1
|
Liu Y, Xu XQ, Li WJ, Zhang B, Meng FZ, Wang X, Majid SM, Guo Z, Ho WZ. Cytosolic DNA sensors activation of human astrocytes inhibits herpes simplex virus through IRF1 induction. Front Cell Infect Microbiol 2024; 14:1383811. [PMID: 38808062 PMCID: PMC11130358 DOI: 10.3389/fcimb.2024.1383811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/25/2024] [Indexed: 05/30/2024] Open
Abstract
Introduction While astrocytes participate in the CNS innate immunity against herpes simplex virus type 1 (HSV-1) infection, they are the major target for the virus. Therefore, it is of importance to understand the interplay between the astrocyte-mediated immunity and HSV-1 infection. Methods Both primary human astrocytes and the astrocyte line (U373) were used in this study. RT-qPCR and Western blot assay were used to measure IFNs, the antiviral IFN-stimulated genes (ISGs), IFN regulatory factors (IRFs) and HSV-1 DNA. IRF1 knockout or knockdown was performed with CRISPR/Cas9 and siRNA transfection techniques. Results Poly(dA:dT) could inhibit HSV-1 replication and induce IFN-β/IFN-λs production in human astrocytes. Poly(dA:dT) treatment of astrocytes also induced the expression of the antiviral ISGs (Viperin, ISG56 and MxA). Among IRFs members examined, poly(dA:dT) selectively unregulated IRF1 and IRF9, particularly IRF1 in human astrocytes. The inductive effects of poly(dA:dT) on IFNs and ISGs were diminished in the IRF1 knockout cells. In addition, IRF1 knockout attenuated poly(dA:dT)-mediated HSV-1 inhibition in the cells. Conclusion The DNA sensors activation induces astrocyte intracellular innate immunity against HSV-1. Therefore, targeting the DNA sensors has potential for immune activation-based HSV-1 therapy.
Collapse
Affiliation(s)
- Yu Liu
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
- College of Life Sciences and Health, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Xi-Qiu Xu
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Wei-Jing Li
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Biao Zhang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Feng-Zhen Meng
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xu Wang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Safah M. Majid
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Zihan Guo
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Wen-Zhe Ho
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
2
|
Osawa J, Karakawa M, Taniguchi A, Inui Y, Usuki C, Ishida A, Kameshita I, Sueyoshi N. Functional regulation of the protein phosphatase PPM1M by phosphorylation at multiple sites with Ser/Thr-Pro motifs. Arch Biochem Biophys 2024; 753:109887. [PMID: 38224862 DOI: 10.1016/j.abb.2024.109887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
The imbalance in the phosphorylation and the dephosphorylation of proteins leads to various diseases. Therefore, in vivo, the functions of protein kinases and protein phosphatases are strictly regulated. Mg2+/Mn2+-dependent protein phosphatase PPM1M has been implicated in immunity and cancer; however, the regulation mechanism remains unknown. In this study, we show that PPM1M is regulated in different ways by multiple phosphorylation. PPM1M has four Ser/Thr-Pro motifs (Ser27, Ser43, Ser60, and Thr254) that are recognized by proline-directed kinases, and Ser60 was found to be phosphorylated by cyclin-dependent kinase 5 (CDK5) in the cell. The phospho-mimetic mutation of Ser27 and Ser43 in the N-terminal domain suppresses the nuclear localization of PPM1M and promotes its accumulation in the cytoplasm. The phospho-mimetic mutation of Ser60 decreases PPM1M activity; conversely, the phospho-mimetic mutation of Thr254 increases PPM1M activity. These results suggest that the subcellular localization and phosphatase activity of PPM1M are regulated by protein kinases, including CDK5, via phosphorylation at multiple sites. Thus, PPM1M is differentially regulated by proline-directed kinases, including CDK5.
Collapse
Affiliation(s)
- Jin Osawa
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan
| | - Masataka Karakawa
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan
| | - Aoi Taniguchi
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan
| | - Yuiko Inui
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan
| | - Chika Usuki
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan
| | - Atsuhiko Ishida
- Laboratory of Molecular Brain Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8521, Japan.
| | - Isamu Kameshita
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan
| | - Noriyuki Sueyoshi
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan.
| |
Collapse
|
3
|
Zeng R, Wang L, Zhang Y, Yang Y, Yang J, Qin Y. Exploring the immunological role and prognostic potential of PPM1M in pan-cancer. Medicine (Baltimore) 2023; 102:e32758. [PMID: 36961170 PMCID: PMC10036021 DOI: 10.1097/md.0000000000032758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/05/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND PPM1M is a member of the metal-dependent protein phosphatase family, and its role in the immunization process has not been studied in depth. In this study, we investigated the role of PPM1M in pan-cancer. METHODS Samples of cancer and normal tissues were obtained from the cancer genome atlas and genotype-tissue expression. Kaplan-Meier survival curves and Cox regression were used to analyze the effect of PPM1M on prognosis. Functional and pathway enrichment analyses were performed using the R package "clusterProfiler" to explore the role of PPM1M. The Sanger Box database was used to analyze the relationship between PPM1M and tumor immune checkpoint, tumor mutational burden, and microsatellite instability. The Tumor Immune Estimation Resource 2 database and CIBERSORT method were used to analyze the relationship between PPM1M and tumor-infiltrating immune cells. Finally, the cBioPortal database was used to analyze the genomic variation in PPM1M. RESULTS Among the variety of tumors, the expression of PPM1M was higher in normal tissues than in cancerous tissues. The expression of PPM1M is closely associated with patient prognosis, tumor immune checkpoint, tumor mutational burden, and microsatellite instability. PPM1M is closely associated with the infiltration of immune cells into the tumor microenvironment. In addition, PPM1M is involved in the regulation of several immune-related pathways. CONCLUSION In pan-cancer, PPM1M affects patient prognosis and may be a potential immunological biomarker. Furthermore, PPM1M may be a potential therapeutic target in tumor immunology.
Collapse
Affiliation(s)
- Rongruo Zeng
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region & Research Center of Health Management, Guangxi Academy of Medical Sciences, Nanning, Guangxi, People’s Republic of China
- Department of Pathology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
| | - Lulu Wang
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region & Research Center of Health Management, Guangxi Academy of Medical Sciences, Nanning, Guangxi, People’s Republic of China
| | - Yuxu Zhang
- Department of International Medicine Services, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People’s Republic of China
| | - Ye Yang
- Department of Rehabilitation Medicine, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Jie Yang
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region & Research Center of Health Management, Guangxi Academy of Medical Sciences, Nanning, Guangxi, People’s Republic of China
| | - Yan Qin
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region & Research Center of Health Management, Guangxi Academy of Medical Sciences, Nanning, Guangxi, People’s Republic of China
| |
Collapse
|
4
|
Zika Virus Induces Mitotic Catastrophe in Human Neural Progenitors by Triggering Unscheduled Mitotic Entry in the Presence of DNA Damage While Functionally Depleting Nuclear PNKP. J Virol 2022; 96:e0033322. [PMID: 35412344 PMCID: PMC9093132 DOI: 10.1128/jvi.00333-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Vertical transmission of Zika virus (ZIKV) leads with high frequency to congenital ZIKV syndrome (CZS), whose worst outcome is microcephaly. However, the mechanisms of congenital ZIKV neurodevelopmental pathologies, including direct cytotoxicity to neural progenitor cells (NPC), placental insufficiency, and immune responses, remain incompletely understood. At the cellular level, microcephaly typically results from death or insufficient proliferation of NPC or cortical neurons. NPC replicate fast, requiring efficient DNA damage responses to ensure genome stability. Like congenital ZIKV infection, mutations in the polynucleotide 5′-kinase 3′-phosphatase (PNKP) gene, which encodes a critical DNA damage repair enzyme, result in recessive syndromes often characterized by congenital microcephaly with seizures (MCSZ). We thus tested whether there were any links between ZIKV and PNKP. Here, we show that two PNKP phosphatase inhibitors or PNKP knockout inhibited ZIKV replication. PNKP relocalized from the nucleus to the cytoplasm in infected cells, colocalizing with the marker of ZIKV replication factories (RF) NS1 and resulting in functional nuclear PNKP depletion. Although infected NPC accumulated DNA damage, they failed to activate the DNA damage checkpoint kinases Chk1 and Chk2. ZIKV also induced activation of cytoplasmic CycA/CDK1 complexes, which trigger unscheduled mitotic entry. Inhibition of CDK1 activity inhibited ZIKV replication and the formation of RF, supporting a role of cytoplasmic CycA/CDK1 in RF morphogenesis. In brief, ZIKV infection induces mitotic catastrophe resulting from unscheduled mitotic entry in the presence of DNA damage. PNKP and CycA/CDK1 are thus host factors participating in ZIKV replication in NPC, and pathogenesis to neural progenitor cells. IMPORTANCE The 2015–2017 Zika virus (ZIKV) outbreak in Brazil and subsequent international epidemic revealed the strong association between ZIKV infection and congenital malformations, mostly neurodevelopmental defects up to microcephaly. The scale and global expansion of the epidemic, the new ZIKV outbreaks (Kerala state, India, 2021), and the potential burden of future ones pose a serious ongoing risk. However, the cellular and molecular mechanisms resulting in microcephaly remain incompletely understood. Here, we show that ZIKV infection of neuronal progenitor cells results in cytoplasmic sequestration of an essential DNA repair protein itself associated with microcephaly, with the consequent accumulation of DNA damage, together with an unscheduled activation of cytoplasmic CDK1/Cyclin A complexes in the presence of DNA damage. These alterations result in mitotic catastrophe of neuronal progenitors, which would lead to a depletion of cortical neurons during development.
Collapse
|
5
|
Metal-dependent Ser/Thr protein phosphatase PPM family: Evolution, structures, diseases and inhibitors. Pharmacol Ther 2020; 215:107622. [PMID: 32650009 DOI: 10.1016/j.pharmthera.2020.107622] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Protein phosphatases and kinases control multiple cellular events including proliferation, differentiation, and stress responses through regulating reversible protein phosphorylation, the most important post-translational modification. Members of metal-dependent protein phosphatase (PPM) family, also known as PP2C phosphatases, are Ser/Thr phosphatases that bind manganese/magnesium ions (Mn2+/Mg2+) in their active center and function as single subunit enzymes. In mammals, there are 20 isoforms of PPM phosphatases: PPM1A, PPM1B, PPM1D, PPM1E, PPM1F, PPM1G, PPM1H, PPM1J, PPM1K, PPM1L, PPM1M, PPM1N, ILKAP, PDP1, PDP2, PHLPP1, PHLPP2, PP2D1, PPTC7, and TAB1, whereas there are only 8 in yeast. Phylogenetic analysis of the DNA sequences of vertebrate PPM isoforms revealed that they can be divided into 12 different classes: PPM1A/PPM1B/PPM1N, PPM1D, PPM1E/PPM1F, PPM1G, PPM1H/PPM1J/PPM1M, PPM1K, PPM1L, ILKAP, PDP1/PDP2, PP2D1/PHLPP1/PHLPP2, TAB1, and PPTC7. PPM-family members have a conserved catalytic core region, which contains the metal-chelating residues. The different isoforms also have isoform specific regions within their catalytic core domain and terminal domains, and these regions may be involved in substrate recognition and/or functional regulation of the phosphatases. The twenty mammalian PPM phosphatases are involved in regulating diverse cellular functions, such as cell cycle control, cell differentiation, immune responses, and cell metabolism. Mutation, overexpression, or deletion of the PPM phosphatase gene results in abnormal cellular responses, which lead to various human diseases. This review focuses on the structures and biological functions of the PPM-phosphatase family and their associated diseases. The development of specific inhibitors against the PPM phosphatase family as a therapeutic strategy will also be discussed.
Collapse
|
6
|
Xu Y, Yang XL, Yang XL, Ren YR, Zhuang XY, Zhang L, Zhang XF. Functional Annotations of Single-Nucleotide Polymorphism (SNP)-Based and Gene-Based Genome-Wide Association Studies Show Genes Affecting Keratitis Susceptibility. MEDICAL SCIENCE MONITOR : INTERNATIONAL MEDICAL JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2020; 26:e922710. [PMID: 32450567 PMCID: PMC7269196 DOI: 10.12659/msm.922710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Keratitis is a complex condition in humans and is the second most common cause of legal blindness worldwide. Material/Methods To reveal the genomic loci underlying keratitis, we performed functional annotations of SNP-based and gene-based genome-wide association studies of keratitis in the UK Biobank (UKB) cohort with 337 199 subjects of European ancestry. Results The publicly available SNP-based association results showed a total of 34 SNPs, from 14 distinct loci, associated with keratitis in the UKB. Gene-based association analysis identified 2 significant genes: IQCF3 (p=2.0×10−6) and SOD3 (p=2.0×10−6). Thirty-two candidate genes were then prioritized using information from multiple sources. The overlap of IQCF3 in these 2 analyses resulted in a total of 33 hub genes. Functional annotation of hub genes was performed and transcriptional factors of IQCF3 and SOD3 were predicted. Conclusions A total of 34 SNPs from 14 distinct loci were identified as being associated with keratitis, and 32 candidate genes were then prioritized. In addition, IQCF3 and SOD3 were identified by their p values through gene-based tests on the basis of individual SNP-based tests. The functional relationship between these suspect genes and keratitis suggest that IQCF3 and SOD3 are candidate genes underlying keratitis.
Collapse
Affiliation(s)
- Yue Xu
- Department of Ophthalmology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Xiao-Lin Yang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Xiao-Long Yang
- Department of Ophthalmology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Ya-Ru Ren
- Department of Ophthalmology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Xin-Yu Zhuang
- Department of Ophthalmology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Lei Zhang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Xiao-Feng Zhang
- Department of Ophthalmology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| |
Collapse
|
7
|
Ye Z, Zeng Z, Shen Y, Chen Z. Identification of hub genes in peripheral blood mononuclear cells for the diagnosis of hepatocellular carcinoma using a weighted gene co-expression network analysis. Exp Ther Med 2020; 20:890-900. [PMID: 32742331 PMCID: PMC7388247 DOI: 10.3892/etm.2020.8736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023] Open
Abstract
Human hepatocellular carcinoma (HCC) is a common malignant tumor of the digestive tract that is prevalent worldwide. Improving diagnosis methods for HCC helps to improve patient survival rate. The present study aimed to identify novel HCC biomarkers for the diagnosis of HCC through analyzing gene changes on peripheral blood mononuclear cells (PBMCs) and verifying these in additional samples. The gene expression profiles GSE49515 (including 10 specimens from normal patients and 10 specimens from patients with HCC) and GSE58208 (including 5 specimens from normal patients and 10 specimens from patients with HCC) were downloaded from the online Gene Expression Omnibus database (GEO). Differentially expressed genes (DEGs) in PBMCs between healthy controls and patients with HCC were identified using R software. A total of 935 DEGs, including 686 upregulated DEGs and 249 downregulated DEGs, were identified in the present study. In order to identify any internal associations, these DEGs were used to construct weighted gene co-expression networks (WGCNA). Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of genes in each module were conducted using the online database DAVID. Furthermore, hub genes with high module membership were identified in a co-expression network and receiver operating characteristic curves were used to verify the diagnostic values of these eight hub genes. Furthermore, the expression and diagnosis value of the eight hub genes were also verified in additional samples. The results of the present study suggested that secreted protein acidic and cysteine rich(SPARC), transmembrane protein 40 (TMEM40), solute carrier family 25 member 44, formyl peptide receptor 2 (FPR2), complement C8 β chain, N-myristoyltransferase 1, protein kinase C δ(PRKCD) and protein phosphatase, Mg2+/Mn2+ dependent 1M(PPM1M) were hub genes. SPARC, TMEM40, FPR2, PRKCD and PPM1M had prominent diagnostic value according to the results from the GEO data and the additional samples. The present study demonstrated that these hub genes may help to improve the diagnosis of HCC.
Collapse
Affiliation(s)
- Zi Ye
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhirui Zeng
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China.,Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Yiyi Shen
- Department of Liver-Biliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Zubing Chen
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
8
|
Mechanism for the lethal effect of enterovirus A71 intracerebral injection in neonatal mice. J Transl Med 2020; 100:596-605. [PMID: 31857694 PMCID: PMC7096333 DOI: 10.1038/s41374-019-0351-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 10/31/2019] [Accepted: 11/03/2019] [Indexed: 11/09/2022] Open
Abstract
Enterovirus A71 (EV-A71) infection is primarily responsible for fatal hand, foot, and mouth disease (HFMD) cases. Infants and younger children are more likely to suffer central nervous system damage as a result of EV-A71 infection, but this virus mostly does not affect older children and adults. This study investigated the possible mechanism underlying the age-dependent lethal effect of EV-A71 infection by comparing neonatal and adult mouse models of EV-A71 infection. Although viral proliferation is absent in both neonatal and adult mice, we observed that EV-A71, as a stimulus for astrocytes, elevates the levels of cytokines and monoamine neurotransmitters in neonatal mice. Then, we selected IL-6 and adrenaline as targets in a pharmacological approach to further validate the roles of these factors in mediating the mortality of neonatal mice after EV-A71 infection. Intracerebral injection of IL-6 and adrenaline enhanced the severity of EV-A71 infection, while treatment with an anti-IL-6-neutralizing antibody or the adrenergic-antagonist phenoxybenzamine reversed the lethal effect of EV-A71 in neonatal mice. These results suggest that the central nervous system (CNS) damage in neonatal cases of EV-A71 infection might be caused by an activated fetal cerebral immune response to the virus, including the disruption of brainstem function through increased levels of cytokines and neurotransmitters, rather than the typical cytopathic effect (CPE) of viral infection.
Collapse
|
9
|
State of Astrocytes in the Mice Brain under Conditions of Herpes Viral Infection and Modeled Stroke. NEUROPHYSIOLOGY+ 2019. [DOI: 10.1007/s11062-019-09757-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
The Amphibian Antimicrobial Peptide Temporin B Inhibits In Vitro Herpes Simplex Virus 1 Infection. Antimicrob Agents Chemother 2018; 62:AAC.02367-17. [PMID: 29483113 PMCID: PMC5923125 DOI: 10.1128/aac.02367-17] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/19/2018] [Indexed: 02/06/2023] Open
Abstract
The herpes simplex virus 1 (HSV-1) is widespread in the population, and in most cases its infection is asymptomatic. The currently available anti-HSV-1 drugs are acyclovir and its derivatives, although long-term therapy with these agents can lead to drug resistance. Thus, the discovery of novel antiherpetic compounds deserves additional effort. Naturally occurring antimicrobial peptides (AMPs) represent an interesting class of molecules with potential antiviral properties. To the best of our knowledge, this study is the first demonstration of the in vitro anti-HSV-1 activity of temporin B (TB), a short membrane-active amphibian AMP. In particular, when HSV-1 was preincubated with 20 μg/ml TB, significant antiviral activity was observed (a 5-log reduction of the virus titer). Such an effect was due to the disruption of the viral envelope, as demonstrated by transmission electron microscopy. Moreover, TB partially affected different stages of the HSV-1 life cycle, including the attachment and the entry of the virus into the host cell, as well as the subsequent postinfection phase. Furthermore, its efficacy was confirmed on human epithelial cells, suggesting TB as a novel approach for the prevention and/or treatment of HSV-1 infections.
Collapse
|
11
|
Feng M, Guo S, Fan S, Zeng X, Zhang Y, Liao Y, Wang J, Zhao T, Wang L, Che Y, Wang J, Ma N, Liu L, Yue L, Li Q. The Preferential Infection of Astrocytes by Enterovirus 71 Plays a Key Role in the Viral Neurogenic Pathogenesis. Front Cell Infect Microbiol 2016; 6:192. [PMID: 28066727 PMCID: PMC5174126 DOI: 10.3389/fcimb.2016.00192] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/07/2016] [Indexed: 02/06/2023] Open
Abstract
The pathological manifestations of fatal cases of human hand, foot, and mouth disease (HFMD) caused by enterovirus 71 (EV71) are characterized by inflammatory damage to the central nervous system (CNS). Here, the dynamic distribution of EV71 in the CNS and the subsequent pathological characteristics within different regions of neonatal rhesus macaque brain tissue were studied using a chimeric EV71 expressing green fluorescence protein. The results were compared with brain tissue obtained from the autopsies of deceased EV71-infected HFMD patients. These observations suggested that the virus was prevalent in areas around the blood vessels and nerve nuclei in the brain stem and showed a preference for astrocytes in the CNS. Interestingly, infected astrocytes within the in vivo and in vitro human and macaque systems exhibited increased expression of excitatory neurotransmitters and cytokines that also stimulated the neuronal secretion of the excitatory neurotransmitters noradrenalin and adrenalin, and this process most likely plays a role in the pathophysiological events that occur during EV71 infection.
Collapse
Affiliation(s)
- Min Feng
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College Kunming, China
| | - Sujie Guo
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College Kunming, China
| | - Shengtao Fan
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College Kunming, China
| | - Xiaofeng Zeng
- School of Forensic Medicine, Kunming Medical University Kunming, China
| | - Ying Zhang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College Kunming, China
| | - Yun Liao
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College Kunming, China
| | - Jianbin Wang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College Kunming, China
| | - Ting Zhao
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College Kunming, China
| | - Lichun Wang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College Kunming, China
| | - Yanchun Che
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College Kunming, China
| | - Jingjing Wang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College Kunming, China
| | - Na Ma
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College Kunming, China
| | - Longding Liu
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College Kunming, China
| | - Lei Yue
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College Kunming, China
| | - Qihan Li
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College Kunming, China
| |
Collapse
|