1
|
Zhu Y, Zhu H, Wu P. Gap junctions in polycystic ovary syndrome: Implications for follicular arrest. Dev Dyn 2024; 253:882-894. [PMID: 38501340 DOI: 10.1002/dvdy.706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
Gap junctions are specialized intercellular conduits that provide a direct pathway between neighboring cells, which are involved in numerous physiological processes, such as cellular differentiation, cell growth, and metabolic coordination. The effect of gap junctional hemichannels in folliculogenesis is particularly obvious, and the down-regulation of connexins is related to abnormal follicle growth. Polycystic ovary syndrome (PCOS) is a ubiquitous endocrine disorder of the reproductive system, affecting the fertility of adult women due to anovulation. Exciting evidence shows that gap junction is involved in the pathological process related to PCOS and affects the development of follicles in women with PCOS. In this review, we examine the expression of connexins in follicular cells of PCOS and figure out whether such communication could have consequences for PCOS women. While along with results from clinical and related animal studies, we summarize the mechanism of connexins involved in the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Gynaecology, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hongqiu Zhu
- Department of Gynaecology, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Peijuan Wu
- Department of Gynaecology, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Eveleens Maarse BC, Ronner MN, Jansen MAA, Niemeyer-van der Kolk T, In 't Veld AE, Klaassen ES, Ahmad S, Itano A, McHale D, Moerland M. Immunomodulating effects of the single bacterial strain therapy EDP1815 on innate and adaptive immune challenge responses - a randomized, placebo-controlled clinical trial. Immunol Res 2024; 72:776-787. [PMID: 38748319 PMCID: PMC11347467 DOI: 10.1007/s12026-024-09484-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/22/2024] [Indexed: 08/28/2024]
Abstract
The gut microbiome can modulate systemic inflammation and is therefore target for immunomodulation. Immunomodulating effects of EDP1815, a bacterial commensal strain of Prevotella histicola, were studied in healthy participants. Effects on adaptive immunity were evaluated by a neo-antigen challenge with keyhole limpet haemocyanin (KLH), while effects on innate immunity were evaluated by topical toll-like receptor 7 (TLR7) agonist imiquimod. Capsules with two enteric coating levels (EC1, EC2) were compared. Thirty-six healthy participants were included and received a daily dose of 8 × 1010 cells EDP1815-EC1, EDP1815-EC2 or placebo (randomization 1:1:1) for 60 days. They received KLH vaccinations at days 8, 24 and 36, with intradermal skin challenge at day 57. KLH challenge outcomes were antibody levels, and skin blood flow and erythema after skin challenge, measured by imaging techniques. Imiquimod administration started at day 57, for 72 h. Outcomes consisted of imaging measurements similar to the KLH challenge, and the influx of inflammatory cells and cytokines in blister fluid. There was no effect of EDP1815 treatment on the KLH challenge, neither on the imaging outcomes of the imiquimod challenge. There was a consistently lower influx of inflammatory cells in the blister fluid of EDP1815-treated participants (neutrophils, p = 0.016; granulocytes, p = 0.024), more pronounced in EC1. There was a lower influx of interleukin [IL]-1β, IL-6, IL-8, IL-10, interferon [IFN]-γ and tumour necrosis factor in blister fluid of EDP1815-treated participants. EDP1815 had immunomodulatory effects on the innate immune response driven by imiquimod, but no effect on the KLH challenge was observed. Trial registration number: NCT05682222; date: 22 July 2022.
Collapse
Affiliation(s)
- Boukje C Eveleens Maarse
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL, Leiden, The Netherlands
- Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Micha N Ronner
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL, Leiden, The Netherlands
- Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Manon A A Jansen
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL, Leiden, The Netherlands
| | - Tessa Niemeyer-van der Kolk
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL, Leiden, The Netherlands
- Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Aliede E In 't Veld
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL, Leiden, The Netherlands
- Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Erica S Klaassen
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL, Leiden, The Netherlands
| | - Saira Ahmad
- Evelo Biosciences Inc., One Kendall Square, Building 600/700, Suite 7-201, Cambridge, MA, USA
- Veramed, 5th Floor Regal House, 70 London Road, Twickenham, TW1 3QS, UK
| | - Andrea Itano
- Evelo Biosciences Inc., One Kendall Square, Building 600/700, Suite 7-201, Cambridge, MA, USA
| | - Duncan McHale
- Evelo Biosciences Inc., One Kendall Square, Building 600/700, Suite 7-201, Cambridge, MA, USA
| | - Matthijs Moerland
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL, Leiden, The Netherlands.
- Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
3
|
Karafoulidou E, Kesidou E, Theotokis P, Konstantinou C, Nella MK, Michailidou I, Touloumi O, Polyzoidou E, Salamotas I, Einstein O, Chatzisotiriou A, Boziki MK, Grigoriadis N. Systemic LPS Administration Stimulates the Activation of Non-Neuronal Cells in an Experimental Model of Spinal Muscular Atrophy. Cells 2024; 13:785. [PMID: 38727321 PMCID: PMC11083572 DOI: 10.3390/cells13090785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/27/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by deficiency of the survival motor neuron (SMN) protein. Although SMA is a genetic disease, environmental factors contribute to disease progression. Common pathogen components such as lipopolysaccharides (LPS) are considered significant contributors to inflammation and have been associated with muscle atrophy, which is considered a hallmark of SMA. In this study, we used the SMNΔ7 experimental mouse model of SMA to scrutinize the effect of systemic LPS administration, a strong pro-inflammatory stimulus, on disease outcome. Systemic LPS administration promoted a reduction in SMN expression levels in CNS, peripheral lymphoid organs, and skeletal muscles. Moreover, peripheral tissues were more vulnerable to LPS-induced damage compared to CNS tissues. Furthermore, systemic LPS administration resulted in a profound increase in microglia and astrocytes with reactive phenotypes in the CNS of SMNΔ7 mice. In conclusion, we hereby show for the first time that systemic LPS administration, although it may not precipitate alterations in terms of deficits of motor functions in a mouse model of SMA, it may, however, lead to a reduction in the SMN protein expression levels in the skeletal muscles and the CNS, thus promoting synapse damage and glial cells' reactive phenotype.
Collapse
Affiliation(s)
- Eleni Karafoulidou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Chrystalla Konstantinou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Maria-Konstantina Nella
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Iliana Michailidou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Olga Touloumi
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Eleni Polyzoidou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Ilias Salamotas
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Ofira Einstein
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel 40700, Israel;
| | - Athanasios Chatzisotiriou
- Department of Physiology, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Marina-Kleopatra Boziki
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| |
Collapse
|
4
|
Won DH, Hwang DB, Kim C, Kang M, Jeon Y, Park YI, Che JH, Yun JW. Genotoxic carcinogen 7,12-dimethylbenz[a]anthracene inhibits gap junction intercellular communication through post-transcriptional and post-translational processing involved in connexin 43 stability. Food Chem Toxicol 2023; 174:113695. [PMID: 36863560 DOI: 10.1016/j.fct.2023.113695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023]
Abstract
Gap junctional intercellular communication (GJIC) is composed of connexin (Cx) and plays an important role in maintaining intracellular homeostasis. Loss of GJIC is involved in the early stages of cancer pathways of non-genotoxic carcinogens; however, the effect of genotoxic carcinogens, including polycyclic aromatic hydrocarbons (PAHs), on GJIC function remains unclear. Therefore, we determined whether and how a representative PAH 7,12-dimethylbenz[a]anthracene (DMBA) suppresses GJIC in WB-F344 cells. First, DMBA significantly inhibited GJIC and dose-dependently reduced Cx43 protein and mRNA expression. In contrast, Cx43 promoter activity was upregulated after DMBA treatment via the induction of specificity protein 1 and hepatocyte nuclear factor 3β, indicating that the promoter-independent loss of Cx43 mRNA can be associated with the inhibition of mRNA stability, which was verified by actinomycin D assay. In addition to a decrease in mRNA stability involved in human antigen R, we also observed DMBA-induced acceleration of Cx43 protein degradation, which was closely related to the loss of GJIC through Cx43 phosphorylation via MAPK activation. In conclusion, the genotoxic carcinogen DMBA suppresses GJIC by inhibiting post-transcriptional and post-translational processing of Cx43. Our findings suggest that the GJIC assay is an efficient short-term screening test for predicting the carcinogenic potential of genotoxic carcinogens.
Collapse
Affiliation(s)
- Dong-Hoon Won
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - Da-Bin Hwang
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - Changuk Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - MinHwa Kang
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Jeon
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yong Il Park
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - Jeong-Hwan Che
- Biomedical Center for Animal Resource and Development, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Jun-Won Yun
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
5
|
Yuan J, Huang X, Zhao Y, Gu J, Yuan Y, Liu Z, Zou H, Bian J. Rat Hepatocytes Mitigate Cadmium Toxicity by Forming Annular Gap Junctions and Degrading Them via Endosome-Lysosome Pathway. Int J Mol Sci 2022; 23:ijms232415607. [PMID: 36555247 PMCID: PMC9778680 DOI: 10.3390/ijms232415607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Gap junction protein connexin 43 (Cx43) plays a critical role in gap junction communication in rat hepatocytes. However, those located between hepatocytes are easily internalized following exposure to poisons. Herein, we investigated the potential of buffalo rat liver 3A (BRL 3A) cells to generate annular gap junctions (AGJs) proficient at alleviating cadmium (Cd) cytotoxic injury through degradation via an endosome-lysosome pathway. Our results showed that Cd-induced damage of liver microtubules promoted Cx43 internalization and increased Cx43 phosphorylation at Ser373 site. Furthermore, we established that Cd induced AGJs generation in BRL 3A cells, and AGJs were subsequently degraded through the endosome-lysosome pathway. Overall, our results suggested that Cx43 internalization and the generation of AGJs were cellular protective mechanisms to alleviate Cd toxicity in rat hepatocytes.
Collapse
Affiliation(s)
- Junzhao Yuan
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xiaoqian Huang
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yumeng Zhao
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence: (H.Z.); (J.B.)
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence: (H.Z.); (J.B.)
| |
Collapse
|
6
|
Zhao Y, Qi Y, Li Q, Quan H, Liu D, Zhou H. Connexin43 inhibition attenuated dopaminergic neuronal loss in the lipopolysaccharide-induced mice model of Parkinson's disease. Neurosci Lett 2022; 771:136471. [PMID: 35065246 DOI: 10.1016/j.neulet.2022.136471] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/29/2021] [Accepted: 01/17/2022] [Indexed: 10/19/2022]
Abstract
Studies using in vitro Parkinson's disease (PD) models have found that lipopolysaccharide (LPS) induced reduction of connexin 43 (Cx43) gap junction communication and elevation of hemichannel function, which could cause neurotoxicity directly and indirectly via excessive ATP and glutamate release. However, in vivo study about Cx43 expression and function, as well as the efficacy of Cx43 inhibition for neuronal survival in PD is lacking. This study aimed to unravel the role of Cx43 in PD and understand the underlying mechanisms using an in vivo PD model. Male C57BL/6 mice received intranigral injection of LPS (5 μg) and 43Gap27 (4 μg), a Cx43 inhibitor, simultaneously. Results showed that following LPS treatment, total Cx43 expression decreased by about 60%, but the relative level of phosphorylated Cx43 increased to about double that controls (all p < 0.05). The administration of 43Gap27 significantly attenuated the loss of dopaminergic neurons and restored dopamine and its metabolites levels. Moreover, 43Gap27 treatment inhibited intense microgliosis and astrogliosis in nigrostriatal system induced by LPS and also ameliorated elevated levels of inflammatory mediators. Interestingly, Cx43 inhibition also increased nerve growth factors. In conclusion, Cx43 inhibition was able to prevent LPS-mediated dopaminergic neuronal death, possibly via neuroinflammation reaction reduction and neurotrophic factors elevation. Therefore, Cx43 may be a promising therapeutic target for degenerative neurological disorders such as PD.
Collapse
Affiliation(s)
- Yujia Zhao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China; The Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Yuze Qi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Qingru Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Huihui Quan
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Dan Liu
- Population Health Sciences, German Centre for Neurodegenerative Disease, Bonn, Germany
| | - Hui Zhou
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| |
Collapse
|
7
|
Panattoni G, Amoriello R, Memo C, Thalhammer A, Ballerini C, Ballerini L. Diverse inflammatory threats modulate astrocytes Ca 2+ signaling via connexin43 hemichannels in organotypic spinal slices. Mol Brain 2021; 14:159. [PMID: 34696792 PMCID: PMC8547100 DOI: 10.1186/s13041-021-00868-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023] Open
Abstract
Neuroinflammation is an escalation factor shared by a vast range of central nervous system (CNS) pathologies, from neurodegenerative diseases to neuropsychiatric disorders. CNS immune status emerges by the integration of the responses of resident and not resident cells, leading to alterations in neural circuits functions. To explore spinal cord astrocyte reactivity to inflammatory threats we focused our study on the effects of local inflammation in a controlled micro-environment, the organotypic spinal slices, developed from the spinal cord of mouse embryos. These organ cultures represent a complex in vitro model where sensory-motor cytoarchitecture, synaptic properties and spinal cord resident cells, are retained in a 3D fashion and we recently exploit these cultures to model two diverse immune conditions in the CNS, involving different inflammatory networks and products. Here, we specifically focus on the tuning of calcium signaling in astrocytes by these diverse types of inflammation and we investigate the mechanisms which modulate intracellular calcium release and its spreading among astrocytes in the inflamed environment. Organotypic spinal cord slices are cultured for two or three weeks in vitro (WIV) and exposed for 6 h to a cocktail of cytokines (CKs), composed by tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1 β) and granulocyte macrophage-colony stimulating factor (GM-CSF), or to lipopolysaccharide (LPS). By live calcium imaging of the ventral horn, we document an increase in active astrocytes and in the occurrence of spontaneous calcium oscillations displayed by these cells when exposed to each inflammatory threat. Through several pharmacological treatments, we demonstrate that intracellular calcium sources and the activation of connexin 43 (Cx43) hemichannels have a pivotal role in increasing calcium intercellular communication in both CKs and LPS conditions, while the Cx43 gap junction communication is apparently reduced by the inflammatory treatments.
Collapse
Affiliation(s)
- Giulia Panattoni
- International School for Advanced Studies (SISSA/ISAS), 34136, Trieste, Italy
| | - Roberta Amoriello
- International School for Advanced Studies (SISSA/ISAS), 34136, Trieste, Italy.,Dipartimento di Medicina Sperimentale e Clinica, University of Florence, 50139, Florence, Italy
| | - Christian Memo
- International School for Advanced Studies (SISSA/ISAS), 34136, Trieste, Italy
| | - Agnes Thalhammer
- International School for Advanced Studies (SISSA/ISAS), 34136, Trieste, Italy
| | - Clara Ballerini
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, 50139, Florence, Italy.
| | - Laura Ballerini
- International School for Advanced Studies (SISSA/ISAS), 34136, Trieste, Italy.
| |
Collapse
|
8
|
Wang H, Yang Y, Yang S, Ren S, Feng J, Liu Y, Chen H, Chen N. Ginsenoside Rg1 Ameliorates Neuroinflammation via Suppression of Connexin43 Ubiquitination to Attenuate Depression. Front Pharmacol 2021; 12:709019. [PMID: 34421601 PMCID: PMC8375438 DOI: 10.3389/fphar.2021.709019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/15/2021] [Indexed: 12/24/2022] Open
Abstract
Depression is an inflammation-associated disease that results in major depression as inflammation increases and progresses. Ginsenoside Rg1 (Rg1), the major bioactive ingredient derived from ginseng, possesses remarkable anti-depressant and anti-inflammatory effects. Our previous studies showed that the pathogenesis of depression was concomitant with the acceleration of connexin43 (Cx43) ubiquitin degradation, while Rg1 could upregulate Cx43 expression to attenuate depression. However, whether the ubiquitination of Cx43 is the specific correlation between depression and inflammation, and how Rg1 ameliorates neuroinflammation to attenuate depression, are still under investigation. In in vivo experiments, Rg1 treatment significantly ameliorated depression-like behaviors in rats subjected to chronic unpredictable stress (CUS). Moreover, these CUS rats treated with Rg1 exhibited attenuated neuroinflammation, together with the suppression of Cx43 ubiquitination. In in vitro experiments, Rg1 reduced the secretion of inflammatory cytokines and the ubiquitination of Cx43 in lipopolysaccharide-induced glial cells. Furthermore, treatment with ubiquitin-proteasome inhibitor MG132 suppressing the ubiquitination of Cx43 ameliorated lipopolysaccharide-induced neuroinflammation. The results suggest that Rg1 attenuates depression-like behavioral performances in CUS-exposed rats; and the main mechanism of the antidepressant-like effects of Rg1 appears to involve protection against neuroinflammation via suppression of Cx43 ubiquitination. In conclusion, Rg1 could ameliorate neuroinflammation via suppression of Cx43 ubiquitination to attenuate depression, which represents the perspective of an innovative therapy of Rg1 in the treatment of inflammation-associated depression.
Collapse
Affiliation(s)
- Huiqin Wang
- Hunan University of Chinese Medicine and Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yantao Yang
- Hunan University of Chinese Medicine and Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, China
| | - Songwei Yang
- Hunan University of Chinese Medicine and Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, China
| | - Siyu Ren
- Hunan University of Chinese Medicine and Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, China
| | - Juling Feng
- Hunan University of Chinese Medicine and Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, China
| | - Yangbo Liu
- Hunan University of Chinese Medicine and Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, China
| | - Haodong Chen
- Hunan University of Chinese Medicine and Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, China
| | - Naihong Chen
- Hunan University of Chinese Medicine and Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Boal AM, Risner ML, Cooper ML, Wareham LK, Calkins DJ. Astrocyte Networks as Therapeutic Targets in Glaucomatous Neurodegeneration. Cells 2021; 10:1368. [PMID: 34199470 PMCID: PMC8228804 DOI: 10.3390/cells10061368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 11/22/2022] Open
Abstract
Astrocytes are intimately involved in the response to neurodegenerative stress and have become an attractive target for the development of neuroprotective therapies. However, studies often focus on astrocytes as single-cell units. Astrocytes are densely interconnected by gap junctions that are composed primarily of the protein connexin-43 (Cx43) and can function as a broader network of cells. Such networks contribute to a number of important processes, including metabolite distribution and extracellular ionic buffering, and are likely to play an important role in the progression of neurodegenerative disease. This review will focus on the pro-degenerative and pro-survival influence of astrocyte Cx43 in disease progression, with a focus on the roles of gap junctions and hemichannels in the spread of degenerative stress. Finally, we will highlight the specific evidence for targeting these networks in the treatment of glaucomatous neurodegeneration and other optic neuropathies.
Collapse
Affiliation(s)
- Andrew M. Boal
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, 1161 21st Ave S, AA7103D Medical Center North, Nashville, TN 37232-0654, USA; (A.M.B.); (M.L.R.); (L.K.W.)
| | - Michael L. Risner
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, 1161 21st Ave S, AA7103D Medical Center North, Nashville, TN 37232-0654, USA; (A.M.B.); (M.L.R.); (L.K.W.)
| | - Melissa L. Cooper
- Skirball Institute for Biomolecular Medicine, NYU Langone Medical Center, New York, NY 10016, USA;
- Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016, USA
| | - Lauren K. Wareham
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, 1161 21st Ave S, AA7103D Medical Center North, Nashville, TN 37232-0654, USA; (A.M.B.); (M.L.R.); (L.K.W.)
| | - David J. Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, 1161 21st Ave S, AA7103D Medical Center North, Nashville, TN 37232-0654, USA; (A.M.B.); (M.L.R.); (L.K.W.)
| |
Collapse
|
10
|
Liu YD, Tang G, Qian F, Liu L, Huang JR, Tang FR. Astroglial Connexins in Neurological and Neuropsychological Disorders and Radiation Exposure. Curr Med Chem 2021; 28:1970-1986. [PMID: 32520676 DOI: 10.2174/0929867327666200610175037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 11/22/2022]
Abstract
Radiotherapy is a common treatment for brain and spinal cord tumors and also a risk factor for neuropathological changes in the brain leading to different neurological and neuropsychological disorders. Astroglial connexins are involved in brain inflammation, development of Alzheimer's Disease (AD), depressive, epilepsy, and amyotrophic lateral sclerosis, and are affected by radiation exposure. Therefore, it is speculated that radiation-induced changes of astroglial connexins may be related to the brain neuropathology and development of neurological and neuropsychological disorders. In this paper, we review the functional expression and regulation of astroglial connexins expressed between astrocytes and different types of brain cells (including oligodendrocytes, microglia, neurons and endothelial cells). The roles of these connexins in the development of AD, depressive, epilepsy, amyotrophic lateral sclerosis and brain inflammation have also been summarized. The radiation-induced astroglial connexins changes and development of different neurological and neuropsychological disorders are then discussed. Based on currently available data, we propose that radiation-induced astroglial connexins changes may be involved in the genesis of different neurological and neuropsychological disorders which depends on the age, brain regions, and radiation doses/dose rates. The abnormal astroglial connexins may be novel therapeutic targets for the prevention of radiation-induced cognitive impairment, neurological and neuropsychological disorders.
Collapse
Affiliation(s)
- Yuan Duo Liu
- Medical School of Yangtze University, Jingzhou 434000, China
| | - Ge Tang
- Woodlands Health Campus, National Healthcare Group Singapore, Singapore
| | - Feng Qian
- Medical School of Yangtze University, Jingzhou 434000, China
| | - Lian Liu
- Medical School of Yangtze University, Jingzhou 434000, China
| | | | - Feng Ru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore
| |
Collapse
|
11
|
Omega-3 PUFAs Suppress IL-1β-Induced Hyperactivity of Immunoproteasomes in Astrocytes. Int J Mol Sci 2021; 22:ijms22115410. [PMID: 34063751 PMCID: PMC8196670 DOI: 10.3390/ijms22115410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 12/14/2022] Open
Abstract
The role of immunoproteasome (iP) in astroglia, the cellular component of innate immunity, has not been clarified. The results so far indicate that neuroinflammation, a prominent hallmark of Alzheimer’s disease, strongly activates the iP subunits expression. Since omega-3 PUFAs possess anti-inflammatory and pro-resolving activity in the brain, we investigated the effect of DHA and EPA on the gene expression of constitutive (β1 and β5) and inducible (iβ1/LMP2 and iβ5/LMP7) proteasome subunits and proteasomal activity in IL-1β-stimulated astrocytes. We found that both PUFAs downregulated the expression of IL-1β-induced the iP subunits, but not the constitutive proteasome subunits. The chymotrypsin-like activity was inhibited in a dose-dependent manner by DHA, and much strongly in the lower concentration by EPA. Furthermore, we established that C/EBPα and C/EBPβ transcription factors, being the cis-regulatory element of the transcription complex, frequently activated by inflammatory mediators, participate in a reduction in the iP subunits’ expression. Moreover, the expression of connexin 43 the major gap junction protein in astrocytes, negatively regulated by IL-1β was markedly increased in PUFA-treated cells. These findings indicate that omega-3 PUFAs attenuate inflammation-induced hyperactivity of iPs in astrocytes and have a beneficial effect on preservation of interastrocytic communication by gap junctions.
Collapse
|
12
|
Sun W, Bergmeier AP, Liao Y, Wu S, Tong L. CIRP Sensitizes Cancer Cell Responses to Ionizing Radiation. Radiat Res 2021; 195:93-100. [PMID: 33429432 PMCID: PMC8969209 DOI: 10.1667/rade-20-00063.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 10/05/2020] [Indexed: 11/03/2022]
Abstract
Cold inducible RNA binding protein (CIRP), also named A18 hnRNP or CIRBP, is a cold-shock RNA-binding protein which can be induced upon various cellular stresses. Its expression level is induced in various cancer tissues relative to adjacent normal tissues; this is believed to play a critical role in cancer development and progression. In this study, we investigated the role of CIRP in cells exposed to ionizing radiation. Our data show that CIRP reduction causes cell colony formation and cell viability reduction after irradiation. In addition, CIRP knockdown cells demonstrated a higher DNA damage rate but less cell cycle arrest after irradiation. As a result, the induced DNA damage with less DNA repair processes led to an increased cell apoptosis rate in CIRP knockdown cells postirradiation. These findings suggest that CIRP is a critical protein in irradiated cells and can be used as a potential target for sensitizing cancer cells to radiation therapy.
Collapse
Affiliation(s)
- Weichao Sun
- Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Adele P. Bergmeier
- Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701
- Department of Biological Sciences and Ohio University, Ohio 45701
| | - Yi Liao
- Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shiyong Wu
- Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701
- Department of Chemistry and Biochemistry and Ohio University, Ohio 45701
- Program of Molecular and Cellular Biology, Ohio University, Ohio 45701
| | - Lingying Tong
- Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701
- Department of Chemistry and Biochemistry and Ohio University, Ohio 45701
| |
Collapse
|
13
|
Uchiyama M, Nakao A, Kurita Y, Fukushi I, Takeda K, Numata T, Tran HN, Sawamura S, Ebert M, Kurokawa T, Sakaguchi R, Stokes AJ, Takahashi N, Okada Y, Mori Y. O 2-Dependent Protein Internalization Underlies Astrocytic Sensing of Acute Hypoxia by Restricting Multimodal TRPA1 Channel Responses. Curr Biol 2020; 30:3378-3396.e7. [PMID: 32679097 DOI: 10.1016/j.cub.2020.06.047] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 04/14/2020] [Accepted: 06/12/2020] [Indexed: 01/18/2023]
Abstract
Hypoxia sensors are essential for regulating local oxygen (O2) homeostasis within the body. This is especially pertinent within the CNS, which is particularly vulnerable to O2 deprivation due to high energetic demand. Here, we reveal hypoxia-monitoring function exerted by astrocytes through an O2-regulated protein trafficking mechanism within the CNS. Strikingly, cultured mouse astrocytes isolated from the parafacial respiratory group (pFRG) and retrotrapezoid nucleus (RTN) region are capable of rapidly responding to moderate hypoxia via the sensor cation channel transient receptor potential (TRP) A1 but, unlike multimodal sensory neurons, are inert to hyperoxia and other TRPA1 activators (carbon dioxide, electrophiles, and oxidants) in normoxia. Mechanistically, O2 suppresses TRPA1 channel activity by protein internalization via O2-dependent proline hydroxylation and subsequent ubiquitination by an E3 ubiquitin ligase, NEDD4-1 (neural precursor cell-expressed developmentally down-regulated protein 4). Hypoxia inhibits this process and instantly accumulates TRPA1 proteins at the plasma membrane, inducing TRPA1-mediated Ca2+ influx that triggers ATP release from pFRG/RTN astrocytes, potentiating respiratory center activity. Furthermore, astrocyte-specific Trpa1 disruption in a mouse brainstem-spinal cord preparation impedes the amplitude augmentation of the central autonomic respiratory output during hypoxia. Thus, reversible coupling of the TRPA1 channels with O2-dependent protein translocation allows astrocytes to act as acute hypoxia sensors in the medullary respiratory center.
Collapse
Affiliation(s)
- Makoto Uchiyama
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Akito Nakao
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Yuki Kurita
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Isato Fukushi
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Tokyo 208-0011, Japan; Faculty of Health Sciences, Uekusa Gakuen University, Chiba 264-0007, Japan
| | - Kotaro Takeda
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Tokyo 208-0011, Japan; Faculty of Rehabilitation, School of Healthcare, Fujita Health University, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Tomohiro Numata
- Department of Physiology, School of Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| | - Ha Nam Tran
- Department of Technology and Ecology, Graduate School of Global Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Seishiro Sawamura
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Maximilian Ebert
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Tatsuki Kurokawa
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Reiko Sakaguchi
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan; World Premier International Research Initiative Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Alexander J Stokes
- Chaminade University, Honolulu, HI 96816, USA; Laboratory of Experimental Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Nobuaki Takahashi
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Yasumasa Okada
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Tokyo 208-0011, Japan
| | - Yasuo Mori
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.
| |
Collapse
|
14
|
Giaume C, Naus CC, Sáez JC, Leybaert L. Glial Connexins and Pannexins in the Healthy and Diseased Brain. Physiol Rev 2020; 101:93-145. [PMID: 32326824 DOI: 10.1152/physrev.00043.2018] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Over the past several decades a large amount of data have established that glial cells, the main cell population in the brain, dynamically interact with neurons and thus impact their activity and survival. One typical feature of glia is their marked expression of several connexins, the membrane proteins forming intercellular gap junction channels and hemichannels. Pannexins, which have a tetraspan membrane topology as connexins, are also detected in glial cells. Here, we review the evidence that connexin and pannexin channels are actively involved in dynamic and metabolic neuroglial interactions in physiological as well as in pathological situations. These features of neuroglial interactions open the way to identify novel non-neuronal aspects that allow for a better understanding of behavior and information processing performed by neurons. This will also complement the "neurocentric" view by facilitating the development of glia-targeted therapeutic strategies in brain disease.
Collapse
Affiliation(s)
- Christian Giaume
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Christian C Naus
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Juan C Sáez
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Luc Leybaert
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
15
|
Totland MZ, Rasmussen NL, Knudsen LM, Leithe E. Regulation of gap junction intercellular communication by connexin ubiquitination: physiological and pathophysiological implications. Cell Mol Life Sci 2020; 77:573-591. [PMID: 31501970 PMCID: PMC7040059 DOI: 10.1007/s00018-019-03285-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/10/2019] [Accepted: 08/16/2019] [Indexed: 12/15/2022]
Abstract
Gap junctions consist of arrays of intercellular channels that enable adjacent cells to communicate both electrically and metabolically. Gap junctions have a wide diversity of physiological functions, playing critical roles in both excitable and non-excitable tissues. Gap junction channels are formed by integral membrane proteins called connexins. Inherited or acquired alterations in connexins are associated with numerous diseases, including heart failure, neuropathologies, deafness, skin disorders, cataracts and cancer. Gap junctions are highly dynamic structures and by modulating the turnover rate of connexins, cells can rapidly alter the number of gap junction channels at the plasma membrane in response to extracellular or intracellular cues. Increasing evidence suggests that ubiquitination has important roles in the regulation of endoplasmic reticulum-associated degradation of connexins as well as in the modulation of gap junction endocytosis and post-endocytic sorting of connexins to lysosomes. In recent years, researchers have also started to provide insights into the physiological roles of connexin ubiquitination in specific tissue types. This review provides an overview of the advances made in understanding the roles of connexin ubiquitination in the regulation of gap junction intercellular communication and discusses the emerging physiological and pathophysiological implications of these processes.
Collapse
Affiliation(s)
- Max Zachrisson Totland
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, 0424, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Nikoline Lander Rasmussen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, 0424, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
- Department of Medical Biology, University of Tromsø, Tromsø, Norway
| | - Lars Mørland Knudsen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, 0424, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Edward Leithe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, 0424, Oslo, Norway.
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
16
|
Sato S, Suzuki J, Hirose M, Yamada M, Zenimaru Y, Nakaya T, Ichikawa M, Imagawa M, Takahashi S, Ikuyama S, Konoshita T, Kraemer FB, Ishizuka T. Cardiac overexpression of perilipin 2 induces atrial steatosis, connexin 43 remodeling, and atrial fibrillation in aged mice. Am J Physiol Endocrinol Metab 2019; 317:E1193-E1204. [PMID: 31661297 PMCID: PMC6957375 DOI: 10.1152/ajpendo.00227.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Atrial fibrillation (AF) is prevalent in patients with obesity and diabetes, and such patients often exhibit cardiac steatosis. Since the role of cardiac steatosis per se in the induction of AF has not been elucidated, the present study was designed to explore the relation between cardiac steatosis and AF. Transgenic (Tg) mice with cardiac-specific overexpression of perilipin 2 (PLIN2) were housed in the laboratory for more than 12 mo before the study. Electron microscopy of the atria of PLIN2-Tg mice showed accumulation of small lipid droplets around mitochondrial chains, and five- to ninefold greater atrial triacylglycerol (TAG) content compared with wild-type (WT) mice. Electrocardiography showed significantly longer RR intervals in PLIN2-Tg mice than in WT mice. Transesophageal electrical burst pacing resulted in significantly higher prevalence of sustained (>5 min) AF (69%) in PLIN2-Tg mice than in WT mice (24%), although it was comparable in younger (4-mo-old) mice. Connexin 43 (Cx43), a gap junction protein, was localized at the intercalated disks in WT atria but was heterogeneously distributed on the lateral side of cardiomyocytes in PLIN2-Tg atria. Langendorff-perfused hearts using the optical mapping technique showed slower and heterogeneous impulse propagation in PLIN2-Tg atria compared with WT atria. Cardiac overexpression of hormone-sensitive lipase in PLIN2-Tg mice resulted in atrial TAG depletion and amelioration of AF susceptibility. The results suggest that PLIN2-induced steatosis is associated with Cx43 remodeling, impaired conduction propagation, and higher incidence of AF in aged mice. Therapies targeting cardiac steatosis could be potentially beneficial against AF in patients with obesity or diabetes.
Collapse
Affiliation(s)
- Satsuki Sato
- Third Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Jinya Suzuki
- Third Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masamichi Hirose
- Department of Molecular and Cellular Pharmacology, Iwate Medical University School of Pharmaceutical Sciences, Iwate, Japan
| | - Mika Yamada
- Third Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Yasuo Zenimaru
- Third Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Takahiro Nakaya
- Third Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Mai Ichikawa
- Third Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Michiko Imagawa
- Third Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Sadao Takahashi
- Division of Diabetes Medicine, Ageo Central General Hospital, Saitama, Japan
- Laboratory of Clinical Nutrition and Medicine, Kagawa Nutrition University, Tokyo, Japan
| | - Shoichiro Ikuyama
- Division of Endocrinology and Metabolism, Oita San-ai Medical Center, Oita, Japan
| | - Tadashi Konoshita
- Third Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Fredric B Kraemer
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
- Division of Endocrinology, Stanford University, Stanford, California
| | - Tamotsu Ishizuka
- Third Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
17
|
Morioka N, Nakamura Y, Zhang FF, Hisaoka-Nakashima K, Nakata Y. Role of Connexins in Chronic Pain and Their Potential as Therapeutic Targets for Next-Generation Analgesics. Biol Pharm Bull 2019; 42:857-866. [PMID: 31155584 DOI: 10.1248/bpb.b19-00195] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic pain, including inflammatory, neuropathic pain, is a serious clinical issue. There are increasing numbers of patients with chronic pain due to the growing number of elderly and it is estimated that about 25% of the global population will develop chronic pain. Chronic pain patients are refractory to medications used to treat acute pain such as opioids and non-steroidal anti-inflammatory drugs. Furthermore, the complexity and diversity of chronic pain mechanisms hinder the development of new analgesics. Thus, a better understanding of the mechanism of chronic pain is needed, which would facilitate the development of novel analgesics based on novel mechanisms. With this goal, connexins (Cxs) could be targeted for the development of new analgesics. Connexins are proteins with 20 subtypes, and function as channels, gap junctions between cells, and hemichannels that sample the extracellular space and release molecules such as neurotransmitters. Furthermore, Cxs could have functions independent of channel activity. Recent studies have shown that Cxs could be crucial in the induction and maintenance of chronic pain, and modulation of the activity or the expression of Cxs ameliorates nociceptive hypersensitivity in multiple chronic pain models. This review will cite novel findings on the role of of Cxs in the nociceptive transduction pathway under the chronic pain state and antinociceptive effects of various molecules modulating activity or expression of Cxs. Also, the potential of Cx modulation as a therapeutic strategy for intractable chronic pain will be discussed.
Collapse
Affiliation(s)
- Norimitsu Morioka
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences
| | - Yoki Nakamura
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences
| | - Fang Fang Zhang
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences.,Institute of Pharmacology, Taishan Medical University
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences
| | - Yoshihiro Nakata
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences
| |
Collapse
|
18
|
Chistyakov DV, Azbukina NV, Astakhova AA, Polozhintsev AI, Sergeeva MG, Reiser G. Toll-like receptors control p38 and JNK MAPK signaling pathways in rat astrocytes differently, when cultured in normal or high glucose concentrations. Neurochem Int 2019; 131:104513. [PMID: 31369777 DOI: 10.1016/j.neuint.2019.104513] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/02/2019] [Accepted: 07/29/2019] [Indexed: 11/24/2022]
Abstract
Astrocytes play a vital role in regulating central nervous system inflammation, energy metabolism and brain homeostasis. Unlike macrophages and microglia, which are cells of myeloid ancestry, astrocytes are of ectodermal origin. However, regulatory specificities of signaling pathways connecting inflammatory and metabolic processes are still largely unknown. We analyzed firstly cellular responses to toll-like receptor (TLR) agonists and secondly, modulation of the mRNA of the three isoforms of the transcription factors PPARs (peroxisome proliferator-activated receptors) in primary rat astrocytes exposed to normal glucose (5.5 mM) and high glucose (25 mM). Cell culturing of rat brain astrocytes for 2 days in high glucose did not alter cellular morphology, but i) enhanced the release of TNFα that was induced by TLR4 agonist LPS or TLR3 agonist PIC and the synthesis of prostaglandin E2 (PGE2), ii) changed the signaling pathways of TLR4/MAPK (increase in p38 MAPK, and decrease in JNK activities at early stages of TLR activation) and iii) modulated mRNA expression of PPARs. High glucose cultivation reduced PPARα and PPARβ mRNA levels, without altering PPARγ mRNA level and changed the sensitivity of expressions to agonists of TLR1/2 (PGN), TLR4 (LPS), TLR3 (PIC), and TLR5 (FGN). Differences between low and high glucose-adapted cells were obtained for agonists of TLR1/2 (PPARα, PPARβ), TLR4 (PPAR β), TLR3 (PPARα). In the TLR4/p38/PPARβ signaling pathway, there was a stimulatory connection in normal glucose but an inhibitory connection in high glucose. TLR4/JNK/activated PPARβ, TLR4/JNK/inhibited PPARγ both in cells adapted to normal or high glucose, but PPARα expression was not affected. As PPARs in astrocytes are involved in inflammatory processes in the form of the recently published PPAR triad, the changes in expression revealed here are most likely resulting in implications of high glucose in inflammatory processes. Our data underline the complexity of multiple regulatory interactions between inflammatory responses and energy metabolism in astrocytes.
Collapse
Affiliation(s)
- Dmitry V Chistyakov
- A.N. Belozersky Institute of Physico-Chemical-Biology, Moscow State-University, Moscow, Russia
| | - Nadezda V Azbukina
- Faculty of Bioengineering and Bioinformatics, Moscow Lomonosov State University, Moscow, Russia
| | - Alina A Astakhova
- A.N. Belozersky Institute of Physico-Chemical-Biology, Moscow State-University, Moscow, Russia
| | - Artemiy I Polozhintsev
- Faculty of Bioengineering and Bioinformatics, Moscow Lomonosov State University, Moscow, Russia
| | - Marina G Sergeeva
- A.N. Belozersky Institute of Physico-Chemical-Biology, Moscow State-University, Moscow, Russia
| | - Georg Reiser
- Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Institut für Inflammation und Neurodegeneration (Neurobiochemie), Magdeburg, Germany.
| |
Collapse
|
19
|
Gram A, Grazul-Bilska AT, Boos A, Rahman NA, Kowalewski MP. Lipopolysaccharide disrupts gap junctional intercellular communication in an immortalized ovine luteal endothelial cell line. Toxicol In Vitro 2019; 60:437-449. [PMID: 31154062 DOI: 10.1016/j.tiv.2019.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/13/2019] [Accepted: 05/27/2019] [Indexed: 10/26/2022]
Abstract
Gram-negative bacteria, in particular Escherichia coli with its cell wall lipopolysaccharide (LPS), often cause metritis and mastitis in domestic animals. Ovarian LPS accumulation may initiate local inflammatory reactions mediated through cell surface Toll-like receptors (TLRs). This may disrupt ovarian functionality leading to infertility. Possible adverse effects of LPS on luteal activity are not yet well explored. We hypothesized that LPS could lead to alterations in luteal vascular functionality. Therefore, we established an in vitro cell line model (OLENDO) by immortalizing microvascular endothelial cells isolated from ovine corpus luteum (CL) with a potent Simian Virus 40 T-antigen (SV40-Tag). OLENDO exhibit endothelial cell characteristics, like low-density lipoprotein (LDL) uptake, express BSL-I, and VEGFR2, as well as TLR2 and TLR4 receptors. LPS-treatment of OLENDO altered in vitro tube formation, had no effects on cell viability and decreased gap junctional intercellular communication (GJIC). LPS did not impair GJA1/Cx43 protein expression, but altered its cellular localization showing signs of internalization. Taken together, we demonstrated the mechanisms underlying LPS induced impairment of luteal GJIC and immune processes in a novel and well-characterized OLENDO cell line.
Collapse
Affiliation(s)
- Aykut Gram
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| | | | - Alois Boos
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Nafis A Rahman
- Institute of Biomedicine, University of Turku, Turku, Finland; Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Poland
| | - Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Connexins and Gap Junctions in Cancer of the Urinary Tract. Cancers (Basel) 2019; 11:cancers11050704. [PMID: 31121877 PMCID: PMC6563010 DOI: 10.3390/cancers11050704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/13/2019] [Accepted: 05/20/2019] [Indexed: 12/11/2022] Open
Abstract
This review focuses on connexins and nexus or gap junctions in the genesis, progression, and therapy of carcinomas of the human urinary tract. Some decades ago, the idea was born that gap junctional intercellular communication might prevent both the onset and the progression of cancer. Later evidence indicated that, on the contrary, synthesis and the presence of connexins as a prerequisite for gap junctional intercellular communication might promote the occurrence of cancer and metastases. The research history of urinary bladder cancer is a good example of the development of scientific perception. So far, the role of gap junctional intercellular communication in carcinogenesis and cancer progression, as well as in therapeutical approaches, remains unclear.
Collapse
|
21
|
Romo D, Velmurugan K, Upham BL, Dwyer-Nield LD, Bauer AK. Dysregulation of Gap Junction Function and Cytokine Production in Response to Non-Genotoxic Polycyclic Aromatic Hydrocarbons in an In Vitro Lung Cell Model. Cancers (Basel) 2019; 11:E572. [PMID: 31018556 PMCID: PMC6521202 DOI: 10.3390/cancers11040572] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 01/09/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs), prevalent contaminants in our environment, in many occupations, and in first and second-hand smoke, pose significant adverse health effects. Most research focused on the genotoxic high molecular weight PAHs (e.g., benzo[a]pyrene), however, the nongenotoxic low molecular weight (LMW) PAHs are emerging as potential co-carcinogens and tumor promoters known to dysregulate gap junctional intercellular communication (GJIC), activate mitogen activated protein kinase pathways, and induce the release of inflammatory mediators. We hypothesize that inflammatory mediators resulting from LMW PAH exposure in mouse lung epithelial cell lines are involved in the dysregulation of GJIC. We used mouse lung epithelial cell lines and an alveolar macrophage cell line in the presence of a binary PAH mixture (1:1 ratio of fluoranthene and 1-methylanthracene; PAH mixture). Parthenolide, a pan-inflammation inhibitor, reversed the PAH-induced inhibition of GJIC, the decreased CX43 expression, and the induction of KC and TNF. To further determine the direct role of a cytokine in regulating GJIC, recombinant TNF (rTNF) was used to inhibit GJIC and this response was further enhanced in the presence of the PAH mixture. Collectively, these findings support a role for inflammation in regulating GJIC and the potential to target these early stage cancer pathways for therapeutics.
Collapse
Affiliation(s)
- Deedee Romo
- Department of Environmental and Occupational Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Kalpana Velmurugan
- Department of Environmental and Occupational Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Brad L Upham
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI 48824, USA.
| | - Lori D Dwyer-Nield
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Alison K Bauer
- Department of Environmental and Occupational Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
22
|
Astroglia in Sepsis Associated Encephalopathy. Neurochem Res 2019; 45:83-99. [PMID: 30778837 PMCID: PMC7089215 DOI: 10.1007/s11064-019-02743-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 01/07/2023]
Abstract
Cellular pathophysiology of sepsis associated encephalopathy (SAE) remains poorly characterised. Brain pathology in SAE, which is manifested by impaired perception, consciousness and cognition, results from multifactorial events, including high levels of systemic cytokines, microbial components and endotoxins, which all damage the brain barriers, instigate neuroinflammation and cause homeostatic failure. Astrocytes, being the principal homeostatic cells of the central nervous system contribute to the brain defence against infection. Forming multifunctional anatomical barriers, astroglial cells maintain brain-systemic interfaces and restrict the damage to the nervous tissue. Astrocytes detect, produce and integrate inflammatory signals between immune cells and cells of brain parenchyma, thus regulating brain immune response. In SAE astrocytes are present in both reactive and astrogliopathic states; balance between these states define evolution of pathology and neurological outcomes. In humans pathophysiology of SAE is complicated by frequent presence of comorbidities, as well as age-related remodelling of the brain tissue with senescence of astroglia; these confounding factors further impact upon SAE progression and neurological deficits.
Collapse
|
23
|
Liang J, Chen P, Li C, Li D, Wang J, Xue R, Zhang S, Ruan J, Zhang X. IL-22 Down-Regulates Cx43 Expression and Decreases Gap Junctional Intercellular Communication by Activating the JNK Pathway in Psoriasis. J Invest Dermatol 2019; 139:400-411. [PMID: 30171832 DOI: 10.1016/j.jid.2018.07.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/29/2018] [Accepted: 07/17/2018] [Indexed: 12/27/2022]
Abstract
The roles of IL-22 in the pathomechanisms of psoriasis have been well demonstrated. Gap junctional intercellular communication (GJIC) is widely known for its involvement in multiple biological and pathological processes such as growth-related events, cell differentiation, and inflammation. Here, we show that IL-22 significantly decreased GJIC and down-regulated Cx43 expression in HaCaT cells. Cx43 overexpression markedly inhibited the proliferation of and increased GJIC in HaCaT cells, but the silencing of Cx43 exerted the opposite effects. Additionally, Cx43 overexpression effectively rescued the IL-22-induced decrease in GJIC in HaCaT cells. The IL-22-induced down-regulation of Cx43 expression and decrease in GJIC can be significantly blocked by the JNK inhibitor SP600125 and by the overexpression of IL-22RA2 (which specifically binds to IL-22 and inhibits its activity), but not by the NF-κB inhibitor BAY11-7082, in HaCaT cells. Furthermore, the IL-22-induced down-regulation of Cx43 expression mediated by the JNK signaling pathway was confirmed in a mouse model of IL-22-induced psoriasis-like dermatitis. Similarly, Cx43 expression was significantly lower in the lesional skin than in the nonlesional skin of patients with psoriasis. These results suggest that IL-22 decreases GJIC by activating the JNK signaling pathway, which down-regulates Cx43 expression; this process is a possible pathomechanism of keratinocyte hyperproliferation in psoriasis.
Collapse
Affiliation(s)
- Jingyao Liang
- Institute of Dermatology, Guangzhou Medical University, Guangzhou, People's Republic of China; Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, People's Republic of China
| | - Pingjiao Chen
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Changxing Li
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Dongmei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Jianqin Wang
- Institute of Dermatology, Guangzhou Medical University, Guangzhou, People's Republic of China; Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, People's Republic of China
| | - Rujun Xue
- Institute of Dermatology, Guangzhou Medical University, Guangzhou, People's Republic of China; Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, People's Republic of China
| | - Sanquan Zhang
- Institute of Dermatology, Guangzhou Medical University, Guangzhou, People's Republic of China; Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, People's Republic of China
| | - Jianbo Ruan
- Department of Dermatology, Jinan University Medical School Affiliated Hospital of Dongguan, Dongguan, People's Republic of China.
| | - Xibao Zhang
- Institute of Dermatology, Guangzhou Medical University, Guangzhou, People's Republic of China; Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, People's Republic of China.
| |
Collapse
|
24
|
Glucocorticoid receptor in astrocytes regulates midbrain dopamine neurodegeneration through connexin hemichannel activity. Cell Death Differ 2018; 26:580-596. [PMID: 30006609 PMCID: PMC6370798 DOI: 10.1038/s41418-018-0150-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/20/2018] [Accepted: 05/28/2018] [Indexed: 01/24/2023] Open
Abstract
The precise contribution of astrocytes in neuroinflammatory process occurring in Parkinson’s disease (PD) is not well characterized. In this study, using GRCx30CreERT2 mice that are conditionally inactivated for glucocorticoid receptor (GR) in astrocytes, we have examined the actions of astrocytic GR during dopamine neuron (DN) degeneration triggered by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The results show significantly augmented DN loss in GRCx30CreERT2 mutant mice in substantia nigra (SN) compared to controls. Hypertrophy of microglia but not of astrocytes was greatly enhanced in SN of these astrocytic GR mutants intoxicated with MPTP, indicating heightened microglial reactivity compared to similarly-treated control mice. In the SN of GR astrocyte mutants, specific inflammation-associated transcripts ICAM-1, TNF-α and Il-1β as well as TNF-α protein levels were significantly elevated after MPTP neurotoxicity compared to controls. Interestingly, this paralleled increased connexin hemichannel activity and elevated intracellular calcium levels in astrocytes examined in acute midbrain slices from control and mutant mice treated with MPP+ . The increased connexin-43 hemichannel activity was found in vivo in MPTP-intoxicated mice. Importantly, treatment of MPTP-injected GRCx30CreERT2 mutant mice with TAT-Gap19 peptide, a specific connexin-43 hemichannel blocker, reverted both DN loss and microglial activation; in wild-type mice there was partial but significant survival effect. In the SN of post-mortem PD patients, a significant decrease in the number of astrocytes expressing nuclear GR was observed, suggesting the participation of astrocytic GR deregulation of inflammatory process in PD. Overall, these data provide mechanistic insights into GR-modulated processes in vivo, specifically in astrocytes, that contribute to a pro-inflammatory state and dopamine neurodegeneration in PD pathology.
Collapse
|
25
|
Tsai CF, Cheng YK, Lu DY, Wang SL, Chang CN, Chang PC, Yeh WL. Inhibition of estrogen receptor reduces connexin 43 expression in breast cancers. Toxicol Appl Pharmacol 2017; 338:182-190. [PMID: 29180066 DOI: 10.1016/j.taap.2017.11.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/15/2017] [Accepted: 11/23/2017] [Indexed: 10/18/2022]
Abstract
Connexins are widely supported as tumor suppressors due to their downregulation in cancers, nevertheless, more recent evidence suggests roles for connexins in facilitating tumor progression in later stages, including metastasis. One of the key factors regulating the expression, modification, stability, and localization of connexins is hormone receptors in hormone-dependent cancers. It is reasonable to consider that hormones/hormone receptors may modulate connexins expression and play critical roles in the cellular control of connexins during breast cancer progression. In estrogen receptor (ER)-positive breast cancers, tamoxifen and fulvestrant are widely used therapeutic agents and are considered to alter ER signaling. In this present study, we investigated the effects of fulvestrant and tamoxifen in Cx43 expression, and we also explored the role of Cx43 in ER-positive breast cancer migration and the relationship between Cx43 and ER. The involvement of estrogen/ER in Cx43 modulation was further verified by administering tyrosine kinase inhibitors and chemotherapeutic agents. We found that inhibition of ER promoted the binding of E3 ligase Nedd4 to Cx43, leading to Cx43 ubiquitination. Furthermore, inhibition of ER by fulvestrant and tamoxifen phosphorylated p38 MAPK, and inhibition of Rac, MKK3/6, and p38 reversed fulvestrant-reduced Cx43 expression. These findings suggest that Cx43 expression which may positively regulate cell migration is ER-dependent in ER-positive breast cancer cells.
Collapse
Affiliation(s)
- Cheng-Fang Tsai
- Department of Biotechnology, Asia University, No.500 Lioufeng Road, Taichung 41354, Taiwan.
| | - Yu-Kai Cheng
- Division of Neurosurgery, China Medical University Hospital, No.2 Yuh-Der Road, Taichung, Taiwan
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, No.91 Hsueh-Shih Road, Taichung 40402, Taiwan; Department of Photonics and Communication Engineering, Asia University, No.500 Lioufeng Road, Taichung 41354, Taiwan.
| | - Shu-Lin Wang
- Institute of New Drug Development, China Medical University, No.91 Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Chen-Ni Chang
- Department of Biological Science and Technology, China Medical University, No.91 Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Pei-Chun Chang
- Department of Bioinformatics and Medical Engineering, Asia University, No.500 Lioufeng Road, Taichung 41354, Taiwan.
| | - Wei-Lan Yeh
- Institute of New Drug Development, China Medical University, No.91 Hsueh-Shih Road, Taichung 40402, Taiwan.
| |
Collapse
|
26
|
Th1 cells downregulate connexin 43 gap junctions in astrocytes via microglial activation. Sci Rep 2016; 6:38387. [PMID: 27929069 PMCID: PMC5143974 DOI: 10.1038/srep38387] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/08/2016] [Indexed: 11/28/2022] Open
Abstract
We previously reported early and extensive loss of astrocytic connexin 43 (Cx43) in acute demyelinating lesions of multiple sclerosis (MS) patients. Because it is widely accepted that autoimmune T cells initiate MS lesions, we hypothesized that infiltrating T cells affect Cx43 expression in astrocytes, which contributes to MS lesion formation. Primary mixed glial cell cultures were prepared from newborn mouse brains, and microglia were isolated by anti-CD11b antibody-conjugated magnetic beads. Next, we prepared astrocyte-rich cultures and astrocyte/microglia-mixed cultures. Treatment of primary mixed glial cell cultures with interferon (IFN) γ, interleukin (IL)-4, or IL-17 showed that only IFNγ or IL-17 at high concentrations reduced Cx43 protein levels. Upon treatment of astrocyte-rich cultures and astrocyte/microglia-mixed cultures with IFNγ, Cx43 mRNA/protein levels and the function of gap junctions were reduced only in astrocyte/microglia-mixed cultures. IFNγ-treated microglia-conditioned media and IL-1β, which was markedly increased in IFNγ-treated microglia-conditioned media, reduced Cx43 protein levels in astrocyte-rich cultures. Finally, we confirmed that Th1 cell-conditioned medium decreased Cx43 protein levels in mixed glial cell cultures. These findings suggest that Th1 cell-derived IFNγ activates microglia to release IL-1β that reduces Cx43 gap junctions in astrocytes. Thus, Th1-dominant inflammatory states disrupt astrocytic intercellular communication and may exacerbate MS.
Collapse
|
27
|
Khan D, Dupper A, Deshpande T, Graan PNED, Steinhäuser C, Bedner P. Experimental febrile seizures impair interastrocytic gap junction coupling in juvenile mice. J Neurosci Res 2016; 94:804-13. [PMID: 26931373 DOI: 10.1002/jnr.23726] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/25/2016] [Accepted: 02/04/2016] [Indexed: 02/02/2023]
Abstract
Prolonged and focal febrile seizures (FSs) have been associated with the development of temporal lobe epilepsy (TLE), although the underlying mechanism and the contribution of predisposing risk factors are still poorly understood. Using a kainate model of TLE, we previously provided strong evidence that interruption of astrocyte gap junction-mediated intercellular communication represents a crucial event in epileptogenesis. To elucidate this aspect further, we induced seizures in immature mice by hyperthermia (HT) to study the consequences of FSs on the hippocampal astrocytic network. Changes in interastrocytic coupling were assessed by tracer diffusion studies in acute slices from mice 5 days after experimental FS induction. The results reveal that HT-induced FSs cause a pronounced reduction of astrocyte gap junctional coupling in the hippocampus by more than 50%. Western blot analysis indicated that reduced connexin43 protein expression and/or changes in the phosphorylation status account for this astrocyte dysfunction. Remarkably, uncoupling occurred in the absence of neuronal death and reactive gliosis. These data provide a mechanistic link between FSs and the subsequent development of TLE and further strengthen the emerging view that astrocytes have a central role in the pathogenesis of this disorder. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dilaware Khan
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Alexander Dupper
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Tushar Deshpande
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Pierre N E De Graan
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
28
|
Gonzalez P, Rodríguez FJ. Analysis of the expression of the Wnt family of proteins and its modulatory role on cytokine expression in non activated and activated astroglial cells. Neurosci Res 2016; 114:16-29. [PMID: 27562517 DOI: 10.1016/j.neures.2016.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 08/04/2016] [Accepted: 08/15/2016] [Indexed: 12/23/2022]
Abstract
Despite the essential functions of astrocytes and the emerging relevance of the Wnt family of proteins in the CNS under physiological and pathological conditions, the astroglial expression of this family of proteins and its potential modulatory role on astroglial activation is almost unknown. Thus, we have evaluated the expression of all Wnt ligands, receptors and regulators, and the activation state of Wnt-related signaling pathways in non-activated and differentially activated astroglial cultures. We found that numerous Wnt ligands, receptors and regulators were expressed in non-activated astrocytes, while the Wnt-dependent pathways were constitutively active. Moreover, the expression of most detectable Wnt-related molecules and the activity of the Wnt-dependent pathways suffered post-activation variations which frequently depended on the activation system. Finally, the analysis of the effects exerted by Wnt1 and 5a on the astroglial expression of prototypical genes related to astroglial activation showed that both Wnt ligands increased the astroglial expression of interleukin 1β depending on the experimental context, while did not modulate tumor necrosis factor α, interleukin 6, transforming growth factor β1 and glial fibrillary acidic protein expression. These results strongly suggest that the Wnt family of proteins is involved in how astrocytes modulate and respond to the physiological and pathological CNS.
Collapse
Affiliation(s)
- Pau Gonzalez
- Laboratory of Molecular Neurology, National Hospital for Paraplegics, Finca la Peraleda s/n, 45071 Toledo, Spain.
| | - Francisco Javier Rodríguez
- Laboratory of Molecular Neurology, National Hospital for Paraplegics, Finca la Peraleda s/n, 45071 Toledo, Spain.
| |
Collapse
|
29
|
Di Liddo R, Bertalot T, Schuster A, Schrenk S, Müller O, Apfel J, Reischmann P, Rajendran S, Sfriso R, Gasparella M, Parnigotto PP, Conconi MT, Schäfer KH. Fluorescence-based gene reporter plasmid to track canonical Wnt signaling in ENS inflammation. Am J Physiol Gastrointest Liver Physiol 2016; 310:G337-46. [PMID: 26767983 DOI: 10.1152/ajpgi.00191.2015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/29/2015] [Indexed: 01/31/2023]
Abstract
In several gut inflammatory or cancer diseases, cell-cell interactions are compromised, and an increased cytoplasmic expression of β-catenin is observed. Over the last decade, numerous studies provided compelling experimental evidence that the loss of cadherin-mediated cell adhesion can promote β-catenin release and signaling without any specific activation of the canonical Wnt pathway. In the present work, we took advantage of the ability of lipofectamine-like reagent to cause a synchronous dissociation of adherent junctions in cells isolated from the rat enteric nervous system (ENS) for obtaining an in vitro model of deregulated β-catenin signaling. Under these experimental conditions, a green fluorescent protein Wnt reporter plasmid called ΔTop_EGFP3a was successfully tested to screen β-catenin stabilization at resting and primed conditions with exogenous Wnt3a or lipopolysaccharide (LPS). ΔTop_EGFP3a provided a reliable and strong fluorescent signal that was easily measurable and at the same time highly sensitive to modulations of Wnt signaling following Wnt3a and LPS stimulation. The reporter gene was useful to demonstrate that Wnt3a exerts a protective activity in the ENS from overstimulated Wnt signaling by promoting a downregulation of the total β-catenin level. Based on this evidence, the use of ΔTop_EGFP3a reporter plasmid could represent a more reliable tool for the investigation of Wnt and cross-talking pathways in ENS inflammation.
Collapse
Affiliation(s)
- Rosa Di Liddo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy;
| | - Thomas Bertalot
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Anne Schuster
- Department of Biotechnology, University of Applied Sciences Kaiserslautern/Zweibrücken, Germany
| | - Sandra Schrenk
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Oliver Müller
- Department of Biochemistry, University of Applied Sciences Kaiserslautern, Kaiserslautern, Germany
| | - Johanna Apfel
- Department of Biochemistry, University of Applied Sciences Kaiserslautern, Kaiserslautern, Germany
| | - Patricia Reischmann
- Department of Biochemistry, University of Applied Sciences Kaiserslautern, Kaiserslautern, Germany
| | - Senthilkumar Rajendran
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Riccardo Sfriso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Marco Gasparella
- Department of Woman and Child Health, University of Padova, Padova, Italy
| | - Pier Paolo Parnigotto
- Tissue Engineering and Signaling-Onlus, Caselle di Selvazzano Dentro, Padova, Italy; and
| | - Maria Teresa Conconi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Karl Herbert Schäfer
- Department of Biotechnology, University of Applied Sciences Kaiserslautern/Zweibrücken, Germany; Medical Faculty Mannheim, Department of Pediatric Surgery, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
30
|
Kim Y, Davidson JO, Gunn KC, Phillips AR, Green CR, Gunn AJ. Role of Hemichannels in CNS Inflammation and the Inflammasome Pathway. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 104:1-37. [DOI: 10.1016/bs.apcsb.2015.12.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Morioka N, Zhang FF, Nakamura Y, Kitamura T, Hisaoka-Nakashima K, Nakata Y. Tumor necrosis factor-mediated downregulation of spinal astrocytic connexin43 leads to increased glutamatergic neurotransmission and neuropathic pain in mice. Brain Behav Immun 2015; 49:293-310. [PMID: 26116449 DOI: 10.1016/j.bbi.2015.06.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/05/2015] [Accepted: 06/16/2015] [Indexed: 11/29/2022] Open
Abstract
Spinal cord astrocytes are critical in the maintenance of neuropathic pain. Connexin 43 (Cx43) expressed on spinal dorsal horn astrocytes modulates synaptic neurotransmission, but its role in nociceptive transduction has yet to be fully elaborated. In mice, Cx43 is mainly expressed in astrocytes, not neurons or microglia, in the spinal dorsal horn. Hind paw mechanical hypersensitivity was observed beginning 3days after partial sciatic nerve ligation (PSNL), but a persistent downregulation of astrocytic Cx43 in ipsilateral lumbar spinal dorsal horn was not observed until 7days post-PSNL, suggesting that Cx43 downregulation mediates the maintenance and not the initiation of nerve injury-induced hypersensitivity. Downregulation of Cx43 expression by intrathecal treatment with Cx43 siRNA also induced mechanical hypersensitivity. Conversely, restoring Cx43 by an adenovirus vector expressing Cx43 (Ad-Cx43) ameliorated PSNL-induced mechanical hypersensitivity. The sensitized state following PSNL is likely maintained by dysfunctional glutamatergic neurotransmission, as Cx43 siRNA-induced mechanical hypersensitivity was attenuated with intrathecal treatment of glutamate receptor antagonists MK801 and CNQX, but not neurokinin-1 receptor antagonist CP96345 or the Ca(2+) channel subunit α2δ1 blocker gabapentin. The source of this dysfunctional glutamatergic neurotransmission is likely decreased clearance of glutamate from the synapse rather than increased glutamate release into the synapse. Astrocytic expression of glutamate transporter GLT-1, but not GLAST, and activity of glutamate transport were markedly decreased in mice intrathecally injected with Cx43-targeting siRNA but not non-targeting siRNA. Glutamate release from spinal synaptosomes prepared from mice treated with either Cx43-targeting siRNA or non-targeting siRNA was unchanged. Intrathecal injection of Ad-Cx43 in PSNL mice restored astrocytic GLT-1 expression. The cytokine tumor necrosis factor (TNF) has been implicated in the induction of central sensitization, particularly through its actions on astrocytes, in the spinal cord following peripheral injury. Intrathecal injection of TNF in naïve mice induced the downregulation of both Cx43 and GLT-1 in spinal dorsal horn, as well as hind paw mechanical hypersensitivity, as observed in PSNL mice. Conversely, intrathecal treatment of PSNL mice with the TNF inhibitor etanercept prevented not only mechanical hypersensitivity but also the downregulation of Cx43 and GLT-1 expression in astrocytes. The current findings indicate that spinal astrocytic Cx43 are essential for the maintenance of neuropathic pain following peripheral nerve injury and suggest modulation of Cx43 as a novel target for developing analgesics for neuropathic pain.
Collapse
Affiliation(s)
- Norimitsu Morioka
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | - Fang Fang Zhang
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yoki Nakamura
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Tomoya Kitamura
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yoshihiro Nakata
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
32
|
Decreased connexin 43 in astrocytes inhibits the neuroinflammatory reaction in an acute mouse model of neonatal sepsis. Neurosci Bull 2015; 31:763-8. [PMID: 26416492 DOI: 10.1007/s12264-015-1561-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/08/2015] [Indexed: 02/06/2023] Open
Abstract
Neonatal sepsis is common in neonatal intensive care units, often complicated by injury to the immature brain. Previous studies have shown that the expression of the gap junction protein connexin 43 (Cx43) in the brain decreases when stimulated by neuro-inflammatory drugs such as lipopolysaccharide (LPS). Here we showed that partial deletion of Cx43 in astrocytes resulted in weakened inflammatory responses. The up-regulation of pro-inflammatory cytokines was significantly reduced in mice with partial deletion of Cx43 in astrocytes compared with wild-type littermates after systemic LPS injection. Moreover, microglial activation was inhibited in mice with partial deletion of Cx43. These results showed that Cx43 in astrocytes plays a critical role in neuro-inflammatory responses. This work provides a potential therapeutic target for inhibiting neuro-inflammatory responses in neonatal sepsis.
Collapse
|
33
|
Stimulation of α7 nicotinic acetylcholine receptor regulates glutamate transporter GLAST via basic fibroblast growth factor production in cultured cortical microglia. Brain Res 2015; 1625:111-20. [PMID: 26327163 DOI: 10.1016/j.brainres.2015.08.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/20/2015] [Accepted: 08/22/2015] [Indexed: 12/23/2022]
Abstract
The α7 nicotinic acetylcholine (nACh) receptor expressed in microglia has a crucial role in neuroprotection. Simulation of α7 nACh receptor leads to increased expression of glutamate/aspartate transporter (GLAST), which in turn decreases synaptic glutamate levels. However, the upregulation of GLAST in cultured rat cortical microglia appears long after (over 18 h) stimulation of the α7 nACh receptor with nicotine. Thus, the current study elucidated the pathway responsible for the induction of GLAST expression in cultured cortical microglia. Nicotine-induced GLAST mRNA expression was significantly inhibited by cycloheximide pretreatment, indicating that a protein intermediary, such as a growth factor, is required for GLAST expression. The expression of fibroblast growth factor-2 (FGF-2) mRNA in cortical microglia was significantly increased 6 and 12h after treatment with nicotine, and this increase was potently inhibited by pretreatment with methyllycaconitine, a selective α7 nACh receptor antagonist. The treatment with nicotine also significantly increased FGF-2 protein expression. Furthermore, treatment with recombinant FGF-2 increased GLAST mRNA, protein expression and (14)C-glutamate uptake, a functional measurement of GLAST activity. Conversely, pretreatment with PD173074, an inhibitor of FGF receptor (FGFR) tyrosine kinase, significantly prevented the nicotine-induced expression of GLAST mRNA, its protein and (14)C-glutamate uptake. Reverse transcription polymerase chain reaction confirmed FGFR1 mRNA expression was confined to cultured cortical microglia. Together, the current findings demonstrate that the neuroprotective effect of activation of microglial α7 nACh receptors could be due to the expression of FGF-2, which in turn increases GLAST expression, thereby clearing glutamate from synapse and decreasing glutamate neurotransmission.
Collapse
|
34
|
Zhang FF, Morioka N, Kitamura T, Hisaoka-Nakashima K, Nakata Y. Proinflammatory cytokines downregulate connexin 43-gap junctions via the ubiquitin-proteasome system in rat spinal astrocytes. Biochem Biophys Res Commun 2015. [PMID: 26212436 DOI: 10.1016/j.bbrc.2015.07.105] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Astrocytic gap junctions formed by connexin 43 (Cx43) are crucial for intercellular communication between spinal cord astrocytes. Various neurological disorders are associated with dysfunctional Cx43-gap junctions. However, the mechanism modulating Cx43-gap junctions in spinal astrocytes under pathological conditions is not entirely clear. A previous study showed that treatment of spinal astrocytes in culture with pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) decreased both Cx43 expression and gap junction intercellular communication (GJIC) via a c-jun N-terminal kinase (JNK)-dependent pathway. The current study further elaborates the intracellular mechanism that decreases Cx43 under an inflammatory condition. Cycloheximide chase analysis revealed that TNF-α (10 ng/ml) alone or in combination with IFN-γ (5 ng/ml) accelerated the degradation of Cx43 protein in cultured spinal astrocytes. The reduction of both Cx43 expression and GJIC induced by a mixture of TNF-α and IFN-γ were blocked by pretreatment with proteasome inhibitors MG132 (0.5 μM) and epoxomicin (25 nM), a mixture of TNF-α and IFN-γ significantly increased proteasome activity and Cx43 ubiquitination. In addition, TNF-α and IFN-γ-induced activation of ubiquitin-proteasome systems was prevented by SP600125, a JNK inhibitor. Together, these results indicate that a JNK-dependent ubiquitin-proteasome system is induced under an inflammatory condition that disrupts astrocytic gap junction expression and function, leading to astrocytic dysfunction and the maintenance of the neuroinflammatory state.
Collapse
Affiliation(s)
- Fang Fang Zhang
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Norimitsu Morioka
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | - Tomoya Kitamura
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yoshihiro Nakata
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
35
|
Kandasamy K, Escue R, Manna J, Adebiyi A, Parthasarathi K. Changes in endothelial connexin 43 expression inversely correlate with microvessel permeability and VE-cadherin expression in endotoxin-challenged lungs. Am J Physiol Lung Cell Mol Physiol 2015; 309:L584-92. [PMID: 26163513 DOI: 10.1152/ajplung.00211.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 07/07/2015] [Indexed: 12/28/2022] Open
Abstract
Endothelial barrier restoration reverses microvessel hyperpermeability and facilitates recovery from lung injury. Because inhibiting connexin 43 (Cx43)-dependent interendothelial communication blunts hyperpermeability in single microvessels, we determined whether endothelial Cx43 levels correlate with changes in microvessel permeability during recovery from lung injury. Toward this, bacterial endotoxin was instilled intratracheally into rat lungs, and at different durations postinstillation the lungs were isolated and blood perfused. Microvessel Cx43 expression was quantified by in situ immunofluorescence and microvessel permeability via a fluorescence method. To supplement the immunofluorescence data, protein levels were determined by immunoblots of lung tissue from endotoxin-instilled rats. Immunofluorescence and immunoblot together revealed that both Cx43 expression and microvessel permeability increased above baseline within a few hours after endotoxin instillation but declined progressively over the next few days. On day 5 postendotoxin, microvessel Cx43 declined to negligible levels, resulting in complete absence of intermicrovessel communication determined by photolytic uncaging of Ca(2+). However, by day 14, both Cx43 expression and microvessel permeability returned to baseline levels. In contrast to Cx43, expression of microvessel vascular endothelial (VE)-cadherin, a critical determinant of vascular barrier integrity, exhibited an inverse trend by initially declining below baseline and then returning to baseline at a longer duration. Knockdown of vascular Cx43 by tail vein injection of Cx43 shRNA increased VE-cadherin expression, suggesting that reduction in Cx43 levels may modulate VE-cadherin levels in lung microvessels. Together, the data suggest that endotoxin challenge initiates interrelated changes in microvessel Cx43, VE-cadherin, and microvessel permeability, with changes in Cx43 temporally leading the other responses.
Collapse
Affiliation(s)
| | | | | | | | - Kaushik Parthasarathi
- Department of Physiology and Department of Orthopedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
36
|
Chiu CT, Liao CK, Shen CC, Tang TK, Jow GM, Wang HS, Wu JC. HYS-32-Induced Microtubule Catastrophes in Rat Astrocytes Involves the PI3K-GSK3beta Signaling Pathway. PLoS One 2015; 10:e0126217. [PMID: 25938237 PMCID: PMC4418738 DOI: 10.1371/journal.pone.0126217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/31/2015] [Indexed: 02/06/2023] Open
Abstract
HYS-32 is a novel derivative of combretastatin-A4 (CA-4) previously shown to induce microtubule coiling in rat primary astrocytes. In this study, we further investigated the signaling mechanism and EB1, a microtubule-associated end binding protein, involved in HYS-32-induced microtubule catastrophes. Confocal microscopy with double immunofluorescence staining revealed that EB1 accumulates at the growing microtubule plus ends, where they exhibit a bright comet-like staining pattern in control astrocytes. HYS-32 induced microtubule catastrophes in both a dose- and time-dependent manner and dramatically increased the distances between microtubule tips and the cell border. Treatment of HYS-32 (5 μM) eliminated EB1 localization at the microtubule plus ends and resulted in an extensive redistribution of EB1 to the microtubule lattice without affecting the β-tubulin or EB1 protein expression. Time-lapse experiments with immunoprecipitation further displayed that the association between EB-1 and β-tubulin was significantly decreased following a short-term treatment (2 h), but gradually increased in a prolonged treatment (6-24 h) with HYS-32. Further, HYS-32 treatment induced GSK3β phosphorylation at Y216 and S9, where the ratio of GSK3β-pY216 to GSK3β-pS9 was first elevated followed by a decrease over time. Co-treatment of astrocytes with HYS-32 and GSK3β inhibitor SB415286 attenuated the HYS-32-induced microtubule catastrophes and partially prevented EB1 dissociation from the plus end of microtubules. Furthermore, co-treatment with PI3K inhibitor LY294002 inhibited HYS-32-induced GSK3β-pS9 and partially restored EB1 distribution from the microtubule lattice to plus ends. Together these findings suggest that HYS-32 induces microtubule catastrophes by preventing EB1 from targeting to microtubule plus ends through the GSK3β signaling pathway.
Collapse
Affiliation(s)
- Chi-Ting Chiu
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Chih-Kai Liao
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Chien-Chang Shen
- Division of Medicinal Chemistry, National Research Institute of Chinese Medicine, Taipei 11221, Taiwan
| | - Tswen-Kei Tang
- Department of Nursing, College of Health and Nursing, National Quemoy University, Kinmen 89250, Taiwan
| | - Guey-Mei Jow
- School of Medicine, Fu-Jen Catholic University, New Taipei City 24205, Taiwan
| | - Hwai-Shi Wang
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Jiahn-Chun Wu
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| |
Collapse
|
37
|
Kagawa Y, Yasumoto Y, Sharifi K, Ebrahimi M, Islam A, Miyazaki H, Yamamoto Y, Sawada T, Kishi H, Kobayashi S, Maekawa M, Yoshikawa T, Takaki E, Nakai A, Kogo H, Fujimoto T, Owada Y. Fatty acid-binding protein 7 regulates function of caveolae in astrocytes through expression of caveolin-1. Glia 2015; 63:780-94. [PMID: 25601031 DOI: 10.1002/glia.22784] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 12/16/2014] [Indexed: 12/28/2022]
Abstract
Fatty acid-binding proteins (FABPs) bind and solubilize long-chain fatty acids, controlling intracellular lipid dynamics. FABP7 is expressed by astrocytes in the developing brain, and suggested to be involved in the control of astrocyte lipid homeostasis. In this study, we sought to examine the role of FABP7 in astrocytes, focusing on plasma membrane lipid raft function, which is important for receptor-mediated signal transduction in response to extracellular stimuli. In FABP7-knockout (KO) astrocytes, the ligand-dependent accumulation of Toll-like receptor 4 (TLR4) and glial cell-line-derived neurotrophic factor receptor alpha 1 into lipid raft was decreased, and the activation of mitogen-activated protein kinases and nuclear factor-κB was impaired after lipopolysaccharide (LPS) stimulation when compared with wild-type astrocytes. In addition, the expression of caveolin-1, not cavin-1, 2, 3, caveolin-2, and flotillin-1, was found to be decreased at the protein and transcriptional levels. FABP7 re-expression in FABP7-KO astrocytes rescued the decreased level of caveolin-1. Furthermore, caveolin-1-transfection into FABP7-KO astrocytes significantly increased TLR4 recruitment into lipid raft and tumor necrosis factor-α production after LPS stimulation. Taken together, these data suggest that FABP7 controls lipid raft function through the regulation of caveolin-1 expression and is involved in the response of astrocytes to the external stimuli. GLIA 2015;63:780-794.
Collapse
Affiliation(s)
- Yoshiteru Kagawa
- Department of Organ Anatomy, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Boase NA, Kumar S. NEDD4: The founding member of a family of ubiquitin-protein ligases. Gene 2014; 557:113-22. [PMID: 25527121 DOI: 10.1016/j.gene.2014.12.020] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/01/2014] [Accepted: 12/10/2014] [Indexed: 01/31/2023]
Abstract
Ubiquitination plays a crucial role in regulating proteins post-translationally. The focus of this review is on NEDD4, the founding member of the NEDD4 family of ubiquitin ligases that is evolutionarily conserved in eukaryotes. Many potential substrates of NEDD4 have been identified and NEDD4 has been shown to play a critical role in the regulation of a number of membrane receptors, endocytic machinery components and the tumour suppressor PTEN. In this review we will discuss the diverse pathways in which NEDD4 is involved, and the patho-physiological significance of this important ubiquitin ligase.
Collapse
Affiliation(s)
- Natasha Anne Boase
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia.
| |
Collapse
|
39
|
Hiyoshi M, Indalao IL, Yano M, Yamane K, Takahashi E, Kido H. Influenza A virus infection of vascular endothelial cells induces GSK-3β-mediated β-catenin degradation in adherens junctions, with a resultant increase in membrane permeability. Arch Virol 2014; 160:225-34. [PMID: 25385175 PMCID: PMC4284391 DOI: 10.1007/s00705-014-2270-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/25/2014] [Indexed: 11/28/2022]
Abstract
Multiorgan failure with vascular hyperpermeability is the final outcome in the progression of seasonal influenza virus pneumonia and influenza-associated encephalopathy, and it is also common in infection with highly pathogenic avian influenza virus. However, the precise molecular mechanism by which influenza virus infection causes vascular endothelial cell hyperpermeability remains poorly defined. We investigated the mechanisms of hyperpermeability of human umbilical vein endothelial cells infected with influenza A virus (IAV)/Puerto Rico/8/34 (PR8) (H1N1). The levels of β-catenin, a key regulatory component of the vascular endothelial-cadherin cell adhesion complex, were markedly decreased during infection for 28 h, with increments of vascular hyperpermeability measured by transendothelial electrical resistance. Lactacystin (at 2 μM), a proteasome inhibitor, inhibited the decrease in β-catenin levels. Since the N-terminal phosphorylation of β-catenin by glycogen synthase kinase (GSK)-3β is the initiation step of proteasome-dependent degradation, we examined the effects of GSK-3β suppression by RNA interference in endothelial cells. IAV-infection-induced β-catenin degradation was significantly inhibited in GSK-3β-knockdown cells, and transfection of cells with recombinant β-catenin significantly suppressed IAV-induced hyperpermeability. These findings suggest that IAV infection induces GSK-3β-mediated β-catenin degradation in the adherens junctional complexes and induces vascular hyperpermeability. The in vitro findings of β-catenin degradation and activation of GSK-3β after IAV infection were confirmed in lungs of mice infected with IAV PR8 during the course of infection from day 0 to day 6. These results suggest that GSK-3β-mediated β-catenin degradation in adherens junctions is one of the key mechanisms of vascular hyperpermeability in severe influenza.
Collapse
Affiliation(s)
- M Hiyoshi
- Division of Enzyme Chemistry, Institute for Enzyme Research, The University of Tokushima, Kuramoto-cho 3-18-15, Tokushima, 770-8503, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Samarasinghe RA, Kanuparthi PS, Timothy Greenamyre J, DeFranco DB, Di Maio R. Transient muscarinic and glutamatergic stimulation of neural stem cells triggers acute and persistent changes in differentiation. Neurobiol Dis 2014; 70:252-61. [PMID: 25003306 DOI: 10.1016/j.nbd.2014.06.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 06/24/2014] [Indexed: 11/27/2022] Open
Abstract
While aberrant cell proliferation and differentiation may contribute to epileptogenesis, the mechanisms linking an initial epileptic insult to subsequent changes in cell fate remain elusive. Using both mouse and human iPSC-derived neural progenitor/stem cells (NPSCs), we found that a combined transient muscarinic and mGluR1 stimulation inhibited overall neurogenesis but enhanced NPSC differentiation into immature GABAergic cells. If treated NPSCs were further passaged, they retained a nearly identical phenotype upon differentiation. A similar profusion of immature GABAergic cells was seen in rats with pilocarpine-induced chronic epilepsy. Furthermore, live cell imaging revealed abnormal de-synchrony of Ca(++) transients and altered gap junction intercellular communication following combined muscarinic/glutamatergic stimulation, which was associated with either acute site-specific dephosphorylation of connexin 43 or a long-term enhancement of its degradation. Therefore, epileptogenic stimuli can trigger acute and persistent changes in cell fate by altering distinct mechanisms that function to maintain appropriate intercellular communication between coupled NPSCs.
Collapse
Affiliation(s)
- Ranmal A Samarasinghe
- University of Pittsburgh School of Medicine, Department of Pharmacology and Chemical Biology, USA; University of California Los Angeles, Department of Neurology, USA.
| | - Prasad S Kanuparthi
- University of Pittsburgh School of Medicine, Department of Pharmacology and Chemical Biology, USA
| | - J Timothy Greenamyre
- University of Pittsburgh School of Medicine-Pittsburgh, Institute of Neurodegenerative Diseases, USA
| | - Donald B DeFranco
- University of Pittsburgh School of Medicine, Department of Pharmacology and Chemical Biology, USA.
| | - Roberto Di Maio
- University of Pittsburgh School of Medicine-Pittsburgh, Institute of Neurodegenerative Diseases, USA
| |
Collapse
|
41
|
de Carvalho Myskiw J, Furini CRG, Benetti F, Izquierdo I. Hippocampal molecular mechanisms involved in the enhancement of fear extinction caused by exposure to novelty. Proc Natl Acad Sci U S A 2014; 111:4572-7. [PMID: 24591622 PMCID: PMC3970530 DOI: 10.1073/pnas.1400423111] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Exposure to a novel environment enhances the extinction of contextual fear. This has been explained by tagging of the hippocampal synapses used in extinction, followed by capture of proteins from the synapses that process novelty. The effect is blocked by the inhibition of hippocampal protein synthesis following the novelty or the extinction. Here, we show that it can also be blocked by the postextinction or postnovelty intrahippocampal infusion of the NMDA receptor antagonist 2-amino-5-phosphono pentanoic acid; the inhibitor of calcium/calmodulin-dependent protein kinase II (CaMKII), autocamtide-2-related inhibitory peptide; or the blocker of L-voltage-dependent calcium channels (L-VDCCs), nifedipine. Inhibition of proteasomal protein degradation by β-lactacystin has no effect of its own on extinction or on the influence of novelty thereon but blocks the inhibitory effects of all the other substances except that of rapamycin on extinction, suggesting that their action depends on concomitant synaptic protein turnover. Thus, the tagging-and-capture mechanism through which novelty enhances fear extinction involves more molecular processes than hitherto thought: NMDA receptors, L-VDCCs, CaMKII, and synaptic protein turnover.
Collapse
Affiliation(s)
- Jociane de Carvalho Myskiw
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90610-000, Brazil
| | - Cristiane Regina Guerino Furini
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90610-000, Brazil
| | - Fernando Benetti
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90610-000, Brazil
| | - Ivan Izquierdo
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90610-000, Brazil
| |
Collapse
|