1
|
Rapid Detection of Clostridium botulinum in Food Using Loop-Mediated Isothermal Amplification (LAMP). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094401. [PMID: 33919101 PMCID: PMC8122632 DOI: 10.3390/ijerph18094401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/13/2022]
Abstract
Botulinum neurotoxins are considered as one of the most potent toxins and are produced by Clostridium botulinum. It is crucial to have a rapid and sensitive method to detect the bacterium Clostridium botulinum in food. In this study, a rapid detection assay of C. botulinum in food using loop-mediated isothermal amplification (LAMP) technology was developed. The optimal primers were identified among three sets of primers designed specifically based on the partial ntnh gene encoding nontoxic-nonhaemagglutinin (NTNH) for rapid detection of the target DNA in plasmids. The optimal temperature and reaction time of the LAMP assay were determined to be 64 °C and 60 min, respectively. The chemical kit could be assembled based on these optimized reaction conditions for quick, initial high-throughput screening of C. botulinum in food samples. The established LAMP assay showed high specificity and sensitivity in detecting the target DNA with a limit of 0.0001 pg/ul (i.e., ten times more sensitive than that of the PCR method) and an accuracy rate of 100%. This study demonstrated a potentially rapid, cost-effective, and easy-operating method to detect C. botulinum in food and clinical samples based on LAMP technology.
Collapse
|
2
|
Keisam S, Tuikhar N, Ahmed G, Jeyaram K. Toxigenic and pathogenic potential of enteric bacterial pathogens prevalent in the traditional fermented foods marketed in the Northeast region of India. Int J Food Microbiol 2019; 296:21-30. [PMID: 30826539 DOI: 10.1016/j.ijfoodmicro.2019.02.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 09/27/2018] [Accepted: 02/18/2019] [Indexed: 01/02/2023]
Abstract
The microbial risk involved with natural food fermentation is largely unknown. Here, we report the prevalence of enteric bacterial pathogens in the traditional fermented foods marketed in Northeast region of India. A total of 682 samples of 39 food types (broadly categorized into fermented soybean, bamboo shoot, fish, milk and pork products) collected over four different seasons from seven states of India were analyzed in this study. Cultivation-independent analysis by MiSeq amplicon sequencing of V4-V5 region of the 16S rRNA gene showed the bacterial community structure in the foods. Among the WHO prioritized foodborne bacterial pathogens, we detected the prevalence of phylotypes related to Clostridium botulinum, Bacillus cereus, Staphylococcus aureus, Clostridium perfringens, Listeria monocytogenes, and Escherichia coli in these ethnic foods. We also observed the occurrence of other well known human enteric pathogens like Proteus mirabilis, Clostridium difficile, and Yersinia enterocolitica. Further pathogen-specific qPCR assays confirmed a higher population (>107 cells/g) of B. cereus, P. mirabilis, and a C. botulinum related phylotype in the fermented soybean, fish, and pork products. We noticed a general trend of higher pathogen occurrence during the colder months without any seasonal variation of total bacterial load in the fermented foods. Further qPCR analysis on toxigenic and pathogenic potential, and toxins production by immunoassays showed that all the soybean samples and the isolated B. cereus cultures were positive for diarrheal toxins (Nhe and Hb1), and nearly half of the samples were positive for emetic toxin (cereulide). Similarly, the food samples and associated swarming P. mirabilis cultures were positive with the pathogenic factors like hemolysin (hpm), urease (ure) and multidrug resistance. However, we could not confirm the presence of botulinum neurotoxin (toxins A, B, E, and F) in the C. botulinum positive food samples. This is the first baseline data of the enteric bacterial pathogens prevalent in the traditional fermented foods of India, which will support the sustained effort of WHO to estimate the global foodborne disease burden. The unusual presence of P. mirabilis in the fermented foods marketed in the Indian region with high incidence of urolithiasis cases is a concern. Our study emphasizes the need of the hour to have a coordinated action to control and prevent the spread of enteric bacterial pathogens through fermented foods marketed in India. Moreover, replacing the indigenous process with a defined starter culture based controlled fermentation will enhance the safety of Indian fermented foods.
Collapse
Affiliation(s)
- Santosh Keisam
- Microbial Resources Division, Institute of Bioresources and Sustainable Development, Takyelpat, Imphal 795001, India; Department of Biotechnology, Gauhati University, Guwahati 781014, India
| | - Ngangyola Tuikhar
- Microbial Resources Division, Institute of Bioresources and Sustainable Development, Takyelpat, Imphal 795001, India; Department of Biotechnology, Gauhati University, Guwahati 781014, India
| | - Giasuddin Ahmed
- Department of Biotechnology, Gauhati University, Guwahati 781014, India
| | - Kumaraswamy Jeyaram
- Microbial Resources Division, Institute of Bioresources and Sustainable Development, Takyelpat, Imphal 795001, India.
| |
Collapse
|
3
|
Draft Genome Sequence of a Clostridium botulinum Isolate from Thailand Harboring the Subtype
bont
/B8 Gene. Microbiol Resour Announc 2019; 8:MRA01216-18. [PMID: 30714030 PMCID: PMC6357636 DOI: 10.1128/mra.01216-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/04/2019] [Indexed: 11/20/2022] Open
Abstract
In 2010, a
Clostridium botulinum
type B isolate was recovered from fermented soybeans during a foodborne botulism investigation. Molecular investigation of the botulinum neurotoxin (
bont
) gene operon determined that the sequence was a new subtype, denoted B8.
Collapse
|
4
|
Davies JR, Liu SM, Acharya KR. Variations in the Botulinum Neurotoxin Binding Domain and the Potential for Novel Therapeutics. Toxins (Basel) 2018; 10:toxins10100421. [PMID: 30347838 PMCID: PMC6215321 DOI: 10.3390/toxins10100421] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 01/23/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are categorised into immunologically distinct serotypes BoNT/A to /G). Each serotype can also be further divided into subtypes based on differences in amino acid sequence. BoNTs are ~150 kDa proteins comprised of three major functional domains: an N-terminal zinc metalloprotease light chain (LC), a translocation domain (HN), and a binding domain (HC). The HC is responsible for targeting the BoNT to the neuronal cell membrane, and each serotype has evolved to bind via different mechanisms to different target receptors. Most structural characterisations to date have focussed on the first identified subtype within each serotype (e.g., BoNT/A1). Subtype differences within BoNT serotypes can affect intoxication, displaying different botulism symptoms in vivo, and less emphasis has been placed on investigating these variants. This review outlines the receptors for each BoNT serotype and describes the basis for the highly specific targeting of neuronal cell membranes. Understanding receptor binding is of vital importance, not only for the generation of novel therapeutics but also for understanding how best to protect from intoxication.
Collapse
Affiliation(s)
- Jonathan R Davies
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.
| | - Sai Man Liu
- Ipsen Bioinnovation Limited, Abingdon OX14 4RY, UK.
| | - K Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
5
|
Peck MW, Smith TJ, Anniballi F, Austin JW, Bano L, Bradshaw M, Cuervo P, Cheng LW, Derman Y, Dorner BG, Fisher A, Hill KK, Kalb SR, Korkeala H, Lindström M, Lista F, Lúquez C, Mazuet C, Pirazzini M, Popoff MR, Rossetto O, Rummel A, Sesardic D, Singh BR, Stringer SC. Historical Perspectives and Guidelines for Botulinum Neurotoxin Subtype Nomenclature. Toxins (Basel) 2017; 9:toxins9010038. [PMID: 28106761 PMCID: PMC5308270 DOI: 10.3390/toxins9010038] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/04/2017] [Accepted: 01/07/2017] [Indexed: 11/26/2022] Open
Abstract
Botulinum neurotoxins are diverse proteins. They are currently represented by at least seven serotypes and more than 40 subtypes. New clostridial strains that produce novel neurotoxin variants are being identified with increasing frequency, which presents challenges when organizing the nomenclature surrounding these neurotoxins. Worldwide, researchers are faced with the possibility that toxins having identical sequences may be given different designations or novel toxins having unique sequences may be given the same designations on publication. In order to minimize these problems, an ad hoc committee consisting of over 20 researchers in the field of botulinum neurotoxin research was convened to discuss the clarification of the issues involved in botulinum neurotoxin nomenclature. This publication presents a historical overview of the issues and provides guidelines for botulinum neurotoxin subtype nomenclature in the future.
Collapse
Affiliation(s)
| | - Theresa J Smith
- Molecular and Translational Sciences Division, United States Army Medical Institute of Infectious Diseases, Fort Detrick, MD 21702, USA.
| | - Fabrizio Anniballi
- National Reference Centre for Botulism, Istituto Superiore di Sanita, Rome 299-00161, Italy.
| | - John W Austin
- Bureau of Microbial Hazards, Health Canada, Ottawa, ON K1A 0K9, Canada.
| | - Luca Bano
- Istituto Zooprofilattico Sperimentale delle Venezie, Treviso 31020, Italy.
| | - Marite Bradshaw
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA.
| | - Paula Cuervo
- Área de Microbiología, Departamento de Patología, Universidad Nacional de Cuyo, Mendoza 450001, Argentina.
| | - Luisa W Cheng
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, U.S. Department of Agriculture, Albany, CA 94710, USA.
| | - Yagmur Derman
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki 00014, Finland.
| | | | - Audrey Fisher
- Applied Physics Laboratory, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Karen K Hill
- Los Alamos National Laboratories, Los Alamos, NM 87545, USA.
| | - Suzanne R Kalb
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA.
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki 00014, Finland.
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki 00014, Finland.
| | - Florigio Lista
- Army Medical and Veterinary Research Center, Rome 00184, Italy.
| | - Carolina Lúquez
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA.
| | - Christelle Mazuet
- Institut Pasteur, Bactéries anaérobies et Toxines, Paris 75015, France.
| | - Marco Pirazzini
- Biomedical Sciences Department, University of Padova, Padova 35131, Italy.
| | - Michel R Popoff
- Institut Pasteur, Bactéries anaérobies et Toxines, Paris 75015, France.
| | - Ornella Rossetto
- Biomedical Sciences Department, University of Padova, Padova 35131, Italy.
| | - Andreas Rummel
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover 30623, Germany.
| | - Dorothea Sesardic
- National Institute for Biological Standards and Control, a Centre of Medicines and Healthcare Products Regulatory Agency, Hertfordshire EN6 3QG, UK.
| | - Bal Ram Singh
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA.
| | | |
Collapse
|
6
|
Anniballi F, Fillo S, Giordani F, Auricchio B, Tehran DA, di Stefano E, Mandarino G, De Medici D, Lista F. Multiple-locus variable number of tandem repeat analysis as a tool for molecular epidemiology of botulism: The Italian experience. INFECTION GENETICS AND EVOLUTION 2016; 46:28-32. [PMID: 27771520 DOI: 10.1016/j.meegid.2016.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 01/17/2023]
Abstract
Clostridium botulinum is the bacterial agent of botulism, a rare but severe neuro-paralytic disease. Because of its high impact, in Italy botulism is monitored by an ad hoc surveillance system. The National Reference Centre for Botulism, as part of this system, collects and analyzes all demographic, epidemiologic, microbiological, and molecular data recovered during cases and/or outbreaks occurred in Italy. A panel of 312 C. botulinum strains belonging to group I were submitted to MLVA sub-typing. Strains, isolated from clinical specimens, food and environmental samples collected during the surveillance activities, were representative of all forms of botulism from all Italian regions. Through clustering analysis isolates were grouped into 12 main clusters. No regional or temporal clustering was detected, demonstrating the high heterogeneity of strains circulating in Italy. This study confirmed that MLVA is capable of sub-typing C. botulinum strains. Moreover, MLVA is effective at tracing and tracking the source of contamination and is helpful for the surveillance system in terms of planning and upgrading of procedures, activities and data collection forms.
Collapse
Affiliation(s)
- Fabrizio Anniballi
- National Reference Centre for Botulism, Department of Veterinary Public Health and Food Safety. Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Silvia Fillo
- Histology and Molecular Biology Unit, Section Two, Army Medical and Veterinary Research Centre, 00184 Rome, Italy
| | - Francesco Giordani
- Histology and Molecular Biology Unit, Section Two, Army Medical and Veterinary Research Centre, 00184 Rome, Italy
| | - Bruna Auricchio
- National Reference Centre for Botulism, Department of Veterinary Public Health and Food Safety. Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Domenico Azarnia Tehran
- Histology and Molecular Biology Unit, Section Two, Army Medical and Veterinary Research Centre, 00184 Rome, Italy
| | - Enrica di Stefano
- Histology and Molecular Biology Unit, Section Two, Army Medical and Veterinary Research Centre, 00184 Rome, Italy
| | - Giuseppina Mandarino
- PENTA - The Joint Laboratory on Models and Methodology to Predict and Manage Large Scale Threats to Public Health - International Affair Unit. Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Dario De Medici
- National Reference Centre for Botulism, Department of Veterinary Public Health and Food Safety. Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Florigio Lista
- Histology and Molecular Biology Unit, Section Two, Army Medical and Veterinary Research Centre, 00184 Rome, Italy
| |
Collapse
|
7
|
Rummel A. Two Feet on the Membrane: Uptake of Clostridial Neurotoxins. Curr Top Microbiol Immunol 2016; 406:1-37. [PMID: 27921176 DOI: 10.1007/82_2016_48] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The extraordinary potency of botulinum neurotoxins (BoNT) and tetanus neurotoxin (TeNT) is mediated by their high neurospecificity, targeting peripheral cholinergic motoneurons leading to flaccid and spastic paralysis, respectively, and successive respiratory failure. Complex polysialo gangliosides accumulate BoNT and TeNT on the plasma membrane. The ganglioside binding in BoNT/A, B, E, F, G, and TeNT occurs via a conserved ganglioside-binding pocket within the most carboxyl-terminal 25 kDa domain HCC, whereas BoNT/C, DC, and D display here two different ganglioside binding sites. This enrichment step facilitates subsequent binding of BoNT/A, B, DC, D, E, F, and G to the intraluminal domains of the synaptic vesicle glycoprotein 2 (SV2) isoforms A-C and synaptotagmin-I/-II, respectively. Whereas an induced α-helical 20-mer Syt peptide binds via side chain interactions to the tip of the HCC domain of BoNT/B, DC and G, the preexisting, quadrilateral β-sheet helix of SV2C-LD4 binds the clinically most relevant serotype BoNT/A mainly through backbone-backbone interactions at the interface of HCC and HCN. In addition, the conserved, complex N559-glycan branch of SV2C establishes extensive interactions with BoNT/A resulting in delayed dissociation providing BoNT/A more time for endocytosis into synaptic vesicles. An analogous interaction occurs between SV2A/B and BoNT/E. Altogether, the nature of BoNT-SV2 recognition clearly differs from BoNT-Syt. Subsequently, the synaptic vesicle is recycled and the bound neurotoxin is endocytosed. Acidification of the vesicle lumen triggers membrane insertion of the translocation domain, pore formation, and finally translocation of the enzymatically active light chain into the neuronal cytosol to halt release of neurotransmitters.
Collapse
Affiliation(s)
- Andreas Rummel
- Institut Für Toxikologie, Medizinische Hochschule Hannover, 30623, Hannover, Germany.
| |
Collapse
|
8
|
Genomic characterization of Italian Clostridium botulinum group I strains. INFECTION GENETICS AND EVOLUTION 2015; 36:62-71. [DOI: 10.1016/j.meegid.2015.08.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 08/27/2015] [Accepted: 08/31/2015] [Indexed: 02/07/2023]
|
9
|
Worbs S, Fiebig U, Zeleny R, Schimmel H, Rummel A, Luginbühl W, Dorner BG. Qualitative and Quantitative Detection of Botulinum Neurotoxins from Complex Matrices: Results of the First International Proficiency Test. Toxins (Basel) 2015; 7:4935-66. [PMID: 26703724 PMCID: PMC4690107 DOI: 10.3390/toxins7124857] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/03/2015] [Accepted: 11/05/2015] [Indexed: 11/16/2022] Open
Abstract
In the framework of the EU project EQuATox, a first international proficiency test (PT) on the detection and quantification of botulinum neurotoxins (BoNT) was conducted. Sample materials included BoNT serotypes A, B and E spiked into buffer, milk, meat extract and serum. Different methods were applied by the participants combining different principles of detection, identification and quantification. Based on qualitative assays, 95% of all results reported were correct. Successful strategies for BoNT detection were based on a combination of complementary immunological, MS-based and functional methods or on suitable functional in vivo/in vitro approaches (mouse bioassay, hemidiaphragm assay and Endopep-MS assay). Quantification of BoNT/A, BoNT/B and BoNT/E was performed by 48% of participating laboratories. It turned out that precise quantification of BoNT was difficult, resulting in a substantial scatter of quantitative data. This was especially true for results obtained by the mouse bioassay which is currently considered as "gold standard" for BoNT detection. The results clearly demonstrate the urgent need for certified BoNT reference materials and the development of methods replacing animal testing. In this context, the BoNT PT provided the valuable information that both the Endopep-MS assay and the hemidiaphragm assay delivered quantitative results superior to the mouse bioassay.
Collapse
Affiliation(s)
- Sylvia Worbs
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestrasse 10, 13353 Berlin, Germany.
| | - Uwe Fiebig
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestrasse 10, 13353 Berlin, Germany.
| | - Reinhard Zeleny
- European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, Retieseweg 111, 2440 Geel, Belgium.
| | - Heinz Schimmel
- European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, Retieseweg 111, 2440 Geel, Belgium.
| | - Andreas Rummel
- toxogen GmbH, Feodor-Lynen-Strasse 35, 30625 Hannover, Germany.
| | | | - Brigitte G Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestrasse 10, 13353 Berlin, Germany.
| |
Collapse
|
10
|
Genetic diversity within the botulinum neurotoxin-producing bacteria and their neurotoxins. Toxicon 2015; 107:2-8. [PMID: 26368006 DOI: 10.1016/j.toxicon.2015.09.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/27/2015] [Accepted: 09/08/2015] [Indexed: 12/25/2022]
Abstract
The recent availability of multiple Clostridium botulinum genomic sequences has initiated a new genomics era that strengthens our understanding of the bacterial species that produce botulinum neurotoxins (BoNTs). Analysis of the genomes has reinforced the historical Group I-VI designations and provided evidence that the bont genes can be located within the chromosome, phage or plasmids. The sequences provide the opportunity to examine closely the variation among the toxin genes, the composition and organization of the toxin complex, the regions flanking the toxin complex and the location of the toxin within different bacterial strains. These comparisons provide evidence of horizontal gene transfer and site-specific insertion and recombination events that have contributed to the variation observed among the neurotoxins. Here, examples that have contributed to the variation observed in serotypes A-H strains are presented to illustrate the mechanisms that have contributed to their variation.
Collapse
|
11
|
Rummel A. The long journey of botulinum neurotoxins into the synapse. Toxicon 2015; 107:9-24. [PMID: 26363288 DOI: 10.1016/j.toxicon.2015.09.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 08/27/2015] [Accepted: 09/08/2015] [Indexed: 01/09/2023]
Abstract
Botulinum neurotoxins (BoNT) cause the disease botulism, a flaccid paralysis of the muscle. They are also very effective, widely used medicines applied locally in sub-nanogram quantities. BoNTs are released together with several non-toxic, associated proteins as progenitor toxin complexes (PCT) by Clostridium botulinum to become highly potent oral poisons ingested via contaminated food. They block the neurotransmission in susceptible animals and humans already in nanogram quantities due to their specific ability to enter motoneurons and to cleave only selected neuronal proteins involved in neuroexocytosis. BoNTs have developed a sophisticated strategy to passage the gastrointestinal tract and to be absorbed in the intestine of the host to finally attack neurons. A non-toxic non-hemagglutinin (NTNHA) forms a binary complex with BoNT to protect it from gastrointestinal degradation. This binary M-PTC is one component of the bi-modular 14-subunit ∼760 kDa large progenitor toxin complex. The other component is the structurally and functionally independent dodecameric hemagglutinin (HA) complex which facilitates the absorption on the intestinal epithelium by glycan binding. Subsequent to its transcytosis the HA complex disrupts the tight junction of the intestinal barrier from the basolateral side by binding to E-cadherin. Now, the L-PTC can also enter the circulation by paracellular routes in much larger quantities. From here, the dissociated BoNTs reach the neuromuscular junction and accumulate via interaction with polysialo gangliosides, complex glycolipids, on motoneurons at the neuromuscular junction. Subsequently, additional specific binding to luminal segments of synaptic vesicles proteins like SV2 and synaptotagmin leads to their uptake. Finally, the neurotoxins shut down the synaptic vesicle cycle, which they had exploited before to enter their target cells, via specific cleavage of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, which constitute the core components of the cellular membrane fusion machinery.
Collapse
Affiliation(s)
- Andreas Rummel
- Institut für Toxikologie, Medizinische Hochschule Hannover, 30623 Hannover, Germany.
| |
Collapse
|
12
|
Benoit RM, Frey D, Wieser MM, Thieltges KM, Jaussi R, Capitani G, Kammerer RA. Structure of the BoNT/A1--receptor complex. Toxicon 2015; 107:25-31. [PMID: 26260692 DOI: 10.1016/j.toxicon.2015.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 08/04/2015] [Indexed: 11/16/2022]
Abstract
Botulinum neurotoxin A causes botulism but is also used for medical and cosmetic applications. A detailed molecular understanding of BoNT/A--host receptor interactions is therefore fundamental for improving current clinical applications and for developing new medical strategies targeting human disorders. Towards this end, we recently solved an X-ray crystal structure of BoNT/A1 in complex with its neuronal protein receptor SV2C. Based on our findings, we discuss the potential implications for BoNT/A function.
Collapse
Affiliation(s)
- Roger M Benoit
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Daniel Frey
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Mara M Wieser
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Katherine M Thieltges
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Rolf Jaussi
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Guido Capitani
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Richard A Kammerer
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland.
| |
Collapse
|
13
|
Kull S, Schulz KM, Strotmeier JWN, Kirchner S, Schreiber T, Bollenbach A, Dabrowski PW, Nitsche A, Kalb SR, Dorner MB, Barr JR, Rummel A, Dorner BG. Isolation and functional characterization of the novel Clostridium botulinum neurotoxin A8 subtype. PLoS One 2015; 10:e0116381. [PMID: 25658638 PMCID: PMC4320087 DOI: 10.1371/journal.pone.0116381] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/06/2014] [Indexed: 12/31/2022] Open
Abstract
Botulism is a severe neurological disease caused by the complex family of botulinum neurotoxins (BoNT). Based on the different serotypes known today, a classification of serotype variants termed subtypes has been proposed according to sequence diversity and immunological properties. However, the relevance of BoNT subtypes is currently not well understood. Here we describe the isolation of a novel Clostridium botulinum strain from a food-borne botulism outbreak near Chemnitz, Germany. Comparison of its botulinum neurotoxin gene sequence with published sequences identified it to be a novel subtype within the BoNT/A serotype designated BoNT/A8. The neurotoxin gene is located within an ha-orfX+ cluster and showed highest homology to BoNT/A1, A2, A5, and A6. Unexpectedly, we found an arginine insertion located in the HC domain of the heavy chain, which is unique compared to all other BoNT/A subtypes known so far. Functional characterization revealed that the binding characteristics to its main neuronal protein receptor SV2C seemed unaffected, whereas binding to membrane-incorporated gangliosides was reduced in comparison to BoNT/A1. Moreover, we found significantly lower enzymatic activity of the natural, full-length neurotoxin and the recombinant light chain of BoNT/A8 compared to BoNT/A1 in different endopeptidase assays. Both reduced ganglioside binding and enzymatic activity may contribute to the considerably lower biological activity of BoNT/A8 as measured in a mouse phrenic nerve hemidiaphragm assay. Despite its reduced activity the novel BoNT/A8 subtype caused severe botulism in a 63-year-old male. To our knowledge, this is the first description and a comprehensive characterization of a novel BoNT/A subtype which combines genetic information on the neurotoxin gene cluster with an in-depth functional analysis using different technical approaches. Our results show that subtyping of BoNT is highly relevant and that understanding of the detailed toxin function might pave the way for the development of novel therapeutics and tailor-made antitoxins.
Collapse
Affiliation(s)
- Skadi Kull
- Biological Toxins (ZBS3), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Berlin, Germany
| | - K. Melanie Schulz
- Biological Toxins (ZBS3), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Berlin, Germany
| | | | - Sebastian Kirchner
- Biological Toxins (ZBS3), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Berlin, Germany
| | - Tanja Schreiber
- Biological Toxins (ZBS3), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Berlin, Germany
| | | | - P. Wojtek Dabrowski
- Highly Pathogenic Viruses (ZBS1), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Berlin, Germany
| | - Andreas Nitsche
- Highly Pathogenic Viruses (ZBS1), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Berlin, Germany
| | - Suzanne R. Kalb
- Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences, Atlanta, Georgia, United States of America
| | - Martin B. Dorner
- Biological Toxins (ZBS3), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Berlin, Germany
| | - John R. Barr
- Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences, Atlanta, Georgia, United States of America
| | - Andreas Rummel
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Brigitte G. Dorner
- Biological Toxins (ZBS3), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Berlin, Germany
- * E-mail:
| |
Collapse
|