1
|
Zhang X, Tian L, Majumdar A, Scheller EL. Function and Regulation of Bone Marrow Adipose Tissue in Health and Disease: State of the Field and Clinical Considerations. Compr Physiol 2024; 14:5521-5579. [PMID: 39109972 PMCID: PMC11725182 DOI: 10.1002/cphy.c230016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Bone marrow adipose tissue (BMAT) is a metabolically and clinically relevant fat depot that exists within bone. Two subtypes of BMAT, regulated and constitutive, reside in hematopoietic-rich red marrow and fatty yellow marrow, respectively, and exhibit distinct characteristics compared to peripheral fat such as white and brown adipose tissues. Bone marrow adipocytes (BMAds) are evolutionally preserved in most vertebrates, start development after birth and expand throughout life, and originate from unique progenitor populations that control bone formation and hematopoiesis. Mature BMAds also interact closely with other cellular components of the bone marrow niche, serving as a nearby energy reservoir to support the skeletal system, a signaling hub that contributes to both local and systemic homeostasis, and a final fuel reserve for survival during starvation. Though BMAT and bone are often inversely correlated, more BMAT does not always mean less bone, and the prevention of BMAT expansion as a strategy to prevent bone loss remains questionable. BMAT adipogenesis and lipid metabolism are regulated by the nervous systems and a variety of circulating hormones. This contributes to the plasticity of BMAT, including BMAT expansion in common physiological or pathological conditions, and BMAT catabolism under certain extreme circumstances, which are often associated with malnutrition and/or systemic inflammation. Altogether, this article provides a comprehensive overview of the local and systemic functions of BMAT and discusses the regulation and plasticity of this unique adipose tissue depot in health and disease. © 2024 American Physiological Society. Compr Physiol 14:5521-5579, 2024.
Collapse
Affiliation(s)
- Xiao Zhang
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Linda Tian
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Anurag Majumdar
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Erica L. Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Coco-Martin RM, Pastor-Idoate S, Pastor JC. Cell Replacement Therapy for Retinal and Optic Nerve Diseases: Cell Sources, Clinical Trials and Challenges. Pharmaceutics 2021; 13:pharmaceutics13060865. [PMID: 34208272 PMCID: PMC8230855 DOI: 10.3390/pharmaceutics13060865] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/15/2022] Open
Abstract
The aim of this review was to provide an update on the potential of cell therapies to restore or replace damaged and/or lost cells in retinal degenerative and optic nerve diseases, describing the available cell sources and the challenges involved in such treatments when these techniques are applied in real clinical practice. Sources include human fetal retinal stem cells, allogenic cadaveric human cells, adult hippocampal neural stem cells, human CNS stem cells, ciliary pigmented epithelial cells, limbal stem cells, retinal progenitor cells (RPCs), human pluripotent stem cells (PSCs) (including both human embryonic stem cells (ESCs) and human induced pluripotent stem cells (iPSCs)) and mesenchymal stem cells (MSCs). Of these, RPCs, PSCs and MSCs have already entered early-stage clinical trials since they can all differentiate into RPE, photoreceptors or ganglion cells, and have demonstrated safety, while showing some indicators of efficacy. Stem/progenitor cell therapies for retinal diseases still have some drawbacks, such as the inhibition of proliferation and/or differentiation in vitro (with the exception of RPE) and the limited long-term survival and functioning of grafts in vivo. Some other issues remain to be solved concerning the clinical translation of cell-based therapy, including (1) the ability to enrich for specific retinal subtypes; (2) cell survival; (3) cell delivery, which may need to incorporate a scaffold to induce correct cell polarization, which increases the size of the retinotomy in surgery and, therefore, the chance of severe complications; (4) the need to induce a localized retinal detachment to perform the subretinal placement of the transplanted cell; (5) the evaluation of the risk of tumor formation caused by the undifferentiated stem cells and prolific progenitor cells. Despite these challenges, stem/progenitor cells represent the most promising strategy for retinal and optic nerve disease treatment in the near future, and therapeutics assisted by gene techniques, neuroprotective compounds and artificial devices can be applied to fulfil clinical needs.
Collapse
Affiliation(s)
- Rosa M. Coco-Martin
- Instituto de Oftalmobiologia Aplicada (IOBA), Medical School, Universidad de Valladolid, 47011 Valladolid, Spain; (S.P.-I.); (J.C.P.)
- National Institute of Health Carlos III (ISCIII), (RETICS) Cooperative Health Network for Research in Ophthalmology (Oftared), 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-983423559
| | - Salvador Pastor-Idoate
- Instituto de Oftalmobiologia Aplicada (IOBA), Medical School, Universidad de Valladolid, 47011 Valladolid, Spain; (S.P.-I.); (J.C.P.)
- National Institute of Health Carlos III (ISCIII), (RETICS) Cooperative Health Network for Research in Ophthalmology (Oftared), 28040 Madrid, Spain
- Department of Ophthalmology, Hospital Clinico Universitario of Valladolid, 47003 Valladolid, Spain
| | - Jose Carlos Pastor
- Instituto de Oftalmobiologia Aplicada (IOBA), Medical School, Universidad de Valladolid, 47011 Valladolid, Spain; (S.P.-I.); (J.C.P.)
- National Institute of Health Carlos III (ISCIII), (RETICS) Cooperative Health Network for Research in Ophthalmology (Oftared), 28040 Madrid, Spain
- Department of Ophthalmology, Hospital Clinico Universitario of Valladolid, 47003 Valladolid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Fundacion del Instituto de Estudios de Ciencias de la Salud de Castilla y León (ICSCYL), 42002 Soria, Spain
| |
Collapse
|
3
|
PAI-1 inhibition by simvastatin as a positive adjuvant in cell therapy. Mol Biol Rep 2019; 46:1511-1517. [DOI: 10.1007/s11033-018-4562-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/07/2018] [Indexed: 01/05/2023]
|
4
|
McNeill B, Ostojic A, Rayner KJ, Ruel M, Suuronen EJ. Collagen biomaterial stimulates the production of extracellular vesicles containing microRNA-21 and enhances the proangiogenic function of CD34 + cells. FASEB J 2018; 33:4166-4177. [PMID: 30526047 DOI: 10.1096/fj.201801332r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
CD34+ cells are promising for revascularization therapy, but their clinical use is limited by low cell counts, poor engraftment, and reduced function after transplantation. In this study, a collagen type I biomaterial was used to expand and enhance the function of human peripheral blood CD34+ cells, and potential underlying mechanisms were examined. Compared to the fibronectin control substrate, biomaterial-cultured CD34+ cells from healthy donors had enhanced proliferation, migration toward VEGF, angiogenic potential, and increased secretion of CD63+CD81+ extracellular vesicles (EVs). In the biomaterial-derived EVs, greater levels of the angiogenic microRNAs (miRs), miR-21 and -210, were detected. Notably, biomaterial-cultured CD34+ cells had reduced mRNA and protein levels of Sprouty (Spry)1, which is an miR-21 target and negative regulator of endothelial cell proliferation and angiogenesis. Similar to the results of healthy donor cells, biomaterial culture increased miR-21 and -210 expression in CD34+ cells from patients who underwent coronary artery bypass surgery, which also exhibited improved VEGF-mediated migration and angiogenic capacity. Therefore, collagen biomaterial culture may be useful for expanding the number and enhancing the function of CD34+ cells in patients, possibly mediated through suppression of Spry1 activity by EV-derived miR-21. These results may provide a strategy to enhance the therapeutic potency of CD34+ cells for vascular regeneration.-McNeill, B., Ostojic, A., Rayner, K. J., Ruel, M., Suuronen, E. J. Collagen biomaterial stimulates the production of extracellular vesicles containing microRNA-21 and enhances the proangiogenic function of CD34+ cells.
Collapse
Affiliation(s)
- Brian McNeill
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Aleksandra Ostojic
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Katey J Rayner
- Atherosclerosis, Genomics, and Cell Biology Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Marc Ruel
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Erik J Suuronen
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
5
|
Duan Y, Beli E, Li Calzi S, Quigley JL, Miller RC, Moldovan L, Feng D, Salazar TE, Hazra S, Al-Sabah J, Chalam KV, Phuong Trinh TL, Meroueh M, Markel TA, Murray MC, Vyas RJ, Boulton ME, Parsons-Wingerter P, Oudit GY, Obukhov AG, Grant MB. Loss of Angiotensin-Converting Enzyme 2 Exacerbates Diabetic Retinopathy by Promoting Bone Marrow Dysfunction. Stem Cells 2018; 36:1430-1440. [PMID: 29761600 DOI: 10.1002/stem.2848] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/01/2018] [Accepted: 04/22/2018] [Indexed: 01/20/2023]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is the primary enzyme of the vasoprotective axis of the renin angiotensin system (RAS). We tested the hypothesis that loss of ACE2 would exacerbate diabetic retinopathy by promoting bone marrow dysfunction. ACE2-/y were crossed with Akita mice, a model of type 1 diabetes. When comparing the bone marrow of the ACE2-/y -Akita mice to that of Akita mice, we observed a reduction of both short-term and long-term repopulating hematopoietic stem cells, a shift of hematopoiesis toward myelopoiesis, and an impairment of lineage- c-kit+ hematopoietic stem/progenitor cell (HS/PC) migration and proliferation. Migratory and proliferative dysfunction of these cells was corrected by exposure to angiotensin-1-7 (Ang-1-7), the protective peptide generated by ACE2. Over the duration of diabetes examined, ACE2 deficiency led to progressive reduction in electrical responses assessed by electroretinography and to increases in neural infarcts observed by fundus photography. Compared with Akita mice, ACE2-/y -Akita at 9-months of diabetes showed an increased number of acellular capillaries indicative of more severe diabetic retinopathy. In diabetic and control human subjects, CD34+ cells, a key bone marrow HS/PC population, were assessed for changes in mRNA levels for MAS, the receptor for Ang-1-7. Levels were highest in CD34+ cells from diabetics without retinopathy. Higher serum Ang-1-7 levels predicted protection from development of retinopathy in diabetics. Treatment with Ang-1-7 or alamandine restored the impaired migration function of CD34+ cells from subjects with retinopathy. These data support that activation of the protective RAS within HS/PCs may represents a therapeutic strategy for prevention of diabetic retinopathy. Stem Cells 2018;36:1430-1440.
Collapse
Affiliation(s)
- Yaqian Duan
- Department of Cellular and Integrative Physiology, Jacksonville, Florida, USA.,Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Jacksonville, Florida, USA
| | - Eleni Beli
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Jacksonville, Florida, USA
| | - Sergio Li Calzi
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Jacksonville, Florida, USA.,Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Judith L Quigley
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Jacksonville, Florida, USA
| | - Rehae C Miller
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Jacksonville, Florida, USA
| | - Leni Moldovan
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Jacksonville, Florida, USA
| | - Dongni Feng
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Jacksonville, Florida, USA
| | - Tatiana E Salazar
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Jacksonville, Florida, USA
| | - Sugata Hazra
- Department of Biological Sciences and Bioengineering, IIT Kanpur, Kanpur, India
| | - Jude Al-Sabah
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Jacksonville, Florida, USA
| | - Kakarla V Chalam
- Department of Ophthalmology, University of Florida, Jacksonville, Florida, USA
| | - Thao Le Phuong Trinh
- Department of Cellular and Integrative Physiology, Jacksonville, Florida, USA.,Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Jacksonville, Florida, USA
| | - Marya Meroueh
- Department of Cellular and Integrative Physiology, Jacksonville, Florida, USA
| | - Troy A Markel
- Riley Hospital for Children, Pediatric Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Matthew C Murray
- Space Life Sciences Research Branch, NASA Ames Research Center, Moffett Field, California, USA
| | - Ruchi J Vyas
- Carl Zeiss Meditec, Inc., Dublin, California, USA
| | - Michael E Boulton
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Jacksonville, Florida, USA.,Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Gavin Y Oudit
- Department of Medicine, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Alexander G Obukhov
- Department of Cellular and Integrative Physiology, Jacksonville, Florida, USA
| | - Maria B Grant
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Jacksonville, Florida, USA.,Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
6
|
Cole-Jeffrey CT, Pepine CJ, Katovich MJ, Grant MB, Raizada MK, Hazra S. Beneficial Effects of Angiotensin-(1-7) on CD34+ Cells From Patients With Heart Failure. J Cardiovasc Pharmacol 2018; 71:155-159. [PMID: 29140957 PMCID: PMC5839943 DOI: 10.1097/fjc.0000000000000556] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The dysfunctional nature of CD34 cells from patients with heart failure (HF) may make them unsuitable for autologous stem-cell therapy. In view of evidence that the vasoprotective axis of the renin-angiotensin system (RAS) improves CD34 cell functions, we hypothesized that CD34 cells from patients with HF will be dysfunctional and that angiotensin-(1-7) [Ang-(1-7)] would improve their function. Peripheral blood was collected from New York Heart Association class II-IV patients with HF (n = 31) and reference subjects (n = 16). CD34 cell numbers from patients with HF were reduced by 47% (P < 0.05) and also displayed 76% reduction in migratory capacity and 56% (P < 0.05) lower production of nitric oxide. These alterations were associated with increases in RAS genes angiotensin-converting enzyme and AT2R (595%, P < 0.05) mRNA levels and 80% and 85% decreases in angiotensin-converting enzyme 2 and Mas mRNA levels, respectively. Treatment with Ang-(1-7) enhanced CD34 cell function through increased migratory potential and nitric oxide production, and reduced reactive oxygen species generation. These data show that HF CD34 cells are dysfunctional, and Ang-(1-7) improves their functions. This suggests that activation of the vasoprotective axis of the RAS may hold therapeutic potential for autologous stem-cell therapy in patients with HF.
Collapse
Affiliation(s)
- Colleen T. Cole-Jeffrey
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Carl J. Pepine
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | | | - Maria B. Grant
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mohan K. Raizada
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Sugata Hazra
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
7
|
Behl T, Velpandian T, Kotwani A. Role of altered coagulation-fibrinolytic system in the pathophysiology of diabetic retinopathy. Vascul Pharmacol 2017; 92:1-5. [PMID: 28366840 DOI: 10.1016/j.vph.2017.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/28/2017] [Accepted: 03/24/2017] [Indexed: 01/28/2023]
Abstract
The implications of altered coagulation-fibrinolytic system in the pathophysiology of several vascular disorders, such as stroke and myocardial infarction, have been well researched upon and established. However, its role in the progression of diabetic retinopathy has not been explored much. Since a decade, it is known that hyperglycemia is associated with a hypercoagulated state and the various impairments it causes are well acknowledged as independent risk factors for the development of cardiovascular diseases. But recent studies suggest that the hypercoagulative state and diminished fibrinolytic responses might also alter retinal homeostasis and induce several deleterious molecular changes in retinal cells which aggravate the already existing hyperglycemia-induced pathological conditions and thereby lead to the progression of diabetic retinopathy. The major mediators of coagulation-fibrinolytic system whose concentration or activity get altered during hyperglycemia include fibrinogen, antithrombin-III (AT-III), plasminogen activator inhibitor-1 (PAI-1) and von Willebrand factor (vWF). Inhibiting the pathways by which these altered mediators get involved in the pathophysiology of diabetic retinopathy can serve as potential targets for the development of an adjuvant novel alternative therapy for diabetic retinopathy.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India.
| | - Thirumurthy Velpandian
- Department of Ocular Pharmacology, Dr. Rajendra Prasad Centre for Ophthalmic Science, AIIMS, New Delhi, India
| | - Anita Kotwani
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| |
Collapse
|
8
|
Bhatwadekar AD, Yan Y, Stepps V, Hazra S, Korah M, Bartelmez S, Chaqour B, Grant MB. miR-92a Corrects CD34+ Cell Dysfunction in Diabetes by Modulating Core Circadian Genes Involved in Progenitor Differentiation. Diabetes 2015; 64:4226-37. [PMID: 26283734 PMCID: PMC4876760 DOI: 10.2337/db15-0521] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/10/2015] [Indexed: 12/16/2022]
Abstract
Autologous CD34(+) cells are widely used for vascular repair; however, in individuals with diabetes and microvascular disease these cells are dysfunctional. In this study, we examine expression of the clock genes Clock, Bmal, Per1, Per2, Cry1, and Cry2 in CD34(+) cells of diabetic and nondiabetic origin and determine the small encoding RNA (miRNA) profile of these cells. The degree of diabetic retinopathy (DR) was assessed. As CD34(+) cells acquired mature endothelial markers, they exhibit robust oscillations of clock genes. siRNA treatment of CD34(+) cells revealed Per2 as the only clock gene necessary to maintain the undifferentiated state of CD34(+) cells. Twenty-five miRNAs targeting clock genes were identified. Three of the miRNAs (miR-18b, miR-16, and miR-34c) were found only in diabetic progenitors. The expression of the Per2-regulatory miRNA, miR-92a, was markedly reduced in CD34(+) cells from individuals with DR compared with control subjects and patients with diabetes with no DR. Restoration of miR-92a levels in CD34(+) cells from patients with diabetes with DR reduced the inflammatory phenotype of these cells and the diabetes-induced propensity toward myeloid differentiation. Our studies suggest that restoring levels of miR-92a could enhance the usefulness of CD34(+) cells in autologous cell therapy.
Collapse
Affiliation(s)
| | - Yuanqing Yan
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL
| | | | - Sugata Hazra
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL
| | - Maria Korah
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL
| | | | - Brahim Chaqour
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY
| | - Maria B Grant
- Department of Ophthalmology, Indiana University, Indianapolis, IN
| |
Collapse
|
9
|
Bhatwadekar AD, Duan Y, Chakravarthy H, Korah M, Caballero S, Busik JV, Grant MB. Ataxia Telangiectasia Mutated Dysregulation Results in Diabetic Retinopathy. Stem Cells 2015; 34:405-17. [PMID: 26502796 DOI: 10.1002/stem.2235] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 08/28/2015] [Accepted: 09/22/2015] [Indexed: 01/17/2023]
Abstract
Ataxia telangiectasia mutated (ATM) acts as a defense against a variety of bone marrow (BM) stressors. We hypothesized that ATM loss in BM-hematopoietic stem cells (HSCs) would be detrimental to both HSC function and microvascular repair while sustained ATM would be beneficial in disease models of diabetes. Chronic diabetes represents a condition associated with HSC depletion and inadequate vascular repair. Gender mismatched chimeras of ATM(-/-) on wild type background were generated and a cohort were made diabetic using streptozotocin (STZ). HSCs from the STZ-ATM(-/-) chimeras showed (a) reduced self-renewal; (b) decreased long-term repopulation; (c) depletion from the primitive endosteal niche; (d) myeloid bias; and (e) accelerated diabetic retinopathy (DR). To further test the significance of ATM in hematopoiesis and diabetes, we performed microarrays on circulating angiogenic cells, CD34(+) cells, obtained from a unique cohort of human subjects with long-standing (>40 years duration) poorly controlled diabetes that were free of DR. Pathway analysis of microarrays in these individuals revealed DNA repair and cell-cycle regulation as the top networks with marked upregulation of ATM mRNA compared with CD34(+) cells from diabetics with DR. In conclusion, our study highlights using rodent models and human subjects, the critical role of ATM in microvascular repair in DR.
Collapse
Affiliation(s)
- Ashay D Bhatwadekar
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana, USA
- Department of Pharmacology and Therapeutics, University of Florida, Florida, USA
| | - Yaqian Duan
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana, USA
| | | | - Maria Korah
- Department of Pharmacology and Therapeutics, University of Florida, Florida, USA
| | - Sergio Caballero
- Department of Pharmacology and Therapeutics, University of Florida, Florida, USA
| | - Julia V Busik
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Maria B Grant
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana, USA
- Department of Pharmacology and Therapeutics, University of Florida, Florida, USA
| |
Collapse
|
10
|
Sun H, Mi X, Gao N, Yan C, Yu FS. Hyperglycemia-suppressed expression of Serpine1 contributes to delayed epithelial wound healing in diabetic mouse corneas. Invest Ophthalmol Vis Sci 2015; 56:3383-92. [PMID: 26024123 DOI: 10.1167/iovs.15-16606] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
PURPOSE Patients with diabetes mellitus (DM) are at an increased risk for developing corneal complications, including delayed wound healing. The purpose of this study was to characterize the expression and the function of Serpine1 and other components of urokinase plasminogen activator (uPA)-proteolytic system in delayed epithelial wound healing in diabetic mouse corneas. METHODS Mice of the strain C57BL/6 were induced to develop diabetes by streptozotocin, and wound-healing assays were performed 10 weeks afterward. Gene expression and/or distribution were assessed by real-time PCR, Western blotting, and/or immunohistochemistry. The role of Serpine1 in mediating epithelial wound closure was determined by subconjunctival injections of neutralizing antibodies in either normal or recombinant protein in diabetic corneas. Enzyme assay for matrix metalloproteinase (MMP)-3 was also performed. RESULTS The expressions of Serpine1 (PAI-1), Plau (uPA), and Plaur (uPA receptor) were upregulated in response to wounding, and these upregulations were significantly suppressed by hyperglycemia. In healing epithelia, Plau and Serpine1 were abundantly expressed at the leading edge of the healing epithelia of normal and, to a lesser extent, diabetic corneas. Inhibition of Serpine1 delayed epithelial wound closure in normal corneas, whereas recombinant Serpine1 accelerated it in diabetic corneas. The Plau and MMP-3 mRNA levels and MMP-3 enzymatic activities were correlated to Serpine1 levels and/or the rates of epithelial wound closure. CONCLUSIONS Serpine1 plays a role in mediating epithelial wound healing and its impaired expression may contribute to delayed wound healing in DM corneas. Hence, modulating uPA proteolytic pathway may represent a new approach for treating diabetic keratopathy.
Collapse
|
11
|
The Effect of PAI-1 4G/5G Polymorphism and Clinical Factors on Coronary Artery Occlusion in Myocardial Infarction. DISEASE MARKERS 2015; 2015:260101. [PMID: 26273123 PMCID: PMC4529953 DOI: 10.1155/2015/260101] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/06/2015] [Indexed: 01/16/2023]
Abstract
Objective. Data on the impact of PAI-1-675 4G/5G genotype for fibrinolysis during myocardial infarction are inconsistent. The aim of our study was to evaluate the association of clinical and genetic (PAI-1-675 4G/5G polymorphism) factors with coronary artery occlusion in patients with myocardial infarction. Materials and Methods. PAI-1-675 4G/5G detection was achieved by using Sanger sequencing in a sample of patients hospitalized for stent implantation due to myocardial infarction. We categorized the patients into two groups: patients with coronary artery occlusion and patients without coronary artery occlusion according to angiographic evaluation. Results. We identified n = 122 (32.4%) 4G/4G, n = 186 (49.5%) 4G/5G, and n = 68 (18.1%) 5G/5G PAI-1 genotype carriers. Univariate and multivariate analysis showed that only the 4G/5G genotype was associated with coronary artery occlusion (OR: 1.656 and 95% CI: 1.009–2.718, p = 0.046). Conclusions. Our results showed that carriers of PAI-1 4G/5G genotype with myocardial infarction have increased odds of coronary artery occlusion more than 1.6 times in comparison to the carriers of homozygous genotypes.
Collapse
|