1
|
Broseghini E, Filippini DM, Fabbri L, Leonardi R, Abeshi A, Dal Molin D, Fermi M, Ferracin M, Fernandez IJ. Diagnostic and Prognostic Value of microRNAs in Patients with Laryngeal Cancer: A Systematic Review. Noncoding RNA 2023; 9:ncrna9010009. [PMID: 36827542 PMCID: PMC9966707 DOI: 10.3390/ncrna9010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Laryngeal squamous cell cancer (LSCC) is one of the most common malignant tumors of the head and neck region, with a poor survival rate (5-year overall survival 50-80%) as a consequence of an advanced-stage diagnosis and high recurrence rate. Tobacco smoking and alcohol abuse are the main risk factors of LSCC development. An early diagnosis of LSCC, a prompt detection of recurrence and a more precise monitoring of the efficacy of different treatment modalities are currently needed to reduce the mortality. Therefore, the identification of effective diagnostic and prognostic biomarkers for LSCC is crucial to guide disease management and improve clinical outcomes. In the past years, a dysregulated expression of small non-coding RNAs, including microRNAs (miRNAs), has been reported in many human cancers, including LSCC, and many miRNAs have been explored for their diagnostic and prognostic potential and proposed as biomarkers. We searched electronic databases for original papers that were focused on miRNAs and LSCC, using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol. According to the outcome, 566 articles were initially screened, of which 177 studies were selected and included in the analysis. In this systematic review, we provide an overview of the current literature on the function and the potential diagnostic and prognostic role of tissue and circulating miRNAs in LSCC.
Collapse
Affiliation(s)
- Elisabetta Broseghini
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, Università di Bologna, 40138 Bologna, Italy
- Correspondence: (E.B.); (D.M.F.)
| | - Daria Maria Filippini
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, Università di Bologna, 40138 Bologna, Italy
- Division of Medical Oncology, IRCCS Azienda Ospedaliero, Universitaria Policlinico Sant’Orsola Malpighi of Bologna, 40138 Bologna, Italy
- Correspondence: (E.B.); (D.M.F.)
| | - Laura Fabbri
- Division of Medical Oncology, IRCCS Azienda Ospedaliero, Universitaria Policlinico Sant’Orsola Malpighi of Bologna, 40138 Bologna, Italy
| | - Roberta Leonardi
- Division of Medical Oncology, IRCCS Azienda Ospedaliero, Universitaria Policlinico Sant’Orsola Malpighi of Bologna, 40138 Bologna, Italy
| | - Andi Abeshi
- Department of Otorhinolaryngology—Head and Neck Surgery, IRCCS Azienda Ospedaliero, Universitaria di Bologna, Policlinico S. Orsola-Malpighi, 40138 Bologna, Italy
| | - Davide Dal Molin
- Department of Otorhinolaryngology—Head and Neck Surgery, IRCCS Azienda Ospedaliero, Universitaria di Bologna, Policlinico S. Orsola-Malpighi, 40138 Bologna, Italy
| | - Matteo Fermi
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, Università di Bologna, 40138 Bologna, Italy
- Department of Otorhinolaryngology—Head and Neck Surgery, IRCCS Azienda Ospedaliero, Universitaria di Bologna, Policlinico S. Orsola-Malpighi, 40138 Bologna, Italy
| | - Manuela Ferracin
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, Università di Bologna, 40138 Bologna, Italy
- IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy
| | - Ignacio Javier Fernandez
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, Università di Bologna, 40138 Bologna, Italy
- Department of Otorhinolaryngology—Head and Neck Surgery, IRCCS Azienda Ospedaliero, Universitaria di Bologna, Policlinico S. Orsola-Malpighi, 40138 Bologna, Italy
| |
Collapse
|
2
|
Falco M, Tammaro C, Takeuchi T, Cossu AM, Scafuro G, Zappavigna S, Itro A, Addeo R, Scrima M, Lombardi A, Ricciardiello F, Irace C, Caraglia M, Misso G. Overview on Molecular Biomarkers for Laryngeal Cancer: Looking for New Answers to an Old Problem. Cancers (Basel) 2022; 14:1716. [PMID: 35406495 PMCID: PMC8997012 DOI: 10.3390/cancers14071716] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/01/2022] [Accepted: 03/24/2022] [Indexed: 11/19/2022] Open
Abstract
Laryngeal squamous cell cancer (LSCC) accounts for almost 25-30% of all head and neck squamous cell cancers and is clustered according to the affected districts, as this determines distinct tendency to recur and metastasize. A major role for numerous genetic alterations in driving the onset and progression of this neoplasm is emerging. However, major efforts are still required for the identification of molecular markers useful for both early diagnosis and prognostic definition of LSCC that is still characterized by significant morbidity and mortality. Non-coding RNAs appear the most promising as they circulate in all the biological fluids allowing liquid biopsy determination, as well as due to their quick and characteristic modulation useful for non-invasive detection and monitoring of cancer. Other critical aspects are related to recent progress in circulating tumor cells and DNA detection, in metastatic status and chemo-refractoriness prediction, and in the functional interaction of LSCC with chronic inflammation and innate immunity. We review all these aspects taking into account the progress of the technologies in the field of next generation sequencing.
Collapse
Affiliation(s)
- Michela Falco
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.F.); (C.T.); (T.T.); (A.M.C.); (G.S.); (S.Z.); (A.L.); (M.C.)
| | - Chiara Tammaro
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.F.); (C.T.); (T.T.); (A.M.C.); (G.S.); (S.Z.); (A.L.); (M.C.)
| | - Takashi Takeuchi
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.F.); (C.T.); (T.T.); (A.M.C.); (G.S.); (S.Z.); (A.L.); (M.C.)
- Molecular Diagnostics Division, Wakunaga Pharmaceutical Co., Ltd., Hiroshima 739-1195, Japan
| | - Alessia Maria Cossu
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.F.); (C.T.); (T.T.); (A.M.C.); (G.S.); (S.Z.); (A.L.); (M.C.)
- Laboratory of Molecular and Precision Oncology, Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy;
| | - Giuseppe Scafuro
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.F.); (C.T.); (T.T.); (A.M.C.); (G.S.); (S.Z.); (A.L.); (M.C.)
| | - Silvia Zappavigna
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.F.); (C.T.); (T.T.); (A.M.C.); (G.S.); (S.Z.); (A.L.); (M.C.)
| | - Annalisa Itro
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Raffaele Addeo
- Oncology Operative Unit, Hospital of Frattamaggiore, ASLNA-2NORD, 80020 Naples, Italy;
| | - Marianna Scrima
- Laboratory of Molecular and Precision Oncology, Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy;
| | - Angela Lombardi
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.F.); (C.T.); (T.T.); (A.M.C.); (G.S.); (S.Z.); (A.L.); (M.C.)
| | | | - Carlo Irace
- Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.F.); (C.T.); (T.T.); (A.M.C.); (G.S.); (S.Z.); (A.L.); (M.C.)
- Laboratory of Molecular and Precision Oncology, Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy;
| | - Gabriella Misso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.F.); (C.T.); (T.T.); (A.M.C.); (G.S.); (S.Z.); (A.L.); (M.C.)
| |
Collapse
|
3
|
Spectrum of microRNAs and their target genes in cancer: intervention in diagnosis and therapy. Mol Biol Rep 2022; 49:6827-6846. [PMID: 35031927 DOI: 10.1007/s11033-021-07040-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022]
Abstract
Till date, several groups have studied the mechanism of microRNA (miRNA) biogenesis, processing, stability, silencing, and their dysregulation in cancer. The miRNA coding genes recurrently go through abnormal amplification, deletion, transcription, and epigenetic regulation in cancer. Some miRNAs function as tumor promoters while few others are tumor suppressors based on the transcriptional regulation of target genes. A review of miRNAs and their target genes in a wide range of cancers is attempted in this article, which may help in the development of new diagnostic tools and intervention therapies. The contribution of miRNAs for drug sensitivity or resistance in cancer therapy and opportunities of miRNAs in cancer prognosis or diagnosis and therapy is also presented in detail.
Collapse
|
4
|
Fonseca A, Ramalhete SV, Mestre A, Pires das Neves R, Marreiros A, Castelo-Branco P, Roberto VP. Identification of colorectal cancer associated biomarkers: an integrated analysis of miRNA expression. Aging (Albany NY) 2021; 13:21991-22029. [PMID: 34547721 PMCID: PMC8507258 DOI: 10.18632/aging.203556] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/30/2021] [Indexed: 12/24/2022]
Abstract
Colorectal cancer is one of the leading causes of cancer-related deaths worldwide. This complex disease still holds severe problems concerning diagnosis due to the high invasiveness nature of colonoscopy and the low accuracy of the alternative diagnostic methods. Additionally, patient heterogeneity even within the same stage is not properly reflected in the current stratification system. This scenario highlights the need for new biomarkers to improve non-invasive screenings and clinical management of patients. MicroRNAs (miRNAs) have emerged as good candidate biomarkers in cancer as they are stable molecules, easily measurable and detected in body fluids thus allowing for non-invasive diagnosis and/or prognosis. In this study, we performed an integrated analysis first using 4 different datasets (discovery cohorts) to identify miRNAs associated with colorectal cancer development, unveil their role in this disease by identifying putative targets and regulatory networks and investigate their ability to serve as biomarkers. We have identified 26 differentially expressed miRNAs which interact with frequently deregulated genes known to participate in commonly altered pathways in colorectal cancer. Most of these miRNAs have high diagnostic power, and their prognostic potential is evidenced by panels of 5 miRNAs able to predict the outcome of stage II and III colorectal cancer patients. Notably, 8 miRNAs were validated in three additional independent cohorts (validation cohorts) including a plasma cohort thus reinforcing the value of miRNAs as non-invasive biomarkers.
Collapse
Affiliation(s)
- André Fonseca
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Campus de Gambelas, Faro 8005-139, Portugal
| | - Sara Ventura Ramalhete
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Campus de Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Faro 8005-139, Portugal
| | - André Mestre
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Campus de Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Faro 8005-139, Portugal
| | - Ricardo Pires das Neves
- CNC, Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-517, Portugal
- IIIUC-Institute of Interdisciplinary Research, University of Coimbra, Coimbra 3030-789, Portugal
| | - Ana Marreiros
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Campus de Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Faro 8005-139, Portugal
| | - Pedro Castelo-Branco
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Campus de Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Center for the Unknown, Lisbon 1400-038, Portugal
| | - Vânia Palma Roberto
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Campus de Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Faro 8005-139, Portugal
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro 8005-139, Portugal
| |
Collapse
|
5
|
Xu S, Li W, Wu J, Lu Y, Xie M, Li Y, Zou J, Zeng T, Ling H. The role of miR-129-5p in cancer: a novel therapeutic target. Curr Mol Pharmacol 2021; 15:647-657. [PMID: 34521336 DOI: 10.2174/1874467214666210914122010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/30/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022]
Abstract
MiRNA-129-5p belongs to the microRNA-129 (miRNA-129) family. MiRNA-129-5p is expressed in many tissues and organs of the human body, and it regulates a wide range of biological functions. The abnormal expression of miRNA-129-5p is related to the occurrence and development of a variety of malignant tumors. MiRNA-129-5p plays an important role in the tumorigenesis process and functions by promoting or inhibiting tumors. However, the role of miRNA-129-5p in cancer remains controversial. This article reviews the different biological functions of miRNA-129-5p in cancer and provides ideas for research in this field to guide the development of targeted therapies and drugs for malignant tumors.
Collapse
Affiliation(s)
- Shan Xu
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001. China
| | - Wei Li
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001. China
| | - Jing Wu
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001. China
| | - Yuru Lu
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001. China
| | - Ming Xie
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001. China
| | - Yanlan Li
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001. China
| | - Juan Zou
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001. China
| | - Tiebing Zeng
- Hunan Province Cooperative innovation Center for Molecular Target New Drug Study [Hunan Provincial Education Department document (Approval number: 2014-405], Hengyang, Hunan 421001. China
| | - Hui Ling
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001. China
| |
Collapse
|
6
|
Liu D, Wan L, Gong H, Chen S, Kong Y, Xiao B. Sevoflurane promotes the apoptosis of laryngeal squamous cell carcinoma in-vitro and inhibits its malignant progression via miR-26a/FOXO1 axis. Bioengineered 2021; 12:6364-6376. [PMID: 34511023 PMCID: PMC8806578 DOI: 10.1080/21655979.2021.1962684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is a laryngeal malignancy with a high mortality rates, and its treatment remains difficult. Sevoflurane is a surgical anesthesia which has anti-tumor effect. This investigation assessed the effects of LSCC cells treatment with Sevoflurane in vitro and in vivo. Hep-2 and Tu177 cells, human LSCC samples and BALB/C nude mice were used for result assessments. Cell viability, proliferation, migration and invasion were assessed via Cell Count Kit-8, wound healing assay and transwell invasion assay respectively. MiR-26a and FOXO1 expressions was examined by qRT-PCR. FOXO1, E-cadherin, N-cadherin and vimentin activities were examined by Western blotting. Moreover, animal experiments were performed to verify our findings in vitro. Lastly, miR-26a and FOXO1 expression levels in clinical samples were analyzed. According to the results, Sevoflurane decreased LSCC cells’ viability and even stimulated their apoptosis in vitro and in vivo. Moreover, it could reduce the migration, invasion and EMT. Mechanistically, sevoflurane could downregulate miR-26a expression and that miR-26a could negatively modulate FOXO1 activity. Thus, sevoflurane could increase FOXO1 activity. In the clinical samples, miR-26a expression was significantly upregulated, but FOXO1 was remarkably down-regulated and miR-26a expression in LSCC was linked with better prognosis. In conclusion, MiR-26a is increased and FOXO1 is reduced in human LSCC, Sevoflurane inhibits proliferation and mediates apoptosis of LSCC cells. Further, MiR-26a binds FOXO1 directly, and FOXO1 expression is down-regulated by Sevoflurane. Finally, Sevoflurane triggers LSCC cells apoptosis in vivo. Sevoflurane use to target miR-26a/FOXO1 may be a novel alternative for LSCC therapy.
Collapse
Affiliation(s)
- Dan Liu
- Department Of Otorhinolaryngology, Huangshi Central Hospital Of Edong Healthcare Group, Hubei Polytechnic University, Huangshi City, Hubei Province, China
| | - Lang Wan
- Department Of Otorhinolaryngology, Huangshi Central Hospital Of Edong Healthcare Group, Hubei Polytechnic University, Huangshi City, Hubei Province, China
| | - Hao Gong
- Department Of Anesthesiology, Huangshi Maternity And Children's Health Hospital, Huangshi City, Hubei Province, China
| | - Shiming Chen
- Department Of Otolaryngology Head And Neck Surgery, Renmin Hospital Of Wuhan University, Wuhan City, Hubei Province, China
| | - Yonggang Kong
- Department Of Otolaryngology Head And Neck Surgery, Renmin Hospital Of Wuhan University, Wuhan City, Hubei Province, China
| | - Bokui Xiao
- Otorhinolaryngology-Head And Neck Surgery Laboratory, Wuhan University School Of Medicine, Wuhan City, Hubei Province, China
| |
Collapse
|
7
|
Rezayi Soufiani A, Dolatkhah R, Raeisi M, Chavoshi H, Mohammadi P, Mehdinavaz Aghdam A. Hypermethylation of MIR129-2 Regulates SOX4 Transcription and Associates with Metastasis in Patients with Colorectal Cancer. J Gastrointest Cancer 2021; 53:718-724. [PMID: 34499308 DOI: 10.1007/s12029-021-00708-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND MicroRNA-129-2 (miR-129-2), targeting SOX4, has been shown to be involved in the pathogenesis of different cancers. Here in this study, we examined the methylation levels of the promoter region of MIR19-2 gene as well as transcription of miR-129-2 and mRNA expression of SOX4 in the tumoral tissues from colorectal cancer (CRC) patients and compared those in the normal marginal tissues. METHODS Fifty CRC patients with Iranian Azari ethnicity were recruited. Genomic DNAs were extracted from the tumoral and normal tissues and the methylation level of the promoter regions of the MIR129-2 gene was determined using methylation-specific PCR (MSP) by evaluating 100 CG sites. The RNA content of the samples was isolated and the transcript levels of miR-129-2 and SOX4 were measured using quantitative real-time PCR. RESULTS Methylation level of the MIR192-2 promoter was significantly higher in the tumoral tissues compared to that in the normal marginal tissues (84% vs. 28%; P = 0.0041). The expression level of miR-192-2 was significantly downregulated (fold change = 0.34, P = 0.028) but SOX4 mRNA expression was upregulated (fold change = 2.7, P = 0.019) in the tumoral tissues compared to that in the normal marginal tissues. There was a significant correlation between the methylation level of the MIR192-2 promoter and the expression levels of miR-192-2 and SOX4 in the tumoral tissues. Associations were observed between the methylation of the MIR192-2 promoter and lymph node and liver metastasis. CONCLUSIONS It seems that MIR192-2 promoter hypermethylation might regulate the expression of SOX4 and therefore modulate metastasis in CRC.
Collapse
Affiliation(s)
- Alireza Rezayi Soufiani
- Tuberculosis and Lung Disease Research Center, Daneshgah St, Tabriz University of Medical Science, Tabriz, Iran
| | - Roya Dolatkhah
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mortaza Raeisi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Chavoshi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Payam Mohammadi
- Tuberculosis and Lung Disease Research Center, Daneshgah St, Tabriz University of Medical Science, Tabriz, Iran
| | - Abdolreza Mehdinavaz Aghdam
- Tuberculosis and Lung Disease Research Center, Daneshgah St, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
8
|
MicroRNAs in Medullary Thyroid Carcinoma: A State of the Art Review of the Regulatory Mechanisms and Future Perspectives. Cells 2021; 10:cells10040955. [PMID: 33924120 PMCID: PMC8074316 DOI: 10.3390/cells10040955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
Medullary thyroid carcinoma (MTC) is a rare malignant neoplasia with a variable clinical course, with complete remission often difficult to achieve. Genetic alterations lead to fundamental changes not only in hereditary MTC but also in the sporadic form, with close correlations between mutational status and prognosis. In recent years, microRNAs (miRNAs) have become highly relevant as crucial players in MTC etiology. Current research has focused on their roles in disease carcinogenesis and development, but recent studies have expounded their potential as biomarkers and response predictors to novel biological drugs for advanced MTC. One such element which requires greater investigation is their mechanism of action and the molecular pathways involved in the regulation of gene expression. A more thorough understanding of these mechanisms will help realize the promising potential of miRNAs for MTC therapy and management.
Collapse
|
9
|
Yang Y, Pan H, Chen J, Zhang Z, Liang M, Feng X. CircKIF2A contributes to cell proliferation, migration, invasion and glycolysis in human neuroblastoma by regulating miR-129-5p/PLK4 axis. Mol Cell Biochem 2021; 476:2513-2525. [PMID: 33630225 DOI: 10.1007/s11010-021-04096-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 02/04/2021] [Indexed: 11/24/2022]
Abstract
Multiple circular RNAs (circRNAs) have been identified to act as essential mediators in diverse human cancers. However, the roles of circRNAs in neuroblastoma (NB) are largely unknown. In this study, we aimed to explore the function of circKIF2A in NB. Quantitative real-time polymerase chain reaction was executed to detect the levels of circKIF2A, KIF2A mRNA, miR-129-5p and polo-like kinase 4 (PLK4) mRNA. Actinomycin D assay and RNase R digestion assay were conducted to analyze the feature of circKIF2A. 3-(4, 5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, transwell assay and specific kits were utilized to evaluate cell proliferation, metastasis and glycolysis, respectively. Western blot assay was performed to examine the protein levels of matrix metalloproteinase 2 (MMP2), MMP9 and PLK4. Bioinformatics analysis, RNA pull-down assay and dual-luciferase reporter assay were conducted to analyze the relationship between miR-129-5p and circKIF2A or PLK4. Murine xenograft model assay was done to investigate the role of circKIF2A in NB in vivo. CircKIF2A level was increased in NB tissue samples and cell lines. Silencing of circKIF2A impeded NB cell proliferation, migration, invasion and glycolysis. For mechanism analysis, circKIF2A could positively modulate PLK4 expression via sponging miR-129-5p. Moreover, miR-129-5p inhibition reversed the inhibitory effects of circKIF2A silencing on the behaviors of NB cells. MiR-129-5p overexpression weakened the malignant biological behaviors of NB cells by targeting PLK4. Additionally, circKIF2A knockdown hampered tumorigenesis in vivo. CircKIF2A knockdown suppressed cell proliferation, migration, invasion and glycolysis via downregulating PLK4 expression through miR-129-5p.
Collapse
Affiliation(s)
- Yiheng Yang
- Department of Pediatric Surgery, Heze Municipal Hospital, Family Committee of the Municipal Party Committee, Tianxiang Road, Heze City, 274000, Shangdong Province, China
| | - Hongli Pan
- Operating Room, Heze Municipal Hospital, Heze City, Shangdong Province, China
| | - Jie Chen
- Department of Pediatric Surgery, Heze Municipal Hospital, Family Committee of the Municipal Party Committee, Tianxiang Road, Heze City, 274000, Shangdong Province, China
| | - Zhonghua Zhang
- Department of Pediatric Surgery, Heze Municipal Hospital, Family Committee of the Municipal Party Committee, Tianxiang Road, Heze City, 274000, Shangdong Province, China
| | - Minna Liang
- Department of Pediatric Surgery, Heze Municipal Hospital, Family Committee of the Municipal Party Committee, Tianxiang Road, Heze City, 274000, Shangdong Province, China
| | - Xunqiang Feng
- Department of Pediatric Surgery, Heze Municipal Hospital, Family Committee of the Municipal Party Committee, Tianxiang Road, Heze City, 274000, Shangdong Province, China.
| |
Collapse
|
10
|
Sun N, Zhang W, Liu J, Yang X, Chu Q. Propofol Inhibits the Progression of Cervical Cancer by Regulating HOTAIR/miR-129-5p/RPL14 Axis. Onco Targets Ther 2021; 14:551-564. [PMID: 33505161 PMCID: PMC7829600 DOI: 10.2147/ott.s279942] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/10/2020] [Indexed: 12/23/2022] Open
Abstract
Background Propofol has been proposed to function as a tumor suppressor in various human cancers. In this study, we aimed to investigate the anti-tumor effect of propofol on cervical cancer (CC). Methods Cell Counting Kit-8 (CCK-8) assay, colony formation assay, flow cytometry analysis, transwell assay and wound healing assay were conducted for cell viability, colony formation, apoptosis, invasion and migration, respectively. Western blot assay was used for protein levels. Quantitative real-time polymerase chain reaction (qRT-PCR) was used for HOX antisense intergenic RNA (HOTAIR), miR-129-5p and RPL14 levels. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were executed to verify the interaction between miR-129-5p and HOTAIR or RPL14. Murine xenograft model assay was used for the role of propofol in tumor progression in vivo. Results Propofol treatment suppressed CC cell viability, colony formation, invasion and migration and facilitated apoptosis. Propofol treatment led to a marked reduction in HOTAIR level in CC cells. HOTAIR overexpression promoted cell colony formation, invasion and migration and repressed apoptosis in CC cells and propofol-treated CC cells. For mechanism analysis, HOTAIR positively regulated RPL14 expression via acting as the sponge of miR-129-5p. MiR-129-5p overexpression reversed the impacts of HOTAIR on the malignant behaviors of propofol-treated CC cells. Furthermore, miR-129-5p inhibition accelerated the progression of CC cells, while RPL14 interference rescued the effect. In addition, propofol treatment restrained tumor growth of CC in vivo. Conclusion Propofol inhibited CC development by modulation of HOTAIR/miR-129-5p/RPL14 axis.
Collapse
Affiliation(s)
- Nai Sun
- Department of Anesthesiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
| | - Wei Zhang
- Department of Anesthesiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
| | - Jiaying Liu
- Department of Anesthesiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
| | - Xiaochen Yang
- Department of Anesthesiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
| | - Qinjun Chu
- Department of Anesthesiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
| |
Collapse
|
11
|
Wang H, Li H, Yu Y, Jiang Q, Zhang R, Sun H, Xing W, Li Y. Long non-coding RNA XIST promotes the progression of esophageal squamous cell carcinoma through sponging miR-129-5p and upregulating CCND1 expression. Cell Cycle 2020; 20:39-53. [PMID: 33345719 DOI: 10.1080/15384101.2020.1856497] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNA (lncRNA) X inactive specific transcript (XIST) has been identified as an oncogenic lncRNA in a series of human cancers, including esophageal squamous cell carcinoma (ESCC). In this study, we aimed to further explore the underlying mechanism of XIST on ESCC progression. qRT-PCR assay was used to determine the levels of XIST and miR-129-5p. Western blot analysis was performed to assess cyclin D1 (CCND1) expression. Bioinformatic analysis was performed using starBase v2.0 software. Dual-luciferase reporter and RNA immunoprecipitation assays were employed to confirm the interaction between XIST and miR-129-5p or miR-129-5p and CCND1. Cell cycle progression and apoptosis were measured by flow cytometric analysis, and cell migration and invasion were detected by transwell assay. Mouse studies were used to observe the effect of XIST silencing on tumor growth in vivo. Our results indicated that XIST was upregulated and miR-129-5p was downregulated in ESCC. XIST silencing or miR-129-5p overexpression repressed cell cycle progression, proliferation, migration, invasion, and promoted the apoptosis in ESCC cells. Moreover, XIST directly interacted with miR-129-5p and repressed miR-129-5p expression. MiR-129-5p mediated the regulatory effect of XIST on ESCC cell progression in vitro, and XIST promoted CCND1 expression by sponging miR-129-5p. Additionally, XIST silencing inhibited tumor growth in vivo. Our findings suggested that XIST silencing repressed the progression of ESCC at least partly through regulating the miR-129-5p/CCND1 axis. Targeting XIST might be a potential therapeutic strategy for ESCC treatment.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University , Zhengzhou, China
| | - Haomiao Li
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University , Zhengzhou, China
| | - Yongkui Yu
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University , Zhengzhou, China
| | - Qingfeng Jiang
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University , Zhengzhou, China
| | - Ruixiang Zhang
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University , Zhengzhou, China
| | - Haibo Sun
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University , Zhengzhou, China
| | - Wenqun Xing
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University , Zhengzhou, China
| | - Yin Li
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University , Zhengzhou, China
| |
Collapse
|
12
|
Yin C, Tian Y, Yu Y, Yang C, Su P, Zhao Y, Wang X, Zhang K, Pei J, Li D, Chen Z, Zhang Y, Miao Z, Qian A. miR-129-5p Inhibits Bone Formation Through TCF4. Front Cell Dev Biol 2020; 8:600641. [PMID: 33240893 PMCID: PMC7681249 DOI: 10.3389/fcell.2020.600641] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis is a frequently occurring bone disease in middle-aged and aged men and women. However, current therapies on this disease are still not ideal. MicroRNAs (miRNAs) are a class of endogenous non-protein-coding RNA with a length of 18–25 nucleotides. miRNAs have been identified as important regulators for development, metabolism, carcinogenesis, and bone formation. miR-129-5p has been reported as a regulator of cancer and neuroscience, whereas studies about its function on bone formation is still limited. In this study, we investigated the function and mechanism of miR-129-5p on osteoblast differentiation and bone formation. We have assessed the expression of miRNAs in bone mesenchymal stem cells from aging and menopause osteoporosis C57BL6 mice. The expression of miR-129-5p was altered in all osteoporosis models. Besides, the expression of miR-129-5p was negatively correlated with osteoblastic differentiation markers in the femur tissues of C57BL/6 mice of different ages. We further demonstrated that overexpression of miR-129-5p inhibited osteoblast differentiation in MC3T3-E1 cell line, as well as bone formation of C57BL/6 mice. On the other hand, down-regulation of miR-129-5p enhanced osteoblast differentiation and bone formation. We also found that miR-129-5p inhibited Wnt/β-catenin pathway in osteoblast. The target gene of miR-129-5p has been forecasted and proved as Tcf4. We further found that plasmid containing Tcf4–3′ UTR sequence enhanced osteoblast differentiation, as well as Wnt/β-catenin pathway in MC3T3-E1 cells. To further investigate the rescue effect of miR-129-5p inhibitor, we manufactured bioengineered novel recombinant miR-129-5p inhibitor through Escherichia coli system and then tested its function. The results showed that the novel recombinant miR-129-5p inhibitor promoted osteoblast differentiation and greatly ameliorated menopause osteoporosis in C57BL6 mice. In conclusion, we have discovered miR-129-5p as an inhibitor of bone formation. miR-129-5p inhibited downstream transcription factors of Wnt/β-catenin pathway through targeting Tcf4. Moreover, novel recombinant miR-129-5p inhibitor showed rescue effect on osteoporosis. This study has revealed a new mechanism of osteogenic differentiation and provided novel therapeutic strategies for treatment of skeletal disorders.
Collapse
Affiliation(s)
- Chong Yin
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Ye Tian
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yang Yu
- Tianjin Key Laboratory on Technologies Enabling Development Clinical Therapeutics and Diagnostics (Theranostics), School of pharmacy, Tianjin Medical University, Tianjin, China
| | - Chaofei Yang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Peihong Su
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yipu Zhao
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xue Wang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Kewen Zhang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Jiawei Pei
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Dijie Li
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Zhihao Chen
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yan Zhang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Zhiping Miao
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Airong Qian
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
13
|
Song CP, Cong JK, Wang MZ. MicroRNA-129-5p represses the growth and aggressiveness of oral squamous cell carcinoma via suppressing HMGB1. Kaohsiung J Med Sci 2020; 36:483-493. [PMID: 32133766 DOI: 10.1002/kjm2.12201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/04/2020] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
Recent investigations have suggested that microRNA-129-5p (miR-129-5p) is commonly dysregulated in multiple types of malignancies. Nevertheless, the roles of miR-129-5p in human oral squamous cell carcinoma (OSCC) are not well explored. Herein, we demonstrated that miR-129-5p was down-expressed in OSCC cells and tissues. Moreover, miR-129-5p overexpression restrained the growth, migration ability, and invasiveness of OSCC cells. Notably, high-mobility group box 1 protein (HMGB1) was identified as a downstream target of miR-129-5p. Additional, knockdown of HMGB1 suppressed the growth and aggressive phenotypes of human OSCC cells. Importantly, re-expression of HMGB1 impaired the inhibitory impacts of miR-129-5p on the metastasis of OSCC cells. Altogether, these results implied that miR-129-5p restrained the aggressiveness of OSCC cells through modulating HMGB1.
Collapse
Affiliation(s)
- Chun-Ping Song
- Department of Prosthodontics, Qingdao Stomatology Hospital, Qingdao, Shandong, China
| | - Jing-Ke Cong
- Department of Prosthodontics, Qingdao Stomatology Hospital, Qingdao, Shandong, China
| | - Ming-Zhen Wang
- Department of Prosthodontics, Qingdao Stomatology Hospital, Qingdao, Shandong, China
| |
Collapse
|
14
|
Wan P, Bai X, Yang C, He T, Luo L, Wang Y, Fan M, Wang Z, Lu L, Yin Y, Li S, Guo Q, Song Z. miR-129-5p inhibits proliferation, migration, and invasion in rectal adenocarcinoma cells through targeting E2F7. J Cell Physiol 2020; 235:5689-5701. [PMID: 32052431 DOI: 10.1002/jcp.29501] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 01/09/2020] [Indexed: 12/15/2022]
Abstract
microRNAs (miRNAs), a kind of small noncoding RNAs, are considered able to regulate expression of genes and mediate RNA silencing. miR-129-5p was shown to be a cancer-related miRNA. However, the influence of miR-129-5p in rectal adenocarcinoma (READ) development remains to be determined. Based on the TCGA data, downregulation of miR-129-5p in READ samples was observed. Manual restoration of the miR-129-5p in SW1463 and SW480 cell lines significantly inhibited invasion, migration, and proliferation of READ cell lines, while the apoptosis ability was enhanced. Meanwhile, we found E2F7 acted as a potential target of miR-129-5p and was upregulated in READ samples. E2F7 upregulation reversed the repression of miR-129-5p on READ development. Finally, in vivo experiments showed that inhibition of tumor growth in nude mice was achieved through upregulating miR-129-5p. Overall, our findings suggest increasing of miR-129-5p leads to the suppression of READ progression through regulating the expression of E2F7, which may provide novel insights into the treatment of READ.
Collapse
Affiliation(s)
- Ping Wan
- Department of Digestive System, The First People's Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xuan Bai
- Department of Digestive System, The First People's Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Chao Yang
- Department of Digestive System, The First People's Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Tian He
- Department of Digestive System, The First People's Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Lilin Luo
- Department of Digestive System, The First People's Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yun Wang
- Department of Digestive System, The First People's Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Minmin Fan
- Department of Digestive System, The First People's Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhilin Wang
- Department of Digestive System, The First People's Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Liming Lu
- Department of Digestive System, The First People's Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yajing Yin
- Department of Digestive System, The First People's Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Sisi Li
- Department of Digestive System, The First People's Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Qiang Guo
- Department of Digestive System, The First People's Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhengyi Song
- Department of Digestive System, The First People's Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
15
|
Xu C, Du Z, Ren S, Liang X, Li H. MiR-129-5p sensitization of lung cancer cells to etoposide-induced apoptosis by reducing YWHAB. J Cancer 2020; 11:858-866. [PMID: 31949489 PMCID: PMC6959023 DOI: 10.7150/jca.35410] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/22/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Lung cancer is the most common cause of death from cancer worldwide and recent studies have revealed that microRNAs play critical roles to regulate lung carcinogenesis. microRNA-129-5p (miR-129-5p) has been reported to regulate cell proliferation and invasion in lung cancer, but its role in lung cancer apoptosis remains unknown. Methods: The expression of miR-129-5p and YWHAB in lung cancer tissues were analyzed from data downloaded from the NCBI Gene Expression Omnibus (GEO) database. Luciferase reporter assay, Western blot and qRT-PCR were used to determine the regulatory effect of miR-129-5p on YWHAB. Cell apoptosis was detected by using the PI/Annexin V Cell Apoptosis Kit. The effect of miR-129-5p and YWHAB on the survival of lung cancer patients was also explored. Results: In this study, by combining the data derived from six GEO database, our results showed that miR-129-5p was downregulated in lung cancer tissues and YWHAB was upregulated in lung cancer patient' serum. A significant negative correlation between miR-129-5p and YWHAB was found in lung cancer tissues. Both the expression of YWHAB and miR-129-5p were associated significantly with prognosis (overall survival) in patients with lung cancer. Overexpression of miR-129-5p promotes VP16-induced lung cancer cell apoptosis and YWHAB was shown to be a direct downstream target of miR-129-5p. Conclusion: Overexpression of expression miR-129-5p contributes to etoposide-induced lung cancer apoptosis by modulating YWHAB.
Collapse
Affiliation(s)
- Chengshan Xu
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of GeriatricMedicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhongli Du
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of GeriatricMedicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Simei Ren
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of GeriatricMedicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoshuan Liang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Huihui Li
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| |
Collapse
|
16
|
Yu D, Han GH, Zhao X, Liu X, Xue K, Wang D, Xu CB. MicroRNA-129-5p suppresses nasopharyngeal carcinoma lymphangiogenesis and lymph node metastasis by targeting ZIC2. Cell Oncol (Dordr) 2019; 43:249-261. [PMID: 31884576 DOI: 10.1007/s13402-019-00485-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2019] [Indexed: 01/01/2023] Open
Abstract
PURPOSE The etiology of nasopharyngeal carcinoma (NPC) is multifactorial, complex and not fully characterized yet. MicroRNAs (miRNAs or miRs) have been found to contribute to the development and progression of NPC. Here, we aimed to investigate the putative role of miR-129-5p in NPC lymphangiogenesis and lymph node metastasis (LNM), including the involvement of its target gene ZIC2 and the Hedgehog signaling pathway. METHODS The expression of miR-129-5p and ZIC2 in primary NPC tissues was assessed using RT-qPCR and Western blot analyses, followed by LNM and lymph vessel density (LVD) correlation analyses. A direct interaction between miR-129-5p and ZIC2 was verified using a dual-luciferase reporter assay. Gain- and loss-of-function experiments were conducted to investigate the effects of miR-129-5p and ZIC2 expression on NPC cell invasion, migration and proliferation in vitro, as well as on LDV and LNM in nude mice in vivo. Additionally, RT-qPCR and Western blot analyses were performed to determine the expression levels of Hedgehog signaling pathway-related factors. RESULTS We found that ZIC2 was highly expressed, and miR-129-5p was lowly expressed, in primary NPC tissues. In addition, we found that miR-129-5p can directly bind to and reduce ZIC2 expression. LVD was found to be negatively correlated with miR-129-5p and to be positively correlated with ZIC2 expression. Concomitantly, we found that miR-129-5p abrogated activation of the Hedgehog signaling pathway via ZIC2 targeting, leading to suppression of NPC cell invasion, migration and proliferation in vitro as well as suppression of LNM and LVD in vivo. CONCLUSIONS From our data we conclude that miR-129-5p, by decreasing ZIC2 expression, may inhibit NPC lymphangiogenesis and LNM through suppression of the Hedgehog signaling pathway.
Collapse
Affiliation(s)
- Dan Yu
- Department of Otolaryngology Head and Neck Surgery, the Second Hospital, Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin Province, China
| | - Guang-Hong Han
- Department of Oral Geriatrics, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Xue Zhao
- Department of Otolaryngology Head and Neck Surgery, the Second Hospital, Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin Province, China
| | - Xueshibojie Liu
- Department of Otolaryngology Head and Neck Surgery, the Second Hospital, Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin Province, China
| | - Kai Xue
- Department of Otolaryngology Head and Neck Surgery, the Second Hospital, Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin Province, China
| | - Di Wang
- Department of Otolaryngology Head and Neck Surgery, the Second Hospital, Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin Province, China
| | - Cheng-Bi Xu
- Department of Otolaryngology Head and Neck Surgery, the Second Hospital, Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin Province, China.
| |
Collapse
|
17
|
Wu C, Miao C, Tang Q, Zhou X, Xi P, Chang P, Hua L, Ni H. MiR-129-5p promotes docetaxel resistance in prostate cancer by down-regulating CAMK2N1 expression. J Cell Mol Med 2019; 24:2098-2108. [PMID: 31876385 PMCID: PMC7011149 DOI: 10.1111/jcmm.14050] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 09/11/2018] [Accepted: 11/05/2018] [Indexed: 12/22/2022] Open
Abstract
This study focuses on the effect of miR‐129‐5p on docetaxel‐resistant (DR) prostate cancer (PCa) cells invasion, migration and apoptosis. In our study, the expression of CAMK2N1 was assessed by qRT‐PCR in PCa patient tissues and cell lines including PC‐3 and PC‐3‐DR. Cells transfected with miR‐129‐5p mimics, inhibitor, CAMK2N1 or negative controls (NC) were used to interrogate their effects on DR cell invasions, migrations and apoptosis during docetaxel (DTX) treatments. The apoptosis rate of the PCa cells was validated by flow cytometry. Relationships between miR‐129‐5p and CAMK2N1 levels were identified by qRT‐PCR and dual‐luciferase reporter assay. CAMK2N1 was found to be down‐expressed in DR PCa tissue sample, and low levels of CAMK2N1 were correlated with high docetaxel resistance and clinical prediction of poor survival. CAMK2N1 levels were decreased in DR PCa cells treated with DXT. We further explored that up‐regulation of miR‐129‐5p could promote DR PCa cells viability, invasion and migration but demote apoptosis. Involved molecular mechanism studies revealed that miR‐129‐5p reduced downstream CAMK2N1 expression to further impact on chemoresistance to docetaxel of PCa cells, indicating its vital role in PCa docetaxel resistance. Our findings revealed that miR‐129‐5p contributed to the resistance of PC‐3‐DR cells to docetaxel through suppressing CAMK2N1 expression, and thus targeting miR‐129‐5p may provide a novel therapeutic approach in sensitizing PCa to future docetaxel treatment.
Collapse
Affiliation(s)
- Cheng Wu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chunqing Miao
- Department of Urology, People's Hospital of Dongtai City, Dongtai, Jiangsu, China
| | - Qingsheng Tang
- Department of Urology, People's Hospital of Dongtai City, Dongtai, Jiangsu, China
| | - Xunrong Zhou
- Department of Urology, People's Hospital of Dongtai City, Dongtai, Jiangsu, China
| | - Pengshan Xi
- Department of Urology, People's Hospital of Dongtai City, Dongtai, Jiangsu, China
| | - Ping'an Chang
- Department of Urology, People's Hospital of Dongtai City, Dongtai, Jiangsu, China
| | - Lixin Hua
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haodong Ni
- Department of Urology, People's Hospital of Dongtai City, Dongtai, Jiangsu, China
| |
Collapse
|
18
|
Ren T, Fan XX, Wang MF, Duan FG, Wei CL, Li RZ, Jiang ZB, Wang YW, Yao XJ, Chen MW, Tang YJ, Leung ELH. miR‑20b promotes growth of non‑small cell lung cancer through a positive feedback loop of the Wnt/β‑catenin signaling pathway. Int J Oncol 2019; 56:470-479. [PMID: 31894264 PMCID: PMC6959373 DOI: 10.3892/ijo.2019.4940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 09/04/2019] [Indexed: 12/19/2022] Open
Abstract
microRNAs (miRNAs or miRs) are endogenous noncoding single-stranded RNA molecules that can regulate gene expression by targeting the 3′-untranslated region and play an important role in many biological and pathological processes, such as inflammation and cancer. In this study, we found that miR-20b was significantly increased in human non-small cell lung cancer (NSCLC) cell lines and patient tissues, suggesting that it may possess a carcinogenic role in lung cancer. This miRNA promoted the proliferation, migration and invasion of NSCLC cells by targeting and downregulating the expression of adenomatous polyposis coli (APC), which is a negative regulator of the canonical Wnt signaling pathway. Wnt signaling activation may increase transcription of miR-20b. Therefore, miR-20b and canonical Wnt signaling were coupled through a feed-forward positive feedback loop, forming a biological regulatory circuit. Finally, an in vivo investigation further demonstrated that an increase in miR-20b promoted the growth of cancer cells. Overall, our findings offer evidence that miR-20b may contribute to the development of NSCLC by inhibiting APC via the canonical Wnt signaling pathway.
Collapse
Affiliation(s)
- Tao Ren
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xing-Xing Fan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR 999078, P.R. China
| | - Mei-Fang Wang
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Fu-Gang Duan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR 999078, P.R. China
| | - Chun-Li Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR 999078, P.R. China
| | - Run-Ze Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR 999078, P.R. China
| | - Ze-Bo Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR 999078, P.R. China
| | - Yu-Wei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR 999078, P.R. China
| | - Xiao-Jun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR 999078, P.R. China
| | - Ming-Wei Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi 710061, P.R. China
| | - Yi-Jun Tang
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Elaine Lai-Han Leung
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|
19
|
Wang Z, Zhu X, Zhang T, Yao F. miR-512-5p suppresses the progression of non-small cell lung cancer by targeting β-catenin. Oncol Lett 2019; 19:415-423. [PMID: 31897154 PMCID: PMC6923952 DOI: 10.3892/ol.2019.11102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/27/2019] [Indexed: 01/02/2023] Open
Abstract
The oncogenic protein β-catenin is regulated by microRNAs (miRs) in non-small cell lung cancer (NSCLC). miR-512-5p is downregulated in NSCLC compared with healthy tissues and exhibits a tumour-suppressive effect. To study whether miR-512-5p acts on β-catenin to exert its anticancer effect in NSCLC, miR-512-5p mimic and inhibitor were transfected into NSCLC A549 and H1975 cells. miR-512-5p mimic inhibited the invasion of NSCLC cells and increased apoptosis, which suggested an inhibitory effect of miR-512-5p in NSCLC progression in vitro. By contrast, transfection with the miR-512-5p inhibitor resulted in the opposite effects. A dual-luciferase assay demonstrated that miR-512-5p complementarily bound to the 3′-untranslated region of β-catenin. miR-512-5p mimic suppressed the transcription and translation of β-catenin and reduced the expression of the downstream oncogenes cyclin D1 and matrix metalloproteinases, leading to the inhibition of Wnt/β-catenin signalling and subsequent inhibition of NSCLC tumourigenesis in vitro. In conclusion, miR-512-5p may function as a tumour suppressor in NSCLC by inhibiting the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Zhexin Wang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Xiaolei Zhu
- Suzhou Institute of Systems Medicine, Centre of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, Jiangsu 223300, P.R. China
| | - Tuo Zhang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Feng Yao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| |
Collapse
|
20
|
Sun P, Zhang D, Huang H, Yu Y, Yang Z, Niu Y, Liu J. MicroRNA-1225-5p acts as a tumor-suppressor in laryngeal cancer via targeting CDC14B. Biol Chem 2019; 400:237-246. [PMID: 30138106 DOI: 10.1515/hsz-2018-0265] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/13/2018] [Indexed: 11/15/2022]
Abstract
This study aimed to investigate the role of miRNA-1225-5p (miR-1225) in laryngeal carcinoma (LC). We found that the expression of miR-1225 was suppressed in human LC samples, while CDC14B (cell division cycle 14B) expression was reinforced in comparison with surrounding normal tissues. We also demonstrated that enhanced expression of miR-1225 impaired the proliferation and survival of LC cells, and resulted in G1/S cell cycle arrest. In contrast, reduced expression of miR-1225 promoted cell survival. Moreover, miR-1225 resulted in G1/S cell cycle arrest and enhanced cell death. Further, miR-1225 targets CDC14B 3'-UTR and recovery of CDC14B expression counteracted the suppressive influence of miR-1225 on LC cells. Thus, these findings offer insight into the biological and molecular mechanisms behind the development of LC.
Collapse
Affiliation(s)
- Peng Sun
- Department of ENT, the First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Gusu District, Suzhou 215006, Jiangsu, China
| | - Dan Zhang
- Department of ENT, the First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Gusu District, Suzhou 215006, Jiangsu, China
| | - Haiping Huang
- Department of ENT, the First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Gusu District, Suzhou 215006, Jiangsu, China
| | - Yafeng Yu
- Department of ENT, the First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Gusu District, Suzhou 215006, Jiangsu, China
| | - Zhendong Yang
- Department of ENT, the First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Gusu District, Suzhou 215006, Jiangsu, China
| | - Yuyu Niu
- Department of ENT, the First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Gusu District, Suzhou 215006, Jiangsu, China
| | - Jisheng Liu
- Department of ENT, the First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Gusu District, Suzhou 215006, Jiangsu, China
| |
Collapse
|
21
|
Liu S, Duan W. Long noncoding RNA LINC00339 promotes laryngeal squamous cell carcinoma cell proliferation and invasion via sponging miR-145. J Cell Biochem 2019; 120:8272-8279. [PMID: 30485513 DOI: 10.1002/jcb.28110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/31/2018] [Indexed: 01/24/2023]
Abstract
Laryngeal squamous cell carcinoma (LSCC) is a very common neoplasm of the head and neck in the world. Long noncoding RNAs play key roles in cell infiltration, fate, apoptosis, and invasion. However, the functional role and expression of LINC00339 remains unclear in LSCC. In this study, we showed that the expression level of LINC00339 was upregulated in LSCC tissues and cell lines. LINC00339 silencing suppressed the proliferation, invasion, and epithelial-mesenchymal transition (EMT) progression of LSCC cells. In addition, we showed that LINC00339 acted as a sponge of miR-145, and LINC00339 silencing promoted the expression of miR-145 in Hep2 cell. Furthermore, the expression of miR-145 was lower in LSCC tissues than in their paired normal samples and the miR-145 expression level was negatively correlated with LINC00339 expression in LSCC tissues. The knockdown of miR-145 promoted the proliferation, invasion, and EMT progression of LSCC cells. Finally, we indicated that LINC00339 silencing inhibited the proliferation, invasion, and EMT progression of LSCC cells by suppressing the miR-145 expression. These data suggested that LINC00339 acted as an oncogene in the development of LSCC, partly by regulating the miR-145 expression.
Collapse
Affiliation(s)
- Shouzhou Liu
- Department of Otolaryngology, Liaocheng People's Hospital, Liaocheng, China
| | - Wenchao Duan
- Department of Otolaryngology, Liaocheng People's Hospital, Liaocheng, China
| |
Collapse
|
22
|
Wang YF, Yang HY, Shi XQ, Wang Y. Upregulation of microRNA-129-5p inhibits cell invasion, migration and tumor angiogenesis by inhibiting ZIC2 via downregulation of the Hedgehog signaling pathway in cervical cancer. Cancer Biol Ther 2018; 19:1162-1173. [PMID: 30260270 DOI: 10.1080/15384047.2018.1491497] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Recently, some studies have placed additional research focus on microRNAs (miRNAs) in a bid to discover novel therapeutic approaches for cervical cancer (CC), which is one of the most common female reproductive tract malignancies with high rates of morbidity and mortality. Hence, the aim of the present study was to evaluate the ability of miR-129-5p to influence cell angiogenesis, invasion and migration by targeting ZIC2 through the Hedgehog signaling pathway in CC. Both CC and adjacent normal tissues were extracted from 87 eligible participating patients with CC. Measurements of the levels of miR-129-5p, mRNA and protein levels of ZIC2, sonic Hedgehog (Shh), Gli1, and Gli2 and levels of CXCL1, VEGF and Ang2 were determined accordingly. An angiogenesis assay was performed to evaluate cell angiogenesis in vitro, while a scratch test and transwell assay were adopted for cell invasion and migration determination. Lastly, tumor formation within nude mice was performed in order to analyze angiogenesis and tumor growth among the nude mice in vivo. The findings revealed that upregulation of miR-129-5p resulted in the decrease in the mRNA and protein levels of ZIC2, Shh, Gli1, Gli2, as well as reduced levels of CXCL1, VEGF and Ang2. Moreover, up-regulation of miR-129-5p was determined to inhibit CC cell angiogenesis ability in vitro, in addition to the processes of cell migration, and invasion. Finally, up-regulation of miR-129-5p was observed to inhibit the tumor growth and angiogenesis ability of nude mice in vivo. The results of the present study provided evidence suggesting that overexpressed miR-129-5p prevents angiogenesis and inhibits cell migration and invasion by means of negatively targeting ZIC2 through suppression of the Hedgehog signaling pathway in CC. Thus, highlighting the promise of miR-129-5p as a novel target for treating CC is promising.
Collapse
Affiliation(s)
- Ying-Fang Wang
- a Department of Gynecology , Henan Provincial People's Hospital & People's Hospital of Zhengzhou University , Zhengzhou , P.R. China
| | | | | | - Yue Wang
- a Department of Gynecology , Henan Provincial People's Hospital & People's Hospital of Zhengzhou University , Zhengzhou , P.R. China
| |
Collapse
|
23
|
Gao X, Chen Z, Li A, Zhang X, Cai X. MiR-129 regulates growth and invasion by targeting MAL2 in papillary thyroid carcinoma. Biomed Pharmacother 2018; 105:1072-1078. [PMID: 30021343 DOI: 10.1016/j.biopha.2018.06.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 06/09/2018] [Accepted: 06/12/2018] [Indexed: 12/14/2022] Open
Abstract
MAL2, a member of the MAL proteolipid family, is essential for raft-mediated transport. In this study, we investigated the roles and underlying mechanism of MAL2 in the development of papillary thyroid carcinoma (PTC). Up-regulation of MAL2 was found in human PTC tissues and significantly correlated with poor overall survival (OS). Knockdown of MAL2 dramatically suppressed PTC cell proliferation and invasion in vitro and inhibited tumor growth in vivo. We further found that miR-129 suppressed the expression of MLA through directly binding to the 3' untranslated region (3' UTR). While forced miR-129 expression suppressed growth and invasion of PTC cells, re-expression of MAL2 rescued these effects. Taken together, our data indicated that MAL2 acted as an oncogene and was negatively regulated by miR-129, supporting the potential therapeutic strategy against PTC by targeting miR-129-MAL2 axis.
Collapse
Affiliation(s)
- Xuejun Gao
- Department of Thyroid Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266006, China
| | - Zhenyu Chen
- Department of Plastic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266006, China
| | - Aiqin Li
- Department of Thyroid Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266006, China
| | - Xin Zhang
- Department of Thyroid Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266006, China
| | - Xia Cai
- Department of Plastic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266006, China.
| |
Collapse
|
24
|
Wu DM, Zhang YT, Lu J, Zheng YL. Effects of microRNA-129 and its target gene c-Fos on proliferation and apoptosis of hippocampal neurons in rats with epilepsy via the MAPK signaling pathway. J Cell Physiol 2018; 233:6632-6643. [PMID: 29194604 DOI: 10.1002/jcp.26297] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 11/28/2017] [Indexed: 11/12/2022]
Abstract
This study aims to investigate the effect of microRNA-129 (miR-129) on proliferation and apoptosis of hippocampal neurons in epilepsy rats by targeting c-Fos via the MAPK signaling pathway. Thirty rats were equally classified into a model group (successfully established as chronic epilepsy models) and a normal group. Expression of miR-129, c-Fos, bax, and MAPK was detected by RT-qPCR and Western blotting. Hippocampal neurons were assigned into normal, blank, negative control (NC), miR-129 mimic, miR-129 inhibitor, siRNA-c-Fos, miR-129 inhibitor+siRNA-c-Fos groups. The targeting relationship between miR-129 and c-Fos was predicted and verified by bioinformatics websites and dual-luciferase reporter gene assay. Cell proliferation after transfection was measured by MTT assay, and cell cycle and apoptosis by flow cytometry. c-Fos is a potential target gene of miR-129. Compared with the normal group, the other six groups showed a decreased miR-129 expression; increased expression of expression of c-Fos, Bax, and MAPK; decreased proliferation; accelerated apoptosis; more cells arrested in the G1 phase; and fewer cells arrested in the S phase. Compared with the blank and NC groups, the miR-129 mimic group and the siRNA-c-Fos group showed decreased expression of c-Fos, Bax, and MAPK, increased cells proliferation, and decreased cell apoptosis, fewer cells arrested in the G1 phase and more cells arrested in the S phase. However, the miR-129 inhibitor groups showed reverse consequences. This study suggests that miR-129 could inhibit the occurrence and development of epilepsy by repressing c-Fos expression through inhibiting the MAPK signaling pathway.
Collapse
Affiliation(s)
- Dong-Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P. R. China
| | - Yu-Tong Zhang
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, P. R. China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P. R. China
| | - Yuan-Lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P. R. China
| |
Collapse
|
25
|
Wu Q, Meng WY, Jie Y, Zhao H. LncRNA MALAT1 induces colon cancer development by regulating miR-129-5p/HMGB1 axis. J Cell Physiol 2018; 233:6750-6757. [PMID: 29226325 DOI: 10.1002/jcp.26383] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 12/04/2017] [Indexed: 01/08/2023]
Abstract
Recent studies have exhibited significant roles of lncRNAs in various tumors' development, including colon cancer. Our study focused on the biological roles of lncRNA MALAT1 in colon cancer. In our study, it was demonstrated that MALAT1 was upregulated in human colon cancer cell lines including Lovo, HCT116, SW480, and HT29 cells compared to the normal human intestinal epithelial HIEC cells. Moreover, we observed that miR-129-5p was downregulated in colon cancer cells with a significant increase of HMGB1 expression. Inhibition of MALAT1 can inhibit the proliferation of colon cancer SW480 and HCT116 cells and next, bioinformatics analysis was used to predict the target microRNA of MALAT1. miR-129-5p was identified and confirmed as a direct regulator of MALAT1 and it was shown that miR-129-5p mimics were able to restrain the progression of colon cancer cells. In addition, high motility group box protein 1 (HMGB1), was predicted as a mRNA target of miR-129-5p. Furthermore, we found that MALAT1 exerted its biological functions through regulating HMGB1 by sponging miR-129-5p in vitro. Silencing MALAT1 greatly inhibited HMGB1 expression which can be reversed by miR-129-5p inhibitors. It was indicated in our investigation that MALAT1 may serve as a competing endogenous lncRNA (ceRNA) to mediate HMGB1 by sponging miR-129-5p in colon cancer. Taken together, our results indicated that MALAT1/miR-129-5p/HMGB1 axis could be provided as an important prognostic biomarker in colon cancer development.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Ying Meng
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Jie
- Department of Clinical Research Center, People's Hospital of Xuyi, Jiangsu Province, China
| | - Haijian Zhao
- Division of Pediatric Surgery, Department of General Surgery, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Jiangsu, China
| |
Collapse
|
26
|
Wang J, Yang S, Ge W, Wang Y, Han C, Li M. MiR-613 suppressed the laryngeal squamous cell carcinoma progression through regulating PDK1. J Cell Biochem 2018; 119:5118-5125. [PMID: 29091303 DOI: 10.1002/jcb.26468] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/31/2017] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are aberrantly expressed in several tumors and play important role in tumorigenesis. However, little is known about the role of miR-613 in laryngeal squamous cell carcinoma (LSCC). We determined the expression of miR-613 in a panel of 30 LSCC specimens. Compared with the adjacent normal samples, 20 cases of LSCC tissues exhibited decreased expression of miR-613. The average expression of miR-613 in LSCC tissues was lower than in normal samples. Moreover, we demonstrated that exogenous expression of miR-613 suppressed LSCC cell proliferation, invasion, and blocked G1/S phase transition. We identified that 3-phosphoinositide-dependent protein kinase-1 (PDK1) was a direct target gene of miR-613 in LSCC cell. Overexpression of miR-613 suppressed PDK1 expression in LSCC cell. Furthermore, we demonstrated that PDK1 was upregulated in LSCC tissues. MiR-613 expression was inversely correlated with the expression of PDK1 in LSCC tissues. Moreover, we showed that PDK1 was involved in the miR-613-mediated cancer suppression of LSCC cell. These results suggested that miR-613 played as a tumor suppressor gene in LSCC partly by inhibiting PDK1 expression.
Collapse
Affiliation(s)
- Jing Wang
- Department of Otolaryngology, Liaocheng People's Hospital and EENT Hospital, Liaocheng, Shandong, China
| | - Shujuan Yang
- Department of Otolaryngology, Liaocheng People's Hospital and EENT Hospital, Liaocheng, Shandong, China
| | - Wensheng Ge
- Department of Otolaryngology, Liaocheng People's Hospital and EENT Hospital, Liaocheng, Shandong, China
| | - Ying Wang
- Department of Otolaryngology, Liaocheng People's Hospital and EENT Hospital, Liaocheng, Shandong, China
| | - Chaodong Han
- Department of Otolaryngology, Liaocheng People's Hospital and EENT Hospital, Liaocheng, Shandong, China
| | - Maocai Li
- Department of Otolaryngology, Liaocheng People's Hospital and EENT Hospital, Liaocheng, Shandong, China
| |
Collapse
|
27
|
Fan L, Liu Z, Zhang Y, Zhu H, Yu H, Yang F, Yang R, Wu F. MiRNA373 induces cervical squamous cell carcinoma SiHa cell apoptosis. Cancer Biomark 2018; 21:455-460. [PMID: 29125482 DOI: 10.3233/cbm-170692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Limei Fan
- Department of Gynaecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, Jilin, China
| | - Zongyu Liu
- Bethune School of Medicine, Jilin University, Changchun 130021, Jilin, China
| | - Yong Zhang
- Deparment of Pathology and Pathophysiology, Bethune Medical College, Jilin University, Changchun 130021,Jilin, China
| | - He Zhu
- Department of Gynaecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, Jilin, China
| | - Huimei Yu
- Deparment of Pathology and Pathophysiology, Bethune Medical College, Jilin University, Changchun 130021,Jilin, China
| | - Fan Yang
- Department of Pediatric Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Ruiqi Yang
- Department of Gynaecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, Jilin, China
| | - Fei Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, Jilin, China
| |
Collapse
|
28
|
Wilczyński M, Żytko E, Danielska J, Szymańska B, Dzieniecka M, Nowak M, Malinowski J, Owczarek D, Wilczyński JR. Clinical significance of miRNA-21, -103, -129, -150 in serous ovarian cancer. Arch Gynecol Obstet 2018; 297:741-748. [DOI: 10.1007/s00404-018-4660-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 01/09/2018] [Indexed: 02/07/2023]
|
29
|
Zhou F, Li Y, Hao Z, Liu X, Chen L, Cao Y, Liang Z, Yuan F, Liu J, Wang J, Zheng Y, Dong D, Bian S, Yang B, Jiang C, Li Q. MicroRNA-300 inhibited glioblastoma progression through ROCK1. Oncotarget 2017; 7:36529-36538. [PMID: 27145462 PMCID: PMC5095018 DOI: 10.18632/oncotarget.9068] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 03/06/2016] [Indexed: 01/18/2023] Open
Abstract
Glioblastoma is a common type of brain aggressive tumors and has a poor prognosis. MicroRNAs (miRNAs) are a class of small, endogenous and non-coding RNAs that play crucial roles in cell proliferation, survival and invasion. Deregulated expression of miR-300 has been studied in a lot of cancers. However, the role of miR-300 in glioblastoma is still unknown. In this study, we demonstrated that miR-300 expression was downregulated in glioblastoma tissues compared with the normal tissues. Lower expression level of miR-300 was observed in thirty cases (75 %, 30/40) of glioblastoma samples compared with the normal samples. Moreover, the overall survival of glioblastoma patients with lower miR-300 expression level was shorter than those with higher miR-300 expression level. In addition, miR-300 expression was also downregulated in glioblastoma cell lines. Overexpression of miR-300 inhibited cell proliferation, cell cycle and invasion in glioblastoma cell line U87 and U251. Moreover, we identified ROCK1 as a direct target of miR-300 in U87 and U251 cells. Overexpression of ROCK1 partially rescued the miR-300-mediated cell growth. ROCK1 expression levels in glioblastoma tissues were higher than that in normal tissues. ROCK1 expression levels were higher in thirty-one cases of glioblastoma samples than their normal samples. Furthermore, the expression level ROCK1 was inversely correlated with the expression level of miR-300. Importantly, overexpression of miR-300 suppressed glioblastoma progression in an established xenograft model. In conclusion, we revealed that miR-300 might act as a tumor suppressor gene through inhibiting ROCK1 in glioblastoma.
Collapse
Affiliation(s)
- Fucheng Zhou
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - Yang Li
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - Zhen Hao
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - Xuanxi Liu
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - Liang Chen
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - Yu Cao
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - Zuobin Liang
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - Fei Yuan
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - Jie Liu
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - Jianjiao Wang
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - Yongri Zheng
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - Deli Dong
- Harbin Medical University, Harbin 150086, China
| | - Shan Bian
- Institute of Molecular Biology, Austrian Academy of Sciences, Vienna, Austria
| | | | - Chuanlu Jiang
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - Qingsong Li
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| |
Collapse
|
30
|
Peng Y, Zhang X, Feng X, Fan X, Jin Z. The crosstalk between microRNAs and the Wnt/β-catenin signaling pathway in cancer. Oncotarget 2017; 8:14089-14106. [PMID: 27793042 PMCID: PMC5355165 DOI: 10.18632/oncotarget.12923] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 10/21/2016] [Indexed: 12/16/2022] Open
Abstract
Mounting evidence has indicated microRNA (miR) dysregulation and the Wnt/β-catenin signaling pathway jointly drive carcinogenesis, cancer metastasis, and drug-resistance. The current review will focus on the role of the crosstalk between miRs and the Wnt/β-catenin signaling pathway in cancer development. MiRs were found to activate or inhibit the canonical Wnt pathway at various steps. On the other hand, Wnt activation increases expression of miR by directly binding to its promoter and activating transcription. Moreover, there are mutual feedback loops between some miRs and the Wnt/β-catenin signaling pathway. Clinical trials of miR-based therapeutic agents are investigated for solid and hematological tumors, however, challenges concerning low bioavailability and possible side effects must be overcome before the final clinical application. This review will describe current understanding of miR crosstalk with the Wnt/β-catenin signaling cascade. Better understanding of the regulatory network will provide insight into miR-based therapeutic development.
Collapse
Affiliation(s)
- Yin Peng
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.,Department of Pathology, Wuhan University School of Basic Medical Sciences, Hubei, People's Republic of China
| | - Xiaojing Zhang
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.,Shenzhen Key Laboratory of Translational Medicine in Tumors, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Xianling Feng
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Xinmim Fan
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Zhe Jin
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.,Shenzhen Key Laboratory of Micromolecule Innovatal Drugs, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.,Shenzhen Key Laboratory of Translational Medicine in Tumors, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
31
|
Fu MC, Yuan LQ, Zhang T, Yan XM, Zhou Y, Xia HL, Wu Y, Xu LX, Cao X, Wang J. Nuclear paraspeckle assembly transcript 1 promotes the metastasis and epithelial-mesenchymal transition of hepatoblastoma cells by inhibiting miR-129-5p. Oncol Lett 2017; 14:5773-5778. [PMID: 29113206 PMCID: PMC5661376 DOI: 10.3892/ol.2017.6995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/27/2017] [Indexed: 11/05/2022] Open
Abstract
The abnormal expression of nuclear paraspeckle assembly transcript 1 (NEAT1) may serve critical functions for the development and progression of various types of human tumor. However, the expression and biological function of NEAT1 in hepatoblastoma (HB) and the underlying mechanisms for the function of NEAT1 in HB remain largely uncharacterized. In the present study, the results of reverse transcription-quantitative polymerase chain reaction revealed that the expression of NEAT1 was significantly elevated in HB tissues. HB tissues with metastasis also exhibited significantly increased levels of NEAT1 compared with tissues without metastasis. The biological functions of NEAT1 were then assessed using gain-/loss-of-function studies. The results of in vitro assays revealed that inhibiting NEAT1 expression reduced the migration and invasion of HepG2 cells. By contrast, the induced expression of NEAT1 exhibited the opposite effect. The present study also demonstrated that the inhibition of NEAT1 expression prevented the epithelial-mesenchymal transition of HepG2 cells, whereas forced expression of NEAT1 exhibited the opposite effect. In addition, it was confirmed that NEAT1 could modulate the expression of microRNA (miR)-129-5p in HepG2 cells, and that NEAT1 may exert its effect on the metastatic behaviors and epithelial-mesenchymal transition of HepG2 cells by inhibiting miR-129-5p. In conclusion, the present study indicated that NEAT1 expression was aberrantly increased in HB and that it may promote the metastasis of HB cells by inhibiting miR-129-5p. Targeting NEAT1 may potentially be a novel therapeutic option for treating patients with HB.
Collapse
Affiliation(s)
- Ming-Cui Fu
- Department of Surgery, Children's Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Li-Qun Yuan
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Ting Zhang
- Department of Surgery, Children's Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Xiang-Ming Yan
- Department of Surgery, Children's Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Yun Zhou
- Department of Surgery, Children's Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Hong-Liang Xia
- Department of Surgery, Children's Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Yi Wu
- Department of Pathology, Children's Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Li-Xiao Xu
- Institute of Pediatrics, Children's Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Xu Cao
- Department of Surgery, Children's Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Jian Wang
- Department of Surgery, Children's Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215003, P.R. China
| |
Collapse
|
32
|
Dix A, Czakai K, Leonhardt I, Schäferhoff K, Bonin M, Guthke R, Einsele H, Kurzai O, Löffler J, Linde J. Specific and Novel microRNAs Are Regulated as Response to Fungal Infection in Human Dendritic Cells. Front Microbiol 2017; 8:270. [PMID: 28280489 PMCID: PMC5322194 DOI: 10.3389/fmicb.2017.00270] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/08/2017] [Indexed: 11/15/2022] Open
Abstract
Within the last two decades, the incidence of invasive fungal infections has been significantly increased. They are characterized by high mortality rates and are often caused by Candida albicans and Aspergillus fumigatus. The increasing number of infections underlines the necessity for additional anti-fungal therapies, which require extended knowledge of gene regulations during fungal infection. MicroRNAs are regulators of important cellular processes, including the immune response. By analyzing their regulation and impact on target genes, novel therapeutic and diagnostic approaches may be developed. Here, we examine the role of microRNAs in human dendritic cells during fungal infection. Dendritic cells represent the bridge between the innate and the adaptive immune systems. Therefore, analysis of gene regulation of dendritic cells is of particular significance. By applying next-generation sequencing of small RNAs, we quantify microRNA expression in monocyte-derived dendritic cells after 6 and 12 h of infection with C. albicans and A. fumigatus as well as treatment with lipopolysaccharides (LPS). We identified 26 microRNAs that are differentially regulated after infection by the fungi or LPS. Three and five of them are specific for fungal infections after 6 and 12 h, respectively. We further validated interactions of miR-132-5p and miR-212-5p with immunological relevant target genes, such as FKBP1B, KLF4, and SPN, on both RNA and protein level. Our results indicate that these microRNAs fine-tune the expression of immune-related target genes during fungal infection. Beyond that, we identified previously undiscovered microRNAs. We validated three novel microRNAs via qRT-PCR. A comparison with known microRNAs revealed possible relations with the miR-378 family and miR-1260a/b for two of them, while the third one features a unique sequence with no resemblance to known microRNAs. In summary, this study analyzes the effect of known microRNAs in dendritic cells during fungal infections and proposes novel microRNAs that could be experimentally verified.
Collapse
Affiliation(s)
- Andreas Dix
- Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Germany
| | - Kristin Czakai
- Department of Internal Medicine II, University Hospital of Würzburg Würzburg, Germany
| | - Ines Leonhardt
- Septomics Research Centre, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Friedrich Schiller UniversityJena, Germany; IMGM Laboratories GmbHMartinsried, Germany
| | - Karin Schäferhoff
- Institute of Medical Genetics and Applied Genomics, University of Tübingen Tübingen, Germany
| | | | - Reinhard Guthke
- Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital of Würzburg Würzburg, Germany
| | - Oliver Kurzai
- Septomics Research Centre, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Friedrich Schiller UniversityJena, Germany; Center for Sepsis Control and Care, University HospitalJena, Germany; Institute for Microbiology, University of WuerzburgWuerzburg, Germany
| | - Jürgen Löffler
- Department of Internal Medicine II, University Hospital of Würzburg Würzburg, Germany
| | - Jörg Linde
- Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Germany
| |
Collapse
|
33
|
Aberrant expression of CDK8 regulates the malignant phenotype and associated with poor prognosis in human laryngeal squamous cell carcinoma. Eur Arch Otorhinolaryngol 2017; 274:2205-2213. [DOI: 10.1007/s00405-017-4484-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 01/24/2017] [Indexed: 10/20/2022]
|
34
|
Potential mechanisms of microRNA-129-5p in inhibiting cell processes including viability, proliferation, migration and invasiveness of glioblastoma cells U87 through targeting FNDC3B. Biomed Pharmacother 2017; 87:405-411. [PMID: 28068630 DOI: 10.1016/j.biopha.2016.12.100] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/07/2016] [Accepted: 12/22/2016] [Indexed: 12/15/2022] Open
Abstract
The purpose of our study is to clarify the effects of microRNA-129-5p (miR-129-5p) in cellular processes correlated with cancer development and progression of Glioblastoma (GBM) cell by regulating FNDC3B. MiR-129-5p and FNDC3B expression in GBM tissues and tumor adjacent tissues were tested by quantitative real-time PCR. We validated the target relationship between miR-129-5p and FNDC3B by dual luciferase reporter gene system. MTT, colony formation, flow cytometry, Transwell and wound healing assays were used to analyze cell viability, proliferation, apoptosis, invasiveness and migration. The level of FNDC3B protein expression was detected by Western Blot. MiR-129-5p was downregulated in GBM tissues and cell lines, while FNDC3B was upregulated in GBM tissues. The result of luciferase reporter gene assay demonstrated that miR-129-5p could target FNDC3B by binding to the 3' UTR. The overexpression of miR-129-5p or the inhibition of FNDC3B can both inhibit U87 cell viability, proliferation, migration and invasion, while promote cell apoptosis. Our results suggested that miR-129-5p could directly suppress FNDC3B, which might be one of potential mechanisms in inhibiting cell processes including viability, proliferation, migration and invasiveness of U87 cells.
Collapse
|
35
|
Wang J, Liu H, Tian L, Wang F, Han L, Zhang W, Bai YA. miR-15b Inhibits the Progression of Glioblastoma Cells Through Targeting Insulin-like Growth Factor Receptor 1. Discov Oncol 2016; 8:49-57. [PMID: 27896672 DOI: 10.1007/s12672-016-0276-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/21/2016] [Indexed: 12/13/2022] Open
Abstract
The microRNAs (miRNAs) have been suggested as a tumor suppressor in recent years. miR-15b was reported to exert an anti-oncogenic role in the proliferation, migration, and invasion of diverse tumor cells. However, the mechanisms underlying miR-15b-mediated biology of glioblastoma are still unclear. In the present study, the expression of miR-15b was down-regulated in glioblastoma tumor tissues and U87 and U251 cells, but insulin-like growth factor receptor 1 (IGF1R) expression became up-regulated in these tumor tissues and cells (all p < 0.001). Furthermore, IGF1R expression was inversely associated with miR-15b expression. Notably, patients with lower miR-15b expression have a much shorter survival period compared with high expression (log-rank test p = 0.045). In vitro data demonstrated that miR-15b mimics inhibited the proliferation, cell cycle arrest, and invasion of U87 and U251 cells. Besides, we validated IGF1R as a direct target of miR-15b using dual luciferase assays, and IGF1R plasmids partially abrogated miR-15b mimics inhibited cell proliferation. In vivo, miR-15b mimics indeed repressed cell proliferation in mouse xenograft model. In conclusion, our study demonstrated that miR-15b inhibits the progression of glioblastoma cells through targeting IGF1R, and miR-15b can be recommended as a tumor suppressor in the progression of glioblastoma.
Collapse
Affiliation(s)
- Jian Wang
- Department of Neurosurgery, Weifang Yidu Central Hospital, No. 4138, Linglongshan Road, Qingzhou, Shandong, 262500, China
| | - Huaqiang Liu
- Department of Neurosurgery, Weifang Yidu Central Hospital, No. 4138, Linglongshan Road, Qingzhou, Shandong, 262500, China
| | - Lin Tian
- Department of Neurosurgery, Weifang Yidu Central Hospital, No. 4138, Linglongshan Road, Qingzhou, Shandong, 262500, China
| | - Fachen Wang
- Department of Neurosurgery, Weifang Yidu Central Hospital, No. 4138, Linglongshan Road, Qingzhou, Shandong, 262500, China
| | - Liangbo Han
- Department of Neurosurgery, Weifang Yidu Central Hospital, No. 4138, Linglongshan Road, Qingzhou, Shandong, 262500, China
| | - Wei Zhang
- Department of Neurosurgery, Weifang Yidu Central Hospital, No. 4138, Linglongshan Road, Qingzhou, Shandong, 262500, China
| | - Yun-An Bai
- Department of Neurosurgery, Weifang Yidu Central Hospital, No. 4138, Linglongshan Road, Qingzhou, Shandong, 262500, China.
| |
Collapse
|
36
|
Zhang Y, An J, Lv W, Lou T, Liu Y, Kang W. miRNA-129-5p suppresses cell proliferation and invasion in lung cancer by targeting microspherule protein 1, E-cadherin and vimentin. Oncol Lett 2016; 12:5163-5169. [PMID: 28105223 PMCID: PMC5228557 DOI: 10.3892/ol.2016.5372] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/24/2016] [Indexed: 12/21/2022] Open
Abstract
Downregulation of microRNA-129 (miR-129) has been described in various types of cancer, however, the significance of miR-129 in lung cancer has not been investigated. The present study, for the first time, determined miR-129-5p expression levels in both lung cancer cell lines and primary lung cancer tissues and also studied the effect of miR-129-5p on the proliferation and invasiveness of lung cancer cells. The results showed that miR-129-5p expression was significantly reduced in both lung cancer cell lines and primary lung cancer tissues (P<0.05). Further research revealed that miR-129-5p could suppress the proliferation and invasion capability of lung cancer cells. Bioinformatics analysis suggested three cancer-related miR-129-5p target genes: Microspherule protein 1 (MCRS1), E-cadherin and vimentin. Further investigation via reverse transcription-quantitative polymerase chain reaction and western blot analysis showed that miR-129-5p was able to reduce the expression levels of MCRS1 and vimentin and enhance the expression of E-cadherin at both the messenger RNA and protein levels. The present results indicate that miR-129-5p is able to suppress lung cancer cell viability and invasion, which may occur via the modulating of MCRS1, E-cadherin and vimentin expression. These findings suggest that miR-129-5p may be a potential biomarker and/or treatment strategy for lung cancer.
Collapse
Affiliation(s)
- Yongzhou Zhang
- Department of Pharmacy, Huaihe Hospital, Henan University, Kaifeng, Henan 475001, P.R. China
| | - Jihong An
- Department of Pharmacy, Huaihe Hospital, Henan University, Kaifeng, Henan 475001, P.R. China
| | - Weiling Lv
- Department of Pharmacy, Huaihe Hospital, Henan University, Kaifeng, Henan 475001, P.R. China
| | - Tingting Lou
- Department of Pharmacy, Huaihe Hospital, Henan University, Kaifeng, Henan 475001, P.R. China
| | - Yunxin Liu
- Department of Pharmacy, Huaihe Hospital, Henan University, Kaifeng, Henan 475001, P.R. China
| | - Wenyi Kang
- Department of Pharmacy, Huaihe Hospital, Henan University, Kaifeng, Henan 475001, P.R. China; Institute of Natural Products, Henan University, Kaifeng, Henan 475001, P.R. China
| |
Collapse
|
37
|
Hao W, Luo W, Bai M, Li J, Bai X, Guo J, Wu J, Wang M. MicroRNA-206 Inhibited the Progression of Glioblastoma Through BCL-2. J Mol Neurosci 2016; 60:531-538. [PMID: 27558109 DOI: 10.1007/s12031-016-0824-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 08/17/2016] [Indexed: 12/21/2022]
Abstract
Gliomas are the most common type of brain tumor and have a poor prognosis. MicroRNAs (miRNAs) are a class of small, endogenous, and non-coding RNAs that play crucial roles in cell proliferation, survival, and invasion. Deregulated expression of miR-206 has been investigated in many cancers. However, the role of miR-206 in glioblastoma is still unclear. In the present study, we found that the expression of miR-206 was decreased in cancer tissues compared with normal tissues. However, the expression level of BCL-2 was higher in cancer tissues than that in normal tissues (all p < 0.001). Statistically, the expression level of BCL-2 was inversely correlated with the miR-206. In addition, the overall survival of glioblastoma patients with lower miR-206 expression was significantly shorter than those with high miR-206 expression (p < 0.001). Besides, the expression of miR-206 was also decreased in U87 and U251 cells. In vitro assays showed that ectopic miR-206 expression affected the proliferation, cell cycle, and invasion in U87 and U251 cells. Importantly, we identified BCL-2 as a direct target of miR-206 in U87 and U251 cells using luciferase assay. Overexpression of BCL-2 partially attenuated the miR-206-mediated cell proliferation. In vivo, overexpression of miR-206 suppressed the progression of glioblastoma cells using mice xenograft model. In conclusion, this study suggested that miR-206 could act as a tumor suppressor gene through inhibiting BCL-2 in the development of glioblastoma.
Collapse
Affiliation(s)
- Wenjiong Hao
- Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.,Department of Neurosurgery, Affiliated Hospital, Medical College of Yan'an University, Yan'an City, Shaanxi, 716000, People's Republic of China
| | - Wei Luo
- Department of Neurosurgery, The Affiliated Hospital of Shaanxi Traditional Chinese Medicine University, Xianyang, 712000, People's Republic of China
| | - Mangmang Bai
- Department of Neurosurgery, Affiliated Hospital, Medical College of Yan'an University, Yan'an City, Shaanxi, 716000, People's Republic of China
| | - Jian Li
- Department of Neurosurgery, Affiliated Hospital, Medical College of Yan'an University, Yan'an City, Shaanxi, 716000, People's Republic of China
| | - Xiaobin Bai
- Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Jie Guo
- Department of Neurosurgery, Affiliated Hospital, Medical College of Yan'an University, Yan'an City, Shaanxi, 716000, People's Republic of China
| | - Jinsong Wu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Maode Wang
- Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| |
Collapse
|
38
|
Yu Y, Zhao Y, Sun XH, Ge J, Zhang B, Wang X, Cao XC. Down-regulation of miR-129-5p via the Twist1-Snail feedback loop stimulates the epithelial-mesenchymal transition and is associated with poor prognosis in breast cancer. Oncotarget 2016; 6:34423-36. [PMID: 26460733 PMCID: PMC4741463 DOI: 10.18632/oncotarget.5406] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/25/2015] [Indexed: 12/14/2022] Open
Abstract
The epithelial to mesenchymal transition (EMT) plays a pivotal role in breast cancer progression. We found that overexpression of miR-129-5p reversed EMT, whereas depletion of miR-129-5p induced EMT in breast cancer cells. We demonstrated that Twist1 is a direct target of miR-129-5p. Both Twist1 and Snail transcriptionally suppressed miR-129-5p expression. Levels of miR-129-5p were low in breast cancer tissues. miR-129-5p down-regulation correlated with advanced clinical stage and poor prognosis in patients with breast cancer. miR-129-5p expression negatively correlated with Twist1 and Snail expression. Thus, miR-129-5p down-regulation fosters EMT in breast cancer by increasing Twist1-Snail and activating a negative feedback loop.
Collapse
Affiliation(s)
- Yue Yu
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Ying Zhao
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Xiao-Hu Sun
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Jie Ge
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Bin Zhang
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Xin Wang
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Xu-Chen Cao
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| |
Collapse
|
39
|
Guo Y, An R, Zhao R, Sun Y, Liu M, Tian L. miR-375 exhibits a more effective tumor-suppressor function in laryngeal squamous carcinoma cells by regulating KLF4 expression compared with simple co-transfection of miR-375 and miR-206. Oncol Rep 2016; 36:952-60. [PMID: 27279635 DOI: 10.3892/or.2016.4852] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/26/2016] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) are reported to be important regulators of cancer-related processes, and function either as oncogenes or as tumor-suppressor genes. It was found that miR-375 was downregulated in samples of laryngeal squamous cell carcinomas (LSCCs) as compared to the level noted in adjacent non-tumor tissues, and it was inversely correlated with T grade, lymph node metastases and clinical tumor stage. Overexpression of miR-375 led to a decreased protein level of Krüppel-like factor 4 (KLF4) and marked suppression of the proliferation and invasion, and induced apoptosis of LSCC cell line Hep-2 using Cell Counting Kit-8, Transwell chamber and cell cycle assays. In addition, we examined the influence of the upregulation of miR-206 alone and upregulation of both miR-375 and miR-206 on the expression of KLF4 and Hep-2 cell behavior. The results showed that compared with the function of miR-375 in tumor suppression by regulating KLF4, co-transfection of miR-375 and miR-206 exhibited a less effective inhibitory effect not only on tumor cell proliferation and invasion, but also on tumor cell apoptosis. Taken together, miR-375 is possibly a tumor suppressor in LSCC by regulating KLF4. In addition, simple overexpression of several miRNAs did not entail higher efficacy than a single miRNA, similar to co-transfecions of miR-375 and miR-206.
Collapse
Affiliation(s)
- Yan Guo
- Service of Head and Neck Surgery, Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Ran An
- Service of Head and Neck Surgery, Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Rui Zhao
- Service of Laryngology, Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yanan Sun
- Service of Head and Neck Surgery, Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Ming Liu
- Service of Head and Neck Surgery, Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Linli Tian
- Service of Head and Neck Surgery, Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
40
|
Li P, Liu H, Wang Z, He F, Wang H, Shi Z, Yang A, Ye J. MicroRNAs in laryngeal cancer: implications for diagnosis, prognosis and therapy. Am J Transl Res 2016; 8:1935-1944. [PMID: 27347304 PMCID: PMC4891409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/14/2016] [Indexed: 06/06/2023]
Abstract
Laryngeal cancer is the most common head and neck cancer (skin excluded) with the increasing rates of morbidity and mortality in the world. The emerging roles of microRNAs (miRs) in laryngeal cancer have been deeply investigated in recent years. Deregulated miRs are frequently detected in tissues and cells of laryngeal cancer, which work as oncogenes or tumor supressors to regulate cancer cell proliferation, metastasis and invasion, etc. Here we reviewed the recognized roles of miRs in the diagnosis, prognosis and therapy of laryngeal cancer. Although there are lots of challenges in miRs including sensitivity, specificity, accuracy and safety, the growing improvements of miRs in laryngeal cancer remain encouraging and promising.
Collapse
Affiliation(s)
- Pei Li
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Hui Liu
- Division of Pulmonary and Critical Care, Department of Internal Medicine, The Third Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Zhiyuan Wang
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Feng He
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Haifeng Wang
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan UniversityGuangzhou, Guangdong, China
| | - Ankui Yang
- Department of Head and Neck, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer MedicineGuangzhou, Guangdong, China
| | - Jin Ye
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, Guangdong, China
| |
Collapse
|
41
|
Geng Z, Xu F, Zhang Y. MiR-129-5p-mediated Beclin-1 suppression inhibits endothelial cell autophagy in atherosclerosis. Am J Transl Res 2016; 8:1886-1894. [PMID: 27186312 PMCID: PMC4859917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/06/2016] [Indexed: 06/05/2023]
Abstract
Endothelial cell injury and subsequent death play an essential role in the pathogenesis of atherosclerosis. Autophagy of endothelial cells antagonizes the development of atherosclerosis, whereas the underlying molecular mechanisms are unclear. MicroRNA-129-5p (miR-129-5p) is a well-defined tumor suppressorin some types of cancer, while it is unknown whether miR-129-5p may also play a role in the development of atherosclerosis. Here, we addressed this question in the current study. We examined the levels of endothelial cell autophagy in ApoE (-/-) mice suppled with high-fat diet (HFD), a mouse model for atherosclerosis (simplified as HFD mice). We analyzed the levels of Beclin-1 and the levels of miR-129-5p in the purified CD31+ endothelial cells from mouse aorta. Prediction of the binding between miR-129-5p and 3'-UTR of Beclin-1 mRNA was performed by bioinformatics analyses and confirmed by a dual luciferase reporter assay. The effects of miR-129-5p were further analyzed in an in vitro model using oxidized low-density lipoprotein (ox-LDL)-treated human aortic endothelial cells (HAECs). We found that HFD mice developed atherosclerosisin 12 weeks, while the control ApoE (-/-) mice that had received normal diet (simplified as CTL mice) did not. Compared to CTL mice, HFD mice had significantly lower levels of endothelial cell autophagy, resulting from decreases in Beclin-1 protein, but not mRNA. The decreases in Beclin-1 in endothelial cells were due to HFD-induced increases inmiR-129-5p, which suppressed the translation of Beclin-1 mRNA via 3'-UTR binding. These in vivo findings were reproduced in vitro on ox-LDL-treated HAECs. Together, these data suggest that upregulation of miR-129-5p by HFD may impair the protective effects of endothelial cell autophagy against development of atherosclerosis through suppressing protein translation of Beclin-1.
Collapse
Affiliation(s)
- Zhaohua Geng
- Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Third Military Medical UniversityChongqing 400037, China
| | - Fei Xu
- Oncology Radiotherapy Center of PLA 302 HospitalBeijing 100039, China
| | - Yiguan Zhang
- Josephine Ford Cancer Center, Department of Internal Medicine, Henry Ford Health SystemDetroit, MI 48202, USA
| |
Collapse
|
42
|
Tang X, Tang J, Liu X, Zeng L, Cheng C, Luo Y, Li L, Qin SL, Sang Y, Deng LM, Lv XB. Downregulation of miR-129-2 by promoter hypermethylation regulates breast cancer cell proliferation and apoptosis. Oncol Rep 2016; 35:2963-9. [PMID: 26935022 DOI: 10.3892/or.2016.4647] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 12/29/2015] [Indexed: 11/06/2022] Open
Abstract
Aberrant expression of the miR-129 family has been found in several types of cancer, yet its expression and potential biologic role in breast cancer remain largely unknown. In the present study, we found that miR-129-2 was consistently downregulated in the breast cancer specimens and cell lines. Overexpression of miR-129-2-3p markedly suppressed breast cancer cell proliferation and induced its apoptosis. In addition, a luciferase reporter assay revealed that miR-129-2-3p suppressed BCL2L2 expression. Furthermore, BCL2L2 was able to reverse miR-129-2-3p-mediated cell apoptosis, indicating that BCL2L2 plays a crucial role in mediating the tumor-suppressive role of miR-129-2-3p. Moreover, bisulfite DNA sequencing PCR (BSP) analysis identified that promoter hypermethylation was responsible for the downregulation of miR-129-2 in breast cancer. Collectively, our findings indicate that miR-129-2 is downregulated in breast cancer cells by promoter hypermethylation. Moreover, downregulation of miR-129-2 results in BCL2L2 overexpression and disease progression in breast cancer patients.
Collapse
Affiliation(s)
- Xiaofeng Tang
- Nanchang Key Laboratory of Cancer Pathogenesis and Translational Research, Center Laboratory, The Third Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Jianjun Tang
- Department of Gastroenterology, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Xia Liu
- Department of Oncology, Guangzhou First Municipal People's Hospital Affiliated to Guangzhou Medical College, Guangzhou, Guangdong 510180, P.R. China
| | - Lei Zeng
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Chun Cheng
- Nanchang Key Laboratory of Cancer Pathogenesis and Translational Research, Center Laboratory, The Third Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Yanqin Luo
- Nanchang Key Laboratory of Cancer Pathogenesis and Translational Research, Center Laboratory, The Third Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Liping Li
- Nanchang Key Laboratory of Cancer Pathogenesis and Translational Research, Center Laboratory, The Third Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Shu-Lan Qin
- Nanchang Key Laboratory of Cancer Pathogenesis and Translational Research, Center Laboratory, The Third Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Yi Sang
- Nanchang Key Laboratory of Cancer Pathogenesis and Translational Research, Center Laboratory, The Third Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Liang-Ming Deng
- Department of Medicine, Gaoming Heshui Hospital, Foshan, Guangdong 528500, P.R. China
| | - Xiao-Bin Lv
- Nanchang Key Laboratory of Cancer Pathogenesis and Translational Research, Center Laboratory, The Third Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| |
Collapse
|
43
|
Shimono Y, Mukohyama J, Nakamura SI, Minami H. MicroRNA Regulation of Human Breast Cancer Stem Cells. J Clin Med 2015; 5:jcm5010002. [PMID: 26712794 PMCID: PMC4730127 DOI: 10.3390/jcm5010002] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/01/2015] [Accepted: 12/21/2015] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are involved in virtually all biological processes, including stem cell maintenance, differentiation, and development. The dysregulation of miRNAs is associated with many human diseases including cancer. We have identified a set of miRNAs differentially expressed between human breast cancer stem cells (CSCs) and non-tumorigenic cancer cells. In addition, these miRNAs are similarly upregulated or downregulated in normal mammary stem/progenitor cells. In this review, we mainly describe the miRNAs that are dysregulated in human breast CSCs directly isolated from clinical specimens. The miRNAs and their clusters, such as the miR-200 clusters, miR-183 cluster, miR-221-222 cluster, let-7, miR-142 and miR-214, target the genes and pathways important for stem cell maintenance, such as the self-renewal gene BMI1, apoptosis, Wnt signaling, Notch signaling, and epithelial-to-mesenchymal transition. In addition, the current evidence shows that metastatic breast CSCs acquire a phenotype that is different from the CSCs in a primary site. Thus, clarifying the miRNA regulation of the metastatic breast CSCs will further advance our understanding of the roles of human breast CSCs in tumor progression.
Collapse
Affiliation(s)
- Yohei Shimono
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
- Division of Medical Oncology/Hematology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | - Junko Mukohyama
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | - Shun-Ichi Nakamura
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
- Division of Biochemistry, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | - Hironobu Minami
- Division of Medical Oncology/Hematology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| |
Collapse
|
44
|
Xiao W, Dai B, Zhu Y, Ye D. Norcantharidin induces autophagy-related prostate cancer cell death through Beclin-1 upregulation by miR-129-5p suppression. Tumour Biol 2015; 37:10.1007/s13277-015-4488-6. [PMID: 26638170 DOI: 10.1007/s13277-015-4488-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 11/23/2015] [Indexed: 11/30/2022] Open
Abstract
Norcantharidin (NCTD) has an anticancer potential to allow it to be used in the treatment of some malignant cancers. However, whether NCTD may have similar anticancer effects on prostate cancer (PC) is unknown. Here, we aimed to examine the effects of NCTD on PC cells and the underlying mechanisms. We found that NCTD dose-dependently inhibited the PC cell growth, in either a cell counting kit-8 (CCK-8) assay or a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Moreover, NCTD dose-dependently increased the PC cell autophagy, through upregulation of Beclin-1. Furthermore, the Beclin-1 protein, but not mRNA, was regulated by NCTD in PC cells, suggesting post-transcriptional control of Beclin-1 by NCTD. Finally, microRNA (miR)-129-5p was found to be regulated by NCTD, and bioinformatics analyses showed that miR-129-5p targeted the 3'-UTR of Beclin-1 mRNA to inhibit its translation, which was confirmed by luciferase reporter assay. Together, these data suggest that NCTD may upregulate Beclin-1 through suppression of miR-129-5p to induce autophagic cell death and cell proliferation arrest in PC cells. Our study sheds light on using NCTD as a novel treatment for PC.
Collapse
Affiliation(s)
- Wenjun Xiao
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Bo Dai
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
45
|
Li Y, An H, Pang J, Huang L, Li J, Liu L. MicroRNA profiling identifies miR-129-5p as a regulator of EMT in tubular epithelial cells. Int J Clin Exp Med 2015; 8:20610-20616. [PMID: 26884980 PMCID: PMC4723825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/25/2015] [Indexed: 06/05/2023]
Abstract
The importance of microRNAs in various diseases has been demonstrated, but their potential role in the pathogenesis of renal fibrosis needs to further research. We have profiled changes in microRNA levels in human kidney proximal tubular cell line HK-2 with TGF-β treatment and identified significantly altered miRNAs. miR-129-5p, was one of the significant down-regulated miRNAs in experimental models. PDPK1 was a potential target gene of miR-129-5p and luciferase assay analysis identified PDPK1 as a new direct target gene of miR-129-5p. Further research indicated that miR-129-5p suppressed PDPK1 mRNA and protein levels in HK-2 cells. miR-129-5p inhibited EMT via PDPK1 in HK-2 cells. In a conclusion, our findings suggested that miR-129-5p may function as a suppressor in renal fibrosis by targeting PDPK1.
Collapse
Affiliation(s)
- Yanlin Li
- Department of Nephropathy, Zhongshan Hospital of Traditional Chinese Medicine Zhongshan, Guangdong, China
| | - Haiwen An
- Department of Nephropathy, Zhongshan Hospital of Traditional Chinese Medicine Zhongshan, Guangdong, China
| | - Jie Pang
- Department of Nephropathy, Zhongshan Hospital of Traditional Chinese Medicine Zhongshan, Guangdong, China
| | - Lin Huang
- Department of Nephropathy, Zhongshan Hospital of Traditional Chinese Medicine Zhongshan, Guangdong, China
| | - Jinshan Li
- Department of Nephropathy, Zhongshan Hospital of Traditional Chinese Medicine Zhongshan, Guangdong, China
| | - Linna Liu
- Department of Nephropathy, Zhongshan Hospital of Traditional Chinese Medicine Zhongshan, Guangdong, China
| |
Collapse
|
46
|
Zhong G, Xiong X. miR-205 promotes proliferation and invasion of laryngeal squamous cell carcinoma by suppressing CDK2AP1 expression. Biol Res 2015; 48:60. [PMID: 26515287 PMCID: PMC4625464 DOI: 10.1186/s40659-015-0052-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/20/2015] [Indexed: 12/22/2022] Open
Abstract
Background The aberrant expression of microRNAs (miRNAs) has been found in various types of cancer. miR-205 was reported to be upregulated in laryngeal squamous cell carcinoma (LSCC) tissues, however, the mechanisms by which miR-205 functions as a regulator of LSCC are largely unknown. Results In this study, Real-time qPCR and Western blot assay showed that expression of miR-205 was upregulated and expression of cyclin-dependent kinase 2-associated protein 1 (CDK2AP1) was downregulated in LSCC tissues. The expression levels of miR-205 were negatively related to those of CDK2AP1 in LSCC tissues and cell lines. Moreover, we found that miR-205 was the upstream regulator of CDK2AP1 and could suppress the CDK2AP1 expression in LSCC cells. 3-(4,5-dimethylthiazal-2-yl)-2,5-diphenyl-tetrazolium bromide assays and transwell invasion assay were performed to test the proliferation and invasion of LSCC cells. Gelatin zymography was used to detect the activity of MMP2 and MMP9. CDK2AP1, c-Myc and CyclinD1 expression in cells was assessed with Western blotting. We found that miR-205 was the upstream regulator of CDK2AP1 and could suppress the expression of CDK2AP1 in LSCC cells. In addition, miR-205 significantly induced cell proliferation and invasion by suppressing CDK2AP1 expression. Consistent with miR-205 inhibitors, overexpressed CDK2AP1 suppressed the activity of MMP2 and MMP9 and c-Myc and CyclinD1 expression in LSCC cells. Conclusion These findings help us to better elucidate the molecular mechanisms of LSCC progression and provide a new theoretical basis to further investigate miR-205 as a potential biomarker and a promising approach for LSCC treatment.
Collapse
Affiliation(s)
- Gang Zhong
- Department of Hematology, Wuhan Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan , China.
| | - Xingao Xiong
- Department of Otolaryngology, Wuhan Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, China.
| |
Collapse
|
47
|
Identification of the potential molecular targets for human intervertebral disc degeneration based on bioinformatic methods. Int J Mol Med 2015; 36:1593-600. [PMID: 26498025 DOI: 10.3892/ijmm.2015.2389] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/30/2015] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to explore potential molecular targets and gain further insights into the mechanism of intervertebral disc degeneration (IDD) progression. Microarray datasets of GSE19943, GSE15227 and GSE34095 were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) in 3 IDD specimens compared with 3 controls in GSE34095, DEGs in 7 grade III and 3 grade IV samples compared with 5 grade II samples in GSE19943, and differentially expressed miRNAs in 3 degenerated samples compared with 3 controls in GSE15227 were screened. Grade III‑ and IV‑specific networks were constructed and grade‑specific genes were extracted. The network features were analyzed, followed by Gene Ontology (GO) enrichment analysis and pathway enrichment analysis of grade‑specific genes and DEGs identified in GSE34095. Furthermore, miRNA‑pathway interactions were analyzed using Fisher's exact test. Tumor protein p53 (TP53) was a hub gene in the grade III‑specific network and ubiquitin C (UBC) was identified to be a hub gene in the grade IV‑specific network. Six significant features were identified by grade‑specific network topology analysis. Grade‑specific genes and DEGs were involved in different GO terms and pathways. Differentially expressed miRNAs were identified to participate in 35 pathways, among which 6 pathways were significantly enriched by DEGs, including apoptosis. The present study identified that key genes (TP53 and UBC) and miR‑129‑5p may participate in the mechanism of IDD progression. Thus, they may be potential therapeutic targets for IDD.
Collapse
|
48
|
Yu X, Li Z. The role of microRNAs expression in laryngeal cancer. Oncotarget 2015; 6:23297-305. [PMID: 26079642 PMCID: PMC4695119 DOI: 10.18632/oncotarget.4195] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/23/2015] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRs, miRs) is a class of small non-coding RNAs, which posttranscriptionally regulate gene expression. Deregulated miRs are frequently obseved in patients with laryngeal cancer. In addition, numerous studies have showed miRs play significant roles in the pathogenesis of laryngeal cancer through regulating tumor cell proliferation, metastasis, invasion and apoptosis. miR can play either an oncogenic or tumor suppressive role in laryngeal cancer. In our review, we summarize the recent researches on laryngeal cancer-associated miRs, focusing on their role in the pathogenesis of laryngeal cancer. As changes in the levels of specific miRs in tissues or serum associate with diagnosis and prognosis of patients, we will also discuss the potential use of miRs in laryngeal cancer diagnosis and prognosis. Furthermore, supplementation of oncomiRs or inhibition of tumor suppressive miRs in vivo may be future therapeutic strategy for laryngeal cancer.
Collapse
Affiliation(s)
- Xin Yu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
49
|
Wang Y, Fan C, Yu J, Wang X. APC methylation predicts biochemical recurrence of patients with prostate cancer: a meta-analysis. Int J Clin Exp Med 2015; 8:15575-15580. [PMID: 26629051 PMCID: PMC4658940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/07/2015] [Indexed: 06/05/2023]
Abstract
The promoter region of adenomatous polyposis coli (APC) has been found to be frequently methylated in prostate cancer. However, the prognostic role of APC methylation in prostate cancer was still debated. We performed a meta-analysis by searching PubMed and EMBASE databases. Pooled hazard ratios (HRs) and corresponding 95% confidence intervals (CI) were calculated. Seven studies (1227 patients) were included in this study. After calculation, the overall HR was 1.74 (95% CI: 1.31-2.31), implicating that APC methylation has an unfavorable impact on biochemical recurrence of prostate cancer. A subgroup analysis was performed with detection method, combined HR was 1.53 (95% CI: 1.19-1.96) for Methylation-Specific PCR (MSP), and 2.08 (95% CI: 1.18-3.64) for quantitative Methylation-Specific PCR (qMSP). Another subgroup analysis was conducted according to regions of the patients, combined HR was 2.02 (95% CI: 1.18-3.49) for North America, and 1.64 (95% CI: 1.14-2.36) for European. In conclusion, APC methylation is associated with biochemical recurrence of patients with prostate cancer.
Collapse
Affiliation(s)
- Yi Wang
- Department of Urology, The Suzhou Kowloon Hospital Affiliated to Shanghai Jiaotong University, Medical SchoolSuzhou 215021, Jiangsu Province, China
| | - Caibin Fan
- Department of Urology, Suzhou Hospital Affiliated to Nanjing Medical UniversitySuzhou 215002, Jiangsu Province, China
| | - Jiang Yu
- Department of Urology, The Suzhou Kowloon Hospital Affiliated to Shanghai Jiaotong University, Medical SchoolSuzhou 215021, Jiangsu Province, China
| | - Xizhi Wang
- Department of Urology, The Suzhou Kowloon Hospital Affiliated to Shanghai Jiaotong University, Medical SchoolSuzhou 215021, Jiangsu Province, China
| |
Collapse
|
50
|
Tian XY, Zhang L, Sun LG, Li M. Epigenetic Regulation of miR-129-2 Leads to Overexpression of PDGFRa and FoxP1 in Glioma Cells. Asian Pac J Cancer Prev 2015; 16:6129-33. [DOI: 10.7314/apjcp.2015.16.14.6129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|