen species (ROS). Increased ROS production resulted in oxidative stress in TL-treated cells. This was exhibited by elevated nuclear levels of a redox-sensitive transcriptional factor, NF-E2-related factor-2 (NRF2), along with diminished cellular glutathione (GSH) content. We further demonstrated that in the absence of p53, TL blunted the expression of mitochondrial SIRT3 triggering increased acetylation of NDUAF9 and succinate dehydrogenase, components of complexes I and II of the electron transport chain (ETC). TL-mediated hyperacetylation of complexes I and II proteins and these complexes displayed decreased enzymatic activities. We also provide the evidence that P53 regulate steady-state level of SIRT3 through Proteasome-Pathway. Finally, forced overexpression of Sirt3, but not deacetylase-deficient mutant of Sirt3 (H243Y), restored the deleterious effect of TL on p53-deficient cells by rescuing mitochondrial bioenergetics. On contrary, Sirt3 deficiency in the background of wild-type p53 triggered TL-induced mitochondrial impairment that echoed TL effect in p53-deficeint cells. These findings illustrate a novel mechanism by which TL exerts its potent effects on mitochondrial function and ultimately the viability of NSCLC tumor.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Catherine Corey
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Iain Scott
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sruti Shiva
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Dept of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jonathan D’Cunha
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
30
|
Kaloun EB, Long C, Molinier N, Brel V, Cantagrel F, Massiot G. Partial synthesis of 14-deoxy-14-aminotriptolide. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.03.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Banerjee S, Modi S, McGinn O, Zhao X, Dudeja V, Ramakrishnan S, Saluja AK. Impaired Synthesis of Stromal Components in Response to Minnelide Improves Vascular Function, Drug Delivery, and Survival in Pancreatic Cancer. Clin Cancer Res 2016; 22:415-25. [PMID: 26405195 PMCID: PMC4716007 DOI: 10.1158/1078-0432.ccr-15-1155] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/24/2015] [Indexed: 12/18/2022]
Abstract
PURPOSE Pancreatic cancer stromal microenvironment is considered to be the major reason for failure of conventional and targeted therapy for this disease. The desmoplastic stroma, comprising mainly collagen and glycosaminoglycans like hyaluronan (HA), is responsible for compression of vasculature in the tumor resulting in impaired drug delivery and poor prognosis. Minnelide, a water-soluble prodrug of triptolide currently in phase I clinical trial, has been very effective in multiple animal models of pancreatic cancer. However, whether Minnelide will have efficacious delivery into the tumor despite the desmoplastic stroma has not been evaluated before. EXPERIMENT DESIGN Patient tumor-derived xenografts (PDX) and spontaneous pancreatic cancer mice were treated with 0.42 and 0.21 mg/kg body weight for 30 days. Stromal components were determined by IHC and ELISA-based assays. Vascular functionality and drug delivery to the tumor were assessed following treatment with Minnelide. RESULT Our current study shows that treatment with Minnelide resulted in reduction of ECM components like HA and collagen in the pancreatic cancer stroma of both the spontaneous KPC mice as well as in patient tumor xenografts. Furthermore, treatment with Minnelide improved functional vasculature in the tumors resulting in four times more functional vessels in the treated animals compared with untreated animals. Consistent with this observation, Minnelide also resulted in increased drug delivery into the tumor compared with untreated animals. Along with this, Minnelide also decreased viability of the stromal cells along with the tumor cells in pancreatic adenocarcinoma. CONCLUSIONS In conclusion, these results are extremely promising as they indicate that Minnelide, along with having anticancer effects is also able to deplete stroma in pancreatic tumors, which makes it an effective therapy for pancreatic cancer.
Collapse
Affiliation(s)
- Sulagna Banerjee
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Shrey Modi
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Olivia McGinn
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Xianda Zhao
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Vikas Dudeja
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | | | - Ashok K Saluja
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
32
|
Patil S, Lis LG, Schumacher RJ, Norris BJ, Morgan ML, Cuellar RAD, Blazar BR, Suryanarayanan R, Gurvich VJ, Georg GI. Phosphonooxymethyl Prodrug of Triptolide: Synthesis, Physicochemical Characterization, and Efficacy in Human Colon Adenocarcinoma and Ovarian Cancer Xenografts. J Med Chem 2015; 58:9334-44. [PMID: 26596892 PMCID: PMC4678411 DOI: 10.1021/acs.jmedchem.5b01329] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
![]()
A disodium phosphonooxymethyl
prodrug of the antitumor agent triptolide
was prepared from the natural product in three steps (39% yield) and
displayed excellent aqueous solubility at pH 7.4 (61 mg/mL) compared
to the natural product (17 μg/mL). The estimated shelf life
(t90) for hydrolysis of the prodrug at
4 °C and pH 7.4 was found to be two years. In a mouse model of
human colon adenocarcinoma (HT-29), the prodrug administered intraperitoneally
was effective in reducing or eliminating xenograft tumors at dose
levels as low as 0.3 mg/kg when given daily and at 0.9 mg/kg when
given less frequently. When given via intraperitoneal and oral routes
at daily doses of 0.6 and 0.9 mg/kg, the prodrug was also effective
and well tolerated in a mouse model of human ovarian cancer (A2780).
Collapse
Affiliation(s)
- Satish Patil
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota , 717 Delaware Street SE, Minneapolis, Minnesota 55414, United States
| | - Lev G Lis
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota , 717 Delaware Street SE, Minneapolis, Minnesota 55414, United States
| | - Robert J Schumacher
- Center for Translational Medicine, Academic Health Center, University of Minnesota , 420 Delaware Street SE, Minneapolis, Minnesota 55455, United States
| | - Beverly J Norris
- Center for Translational Medicine, Academic Health Center, University of Minnesota , 420 Delaware Street SE, Minneapolis, Minnesota 55455, United States
| | - Monique L Morgan
- Center for Translational Medicine, Academic Health Center, University of Minnesota , 420 Delaware Street SE, Minneapolis, Minnesota 55455, United States
| | - Rebecca A D Cuellar
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota , 717 Delaware Street SE, Minneapolis, Minnesota 55414, United States
| | - Bruce R Blazar
- Center for Translational Medicine, Academic Health Center, University of Minnesota , 420 Delaware Street SE, Minneapolis, Minnesota 55455, United States
| | - Raj Suryanarayanan
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota , 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Vadim J Gurvich
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota , 717 Delaware Street SE, Minneapolis, Minnesota 55414, United States
| | - Gunda I Georg
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota , 717 Delaware Street SE, Minneapolis, Minnesota 55414, United States
| |
Collapse
|
33
|
Brincks EL, Kucaba TA, James BR, Murphy KA, Schwertfeger KL, Sangwan V, Banerjee S, Saluja AK, Griffith TS. Triptolide enhances the tumoricidal activity of TRAIL against renal cell carcinoma. FEBS J 2015; 282:4747-4765. [PMID: 26426449 DOI: 10.1111/febs.13532] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 08/19/2015] [Accepted: 09/23/2015] [Indexed: 12/11/2022]
Abstract
Renal cell carcinoma (RCC) is resistant to traditional cancer therapies, and metastatic RCC (mRCC) is incurable. The shortcomings in current therapeutic options for patients with mRCC provide the rationale for the development of novel treatment protocols. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has proven to be a potent inducer of tumor cell death in vitro and in vivo, and a number of TRAIL death receptor agonists (recombinant TRAIL or TRAIL death receptor-specific mAb) have been developed and tested clinically. Unfortunately the clinical efficacy of TRAIL has been underwhelming and is likely due to a number of possible mechanisms that render tumors resistant to TRAIL, prompting the search for drugs that increase tumor cell susceptibility to TRAIL. The objective of this study was to determine the effectiveness of combining the diterpene triepoxide triptolide, or its water-soluble prodrug, Minnelide, with TRAIL receptor agonists against RCC in vitro or in vivo, respectively. TRAIL-induced apoptotic death of human RCC cells was increased in the presence of triptolide. The triptolide-induced sensitization was accompanied by increased TRAIL-R2 (DR5) and decreased heat shock protein 70 expression. In vivo treatment of mice bearing orthotopic RCC (Renca) tumors showed the combination of Minnelide and agonistic anti-DR5 mAb significantly decreased tumor burden and increased animal survival compared to either therapy alone. Our data suggest triptolide/Minnelide sensitizes RCC cells to TRAIL-induced apoptosis through altered TRAIL death receptor and heat shock protein expression.
Collapse
Affiliation(s)
- Erik L Brincks
- Department of Urology, University of Minnesota, Minneapolis, MN 55455
| | - Tamara A Kucaba
- Department of Urology, University of Minnesota, Minneapolis, MN 55455
| | - Britnie R James
- Department of Urology, University of Minnesota, Minneapolis, MN 55455
| | | | - Kathryn L Schwertfeger
- Department of Lab Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455.,Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Veena Sangwan
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455
| | - Sulagna Banerjee
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455
| | - Ashok K Saluja
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455.,Department of Surgery, University of Minnesota, Minneapolis, MN 55455
| | - Thomas S Griffith
- Department of Urology, University of Minnesota, Minneapolis, MN 55455.,Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455.,Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
34
|
Cheng QL, Li HL, Huang ZQ, Chen YJ, Liu TS. 2β, 3β, 23-trihydroxy-urs-12-ene-28-olic acid (TUA) isolated from Actinidia chinensis Radix inhibits NCI-H460 cell proliferation by decreasing NF-κB expression. Chem Biol Interact 2015; 240:1-11. [DOI: 10.1016/j.cbi.2015.06.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/11/2015] [Accepted: 06/26/2015] [Indexed: 10/23/2022]
|
35
|
Triptolide abrogates growth of colon cancer and induces cell cycle arrest by inhibiting transcriptional activation of E2F. J Transl Med 2015; 95:648-659. [PMID: 25893635 PMCID: PMC5001951 DOI: 10.1038/labinvest.2015.46] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 02/18/2015] [Accepted: 02/27/2015] [Indexed: 01/06/2023] Open
Abstract
Despite significant progress in diagnostics and therapeutics, over 50 thousand patients die from colorectal cancer annually. Hence, there is urgent need for new lines of treatment. Triptolide, a natural compound isolated from the Chinese herb Tripterygium wilfordii, is effective against multiple cancers. We have synthesized a water soluble analog of triptolide, named Minnelide, which is currently in phase I trial against pancreatic cancer. The aims of the current study were to evaluate whether triptolide/Minnelide is effective against colorectal cancer and to elucidate the mechanism by which triptolide induces cell death in colorectal cancer. Efficacy of Minnelide was evaluated in subcutaneous xenograft and liver metastasis model of colorectal cancer. For mechanistic studies, colon cancer cell lines HCT116 and HT29 were treated with triptolide and the effect on viability, caspase activation, annexin positivity, lactate dehydrogenase release, and cell cycle progression was evaluated. Effect of triptolide on E2F transcriptional activity, mRNA levels of E2F-dependent genes, E2F1- retinoblastoma protein (Rb) binding, and proteins levels of regulator of G1-S transition was also measured. DNA binding of E2F1 was evaluated by chromatin immunoprecipitation assay. Triptolide decreased colon cancer cell viability in a dose- and time-dependent fashion. Minnelide markedly inhibited the growth of colon cancer in the xenograft and liver metastasis model of colon cancer and more than doubles the median survival of animals with liver metastases from colon cancer. Mechanistically, we demonstrate that at low concentrations triptolide induces apoptotic cell death but at higher concentrations it induces cell cycle arrest. Our data suggest that triptolide is able to induce G1 cell cycle arrest by inhibiting transcriptional activation of E2F1. Our data also show that triptolide downregulates E2F activity by potentially modulating events downstream of DNA binding. Therefore, we conclude that Triptolide and Minnelide are effective against colon cancer in multiple pre-clinical models.
Collapse
|
36
|
Triptolide and its prodrug minnelide suppress Hsp70 and inhibit in vivo growth in a xenograft model of mesothelioma. Genes Cancer 2015; 6:144-52. [PMID: 26000097 PMCID: PMC4426951 DOI: 10.18632/genesandcancer.55] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/29/2015] [Indexed: 12/29/2022] Open
Abstract
Malignant mesothelioma is a devastating disease with a poor prognosis for which there is a clear need for more successful therapeutic approaches. Triptolide, a diterpenoid triepoxide, is a highly effective agent against several cancer types in animal models. Owing to triptolide's poor solubility in water, a water-soluble analog, minnelide, was synthesized. Minnelide is a prodrug of triptolide and is activated by exposure to phosphatases that are found in all body tissues, including blood. Mesothelioma cells were treated in vitro with minnelide or its parent compound, triptolide. Minnelide and triptolide were both found to significantly reduce mesothelioma cell viability and induce apoptosis. The level of Hsp70, a protein that promotes cancer cell survival, was measured in mesothelioma cells before and after treatment with triptolide. Hsp70 levels were decreased in a dose-dependent manner. In addition, triptolide sensitized cells to gemcitabine and pemetrexed as measured by cell viability. Mice bearing mesothelioma flank tumors were treated with daily injections (28 d) of minnelide or saline solution and xenograft tumor growth recorded. Mice displayed significantly reduced tumor burden. These findings support the clinical evaluation of minnelide therapy for mesothelioma.
Collapse
|
37
|
Razi SS, Rehmani S, Li X, Park K, Schwartz GS, Latif MJ, Bhora FY. Antitumor activity of paclitaxel is significantly enhanced by a novel proapoptotic agent in non–small cell lung cancer. J Surg Res 2015; 194:622-630. [DOI: 10.1016/j.jss.2014.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 07/26/2014] [Accepted: 11/04/2014] [Indexed: 11/24/2022]
|
38
|
Rivard C, Geller M, Schnettler E, Saluja M, Vogel RI, Saluja A, Ramakrishnan S. Inhibition of epithelial ovarian cancer by Minnelide, a water-soluble pro-drug. Gynecol Oncol 2014; 135:318-24. [PMID: 25172764 DOI: 10.1016/j.ygyno.2014.08.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Minnelide is a water-soluble pro-drug of triptolide, a natural product. The goal of this study was to evaluate the effectiveness of Minnelide on ovarian cancer growth in vitro and in vivo. METHODS The effect of Minnelide on ovarian cancer cell proliferation was determined by real time electrical impedance measurements. Multiple mouse models with C200 and A2780 epithelial ovarian cancer cell lines were used to assess the efficacy of Minnelide in inhibiting ovarian cancer growth. RESULTS Minnelide decreased cell viability of both platinum sensitive and resistant epithelial ovarian cancer cells in vitro. Minnelide with carboplatin showed additive effects in vitro. Minnelide monotherapy increased the survival of mice bearing established ovarian tumors. Minnelide, in combination with carboplatin and paclitaxel, improved overall survival of mice. CONCLUSIONS Minnelide is a promising pro-drug for the treatment of ovarian cancer, especially when combined with standard chemotherapy.
Collapse
Affiliation(s)
- Colleen Rivard
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, USA.
| | - Melissa Geller
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, USA
| | | | - Manju Saluja
- Department of Pharmacology, University of Minnesota, USA
| | - Rachel Isaksson Vogel
- Biostatistics and Bioinformatics, Masonic Cancer Center, University of Minnesota, USA
| | - Ashok Saluja
- Department of Surgery, University of Minnesota, USA
| | | |
Collapse
|
39
|
Alsaied OA, Sangwan V, Banerjee S, Krosch TC, Chugh R, Saluja A, Vickers SM, Jensen EH. Sorafenib and triptolide as combination therapy for hepatocellular carcinoma. Surgery 2014; 156:270-9. [PMID: 24953273 DOI: 10.1016/j.surg.2014.04.055] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/28/2014] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Sorafenib is the only drug approved by the Food and Drug Administration for metastatic hepatocellular carcinoma (HCC). Triptolide, a diterpene triepoxide, exhibits antineoplastic properties in multiple tumor cell types. In this study, we examined the effects of these agents and their combination on HCC in vitro and in vivo models. METHODS HuH-7 and PLC/PRF/5 cells were treated with triptolide (50 nM), sorafenib (1.25 or 2.5 μM), or a combination of both. Cell viability assay (CCK-8), caspase 3&7 activation, and nuclear factor κB assays were performed. For in vivo studies, 40 mice were implanted with subcutaneous HuH7 tumors and divided into four treatment groups (n = 10); saline control, sorafenib 10 mg/kg PO daily (S), Minnelide (a prodrug of triptolide) 0.21 mg/kg intraperitoneally7 daily (M), and combination of both (C). Tumor volumes were assessed weekly. RESULTS The combination of triptolide and sorafenib was superior to either drug alone in inducing apoptosis and decreasing viability, whereas triptolide alone was sufficient to decrease nuclear factor κB activity. After 2 weeks of treatment, tumor growth inhibition rates were S = 59%, M = 84%, and C = 93%, whereas tumor volumes in control animals increased by 9-fold. When crossed over to combination treatment, control mice tumor growth volumes plateaued over the following 4 weeks. CONCLUSION The combination of sorafenib and triptolide is superior to single drug treatment in increasing cell death and apoptosis in vitro. Combining sorafenib with Minnelide inhibited tumor growth with greater efficacy than single-agent treatments. Importantly, in vivo combination treatment allowed for using a lesser dose of sorafenib (10 mg/kg), which is less than 10% of currently prescribed dose for HCC patients. Therefore, combination treatment could have translational potential in the management of HCC.
Collapse
Affiliation(s)
- Osama A Alsaied
- Division of General Surgery, University of Minnesota, Minneapolis, MN
| | - Veena Sangwan
- Division of Basic and Translational Research, University of Minnesota, Minneapolis, MN
| | - Sulagna Banerjee
- Division of Basic and Translational Research, University of Minnesota, Minneapolis, MN
| | - Tara C Krosch
- Division of General Surgery, University of Minnesota, Minneapolis, MN
| | - Rohit Chugh
- Division of Basic and Translational Research, University of Minnesota, Minneapolis, MN
| | - Ashok Saluja
- Division of Basic and Translational Research, University of Minnesota, Minneapolis, MN
| | | | - Eric H Jensen
- Division of Surgical Oncology, Department of Surgery, University of Minnesota, Minneapolis, MN.
| |
Collapse
|
40
|
Shao H, Ma J, Guo T, Hu R. Triptolide induces apoptosis of breast cancer cells via a mechanism associated with the Wnt/β-catenin signaling pathway. Exp Ther Med 2014; 8:505-508. [PMID: 25009609 PMCID: PMC4079444 DOI: 10.3892/etm.2014.1729] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 04/29/2014] [Indexed: 11/30/2022] Open
Abstract
Triptolide is a diterpene triepoxide compound extracted from the medicinal plant, Tripterygium wilfordii Hook F. The aim of the present study was to determine whether triptolide inhibits the proliferation of breast cancer cells and to further investigate the associated molecular mechanisms. The effects of triptolide on the cell viability of three breast cancer cell lines, specifically, highly metastatic MDA-MB-231, human epidermal growth factor receptor 2-positive BT-474 and estrogen receptor-positive MCF7 cells, were measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and apoptosis assays. Western blot analysis was performed to investigate the expression levels of β-catenin in the control and triptolide-treated cells. The results demonstrated that triptolide treatment caused cell death in the three types of malignant cell lines. Treatment with 25 nM triptolide for 48 h exhibited marked inhibitory effects on the cell viability of the three types of cells, with greater effects observed in BT-474 cells compared with the other two cell types. When compared with the cells not treated with triptolide, 50 nM triptolide treatment resulted in apoptosis of MDA-MB-231, BT-474 and MCF7 cells with apoptotic rates of ~80%. Western blot analysis indicated that triptolide treatment of MDA-MB-231, BT-474 and MCF7 cells decreased the expression levels of β-catenin to 5–10% of the levels observed in the cells treated with dimethyl sulfoxide only. Therefore, the results of the present study indicate that triptolide induces the apoptosis of breast cancer cells via a mechanism associated with the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Hongmin Shao
- Department of Oncology, Hospital of Traditional Chinese Medicine, Yantai, Shandong 264000, P.R. China
| | - Jinghua Ma
- Department of Oncology, Hospital of Traditional Chinese Medicine, Yantai, Shandong 264000, P.R. China
| | - Tianhua Guo
- Department of Oncology, Hospital of Traditional Chinese Medicine, Yantai, Shandong 264000, P.R. China
| | - Rongrong Hu
- Department of Oncology, Hospital of Traditional Chinese Medicine, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
41
|
Ding X, Zhang B, Pei Q, Pan J, Huang S, Yang Y, Zhu Z, Lv Y, Zou X. Triptolide induces apoptotic cell death of human cholangiocarcinoma cells through inhibition of myeloid cell leukemia-1. BMC Cancer 2014; 14:271. [PMID: 24742042 PMCID: PMC3997440 DOI: 10.1186/1471-2407-14-271] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 04/08/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA), a devastating neoplasm, is highly resistant to current chemotherapies. CCA cells frequently overexpress the antiapoptotic protein myeloid cell leukemia-1(Mcl-1), which is responsible for its extraordinary ability to evade cell death. Triptolide, a bioactive ingredient extracted from Chinese medicinal plant, has been shown to inhibit cell proliferation and induce apoptosis in several cancers. METHODS CCK-8 assay was performed to detect cell survival rate in vitro. DAPI staining and Flow cytometry were used to analyze apoptosis. Western blot was performed to determine the expression levels of caspase-3, caspase-7, caspase-9, PARP, and Mcl-1. Quantitative real-time PCR and immunofluorescence were used to detect the expression levels of Mcl-1. The nude mice xenograft model was used to evaluate the antitumor effect of triptolide in vivo. RESULTS Triptolide reduced cell viability in cholangiocarcinoma cell lines in a dose- and time-dependent manner, with IC50 values of 12.6 ± 0.6 nM, 20.5 ± 4.2 nM, and 18.5 ± 0.7 nM at 48 h for HuCCT1, QBC939, and FRH0201 respectively. Triptolide induced apoptosis in CCA cell lines in part through mitochondrial pathway. Using quantitative real-time PCR, western blot and immunofluorescence, we have shown that triptolide downregulates Mcl-1 mRNA and protein levels. Furthermore, triptolide inhibited the CCA growth in vivo. CONCLUSIONS Triptolide has profound antitumor effect on CCA, probably by inducing apoptosis through inhibition of Mcl-1. Triptolide would be a promising therapeutic agent for CCA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ying Lv
- Department of Gastroenterology, Drum Tower Hospital, Affiliated to Medical School of Nanjing University, Nanjing, China.
| | | |
Collapse
|
42
|
Butler MS, Robertson AAB, Cooper MA. Natural product and natural product derived drugs in clinical trials. Nat Prod Rep 2014; 31:1612-61. [DOI: 10.1039/c4np00064a] [Citation(s) in RCA: 383] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The 25 Natural Product (NP)-derived drugs launched since 2008 and the 100 NP-derived compounds and 33 Antibody Drug Conjugates (ADCs) in clinical trials or in registration at the end of 2013 are reviewed.
Collapse
Affiliation(s)
- Mark S. Butler
- Division of Chemistry and Structural Biology
- Institute for Molecular Bioscience
- The University of Queensland
- Brisbane, Australia
| | - Avril A. B. Robertson
- Division of Chemistry and Structural Biology
- Institute for Molecular Bioscience
- The University of Queensland
- Brisbane, Australia
| | - Matthew A. Cooper
- Division of Chemistry and Structural Biology
- Institute for Molecular Bioscience
- The University of Queensland
- Brisbane, Australia
| |
Collapse
|