1
|
Mannaa M, Lee D, Lee HH, Han G, Kang M, Kim TJ, Park J, Seo YS. Exploring the comparative genome of rice pathogen Burkholderia plantarii: unveiling virulence, fitness traits, and a potential type III secretion system effector. FRONTIERS IN PLANT SCIENCE 2024; 15:1416253. [PMID: 38845849 PMCID: PMC11153758 DOI: 10.3389/fpls.2024.1416253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/10/2024] [Indexed: 06/09/2024]
Abstract
This study presents a comprehensive genomic analysis of Burkholderia plantarii, a rice pathogen that causes blight and grain rot in seedlings. The entire genome of B. plantarii KACC 18964 was sequenced, followed by a comparative genomic analysis with other available genomes to gain insights into its virulence, fitness, and interactions with rice. Multiple secondary metabolite gene clusters were identified. Among these, 12 demonstrated varying similarity levels to known clusters linked to bioactive compounds, whereas eight exhibited no similarity, indicating B. plantarii as a source of potentially novel secondary metabolites. Notably, the genes responsible for tropolone and quorum sensing were conserved across the examined genomes. Additionally, B. plantarii was observed to possess three complete CRISPR systems and a range of secretion systems, exhibiting minor variations among the analyzed genomes. Genomic islands were analyzed across the four genomes, and a detailed study of the B. plantarii KACC 18964 genome revealed 59 unique islands. These islands were thoroughly investigated for their gene contents and potential roles in virulence. Particular attention has been devoted to the Type III secretion system (T3SS), a crucial virulence factor. An in silico analysis of potential T3SS effectors identified a conserved gene, aroA. Further mutational studies, in planta and in vitro analyses validated the association between aroA and virulence in rice. Overall, this study enriches our understanding of the genomic basis of B. plantarii pathogenicity and emphasizes the potential role of aroA in virulence. This understanding may guide the development of effective disease management strategies.
Collapse
Affiliation(s)
- Mohamed Mannaa
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
- Institute of System Biology, Pusan National University, Busan, Republic of Korea
- Department of Plant Pathology, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Duyoung Lee
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
- Institute of System Biology, Pusan National University, Busan, Republic of Korea
| | - Hyun-Hee Lee
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Gil Han
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Minhee Kang
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
- Institute of System Biology, Pusan National University, Busan, Republic of Korea
| | - Tae-Jin Kim
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
- Institute of System Biology, Pusan National University, Busan, Republic of Korea
| | - Jungwook Park
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, Republic of Korea
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
- Institute of System Biology, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
2
|
Machino K, Sakakibara Y, Osada K, Ochiai T, Uraki Y, Shigetomi K. Pseudomonas bohemica strain ins3 eliminates antibacterial hinokitiol from its culture broth. Biosci Biotechnol Biochem 2023; 87:236-239. [PMID: 36367540 DOI: 10.1093/bbb/zbac180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
A bacterial strain, Pseudomonas bohemica strain ins3 was newly isolated as a resistant strain against high concentrations of hinokitiol. This strain was revealed not only to show resistance but also completely remove this compound from its culture broth. In addition, its mechanism was revealed to be independent of conventional aromatic dioxygenases, ie catechol-1,2- or 2,3-dioxygenases.
Collapse
Affiliation(s)
- Ken Machino
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | | | - Kota Osada
- School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Takahiro Ochiai
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yasumitsu Uraki
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Kengo Shigetomi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
3
|
Zhan C, Matsumoto H, Liu Y, Wang M. Pathways to engineering the phyllosphere microbiome for sustainable crop production. NATURE FOOD 2022; 3:997-1004. [PMID: 37118297 DOI: 10.1038/s43016-022-00636-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/12/2022] [Indexed: 04/30/2023]
Abstract
Current disease resistance breeding, which is largely dependent on the exploitation of resistance genes in host plants, faces the serious challenges of rapidly evolving phytopathogens. The phyllosphere is the largest biological surface on Earth and an untapped reservoir of functional microbiomes. The phyllosphere microbiome has the potential to defend against plant diseases. However, the mechanisms of how the microbiota assemble and function in the phyllosphere remain largely elusive, and this restricts the exploitation of the targeted beneficial microbes in the field. Here we review the endogenous and exogenous cues impacting microbiota assembly in the phyllosphere and how the phyllosphere microbiota in turn facilitate the disease resistance of host plants. We further construct a holistic framework by integrating of holo-omics, genetic manipulation, culture-dependent characterization and emerging artificial intelligence techniques, such as deep learning, to engineer the phyllosphere microbiome for sustainable crop production.
Collapse
Affiliation(s)
- Chengfang Zhan
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Haruna Matsumoto
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yufei Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Mengcen Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China.
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
- Global Education Program for AgriScience Frontiers, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
4
|
Xu P, Fan X, Mao Y, Cheng H, Xu A, Lai W, Lv T, Hu Y, Nie Y, Zheng X, Meng Q, Wang Y, Cernava T, Wang M. Temporal metabolite responsiveness of microbiota in the tea plant phyllosphere promotes continuous suppression of fungal pathogens. J Adv Res 2022; 39:49-60. [PMID: 35777916 PMCID: PMC9263646 DOI: 10.1016/j.jare.2021.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/16/2021] [Accepted: 10/12/2021] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION A broad spectrum of rhizosphere bacteria and fungi were shown to play a central role for health, fitness and productivity of their host plants. However, implications of host metabolism on microbiota assembly in the phyllosphere and potential consequences for holobiont functioning were sparsely addressed. Previous observations indicated that tea plants might reduce disease occurrence in various forests located in their proximity; the underlying mechanisms and potential implications of the phyllosphere microbiota remained elusive. OBJECTIVES This study aimed atdeciphering microbiome assembly in the tea plant phyllosphere throughout shoot development as well as elucidating potential implications of host metabolites in this process. The main focus was to explore hidden interconnections between the homeostasis of the phyllosphere microbiome and resistance to fungal pathogens. METHODS Profiling of host metabolites and microbiome analyses based on high-throughput sequencing were integrated to identify drivers of microbiome assembly throughout shoot development in the phyllosphere of tea plants. This was complemented by tracking of beneficial microorganisms in all compartments of the plant. Synthetic assemblages (SynAss), bioassays and field surveys were implemented to verify functioning of the phyllosphere microbiota. RESULTS Theophylline and epigallocatechin gallate, two prevalent metabolites at the early and late shoot development stage respectively, were identified as the main drivers of microbial community assembly. Flavobacterium and Myriangium were distinct microbial responders at the early stage, while Parabacteroides and Mortierella were more enriched at the late stage. Reconstructed, stage-specific SynAss suppressed various tree phytopathogens by 13.0%-69.3% in vitro and reduced disease incidence by 8.24%-41.3% in vivo. CONCLUSION The findings indicate that a functional phyllosphere microbiota was assembled along with development-specific metabolites in tea plants, which continuously suppressed prevalent fungal pathogens. The insights gained into the temporally resolved metabolite response of the tea plant microbiota could provide novel solutions for disease management.
Collapse
Affiliation(s)
- Ping Xu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China
| | - Xiaoyan Fan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China; Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria
| | - Yuxiao Mao
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310000, China
| | - Haiyan Cheng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China
| | - Anan Xu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China
| | - Wanyi Lai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China
| | - Tianxing Lv
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China
| | - Yang Hu
- Zhejiang Provincial Key Laboratory of Biological and Chemical Utilization of Forest Resources, Zhejiang Academy of Forestry, Hangzhou 310023, Zhejiang, China
| | - Yanxia Nie
- Ecology and Environmental Sciences Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xuxia Zheng
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310000, China
| | - Qing Meng
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuefei Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria.
| | - Mengcen Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
5
|
Bach E, Passaglia LMP, Jiao J, Gross H. Burkholderia in the genomic era: from taxonomy to the discovery of new antimicrobial secondary metabolites. Crit Rev Microbiol 2021; 48:121-160. [PMID: 34346791 DOI: 10.1080/1040841x.2021.1946009] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Species of Burkholderia are highly versatile being found not only abundantly in soil, but also as plants and animals' commensals or pathogens. Their complex multireplicon genomes harbour an impressive number of polyketide synthase (PKS) and nonribosomal peptide-synthetase (NRPS) genes coding for the production of antimicrobial secondary metabolites (SMs), which have been successfully deciphered by genome-guided tools. Moreover, genome metrics supported the split of this genus into Burkholderia sensu stricto (s.s.) and five new other genera. Here, we show that the successful antimicrobial SMs producers belong to Burkholderia s.s. Additionally, we reviewed the occurrence, bioactivities, modes of action, structural, and biosynthetic information of thirty-eight Burkholderia antimicrobial SMs shedding light on their diversity, complexity, and uniqueness as well as the importance of genome-guided strategies to facilitate their discovery. Several Burkholderia NRPS and PKS display unusual features, which are reflected in their structural diversity, important bioactivities, and varied modes of action. Up to now, it is possible to observe a general tendency of Burkholderia SMs being more active against fungi. Although the modes of action and biosynthetic gene clusters of many SMs remain unknown, we highlight the potential of Burkholderia SMs as alternatives to fight against new diseases and antibiotic resistance.
Collapse
Affiliation(s)
- Evelise Bach
- Departamento de Genética and Programa de Pós-graduação em Genética e Biologia Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Luciane Maria Pereira Passaglia
- Departamento de Genética and Programa de Pós-graduação em Genética e Biologia Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Junjing Jiao
- Department for Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Tübingen, Germany
| | - Harald Gross
- Department for Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
Duan Y, Toplak M, Hou A, Brock NL, Dickschat JS, Teufel R. A Flavoprotein Dioxygenase Steers Bacterial Tropone Biosynthesis via Coenzyme A-Ester Oxygenolysis and Ring Epoxidation. J Am Chem Soc 2021; 143:10413-10421. [PMID: 34196542 PMCID: PMC8283759 DOI: 10.1021/jacs.1c04996] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Bacterial tropone
natural products such as tropolone, tropodithietic
acid, or the roseobacticides play crucial roles in various terrestrial
and marine symbiotic interactions as virulence factors, antibiotics,
algaecides, or quorum sensing signals. We now show that their poorly
understood biosynthesis depends on a shunt product from aerobic CoA-dependent
phenylacetic acid catabolism that is salvaged by the dedicated acyl-CoA
dehydrogenase-like flavoenzyme TdaE. Further characterization of TdaE
revealed an unanticipated complex catalysis, comprising substrate
dehydrogenation, noncanonical CoA-ester oxygenolysis, and final ring
epoxidation. The enzyme thereby functions as an archetypal flavoprotein
dioxygenase that incorporates both oxygen atoms from O2 into the substrate, most likely involving flavin-N5-peroxide and
flavin-N5-oxide species for consecutive CoA-ester cleavage and epoxidation,
respectively. The subsequent spontaneous decarboxylation of the reactive
enzyme product yields tropolone, which serves as a key virulence factor
in rice panicle blight caused by pathogenic edaphic Burkholderia
plantarii. Alternatively, the TdaE product is most likely
converted to more complex sulfur-containing secondary metabolites
such as tropodithietic acid from predominant marine Rhodobacteraceae (e.g., Phaeobacter inhibens).
Collapse
Affiliation(s)
- Ying Duan
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Marina Toplak
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Anwei Hou
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | - Nelson L Brock
- Institute of Organic Chemistry, TU Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.,Institute of Organic Chemistry, TU Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Robin Teufel
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| |
Collapse
|
7
|
Matsumoto H, Fan X, Wang Y, Kusstatscher P, Duan J, Wu S, Chen S, Qiao K, Wang Y, Ma B, Zhu G, Hashidoko Y, Berg G, Cernava T, Wang M. Bacterial seed endophyte shapes disease resistance in rice. NATURE PLANTS 2021; 7:60-72. [PMID: 33398157 DOI: 10.1038/s41477-020-00826-5] [Citation(s) in RCA: 176] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 11/24/2020] [Indexed: 05/20/2023]
Abstract
Cereal crop production is severely affected by seed-borne bacterial diseases across the world. Locally occurring disease resistance in various crops remains elusive. Here, we have observed that rice plants of the same cultivar can be differentiated into disease-resistant and susceptible phenotypes under the same pathogen pressure. Following the identification of a seed-endophytic bacterium as the resistance-conferring agent, integration of high-throughput data, gene mutagenesis and molecular interaction assays facilitated the discovery of the underlying mode of action. Sphingomonas melonis that is accumulated and transmitted across generations in disease-resistant rice seeds confers resistance to disease-susceptible phenotypes by producing anthranilic acid. Without affecting cell growth, anthranilic acid interferes with the sigma factor RpoS of the seed-borne pathogen Burkholderia plantarii, probably leading to impairment of upstream cascades that are required for virulence factor biosynthesis. The overall findings highlight the hidden role of seed endophytes in the phytopathology paradigm of 'disease triangles', which encompass the plant, pathogens and environmental conditions. These insights are potentially exploitable for modern crop cultivation threatened by globally widespread bacterial diseases.
Collapse
Affiliation(s)
- Haruna Matsumoto
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Xiaoyan Fan
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Yue Wang
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Peter Kusstatscher
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Jie Duan
- Laboratory of Molecular and Ecological Chemistry, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Sanling Wu
- Analysis Center of Agrobiology and Environmental Sciences, Faculty of Agriculture, Life and Environment Sciences, Zhejiang University, Hangzhou, China
| | - Sunlu Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Kun Qiao
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Yiling Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Bin Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Guonian Zhu
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Yasuyuki Hashidoko
- Laboratory of Molecular and Ecological Chemistry, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria.
| | - Mengcen Wang
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
8
|
Duan Y, Petzold M, Saleem‐Batcha R, Teufel R. Bacterial Tropone Natural Products and Derivatives: Overview of their Biosynthesis, Bioactivities, Ecological Role and Biotechnological Potential. Chembiochem 2020; 21:2384-2407. [PMID: 32239689 PMCID: PMC7497051 DOI: 10.1002/cbic.201900786] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/02/2020] [Indexed: 12/05/2022]
Abstract
Tropone natural products are non-benzene aromatic compounds of significant ecological and pharmaceutical interest. Herein, we highlight current knowledge on bacterial tropones and their derivatives such as tropolones, tropodithietic acid, and roseobacticides. Their unusual biosynthesis depends on a universal CoA-bound precursor featuring a seven-membered carbon ring as backbone, which is generated by a side reaction of the phenylacetic acid catabolic pathway. Enzymes encoded by separate gene clusters then further modify this key intermediate by oxidation, CoA-release, or incorporation of sulfur among other reactions. Tropones play important roles in the terrestrial and marine environment where they act as antibiotics, algaecides, or quorum sensing signals, while their bacterial producers are often involved in symbiotic interactions with plants and marine invertebrates (e. g., algae, corals, sponges, or mollusks). Because of their potent bioactivities and of slowly developing bacterial resistance, tropones and their derivatives hold great promise for biomedical or biotechnological applications, for instance as antibiotics in (shell)fish aquaculture.
Collapse
Affiliation(s)
- Ying Duan
- Faculty of BiologyUniversity of Freiburg79104FreiburgGermany
| | - Melanie Petzold
- Faculty of BiologyUniversity of Freiburg79104FreiburgGermany
| | | | - Robin Teufel
- Faculty of BiologyUniversity of Freiburg79104FreiburgGermany
| |
Collapse
|
9
|
Heo YM, Lee H, Kim K, Kwon SL, Park MY, Kang JE, Kim GH, Kim BS, Kim JJ. Fungal Diversity in Intertidal Mudflats and Abandoned Solar Salterns as a Source for Biological Resources. Mar Drugs 2019; 17:E601. [PMID: 31652878 PMCID: PMC6891761 DOI: 10.3390/md17110601] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023] Open
Abstract
Intertidal zones are unique environments that are known to be ecological hot spots. In this study, sediments were collected from mudflats and decommissioned salterns on three islands in the Yellow Sea of South Korea. The diversity analysis targeted both isolates and unculturable fungi via Illumina sequencing, and the natural recovery of the abandoned salterns was assessed. The phylogeny and bioactivities of the fungal isolates were investigated. The community analysis showed that the abandoned saltern in Yongyudo has not recovered to a mudflat, while the other salterns have almost recovered. The results suggested that a period of more than 35 years may be required to return abandoned salterns to mudflats via natural restoration. Gigasporales sp. and Umbelopsis sp. were selected as the indicators of mudflats. Among the 53 isolates, 18 appeared to be candidate novel species, and 28 exhibited bioactivity. Phoma sp., Cladosporium sphaerospermum, Penicillium sp. and Pseudeurotium bakeri, and Aspergillus urmiensis showed antioxidant, tyrosinase inhibition, antifungal, and quorum-sensing inhibition activities, respectively, which has not been reported previously. This study provides reliable fungal diversity information for mudflats and abandoned salterns and shows that they are highly valuable for bioprospecting not only for novel microorganisms but also for novel bioactive compounds.
Collapse
Affiliation(s)
- Young Mok Heo
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea.
| | - Hanbyul Lee
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea.
| | - Kyeongwon Kim
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea.
| | - Sun Lul Kwon
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea.
| | - Min Young Park
- Department of Biosystems & Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea.
| | - Ji Eun Kang
- Department of Biosystems & Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea.
| | - Gyu-Hyeok Kim
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea.
| | - Beom Seok Kim
- Division of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea.
| | - Jae-Jin Kim
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea.
| |
Collapse
|
10
|
Park J, Lee HH, Jung H, Seo YS. Transcriptome analysis to understand the effects of the toxoflavin and tropolone produced by phytopathogenic Burkholderia on Escherichia coli. J Microbiol 2019; 57:781-794. [DOI: 10.1007/s12275-019-9330-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/18/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022]
|
11
|
Mannaa M, Park I, Seo YS. Genomic Features and Insights into the Taxonomy, Virulence, and Benevolence of Plant-Associated Burkholderia Species. Int J Mol Sci 2018; 20:E121. [PMID: 30598000 PMCID: PMC6337347 DOI: 10.3390/ijms20010121] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 12/24/2018] [Accepted: 12/24/2018] [Indexed: 11/17/2022] Open
Abstract
The members of the Burkholderia genus are characterized by high versatility and adaptability to various ecological niches. With the availability of the genome sequences of numerous species of Burkholderia, many studies have been conducted to elucidate the unique features of this exceptional group of bacteria. Genomic and metabolic plasticity are common among Burkholderia species, as evidenced by their relatively large multi-replicon genomes that are rich in insertion sequences and genomic islands and contain a high proportion of coding regions. Such unique features could explain their adaptability to various habitats and their versatile lifestyles, which are reflected in a multiplicity of species including free-living rhizospheric bacteria, plant endosymbionts, legume nodulators, and plant pathogens. The phytopathogenic Burkholderia group encompasses several pathogens representing threats to important agriculture crops such as rice. Contrarily, plant-beneficial Burkholderia have also been reported, which have symbiotic and growth-promoting roles. In this review, the taxonomy of Burkholderia is discussed emphasizing the recent updates and the contributions of genomic studies to precise taxonomic positioning. Moreover, genomic and functional studies on Burkholderia are reviewed and insights are provided into the mechanisms underlying the virulence and benevolence of phytopathogenic and plant-beneficial Burkholderia, respectively, on the basis of cutting-edge knowledge.
Collapse
Affiliation(s)
- Mohamed Mannaa
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - Inmyoung Park
- Department of Oriental Food and Culinary Arts, Youngsan University, Busan 48015, Korea.
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
12
|
Liu X, Fan X, Matsumoto H, Nie Y, Sha Z, Yi K, Pan J, Qian Y, Cao M, Wang Y, Zhu G, Wang M. Biotoxin Tropolone Contamination Associated with Nationwide Occurrence of Pathogen Burkholderia plantarii in Agricultural Environments in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5105-5114. [PMID: 29589436 DOI: 10.1021/acs.est.7b05915] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Tropolone, a biotoxin produced by the agricultural pathogen Burkholderia plantarii, exerts cytotoxicity toward a wide array of biota. However, due to the lack of quantitative and qualitative approach, both B. plantarii occurrence and tropolone contamination in agricultural environments remain poorly understood. Here, we presented a sensitive and reliable method for detection of B. plantarii in artificial, plant, and environmental matrices by tropolone-targeted gas chromatography-triple-quadrupole tandem mass spectrometry analysis. Limits of detection for B. plantarii and tropolone were 10 colony-forming units (CFU)/mL and 0.017 μg/kg, respectively. In a series of simulation trials, we found that B. plantarii from 10 to 108 CFU/mL produced tropolone between 0.006 and 107.8 mg/kg in a cell-population-dependent manner, regardless of habitat. Correlation analysis clarified a reliable reflection of B. plantarii density by tropolone level with R2 values from 0.9201 to 0.9756 ( p < 0.01). Through a nationwide pilot study conducted in China, tropolone contamination was observed at 0.014-0.157 mg/kg in paddy soil and rice grains, and subsequent redundancy analysis revealed soil organic matter to be a dominant environmental factor, having a positive correlation with tropolone contamination. In this context, our results imply that potential ecological and dietary risks posed by long-term exposure to trace levels of tropolone contamination are of concern.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology , Zhejiang University , Hangzhou 310058 , China
| | - Xiaoyan Fan
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology , Zhejiang University , Hangzhou 310058 , China
| | - Haruna Matsumoto
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology , Zhejiang University , Hangzhou 310058 , China
| | - Yanxia Nie
- Ecology and Environmental Sciences Center, South China Botanical Garden , Chinese Academy of Sciences , Guangzhou 510650 , China
| | - Zhimin Sha
- School of Agriculture and Biology , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Kunpeng Yi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Jiuyue Pan
- College of Plant Protection , Hunan Agricultural University , Changsha 410128 , China
| | - Yuan Qian
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology , Zhejiang University , Hangzhou 310058 , China
| | - Mengchao Cao
- Patent Examination Cooperation Jiangsu Center of the Patent Office, State Intellectual Property Office of the PRC , Suzhou 215163 , China
| | - Yihu Wang
- Solution Department , Jiangsu Rotam Chemistry Co., Ltd. , Suzhou 215301 , China
| | - Guonian Zhu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology , Zhejiang University , Hangzhou 310058 , China
| | - Mengcen Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology , Zhejiang University , Hangzhou 310058 , China
| |
Collapse
|
13
|
Hashidoko Y. Studies on the metabolic regulation of denitrifying bacteria and phytopathogenic microorganisms using chemical agents found in chemical ecology-based phenomena. JOURNAL OF PESTICIDE SCIENCE 2018; 43:47-54. [PMID: 30363125 PMCID: PMC6140671 DOI: 10.1584/jpestics.j17-04] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/16/2017] [Indexed: 05/27/2023]
Abstract
An interaction between two different living creatures is often mediated by a chemical substance, along with metabolic or morphological differentiation. Such phenomenon-based investigation of chemical substances sometimes leads to the discovery of a novel signaling substance associated with biological pest control, including pinpoint regulation of fundamental metabolisms. In studies on the metabolic regulation of denitrifying bacteria and phytopathogenic microorganisms, such chemicals linked to the introduction of new ideas and unique approaches for biorational pest controls are described.
Collapse
Affiliation(s)
- Yasuyuki Hashidoko
- Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo 060–8589, Japan
| |
Collapse
|
14
|
Genome Sequence of Burkholderia plantarii ZJ171, a Tropolone-Producing Bacterial Pathogen Responsible for Rice Seedling Blight. GENOME ANNOUNCEMENTS 2016; 4:4/6/e01318-16. [PMID: 27932643 PMCID: PMC5146435 DOI: 10.1128/genomea.01318-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Burkholderia plantarii is the causal agent of rice seedling blight. Here, we report the draft genome sequence of B. plantarii, which contains 8,020,831 bp, with a G+C content of 68.66% and a predicted 7,688 coding sequences. The annotated genome sequence will provide further insight into its pathogenicity.
Collapse
|
15
|
Wei P, Liu Y, Li W, Qian Y, Nie Y, Kim D, Wang M. Metabolic and Dynamic Profiling for Risk Assessment of Fluopyram, a Typical Phenylamide Fungicide Widely Applied in Vegetable Ecosystem. Sci Rep 2016; 6:33898. [PMID: 27654708 PMCID: PMC5031996 DOI: 10.1038/srep33898] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 09/06/2016] [Indexed: 01/07/2023] Open
Abstract
Fluopyram, a typical phenylamide fungicide, was widely applied to protect fruit vegetables from fungal pathogens-responsible yield loss. Highly linked to the ecological and dietary risks, its residual and metabolic profiles in the fruit vegetable ecosystem still remained obscure. Here, an approach using modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) extraction combined with GC-MS/MS analysis was developed to investigate fluopyram fate in the typical fruit vegetables including tomato, cucumber, pepper under the greenhouse environment. Fluopyram dissipated in accordance with the first-order rate dynamics equation with the maximum half-life of 5.7 d. Cleveage of fluopyram into 2-trifluoromethyl benzamide and subsequent formation of 3-chloro-5-(trifluoromethyl) pyridine-2-acetic acid and 3-chloro-5-(trifluoromethyl) picolinic acid was elucidated to be its ubiquitous metabolic pathway. Moreover, the incurrence of fluopyram at the pre-harvest interval (PHI) of 7-21 d was between 0.0108 and 0.1603 mg/kg, and the Hazard Quotients (HQs) were calculated to be less than 1, indicating temporary safety on consumption of the fruit vegetables incurred with fluopyram, irrespective of the uncertain toxicity of the metabolites. Taken together, our findings reveal the residual essential of fluopyram in the typical agricultural ecosystem, and would advance the further insight into ecological risk posed by this fungicide associated with its metabolites.
Collapse
Affiliation(s)
- Peng Wei
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yanan Liu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou 310058, China
| | - Wenzhuo Li
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yuan Qian
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yanxia Nie
- South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Guangzhou 510650, China
| | - Dongyeop Kim
- Biofilm Research Labs, Divisions of Pediatric Dentistry & Community Oral Health, University of Pennsylvania, PA 19104, USA
| | - Mengcen Wang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
16
|
Identification of the Three Genes Involved in Controlling Production of a Phytotoxin Tropolone in Burkholderia plantarii. J Bacteriol 2016; 198:1604-1609. [PMID: 27002128 DOI: 10.1128/jb.01028-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 03/14/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Tropolone, a phytotoxin produced by Burkholderia plantarii, causes rice seedling blight. To identify genes involved in tropolone synthesis, we systematically constructed mutations in the genes encoding 55 histidine kinases and 72 response regulators. From the resulting defective strains, we isolated three mutants, KE1, KE2, and KE3, in which tropolone production was repressed. The deleted genes of these mutants were named troR1, troK, and troR2, respectively. The mutant strains did not cause rice seedling blight, and complementation experiments indicated that TroR1, TroK, and TroR2 were involved in the synthesis of tropolone in B. plantarii However, tropolone synthesis was repressed in the TroR1 D52A, TroK H253A, and TroR2 D46A site-directed mutants. These results suggest that the putative sensor kinase (TroK) and two response regulators (TroR1 and TroR2) control the production of tropolone in B. plantarii IMPORTANCE A two-component system is normally composed of a sensor histidine kinase (HK) and a cognate response regulator (RR) pair. In this study, HK (TroK) and two RRs (TroR1 and TroR2) were found to be involved in controlling tropolone production in B. plantarii These three genes may be part of a bacterial signal transduction network. Such networks are thought to exist in other bacteria to regulate phytotoxin production, as well as environmental adaptation and signal transduction.
Collapse
|
17
|
Burkholderia: an update on taxonomy and biotechnological potential as antibiotic producers. Appl Microbiol Biotechnol 2016; 100:5215-29. [PMID: 27115756 DOI: 10.1007/s00253-016-7520-x] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/29/2016] [Accepted: 03/31/2016] [Indexed: 02/02/2023]
Abstract
Burkholderia is an incredibly diverse and versatile Gram-negative genus, within which over 80 species have been formally named and multiple other genotypic groups likely represent new species. Phylogenetic analysis based on the 16S rRNA gene sequence and core genome ribosomal multilocus sequence typing analysis indicates the presence of at least three major clades within the genus. Biotechnologically, Burkholderia are well-known for their bioremediation and biopesticidal properties. Within this review, we explore the ability of Burkholderia to synthesise a wide range of antimicrobial compounds ranging from historically characterised antifungals to recently described antibacterial antibiotics with activity against multiresistant clinical pathogens. The production of multiple Burkholderia antibiotics is controlled by quorum sensing and examples of quorum sensing pathways found across the genus are discussed. The capacity for antibiotic biosynthesis and secondary metabolism encoded within Burkholderia genomes is also evaluated. Overall, Burkholderia demonstrate significant biotechnological potential as a source of novel antibiotics and bioactive secondary metabolites.
Collapse
|
18
|
Wang M, Tachibana S, Murai Y, Li L, Lau SYL, Cao M, Zhu G, Hashimoto M, Hashidoko Y. Indole-3-Acetic Acid Produced by Burkholderia heleia Acts as a Phenylacetic Acid Antagonist to Disrupt Tropolone Biosynthesis in Burkholderia plantarii. Sci Rep 2016; 6:22596. [PMID: 26935539 PMCID: PMC4776283 DOI: 10.1038/srep22596] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/17/2016] [Indexed: 01/11/2023] Open
Abstract
Burkholderia heleia PAK1-2 is a potent biocontrol agent isolated from rice rhizosphere, as it prevents bacterial rice seedling blight disease caused by Burkholderia plantarii. Here, we isolated a non-antibacterial metabolite from the culture fluid of B. heleia PAK1-2 that was able to suppress B. plantarii virulence and subsequently identified as indole-3-acetic acid (IAA). IAA suppressed the production of tropolone in B. plantarii in a dose-dependent manner without any antibacterial and quorum quenching activity, suggesting that IAA inhibited steps of tropolone biosynthesis. Consistent with this, supplementing cultures of B. plantarii with either L-[ring-2H5]phenylalanine or [ring-2H2~5]phenylacetic acid revealed that phenylacetic acid (PAA), which is the dominant metabolite during the early growth stage, is a direct precursor of tropolone. Exposure of B. plantarii to IAA suppressed production of both PAA and tropolone. These data particularly showed that IAA produced by B. heleia PAK1-2 disrupts tropolone production during bioconversion of PAA to tropolone via the ring-rearrangement on the phenyl group of the precursor to attenuate the virulence of B. plantarii. B. heleia PAK1-2 is thus likely a microbial community coordinating bacterium in rhizosphere ecosystems, which never eliminates phytopathogens but only represses production of phytotoxins or bacteriocidal substances.
Collapse
Affiliation(s)
- Mengcen Wang
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan.,Institute of Pesticide and Environmental Toxicology, Zhejiang University, No. 268 Kaixuan Road, Hangzhou 310029, China
| | - Seiji Tachibana
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan
| | - Yuta Murai
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan.,Frontier Research Center for Post-Genome Science and Technology, Faculty of Advanced Life Sciences, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Li Li
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan
| | - Sharon Yu Ling Lau
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan
| | - Mengchao Cao
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, No. 268 Kaixuan Road, Hangzhou 310029, China
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, No. 268 Kaixuan Road, Hangzhou 310029, China
| | - Makoto Hashimoto
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan
| | - Yasuyuki Hashidoko
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan
| |
Collapse
|
19
|
Naughton LM, An SQ, Hwang I, Chou SH, He YQ, Tang JL, Ryan RP, Dow JM. Functional and genomic insights into the pathogenesis of B
urkholderia
species to rice. Environ Microbiol 2016; 18:780-90. [DOI: 10.1111/1462-2920.13189] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/10/2015] [Accepted: 12/13/2015] [Indexed: 02/05/2023]
Affiliation(s)
- Lynn M. Naughton
- School of Microbiology; Biosciences Institute; University College Cork; Cork Ireland
| | - Shi-qi An
- Division of Molecular Microbiology; College of Life Sciences; University of Dundee; Dundee UK
| | - Ingyu Hwang
- Institute of Biochemistry and Department of Agricultural Biotechnology; Seoul National University; Seoul 151-921 South Korea
| | - Shan-Ho Chou
- National Chung Hsing University Biotechnology Center; National Chung Hsing University; Taichung 40227 Taiwan
| | - Yong-Qiang He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources; The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering; College of Life Science and Technology; Guangxi University; 100 Daxue Road Nanning Guangxi 530004 China
| | - Ji-Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources; The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering; College of Life Science and Technology; Guangxi University; 100 Daxue Road Nanning Guangxi 530004 China
| | - Robert P. Ryan
- Division of Molecular Microbiology; College of Life Sciences; University of Dundee; Dundee UK
| | - J. Maxwell Dow
- School of Microbiology; Biosciences Institute; University College Cork; Cork Ireland
| |
Collapse
|
20
|
Bigirimana VDP, Hua GKH, Nyamangyoku OI, Höfte M. Rice Sheath Rot: An Emerging Ubiquitous Destructive Disease Complex. FRONTIERS IN PLANT SCIENCE 2015; 6:1066. [PMID: 26697031 PMCID: PMC4675855 DOI: 10.3389/fpls.2015.01066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/16/2015] [Indexed: 05/27/2023]
Abstract
Around one century ago, a rice disease characterized mainly by rotting of sheaths was reported in Taiwan. The causal agent was identified as Acrocylindrium oryzae, later known as Sarocladium oryzae. Since then it has become clear that various other organisms can cause similar disease symptoms, including Fusarium sp. and fluorescent pseudomonads. These organisms have in common that they produce a range of phytotoxins that induce necrosis in plants. The same agents also cause grain discoloration, chaffiness, and sterility and are all seed-transmitted. Rice sheath rot disease symptoms are found in all rice-growing areas of the world. The disease is now getting momentum and is considered as an important emerging rice production threat. The disease can lead to variable yield losses, which can be as high as 85%. This review aims at improving our understanding of the disease etiology of rice sheath rot and mainly deals with the three most reported rice sheath rot pathogens: S. oryzae, the Fusarium fujikuroi complex, and Pseudomonas fuscovaginae. Causal agents, pathogenicity determinants, interactions among the various pathogens, epidemiology, geographical distribution, and control options will be discussed.
Collapse
Affiliation(s)
- Vincent de P. Bigirimana
- Laboratory of Phytopathology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent UniversityGhent, Belgium
- Department of Crop Science, School of Agriculture, Rural Development and Agricultural Economics, College of Agriculture, Animal Science and Veterinary Medicine, University of RwandaMusanze, Rwanda
| | - Gia K. H. Hua
- Laboratory of Phytopathology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent UniversityGhent, Belgium
| | - Obedi I. Nyamangyoku
- Department of Crop Science, School of Agriculture, Rural Development and Agricultural Economics, College of Agriculture, Animal Science and Veterinary Medicine, University of RwandaMusanze, Rwanda
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent UniversityGhent, Belgium
| |
Collapse
|