1
|
Li J, Chen Y, Yang Y, Yang Y, Wu Z. High-level L-Gln compromises intestinal amino acid utilization efficiency and inhibits protein synthesis by GCN2/eIF2α/ATF4 signaling pathway in piglets fed low-crude protein diets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:480-487. [PMID: 39659992 PMCID: PMC11629563 DOI: 10.1016/j.aninu.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 12/12/2024]
Abstract
Gln, one of the most abundant amino acids (AA) in the body, performs a diverse range of fundamental physiological functions. However, information about the role of dietary Gln on AA levels, transporters, protein synthesis, and underlying mechanisms in vivo is scarce. The present study aimed to explore the effects of low-crude protein diet inclusion with differential doses of L-Gln on intestinal AA levels, transporters, protein synthesis, and potential mechanisms in weaned piglets. A total of 128 healthy weaned piglets (Landrace × Yorkshire) were randomly allocated into four treatments with four replicates. Pigs in the four groups were fed a low-crude protein diet containing 0%, 1%, 2%, or 3% L-Gln for 28 d. L-Gln administration markedly (linear, P < 0.05) increased Ala, Arg, Asn, Asp, Glu, Gln, His, Ile, Lys, Met, Orn, Phe, Ser, Thr, Tyr, and Val levels and promoted trypsin activity in the jejunal content of piglets. Moreover, L-Gln treatment significantly enhanced concentrations of colonic Gln and Trp, and serum Thr (linear, P < 0.01), and quadratically increased serum Lys and Phe levels (P < 0.05), and decreased plasma Glu, Ile, and Leu levels (linear, P < 0.05). Further investigation revealed that L-Gln administration significantly upregulated Atp1a1, Slc1a5, Slc3a2, Slc6a14, Slc7a5, Slc7a7, and Slc38a1 relative expressions in the jejunum (linear, P < 0.05). Additionally, dietary supplementation with L-Gln enhanced protein abundance of general control nonderepressible 2 (GCN2, P = 0.010), phosphorylated eukaryotic initiation factor 2 subunit alpha (eIF2α, P < 0.001), and activating transcription factor 4 (ATF4) in the jejunum of piglets (P = 0.008). These results demonstrated for the first time that a low crude protein diet with high-level L-Gln inclusion exhibited side effects on piglets. Specifically, 2% and 3% L-Gln administration exceeded the intestinal utilization capacity and compromised the jejunal AA utilization efficiency, which is independent of digestive enzyme activities. A high level of L-Gln supplementation would inhibit protein synthesis by GCN2/eIF2α/ATF4 signaling in piglets fed low-protein diets, which, in turn, upregulates certain AA transporters to maintain AA homeostasis.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Animal Nutrition and Feeding, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Yinfeng Chen
- State Key Laboratory of Animal Nutrition and Feeding, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Yang Yang
- State Key Laboratory of Animal Nutrition and Feeding, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition and Feeding, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feeding, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Larsen K, Callesen H. Developmental expression of CREB1 and NFATC2 in pig embryos. Mol Biol Rep 2023:10.1007/s11033-023-08501-6. [PMID: 37171550 DOI: 10.1007/s11033-023-08501-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND The CREB1 gene encodes the cAMP response element binding protein 1 (CREB1), a leucine zipper transcription factor that regulates cellular gene expression in response to elevated levels of intracellular cAMP. When activated by phosphorylation, CREB1 binds to the cAMP response element (CRE) of the promoters of its target genes. CREB1 is an essential component in many physiological processes, and its function is correlated to neurodevelopment, plasticity and cell survival, and learning and memory. The NFATC2 gene codes for the nuclear factor of activated T-cells 2 protein. The NFATC2 protein is a DNA-binding protein that functions as an inducer of gene transcription during immune response. METHODS AND RESULTS The aim of the present study was to examine the developmental expression of porcine CREB1 and NFACT2 transcripts. The expression of CREB1 and NFACT2 mRNA was examined by quantitative real-time RT-PCR. For the CREB1 transcript, we found significant reduction in transcript levels in the brain stem and basal ganglia during porcine embryo development, determined from day 60 to day 115 of gestation. In contrast, a significant increase in CREB1 mRNA was detected in the lungs during embryo development. No significant changes in the NFATC2 transcript were detected in porcine brain tissue during embryo development. CONCLUSIONS Differential CREB1 mRNA expression was found in pig brain tissues during embryo development.
Collapse
Affiliation(s)
- Knud Larsen
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, Aarhus C, DK-8000, Denmark.
| | - Henrik Callesen
- Henrik Callesen, Department of Animal and Veterinary Sciences, Blichers Allé 20, Tjele, DK-8830, Denmark
| |
Collapse
|
3
|
Larsen K, Heide-Jørgensen MP. Conservation of A-to-I RNA editing in bowhead whale and pig. PLoS One 2021; 16:e0260081. [PMID: 34882682 PMCID: PMC8659423 DOI: 10.1371/journal.pone.0260081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 11/02/2021] [Indexed: 01/18/2023] Open
Abstract
RNA editing is a post-transcriptional process in which nucleotide changes are introduced into an RNA sequence, many of which can contribute to proteomic sequence variation. The most common type of RNA editing, contributing to nearly 99% of all editing events in RNA, is A-to-I (adenosine-to-inosine) editing mediated by double-stranded RNA-specific adenosine deaminase (ADAR) enzymes. A-to-I editing at 'recoding' sites results in non-synonymous substitutions in protein-coding sequences. Here, we present studies of the conservation of A-to-I editing in selected mRNAs between pigs, bowhead whales, humans and two shark species. All examined mRNAs-NEIL1, COG3, GRIA2, FLNA, FLNB, IGFBP7, AZIN1, BLCAP, GLI1, SON, HTR2C and ADAR2 -showed conservation of A-to-I editing of recoding sites. In addition, novel editing sites were identified in NEIL1 and GLI1 in bowhead whales. The A-to-I editing site of human NEIL1 in position 242 was conserved in the bowhead and porcine homologues. A novel editing site was discovered in Tyr244. Differential editing was detected at the two adenosines in the NEIL1 242 codon in both pig and bowhead NEIL1 mRNAs in various tissues and organs. No conservation of editing of KCNB1 and EEF1A mRNAs was seen in bowhead whales. In silico analyses revealed conservation of five adenosines in ADAR2, some of which are subject to A-to-I editing in bowheads and pigs, and conservation of a regulatory sequence in GRIA2 mRNA that is responsible for recognition of the ADAR editing enzyme.
Collapse
Affiliation(s)
- Knud Larsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | | |
Collapse
|
4
|
Larsen K. The porcine cerebellin gene family. Gene 2021; 799:145852. [PMID: 34274480 DOI: 10.1016/j.gene.2021.145852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/13/2021] [Indexed: 11/18/2022]
Abstract
Cerebellins (CBLN1-4), together with C1qTNF proteins, belong to the CBLN subfamily of C1q proteins. Cerebellin-1 (CBLN1) is active in synapse formation and functions at the parallel fiber-Purkinje cell synapses. Cerebellins form tripartite complexes with neurexins and the glutamate-receptor-related proteins GluD1 and GluD2, playing a role as trans-synaptic cell-adhesion molecules that critically contribute to both synapse formation and functioning and brain development. In this study, I present a molecular characterization of the four porcine CBLN genes. Experimental data and in silico analyses collectively describes the gene structure, chromosomal localization, and expression of CBLN1-4. Two cDNAs encoding the cerebellins CBLN1 and CBLN3 were RT-PCR cloned and sequenced. The nucleotide sequence of the CBLN1 clone contains an open reading frame of 582 nucleotides and encodes a protein of 193 amino acids. The deduced amino acid of the porcine CBLN1 protein was 99% identical to both mouse CBLN1 and to human CBLN1. The deduced CBLN1 protein contains a putative signal sequence of 21 residues, two conserved cysteine residues, and C1q domain. The nucleotide sequence of the CBLN3 cDNA clone comprises an open reading frame of 618 nucleotides and encodes a protein of 205 amino acids. The deduced amino acid sequence of the porcine CBLN3 protein was 88% identical to mouse CBLN3 and 94% identical to human CBLN3. The amino terminal ends of both the CBLN1 and CBLN3 proteins contain three possible N-linked glycosylation sites. The genomic organization of both porcine CBLN1 and CBLN3 is very similar to those of their human counterparts. The expression analyses demonstrated that CBLN1 and CBLN3 transcripts are predominantly expressed in the cerebellum. The sequences of the porcine precerebellin genes and cDNAs were submitted to DDBJ/EMBL/GenBank under the following accession numbers: CBLN1 gene (GenBank ID: FJ621565), CBLN1 cDNA (GenBank ID: EF577504), CBLN3 gene (GenBank ID: FJ621566), CBLN3 cDNA (GenBank ID: EF577505) and CBLN4 cDNA (GenBank ID: FJ196070).
Collapse
Affiliation(s)
- Knud Larsen
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
5
|
Medina-Ortiz K, López-Alvarez D, Navia F, Hansen T, Fierro L, Castaño S. Identification of Na +/K +-ATPase α/β isoforms in Rhinella marina tissues by RNAseq and a molecular docking approach at the protein level to evaluate α isoform affinities for bufadienolides. Comp Biochem Physiol A Mol Integr Physiol 2021; 254:110906. [PMID: 33476762 DOI: 10.1016/j.cbpa.2021.110906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 12/24/2022]
Abstract
Na+/K+-ATPase (NKA) function is inhibited by Bufadienolides (BD), a group of cardiotonic steroids (CTS) primarily produced by anurans of the Bufonidae family, such as Rhinella marina. This study characterized the presence of α and β NKA subunit isoforms in R. marina via RNAseq in four tissues: oocytes, skin, heart, and skeletal muscle. Transcripts encoding three α-like isoforms (α1, α2, α3) and three β-like isoforms (β1, β2, β4) were identified. The amino acid sequence of α1-like isoform shared 99.4% identity with the α1 isoform previously published for R. marina. Sequences for α2, α3, and β4 from R. marina were previously unavailable. The first extracellular loop in the α2-like isoform in R. marina showed similar substitutions to those found in their susceptible homologues in other taxa (L/Q111T and S119T); in contrast, this same loop in α3-like isoform showed similar substitutions (Q111L and G120R) to those reported for toad-eating animals such as snakes, which suggests relatively lower affinity for CTS. Docking results showed that all three α-like isoforms identified in R. marina transcriptomes have low affinity to CTS compared to the susceptible α1 isoform of Sus scrofa (pig), with α1-like isoform being the most resistant. The tissue-specific RNAseq results showed the following expression of NKA α-like and β-like subunit isoforms: Oocytes expressed α1 and β1; skin α1, β1, and low levels of β2; heart α1, α3, and β1; skeletal muscle α1, β4, with low levels of α2, α3, and β1. R. marina could be used as an important model for future structural, functional and pharmacological studies of NKA and its isoforms.
Collapse
Affiliation(s)
- Katherine Medina-Ortiz
- Laboratorio de Herpetología y Toxinología, Department of Physiological Sciences, Universidad del Valle, Cali, Colombia.
| | - Diana López-Alvarez
- Laboratorio de Herpetología y Toxinología, Department of Physiological Sciences, Universidad del Valle, Cali, Colombia
| | - Felipe Navia
- Laboratorio de Herpetología y Toxinología, Department of Physiological Sciences, Universidad del Valle, Cali, Colombia
| | - Thomas Hansen
- Laboratorio de Herpetología y Toxinología, Department of Physiological Sciences, Universidad del Valle, Cali, Colombia
| | - Leonardo Fierro
- Laboratorio de Herpetología y Toxinología, Department of Physiological Sciences, Universidad del Valle, Cali, Colombia
| | - Santiago Castaño
- Laboratorio de Herpetología y Toxinología, Department of Physiological Sciences, Universidad del Valle, Cali, Colombia.
| |
Collapse
|
6
|
Larsen K, Bæk R, Sahin C, Kjær L, Christiansen G, Nielsen J, Farajzadeh L, Otzen DE. Molecular characteristics of porcine alpha-synuclein splicing variants. Biochimie 2020; 180:121-133. [PMID: 33152422 DOI: 10.1016/j.biochi.2020.10.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/05/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022]
Abstract
Alpha-synuclein (α-syn) is a 140 amino acid, intrinsically disordered protein with a potential role in neurotransmitter vesicle release. The protein is natively unfolded under physiological conditions, and is expressed predominantly in neural tissue. α-syn is associated with neuropathological conditions in Parkinson's disease, where the protein misfolds into oligomers and fibrils resulting in aggregates in Lewy bodies. Here we report the molecular cloning of SNCA cDNA encoding porcine α-syn and transcript variants hereof. Six transcripts coding for porcine α-syn are presented in the report, of which three result from exon skipping, generating in-frame splicing of coding exons 3 and 5. The splicing pattern of these alternative spliced variants is conserved between human and pig. All the observed in-frame deletions yield significantly shorter α-syn proteins compared with the 140 amino acid full-length protein. Expression analysis performed by real-time quantitative RT-PCR revealed a differential expression of the six transcript splicing variants in different pig organs and tissues. Common for all splicing variants, a very high transcript expression was detected in brain tissues and in spinal cord and very low or no expression outside the central nervous system. The porcine α-syn protein demonstrated markedly different biophysical characteristics compared with its human counterpart. No fibrillation of porcine α-syn was observed with the pig wild-type α-syn and A30P α-syn, and both variants show significantly reduced ability to bind to lipid vesicles. Overexpression of mutated porcine α-syn might recapitulate the human PD pathogenesis and lead to the identification of genetic modifiers of the disease.
Collapse
Affiliation(s)
- Knud Larsen
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, DK-8000, Aarhus C, Denmark.
| | - Rikke Bæk
- Department of Clinical Immunology, Aalborg University Hospital, Urbansgade 32, DK-9000, Aalborg, Denmark.
| | - Cagla Sahin
- Interdisciplinary Nanoscience Center and Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, DK-8000, Aarhus C, Denmark.
| | - Lars Kjær
- Interdisciplinary Nanoscience Center and Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, DK-8000, Aarhus C, Denmark.
| | - Gunna Christiansen
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000, Aarhus C, Denmark.
| | - Janni Nielsen
- Interdisciplinary Nanoscience Center and Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, DK-8000, Aarhus C, Denmark.
| | - Leila Farajzadeh
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, DK-8000, Aarhus C, Denmark.
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center and Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, DK-8000, Aarhus C, Denmark.
| |
Collapse
|
7
|
Mármol-Sánchez E, Quintanilla R, Jordana J, Amills M. An association analysis for 14 candidate genes mapping to meat quality quantitative trait loci in a Duroc pig population reveals that the ATP1A2 genotype is highly associated with muscle electric conductivity. Anim Genet 2019; 51:95-100. [PMID: 31633210 DOI: 10.1111/age.12864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2019] [Indexed: 01/14/2023]
Abstract
In previous GWAS carried out in a Duroc commercial line (Lipgen population), we detected on pig chromosomes 3, 4 and 14 several QTL for gluteus medius muscle redness (GM a*), electric conductivity in the longissimus dorsi muscle (LD CE) and vaccenic acid content in the LD muscle (LD C18:1 n - 7), respectively. We have genotyped, in the Lipgen population, 19 SNPs mapping to 14 genes located within these QTL. Subsequently, association analyses have been performed. After correction for multiple testing, two SNPs in the TGFBRAP1 (rs321173745) and SELENOI (rs330820437) genes were associated with GM a*, whereas ACADSB (rs81449951) and GPR26 (rs343087568) genotypes displayed significant associations with LD vaccenic content. Moreover, the polymorphisms located at the ATP1A2 (rs344748241), ATP8B2 (rs81382410) and CREB3L4 (rs321278469 and rs330133789) genes showed significant associations with LD CE. We made a second round of association analyses including the SNPs mentioned above as well as other SNPs located in the chromosomes to which they map. After performing a correction for multiple testing, the only association that remained significant at the chromosome-wide level was that between the ATP1A2 genotype and LD CE. From a functional point of view, this association is meaningful because this locus encodes a subunit of the Na+ /K+ -ATPase responsible for maintaining an electrochemical gradient across the plasma membrane.
Collapse
Affiliation(s)
- E Mármol-Sánchez
- Department of Animal Genetics, Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - R Quintanilla
- Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, Caldes de Montbui, 08140, Spain
| | - J Jordana
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - M Amills
- Department of Animal Genetics, Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain.,Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| |
Collapse
|
8
|
Differential expression and characterization of ATP1A1 exon17 gene by high resolution melting analysis and RT-PCR in Indian goats. Mol Biol Rep 2019; 46:5273-5286. [PMID: 31414310 DOI: 10.1007/s11033-019-04984-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/16/2019] [Indexed: 01/11/2023]
Abstract
The investigation was carried out to analyse the genetic polymorphism and gene expression of ATP1A1 gene in four different Indian goat breeds by using high resolution melting (HRM) and real time-PCR. ATPase is electro-genic ion pump which is maintains the balance of sodium and potassium ions in animal cells. The transport of Na+& K+ is variable at cellular level during extreme hot period. Therefore, susceptible and tolerant animals were selected based on the physiological responses during hot period. Blood samples were collected from individuals, DNA was isolated. The 300 bp fragment of ATP1A1 gene was amplified by PCR and HRM genotyping was performed. The melting curves were analysed, differential temperature-shift plot showed three different genotypes in all the analysed samples. Out of the 135 samples, the distribution percentages were 55.56% (AA/blue), 33.33% (AC/red) and 11.11% (CC/green). The sequence variation revealed a SNP at 143rd position (A>C). The nucleotide diversity was 0.695 ± 0.403, 0.732 ± 0.424, 0.662 ± 0.433 and 0.687 ± 0.398 in Barbari, Jamunapari, Jakharna and Sirohi, respectively. The respiration rate (RR) was significantly different (P < 0.05) between AA and AC (t = 1.875, df = 38) genotype and heart rate (HR) was significantly different (P < 0.05) between AA and CC genotype. The relative expression pattern of ATP1A1 in SNP variants and non-variants animal tissues showed 19.09 and 6.93 fold higher than control (non-variant), respectively. Jamunapari showed higher fold value of ATP1A1 gene in comparison to Barbari, Jakharna and Sirohi. However, the heat stress-susceptible phenotype had significantly higher gene expression than stress-tolerant in all the breeds. The variation may be used as a marker for selection on the basis of physiological parameters and expression of ATP1A1 gene in goats indicating the specificity of expression in each tissue.
Collapse
|
9
|
Molecular cloning and characterization of porcine Na⁺/K⁺-ATPase isoform α4. Biochimie 2019; 158:149-155. [PMID: 30633937 DOI: 10.1016/j.biochi.2019.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/05/2019] [Indexed: 11/23/2022]
Abstract
Na+/K+-ATPase is responsible for maintaining electrochemical gradients of Na+ and K+, which is essential for a variety of cellular functions including neuronal activity. The α-subunit of the Na+/K+-ATPase is composed of four different polypeptides (α1-α4) encoded by different genes. Na,K-ATPase α4, encoded by the ATP1A4 gene, is expressed in testis and in male germ cells of humans, rats and mice. The α4 polypeptide has an important role in sperm motility, and is essential for male fertility. Here we present the RT-PCR cloning and characterization of the porcine ATP1A4 cDNA coding for Na⁺/K⁺-ATPase polypeptide α4. The Na⁺/K⁺-ATPase polypeptide α4, consisting of 1030 amino acids, displays a high homology with its human counterpart (86%). Phylogenetic analysis demonstrated that porcine Na⁺/K⁺-ATPase polypeptide α4 is closely related to other mammalian counterparts. In addition, the genomic structure of the porcine ATP1A4 gene was determined, and the intron-exon organization was found to be similar to that of the human ATP1A4 gene. The promoter sequence for the porcine ATP1A4 gene was also identified. Investigation of the genetic variation in the porcine ATP1A4 gene revealed a missense A/G SNP in exon 18. This A/G polymorphism results in a substitution of a methionine to a glycine residue (M888G). A very high overall DNA methylation rate of the ATP1A4 gene, 70-80%, was observed in both brain and liver. Expression analysis demonstrated that the porcine ATP1A4 gene is predominantly expressed in testis. The sequence of the porcine ATP1A4 cDNA encoding the Na⁺/K⁺-ATPase α4 protein has been submitted to GenBank under the accession number GenBank Accession No. MG587082.
Collapse
|
10
|
Fan X, Ashraf UM, Drummond CA, Shi H, Zhang X, Kumarasamy S, Tian J. Characterization of a Long Non-Coding RNA, the Antisense RNA of Na/K-ATPase α1 in Human Kidney Cells. Int J Mol Sci 2018; 19:ijms19072123. [PMID: 30037072 PMCID: PMC6073804 DOI: 10.3390/ijms19072123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 01/19/2023] Open
Abstract
Non-coding RNAs are important regulators of protein-coding genes. The current study characterized an antisense long non-coding RNA, ATP1A1-AS1, which is located on the opposite strand of the Na/K-ATPase α1 gene. Our results show that four splice variants are expressed in human adult kidney cells (HK2 cells) and embryonic kidney cells (HEK293 cells). These variants can be detected in both cytosol and nuclear fractions. We also found that the inhibition of DNA methylation has a differential effect on the expression of ATP1A1-AS1 and its sense gene. To investigate the physiological role of this antisense gene, we overexpressed the ATP1A1-AS1 transcripts, and examined their effect on Na/K-ATPase expression and related signaling function in human kidney cells. The results showed that overexpression of the ATP1A1-AS1-203 transcript in HK2 cells reduced the Na/K-ATPase α1 (ATP1A1) gene expression by approximately 20% (p < 0.05), while reducing the Na/K-ATPase α1 protein synthesis by approximately 22% (p < 0.05). Importantly, overexpression of the antisense RNA transcript attenuated ouabain-induced Src activation in HK2 cells. It also inhibited the cell proliferation and potentiated ouabain-induced cell death. These results demonstrate that the ATP1A1-AS1 gene is a moderate negative regulator of Na/K-ATPase α1, and can modulate Na/K-ATPase-related signaling pathways in human kidney cells.
Collapse
Affiliation(s)
- Xiaoming Fan
- Department of Medicine, University of Toledo, Toledo, OH 43614, USA.
| | - Usman M Ashraf
- Department of Physiology and Pharmacology, Center for Hypertension and Personalized Medicine, University of Toledo, Toledo, OH 43614, USA.
| | - Christopher A Drummond
- Department of Medicine, University of Toledo, Toledo, OH 43614, USA.
- MPI Research, Mattawan, MI 49071, USA.
| | - Huilin Shi
- Department of Medicine, University of Toledo, Toledo, OH 43614, USA.
| | - Xiaolu Zhang
- Department of Medicine, University of Toledo, Toledo, OH 43614, USA.
| | - Sivarajan Kumarasamy
- Department of Physiology and Pharmacology, Center for Hypertension and Personalized Medicine, University of Toledo, Toledo, OH 43614, USA.
| | - Jiang Tian
- Department of Medicine, University of Toledo, Toledo, OH 43614, USA.
| |
Collapse
|
11
|
Dobretsov M, Hayar A, Kockara NT, Kozhemyakin M, Light KE, Patyal P, Pierce DR, Wight PA. A Transgenic Mouse Model to Selectively Identify α 3 Na,K-ATPase Expressing Cells in the Nervous System. Neuroscience 2018; 398:274-294. [PMID: 30031123 DOI: 10.1016/j.neuroscience.2018.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/06/2018] [Accepted: 07/11/2018] [Indexed: 10/28/2022]
Abstract
The α3 Na+,K+-ATPase (α3NKA) is one of four known α isoforms of the mammalian transporter. A deficiency in α3NKA is linked to severe movement control disorders. Understanding the pathogenesis of these disorders is limited by an incomplete knowledge of α3NKA expression in the brain as well as the challenges associated with identifying living cells that express the isoform for subsequent electrophysiological studies. To address this problem, transgenic mice were generated on the C57BL/6 genetic background, which utilize the mouse α3 subunit gene (Atp1a3) promoter to drive the expression of ZsGreen1 fluorescent protein. Consistent with published results on α3NKA distribution, a ZsGreen1 signal was detected in the brain, but not in the liver, with Atp1a3-ZsGreen1 transgenic mice. The intensity of ZsGreen1 fluorescence in neuronal cell bodies varied considerably in the brain, being highest in the brainstem, deep cerebellar and select thalamic nuclei, and relatively weak in cortical regions. Fluorescence was not detected in astrocytes or white matter areas. ZsGreen1-positive neurons were readily observed in fresh (unfixed) brain sections, which were amenable to patch-clamp recordings. Thus, the α3NKA-ZsGreen1 mouse model provides a powerful tool for studying the distribution and functional properties of α3NKA-expressing neurons in the brain.
Collapse
Affiliation(s)
- Maxim Dobretsov
- Department of Anesthesiology, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR, United States.
| | - Abdallah Hayar
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR, United States
| | - Neriman T Kockara
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR, United States
| | - Maxim Kozhemyakin
- Department of Neurology, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR, United States
| | - Kim E Light
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR, United States
| | - Pankaj Patyal
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR, United States
| | - Dwight R Pierce
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR, United States
| | - Patricia A Wight
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR, United States.
| |
Collapse
|
12
|
Larsen K, Kristensen KK, Callesen H. DNA methyltransferases and tRNA methyltransferase DNMT2 in developing pig brain - expression and promoter methylation. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Kaur R, Sharma A, Sodhi M, Swami SK, Sharma VL, Kumari P, Verma P, Mukesh M. Sequence characterization of alpha 1 isoform (ATP1A1) of Na+/K+-ATPase gene and expression characteristics of its major isoforms across tissues of riverine buffaloes (Bubalus bubalis). GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2017.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Abstract
The sodium and potassium gradients across the plasma membrane are used by animal cells for numerous processes, and the range of demands requires that the responsible ion pump, the Na,K-ATPase, can be fine-tuned to the different cellular needs. Therefore, several isoforms are expressed of each of the three subunits that make a Na,K-ATPase, the alpha, beta and FXYD subunits. This review summarizes the various roles and expression patterns of the Na,K-ATPase subunit isoforms and maps the sequence variations to compare the differences structurally. Mutations in the Na,K-ATPase genes encoding alpha subunit isoforms have severe physiological consequences, causing very distinct, often neurological diseases. The differences in the pathophysiological effects of mutations further underline how the kinetic parameters, regulation and proteomic interactions of the Na,K-ATPase isoforms are optimized for the individual cellular needs.
Collapse
Affiliation(s)
- Michael V Clausen
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhus, Denmark
| | - Florian Hilbers
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhus, Denmark
| | - Hanne Poulsen
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhus, Denmark
| |
Collapse
|
15
|
Chen C, Bu W, Ding H, Li Q, Wang D, Bi H, Guo D. Cytotoxic effect of zinc oxide nanoparticles on murine photoreceptor cells via potassium channel block and Na + /K + -ATPase inhibition. Cell Prolif 2017; 50. [PMID: 28217951 DOI: 10.1111/cpr.12339] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/20/2017] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE Zinc oxide (ZnO) nanoparticles can exhibit toxicity towards organisms and oxidative stress is often hypothesized to be one of the most important factors. Nevertheless, the detailed mechanism of toxicity-induced by ZnO nanoparticles has not been completely addressed. The present study aimed to investigate the toxic effects of ZnO nanoparticles on the expression and activity of Na+ /K+ -ATPase and on potassium channel block. MATERIALS AND METHODS In the present study, we explored the cytotoxic effect of ZnO nanoparticles on murine photoreceptor cells using lactate dehydrogenase (LDH) release assay, reactive oxygen species (ROS) determination, mitochondrial membrane potential (Δφm) measurement, delayed rectifier potassium current recordings and Na+ /K+ -ATPase expression and activity monitoring. RESULTS The results indicated that ZnO nanoparticles could increase the LDH release in medium, aggravate the ROS level within cells, collapse the Δφm, block the delayed rectifier potassium current, and attenuate the expressions of Na+ /K+ -ATPase at both mRNA and protein levels and its activity, and thus exert cytotoxic effects on murine photoreceptor cells, finally damaging target cells. CONCLUSION Our findings will facilitate the understanding of the mechanism involved in ZnO nanoparticle-induced cytotoxicity in murine photoreceptor cells via potassium channel block and Na+ /K+ -ATPase inhibition.
Collapse
Affiliation(s)
- Chao Chen
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.,Department of Ophthalmology, The First People's Hospital of Jining, Jining, Shandong Province, China
| | - Wenjuan Bu
- Department of Ophthalmology, The First People's Hospital of Jining, Jining, Shandong Province, China
| | - Hongyan Ding
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian, Jiangsu Province, China
| | - Qin Li
- Department of Integration of Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong Province, China
| | - Dabo Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Hongsheng Bi
- Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Dadong Guo
- Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| |
Collapse
|
16
|
A-to-I RNA editing of the IGFBP7 transcript increases during aging in porcine brain tissues. Biochem Biophys Res Commun 2016; 479:596-601. [DOI: 10.1016/j.bbrc.2016.09.125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 09/24/2016] [Indexed: 01/28/2023]
|
17
|
Liu M, Feng LX, Sun P, Liu W, Wu WY, Jiang BH, Yang M, Hu LH, Guo DA, Liu X. A Novel Bufalin Derivative Exhibited Stronger Apoptosis-Inducing Effect than Bufalin in A549 Lung Cancer Cells and Lower Acute Toxicity in Mice. PLoS One 2016; 11:e0159789. [PMID: 27459387 PMCID: PMC4961401 DOI: 10.1371/journal.pone.0159789] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 07/06/2016] [Indexed: 12/22/2022] Open
Abstract
BF211 is a synthetic molecule derived from bufalin (BF). The apoptosis-inducing effect of BF211 was stronger than that of BF while the acute toxicity of BF211 was much lower than that of BF. BF211 exhibited promising concentration-dependent anti-cancer effects in nude mice inoculated with A549 cells in vivo. The growth of A549 tumor xenografts was almost totally blocked by treatment with BF211 at 6 mg/kg. Notably, BF and BF211 exhibited differences in their binding affinity and kinetics to recombinant proteins of the α subunits of Na+/K+-ATPase. Furthermore, there was a difference in the effects of BF or BF211 on inhibiting the activity of porcine cortex Na+/K+-ATPase and in their time-dependent effects on intracellular Ca2+ levels in A549 cells. The time-dependent effects of BF or BF211 on the activation of Src, which was mediated by the Na+/K+-ATPase signalosome, in A549 cells were also different. Both BF and BF211 could induce apoptosis-related cascades, such as activation of caspase-3 and the cleavage of PARP (poly ADP-ribose polymerase) in A549 cells, in a concentration-dependent manner; however, the effects of BF211 on apoptosis-related cascades was stronger than that of BF. The results of the present study supported the importance of binding to the Na+/K+-ATPase α subunits in the mechanism of cardiac steroids and also suggested the possibility of developing new cardiac steroids with a stronger anti-cancer activity and lower toxicity as new anti-cancer agents.
Collapse
Affiliation(s)
- Miao Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Li-Xing Feng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Peng Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Wang Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Wan-Ying Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Bao-Hong Jiang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Min Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Li-Hong Hu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
- * E-mail: (LH); (DG); (XL)
| | - De-An Guo
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
- * E-mail: (LH); (DG); (XL)
| | - Xuan Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
- * E-mail: (LH); (DG); (XL)
| |
Collapse
|
18
|
Larsen K, Momeni J, Farajzadeh L, Callesen H, Bendixen C. Molecular characterization and analysis of the porcine NURR1 gene. BIOCHIMIE OPEN 2016; 3:26-39. [PMID: 29450128 PMCID: PMC5801910 DOI: 10.1016/j.biopen.2016.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 07/11/2016] [Indexed: 12/30/2022]
Abstract
Orphan receptor NURR1 (also termed NR4A2) belongs to the nuclear receptor superfamily and functions as a regulatory factor of differentiation, migration, maturation and maintenance of mesencephalic dopaminergic neurons. NURR1 plays an important role in nigrostriatal dopamine neuron development and is therefore implicated in the pathogenesis of neurodegenerative diseases linked to the dopamine system of the midbrain. Here we report the isolation and characterization of porcine NURR1 cDNA. The NURR1 cDNA was RT-PCR cloned using NURR1-specific oligonucleotide primers derived from in silico sequences. The porcine NURR1 cDNA encodes a polypeptide of 598 amino acids, displaying a very high similarity with bovine, human and mouse (99%) NURR1 protein. Expression analysis revealed a differential NURR1 mRNA expression in various organs and tissues. NURR1 transcripts could be detected as early as at 60 days of embryo development in different brain tissues. A significant increase in NURR1 transcript in the cerebellum and a decrease in NURR1 transcript in the basal ganglia was observed during embryo development. The porcine NURR1 gene was mapped to chromosome 15. Two missense mutations were found in exon 3, the first coding exon of NURR1. Methylation analysis of the porcine NURR1 gene body revealed a high methylation degree in brain tissue, whereas methylation of the promoter was very low. A decrease in DNA methylation in a discrete region of the NURR1 promoter was observed in pig frontal cortex during pig embryo development. This observation correlated with an increase in NURR1 transcripts. Therefore, methylation might be a determinant of NURR1 expression at certain time points in embryo development. The porcine NURR1 gene was cloned and characterized. NURR1 transcript was detected early in pig embryo brain development. Methylation status of NURR1 may be a determinant for its expression.
Collapse
Key Words
- CNS, central nervous system
- DAN, dopaminergic neuron
- DAT, dopamin transporter
- DBD, DNA binding domain
- DNA methylation
- GAPDH, glyceraldehyde 3-phosphate dehydrogenase
- NTD, N-terminal domain
- NURR1
- PCR, polymerase chain reaction
- Parkinson's disease
- Pig
- RT-PCR, reverse transcriptase polymerase chain reaction
- SNP
- SNP, Single nucleotide polymorphism
- TSS, transcription start site
- Transcription factor
- UTR, untranslated region
Collapse
Affiliation(s)
- Knud Larsen
- Department of Molecular Biology and Genetics, Aarhus University, Blichers Allé 20, DK-8830 Tjele, Denmark
| | - Jamal Momeni
- Department of Molecular Biology and Genetics, Aarhus University, Blichers Allé 20, DK-8830 Tjele, Denmark
| | - Leila Farajzadeh
- Department of Molecular Biology and Genetics, Aarhus University, Blichers Allé 20, DK-8830 Tjele, Denmark
| | - Henrik Callesen
- Department of Animal Science, Aarhus University, Blichers Allé 20, DK-8830 Tjele, Denmark
| | - Christian Bendixen
- Department of Molecular Biology and Genetics, Aarhus University, Blichers Allé 20, DK-8830 Tjele, Denmark
| |
Collapse
|
19
|
Nusshold C, Üllen A, Kogelnik N, Bernhart E, Reicher H, Plastira I, Glasnov T, Zangger K, Rechberger G, Kollroser M, Fauler G, Wolinski H, Weksler BB, Romero IA, Kohlwein SD, Couraud PO, Malle E, Sattler W. Assessment of electrophile damage in a human brain endothelial cell line utilizing a clickable alkyne analog of 2-chlorohexadecanal. Free Radic Biol Med 2016; 90:59-74. [PMID: 26577177 PMCID: PMC6392177 DOI: 10.1016/j.freeradbiomed.2015.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/05/2015] [Accepted: 11/07/2015] [Indexed: 11/19/2022]
Abstract
Peripheral leukocytes aggravate brain damage by releasing cytotoxic mediators that compromise blood-brain barrier function. One of the oxidants released by activated leukocytes is hypochlorous acid (HOCl) that is formed via the myeloperoxidase-H2O2-chloride system. The reaction of HOCl with the endogenous plasmalogen pool of brain endothelial cells results in the generation of 2-chlorohexadecanal (2-ClHDA), a toxic, lipid-derived electrophile that induces blood-brain barrier dysfunction in vivo. Here, we synthesized an alkynyl-analog of 2-ClHDA, 2-chlorohexadec-15-yn-1-al (2-ClHDyA) to identify potential protein targets in the human brain endothelial cell line hCMEC/D3. Similar to 2-ClHDA, 2-ClHDyA administration reduced cell viability/metabolic activity, induced processing of pro-caspase-3 and PARP, and led to endothelial barrier dysfunction at low micromolar concentrations. Protein-2-ClHDyA adducts were fluorescently labeled with tetramethylrhodamine azide (N3-TAMRA) by 1,3-dipolar cycloaddition in situ, which unveiled a preferential accumulation of 2-ClHDyA adducts in mitochondria, the Golgi, endoplasmic reticulum, and endosomes. Thirty-three proteins that are subject to 2-ClHDyA-modification in hCMEC/D3 cells were identified by mass spectrometry. Identified proteins include cytoskeletal components that are central to tight junction patterning, metabolic enzymes, induction of the oxidative stress response, and electrophile damage to the caveolar/endosomal Rab machinery. A subset of the targets was validated by a combination of N3-TAMRA click chemistry and specific antibodies by fluorescence microscopy. This novel alkyne analog is a valuable chemical tool to identify cellular organelles and protein targets of 2-ClHDA-mediated damage in settings where myeloperoxidase-derived oxidants may play a disease-propagating role.
Collapse
Affiliation(s)
- Christoph Nusshold
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria; BioTechMed Graz, Austria
| | - Andreas Üllen
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Nora Kogelnik
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Eva Bernhart
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Helga Reicher
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Ioanna Plastira
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Toma Glasnov
- Christian Doppler Laboratory for Flow Chemistry, Institute of Chemistry, University of Graz, Austria
| | | | - Gerald Rechberger
- BioTechMed Graz, Austria; Institute of Molecular Biosciences, NAWI-Graz, University of Graz, Austria; OMICS-Center Graz, BioTechMed Graz, Austria
| | | | - Günter Fauler
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Austria
| | - Heimo Wolinski
- BioTechMed Graz, Austria; Institute of Molecular Biosciences, NAWI-Graz, University of Graz, Austria
| | - Babette B Weksler
- Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Ignacio A Romero
- Department of Biological Sciences, The Open University, Walton Hall, Milton Keynes MK7 6BJ, UK
| | - Sepp D Kohlwein
- BioTechMed Graz, Austria; Institute of Molecular Biosciences, NAWI-Graz, University of Graz, Austria
| | - Pierre-Olivier Couraud
- Institut Cochin, Inserm, U1016, CNRS UMR 8104, Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Ernst Malle
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Wolfgang Sattler
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria; BioTechMed Graz, Austria.
| |
Collapse
|
20
|
Stimulation of Na(+),K(+)-ATPase Activity as a Possible Driving Force in Cholesterol Evolution. J Membr Biol 2015; 249:251-9. [PMID: 26715509 DOI: 10.1007/s00232-015-9864-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 12/09/2015] [Indexed: 12/19/2022]
Abstract
Cholesterol is exclusively produced by animals and is present in the plasma membrane of all animal cells. In contrast, the membranes of fungi and plants contain other sterols. To explain the exclusive preference of animal cells for cholesterol, we propose that cholesterol may have evolved to optimize the activity of a crucial protein found in the plasma membrane of all multicellular animals, namely the Na(+),K(+)-ATPase. To test this hypothesis, mirror tree and phylogenetic distribution analyses have been conducted of the Na(+),K(+)-ATPase and 3β-hydroxysterol Δ(24)-reductase (DHCR24), the last enzyme in the Bloch cholesterol biosynthetic pathway. The results obtained support the hypothesis of a co-evolution of the Na(+),K(+)-ATPase and DHCR24. The evolutionary correlation between DHCR24 and the Na(+),K(+)-ATPase was found to be stronger than between DHCR24 and any other membrane protein investigated. The results obtained, thus, also support the hypothesis that cholesterol evolved together with the Na(+),K(+)-ATPase in multicellular animals to support Na(+),K(+)-ATPase activity.
Collapse
|
21
|
Li Z, Langhans SA. Transcriptional regulators of Na,K-ATPase subunits. Front Cell Dev Biol 2015; 3:66. [PMID: 26579519 PMCID: PMC4620432 DOI: 10.3389/fcell.2015.00066] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 10/05/2015] [Indexed: 12/20/2022] Open
Abstract
The Na,K-ATPase classically serves as an ion pump creating an electrochemical gradient across the plasma membrane that is essential for transepithelial transport, nutrient uptake and membrane potential. In addition, Na,K-ATPase also functions as a receptor, a signal transducer and a cell adhesion molecule. With such diverse roles, it is understandable that the Na,K-ATPase subunits, the catalytic α-subunit, the β-subunit and the FXYD proteins, are controlled extensively during development and to accommodate physiological needs. The spatial and temporal expression of Na,K-ATPase is partially regulated at the transcriptional level. Numerous transcription factors, hormones, growth factors, lipids, and extracellular stimuli modulate the transcription of the Na,K-ATPase subunits. Moreover, epigenetic mechanisms also contribute to the regulation of Na,K-ATPase expression. With the ever growing knowledge about diseases associated with the malfunction of Na,K-ATPase, this review aims at summarizing the best-characterized transcription regulators that modulate Na,K-ATPase subunit levels. As abnormal expression of Na,K-ATPase subunits has been observed in many carcinoma, we will also discuss transcription factors that are associated with epithelial-mesenchymal transition, a crucial step in the progression of many tumors to malignant disease.
Collapse
Affiliation(s)
- Zhiqin Li
- Nemours Center for Childhood Cancer Research, Nemours/Alfred I. duPont Hospital for Children Wilmington, DE, USA
| | - Sigrid A Langhans
- Nemours Center for Childhood Cancer Research, Nemours/Alfred I. duPont Hospital for Children Wilmington, DE, USA
| |
Collapse
|
22
|
MacDonald ML, Ding Y, Newman J, Hemby S, Penzes P, Lewis DA, Yates N, Sweet RA. Altered glutamate protein co-expression network topology linked to spine loss in the auditory cortex of schizophrenia. Biol Psychiatry 2015; 77:959-68. [PMID: 25433904 PMCID: PMC4428927 DOI: 10.1016/j.biopsych.2014.09.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 08/11/2014] [Accepted: 09/02/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Impaired glutamatergic signaling is believed to underlie auditory cortex pyramidal neuron dendritic spine loss and auditory symptoms in schizophrenia. Many schizophrenia risk loci converge on the synaptic glutamate signaling network. We therefore hypothesized that alterations in glutamate signaling protein expression and co-expression network features are present in schizophrenia. METHODS Gray matter homogenates were prepared from auditory cortex gray matter of 22 schizophrenia and 23 matched control subjects, a subset of whom had been previously assessed for dendritic spine density. One hundred fifty-five selected synaptic proteins were quantified by targeted mass spectrometry. Protein co-expression networks were constructed using weighted gene co-expression network analysis. RESULTS Proteins with evidence for altered expression in schizophrenia were significantly enriched for glutamate signaling pathway proteins (GRIA4, GRIA3, ATP1A3, and GNAQ). Synaptic protein co-expression was significantly decreased in schizophrenia with the exception of a small group of postsynaptic density proteins, whose co-expression increased and inversely correlated with spine density in schizophrenia subjects. CONCLUSIONS We observed alterations in the expression of glutamate signaling pathway proteins. Among these, the novel observation of reduced ATP1A3 expression is supported by strong genetic evidence indicating it may contribute to psychosis and cognitive impairment phenotypes. The observations of altered protein network topology further highlight the complexity of glutamate signaling network pathology in schizophrenia and provide a framework for evaluating future experiments to model the contribution of genetic risk to disease pathology.
Collapse
Affiliation(s)
| | - Ying Ding
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA
| | - Jason Newman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Scott Hemby
- Neuroscience Program, Wake Forest University School of Medicine, Winston-Salem, NC,Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Peter Penzes
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Il,Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Il
| | - David A. Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | | | - Robert A. Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA,VISN 4 Mental Illness Research, Education and Clinical Center (MIRECC), VA Pittsburgh Healthcare System, Pittsburgh, PA,Department of Neurology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
23
|
Developmental expression analysis of Na, K-ATPase α subunits in Xenopus. Dev Genes Evol 2015; 225:105-11. [PMID: 25772274 DOI: 10.1007/s00427-015-0497-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 03/03/2015] [Indexed: 10/23/2022]
Abstract
Na, K-ATPase is an integral membrane protein complex responsible for maintaining the ionic gradients of Na(+) and K(+) across the plasma membrane and has a variety of cellular functions including neuronal activity. Studies in several organisms have shown that this protein complex regulates multiple aspects of embryonic development and is responsible for the pathogenesis of several human diseases. Here, we report the cloning and expression of Na, K-ATPase α2 (atp1a2) and α3 (atp1a3) subunits during Xenopus development and compare the expression patterns of each subunit. Using in situ hybridization in whole embryos and on sections, we show that all three α subunits are co-expressed in the pronephric kidney, with varying expression in neurogenic derivatives. The atp1a2 has a unique expression in the ependymal cell layer of the developing brain that is not shared with other α subunits. The Na, K-ATPase α1 (atp1a1), and atp1a3 share many expression domains in placode derivatives, including the otic vesicle, lens, ganglion of the anterodorsal lateral line nerve, and ganglia of the facial and anteroventral lateral line nerve and olfactory cells. All the subunits share a common expression domain, the myocardium.
Collapse
|
24
|
Rahman MM, Park BY. Na, K-ATPase β2 isoform (atp1b2) expressed in the retina of Xenopus. J Biomed Res 2014. [DOI: 10.12729/jbr.2014.15.4.194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
25
|
Larsen K, Momeni J, Farajzadeh L, Bendixen C. Porcine SLITRK1: Molecular cloning and characterization. FEBS Open Bio 2014; 4:872-8. [PMID: 25379384 PMCID: PMC4215120 DOI: 10.1016/j.fob.2014.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/04/2014] [Accepted: 10/02/2014] [Indexed: 11/15/2022] Open
Abstract
Molecular cloning of the porcine SLITRK1 gene is reported. A SLITRK1 transcript variant encoding a truncated protein was identified. The SLITRK1 transcript was exclusively expressed in brain tissues. There was low methylation of both the SLITRK1 gene body and its promoter. SLITRK1 was mapped to pig chromosome 11.
The membrane protein SLITRK1 functions as a developmentally regulated stimulator of neurite outgrowth and variants in this gene have been implicated in Tourette syndrome. In the current study we have cloned and characterized the porcine SLITRK1 gene. The genomic organization of SLITRK1 lacks introns, as does its human and mouse counterparts. RT-PCR cloning revealed two SLITRK1 transcripts: a full-length mRNA and a transcript variant that results in a truncated protein. The encoded SLITRK1 protein, consisting of 695 amino acids, displays a very high homology to human SLITRK1 (99%). The porcine SLITRK1 gene is expressed exclusively in brain tissues.
Collapse
Affiliation(s)
- Knud Larsen
- Department of Molecular Biology and Genetics, Aarhus University, Blichers Alle 20, DK-8830 Tjele, Denmark
| | - Jamal Momeni
- Department of Molecular Biology and Genetics, Aarhus University, Blichers Alle 20, DK-8830 Tjele, Denmark
| | - Leila Farajzadeh
- Department of Molecular Biology and Genetics, Aarhus University, Blichers Alle 20, DK-8830 Tjele, Denmark
| | - Christian Bendixen
- Department of Molecular Biology and Genetics, Aarhus University, Blichers Alle 20, DK-8830 Tjele, Denmark
| |
Collapse
|
26
|
Molecular characterization and transcriptional regulation of the Na +/K+ ATPase α subunit isoforms during development and salinity challenge in a teleost fish, the Senegalese sole (Solea senegalensis). Comp Biochem Physiol B Biochem Mol Biol 2014; 175:23-38. [PMID: 24947209 DOI: 10.1016/j.cbpb.2014.06.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/28/2014] [Accepted: 06/06/2014] [Indexed: 01/12/2023]
Abstract
In the present work, five genes encoding different Na(+),K(+) ATPase (NKA) α-isoforms in the teleost Solea senegalensis are described for the first time. Sequence analysis of predicted polypeptides revealed a high degree of conservation across teleosts and mammals. Phylogenetic analysis clustered the five genes into three main clades: α1 (designated atp1a1a and atp1a1b), α2 (designated atp1a2) and α3 (designated atp1a3a and atp1a3b) isoforms. Transcriptional analysis in larvae showed distinct expression profiles during development. In juvenile tissues, the atp1a1a gene was highly expressed in osmoregulatory organs, atp1a2 in skeletal muscle, atp1a1b in brain and heart and atp1a3a and atp1a3b mainly in brain. Quantification of mRNA abundance after a salinity challenge showed that atp1a1a transcript levels increased significantly in the gill of soles transferred to high salinity water (60 ppt). In contrast, atp1a3a transcripts increased at low salinity (5 ppt). In situ hybridization (ISH) analysis revealed that the number of ionocytes expressing atp1a1a transcripts in the primary gill filaments was higher at 35 and 60 ppt than at 5 ppt and remained undetectable or at very low levels in the lamellae at 5 and 35 ppt but increased at 60 ppt. Immunohistochemistry showed a higher number of positive cells in the lamellae. Whole-mount analysis of atp1a1a mRNA in young sole larvae revealed that it was localized in gut, pronephric tubule, gill, otic vesicle, yolk sac ionocytes and chordacentrum. Moreover, atp1a1a mRNAs increased at mouth opening (3 DPH) in larvae incubated at 36 ppt with a greater signal in gills.
Collapse
|