1
|
Igbineweka NE, van Loon JJWA. Gene-environmental influence of space and microgravity on red blood cells with sickle cell disease. NPJ Genom Med 2024; 9:44. [PMID: 39349487 PMCID: PMC11442622 DOI: 10.1038/s41525-024-00427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/09/2024] [Indexed: 10/02/2024] Open
Abstract
A fundamental question in human biology and for hematological disease is how do complex gene-environment interactions lead to individual disease outcome? This is no less the case for sickle cell disease (SCD), a monogenic disorder of Mendelian inheritance, both clinical course, severity, and treatment response, is variable amongst affected individuals. New insight and discovery often lie between the intersection of seemingly disparate disciplines. Recently, opportunities for space medicine have flourished and have offered a new paradigm for study. Two recent Nature papers have shown that hemolysis and oxidative stress play key mechanistic roles in erythrocyte pathogenesis during spaceflight. This paper reviews existing genetic and environmental modifiers of the sickle cell disease phenotype. It reviews evidence for erythrocyte pathology in microgravity environments and demonstrates why this may be relevant for the unique gene-environment interaction of the SCD phenotype. It also introduces the hematology and scientific community to methodological tools for evaluation in space and microgravity research. The increasing understanding of space biology may yield insight into gene-environment influences and new treatment paradigms in SCD and other hematological disease phenotypes.
Collapse
Affiliation(s)
- Norris E Igbineweka
- Imperial College London, Centre for Haematology, Department of Immunology & Inflammation, Commonwealth Building, Hammersmith Campus, Du Cane, London, W12 0NN, UK.
- Department of Haematology, King's College Hospital NHS Foundation Trust Denmark Hill, SE5 9RS, London, UK.
| | - Jack J W A van Loon
- Dutch Experiment Support Center (DESC), Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam Bone Center (ABC), Amsterdam UMC Location VU University Medical Center (VUmc) & Academic Centre for Dentistry Amsterdam (ACTA), Gustav Mahlerlaan 3004, 1081, LA Amsterdam, The Netherlands
- European Space Agency (ESA), European Space Research and Technology Centre (ESTEC), TEC-MMG, Keplerlaan 1, 2201, AZ Noordwijk, The Netherlands
| |
Collapse
|
2
|
Catella J, Turpin E, Connes P, Nader E, Carin R, Martin M, Rezigue H, Nougier C, Dargaud Y, Josset-Lamaugarny A, Dugrain J, Marano M, Leuci A, Boisson C, Renoux C, Joly P, Poutrel S, Hot A, Guillot N, Fromy B. Impaired microvascular function in patients with sickle cell anemia and leg ulcers improved with healing. Br J Haematol 2024. [PMID: 39318045 DOI: 10.1111/bjh.19785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024]
Abstract
Leg Ulcer (LU) pathophysiology is still not well understood in sickle cell anaemia (SCA). We hypothesised that SCA patients with LU would be characterised by lower microvascular reactivity. The aim of the present study was to compare the microcirculatory function (transcutaneous oxygen pressure (TcPO2) on the foot and laser Doppler flowmetry on the arm) and several blood biological parameters between nine SCA patients with active LU (LU+) and 56 SCA patients with no positive history of LU (LU-). We also tested the effects of plasma from LU+ and LU- patients on endothelial cell activation. We observed a reduction of the TcPO2 in LU+ compared to LU- patients. In addition, LU+ patients exhibited lower cutaneous microvascular vasodilatory capacity in response to acetylcholine, current and local heating compared to LU- patients. Inflammation and endothelial cell activation in response to plasma did not differ between the two groups. Among the nine patients from the LU+ group, eight were followed and six achieved healing in 4.4 ± 2.5 months. Among thus achieving healing, microvascular vasodilatory capacity in response to acetylcholine, current and local heating and TcPO2 improved after healing. In conclusion, microcirculatory function is impaired in patients with LU, and improves with healing.
Collapse
Affiliation(s)
- Judith Catella
- Service de Médecine Interne et Vasculaire, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), Sorbonne, Paris, France
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Equipe «Biologie Vasculaire et du Globule Rouge», Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Etienne Turpin
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), Sorbonne, Paris, France
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Equipe «Biologie Vasculaire et du Globule Rouge», Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Philippe Connes
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), Sorbonne, Paris, France
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Equipe «Biologie Vasculaire et du Globule Rouge», Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Elie Nader
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), Sorbonne, Paris, France
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Equipe «Biologie Vasculaire et du Globule Rouge», Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Romain Carin
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), Sorbonne, Paris, France
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Equipe «Biologie Vasculaire et du Globule Rouge», Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Marie Martin
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), Sorbonne, Paris, France
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Equipe «Biologie Vasculaire et du Globule Rouge», Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Hamdi Rezigue
- Service d'hématologie-hémostase, Hospices civils de Lyon, Bron, France
- EA 4609-Hémostase et cancer, UFR Laennec, Université Claude Bernard, Lyon 1, France
| | - Christophe Nougier
- Service d'hématologie-hémostase, Hospices civils de Lyon, Bron, France
- EA 4609-Hémostase et cancer, UFR Laennec, Université Claude Bernard, Lyon 1, France
| | - Yesim Dargaud
- EA 4609-Hémostase et cancer, UFR Laennec, Université Claude Bernard, Lyon 1, France
- Unité d'hémostase Clinique, Hôpital Cardiologique Louis Pradel, Lyon, France
| | - Audrey Josset-Lamaugarny
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI UMR 5305), CNRS/Université Claude Bernard Lyon 1, Lyon, France
| | - Justine Dugrain
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI UMR 5305), CNRS/Université Claude Bernard Lyon 1, Lyon, France
| | - Muriel Marano
- EA 4609-Hémostase et cancer, UFR Laennec, Université Claude Bernard, Lyon 1, France
| | - Alexandre Leuci
- EA 4609-Hémostase et cancer, UFR Laennec, Université Claude Bernard, Lyon 1, France
| | - Camille Boisson
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Equipe «Biologie Vasculaire et du Globule Rouge», Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- Service de Biochimie et Biologie Moléculaire, Laboratoire de Biologie Médicale Multi-site, Hospices Civils de Lyon, Lyon, France
| | - Celine Renoux
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), Sorbonne, Paris, France
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Equipe «Biologie Vasculaire et du Globule Rouge», Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- Service de Biochimie et Biologie Moléculaire, Laboratoire de Biologie Médicale Multi-site, Hospices Civils de Lyon, Lyon, France
| | - Philippe Joly
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), Sorbonne, Paris, France
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Equipe «Biologie Vasculaire et du Globule Rouge», Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- Service de Biochimie et Biologie Moléculaire, Laboratoire de Biologie Médicale Multi-site, Hospices Civils de Lyon, Lyon, France
| | - Solène Poutrel
- Service de Médecine Interne et Vasculaire, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), Sorbonne, Paris, France
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Equipe «Biologie Vasculaire et du Globule Rouge», Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Arnaud Hot
- Service de Médecine Interne et Vasculaire, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), Sorbonne, Paris, France
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Equipe «Biologie Vasculaire et du Globule Rouge», Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Nicolas Guillot
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), Sorbonne, Paris, France
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Equipe «Biologie Vasculaire et du Globule Rouge», Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Berengère Fromy
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI UMR 5305), CNRS/Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
3
|
Catella J, Guillot N, Nader E, Skinner S, Poutrel S, Hot A, Connes P, Fromy B. Controversies in the pathophysiology of leg ulcers in sickle cell disease. Br J Haematol 2024; 205:61-70. [PMID: 38867511 DOI: 10.1111/bjh.19584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
Patients with sickle cell disease (SCD) often experience painful vaso-occlusive crises and chronic haemolytic anaemia, as well as various acute and chronic complications, such as leg ulcers. Leg ulcers are characterized by their unpredictability, debilitating pain and prolonged healing process. The pathophysiology of SCD leg ulcers is not well defined. Known risk factors include male gender, poor social conditions, malnutrition and a lack of compression therapy when oedema occurs. Leg ulcers typically start with spontaneous pain, followed by induration, hyperpigmentation, blister formation and destruction of the epidermis. SCD is characterized by chronic haemolysis, increased oxidative stress and decreased nitric oxide bioavailability, which promote ischaemia and inflammation and consequently impair vascular function in the skin. This cutaneous vasculopathy, coupled with venostasis around the ankle, creates an ideal environment for local vaso-occlusive crises, which can result in the development of leg ulcers that resemble arterial ulcers. Following the development of the ulcer, healing is hindered as a result of factors commonly observed in venous ulceration, including venous insufficiency, oedema and impaired angiogenesis. All of these factors are modulated by genetic factors. However, our current understanding of these genetic factors remains limited and does not yet enable us to accurately predict ulceration susceptibility.
Collapse
Affiliation(s)
- Judith Catella
- Service de Médecine Interne et Vasculaire, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), Sorbonne, Paris, France
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Equipe "Biologie Vasculaire et du Globule Rouge", Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI UMR 5305), CNRS/Université Claude Bernard Lyon 1, Lyon, France
| | - Nicolas Guillot
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), Sorbonne, Paris, France
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Equipe "Biologie Vasculaire et du Globule Rouge", Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Elie Nader
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), Sorbonne, Paris, France
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Equipe "Biologie Vasculaire et du Globule Rouge", Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Sarah Skinner
- Clinical Research and Epidemiology Unit, Montpellier University, Montpellier, France
| | - Solène Poutrel
- Service de Médecine Interne et Vasculaire, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), Sorbonne, Paris, France
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Equipe "Biologie Vasculaire et du Globule Rouge", Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Arnaud Hot
- Service de Médecine Interne et Vasculaire, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), Sorbonne, Paris, France
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Equipe "Biologie Vasculaire et du Globule Rouge", Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Philippe Connes
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), Sorbonne, Paris, France
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Equipe "Biologie Vasculaire et du Globule Rouge", Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Berengère Fromy
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI UMR 5305), CNRS/Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
4
|
Sheehan V. Gene Therapies for Hemoglobinopathies: Promises and Challenges. Hemoglobin 2024; 48:139-140. [PMID: 39329379 DOI: 10.1080/03630269.2024.2352163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Affiliation(s)
- Vivien Sheehan
- The Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta, Associate Professor of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
5
|
Rab MAE, Kanne CK, Boisson C, Bos J, van Oirschot BA, Houwing ME, Renoux C, Bartels M, Rijneveld AW, Nur E, Cnossen MH, Joly P, Nader E, Fort R, Connes P, van Wijk R, Sheehan VA, van Beers EJ. Oxygen gradient ektacytometry-derived biomarkers are associated with acute complications in sickle cell disease. Blood Adv 2024; 8:276-286. [PMID: 37976458 PMCID: PMC10824684 DOI: 10.1182/bloodadvances.2023011013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/26/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023] Open
Abstract
ABSTRACT We investigated the potential of the point of sickling (PoS; the pO2 tension at which red cells start to sickle), determined by oxygen gradient ektacytometry to serve as a biomarker associated with the incidence of acute sickle cell disease-related complications in 177 children and 50 adults. In the pediatric cohort, for every 10 mmHg increase in PoS reflecting a greater likelihood of sickling, the likelihood of an individual experiencing >1 type of acute complication increased; the adjusted odds ratio (aOR) was 1.65. For every 0.1 increase in minimum elongation index (EImin; reflecting improved red blood cell deformability at hypoxia), the aOR was 0.50. In the adult cohort, for every 10 mmHg increase in PoS, we found an aOR of 3.00, although this was not significant after correcting for multiple testing. There was a trend for an association between higher PoS and greater likelihood of vaso-occlusive episodes (VOEs; children aOR, 1.35; adults aOR, 2.22). In children, only EImin was associated with VOEs (aOR, 0.68). When data of both cohorts were pooled, significant associations with PoS and/or EImin were found for all acute complications, independently and when >1 type of acute complication was assessed. These findings indicate that oxygen gradient ektacytometry generates novel biomarkers and provides a rationale for further development of these biomarkers in the assessment of clinical severity, evaluation of novel therapies, and as surrogate clinical trial end points. These biomarkers may be useful in assessing efficacy of novel therapies like pyruvate kinase activators, voxelotor, and L-glutamine.
Collapse
Affiliation(s)
- Minke A. E. Rab
- Central Diagnostic Laboratory-Research, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Celeste K. Kanne
- Department of Pediatrics Emory University School of Medicine, Children’s Healthcare of Atlanta, Atlanta, GA
| | - Camille Boisson
- Laboratory LIBM EA7424, University of Lyon 1, “Vascular Biology and Red Blood Cell” team, Lyon, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Jennifer Bos
- Central Diagnostic Laboratory-Research, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Brigitte A. van Oirschot
- Central Diagnostic Laboratory-Research, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Maite E. Houwing
- Department of Pediatric Hematology and Oncology, Erasmus Medical Center Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Céline Renoux
- Laboratory LIBM EA7424, University of Lyon 1, “Vascular Biology and Red Blood Cell” team, Lyon, France
- Laboratory of Excellence GR-Ex, Paris, France
- Laboratory of Biochemistry and Molecular Biology, UF Biochemistry of Red Blood Cell Diseases, Est Center of Biology and Pathology, Hospices Civils de Lyon, Lyon, France
| | - Marije Bartels
- Van Creveldkliniek, Divison of Internal Medicine and Dermatology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Anita W. Rijneveld
- Department of Hematology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Erfan Nur
- Department of Hematology, Amsterdam University Medical Center, The Netherlands
| | - Marjon H. Cnossen
- Department of Pediatric Hematology and Oncology, Erasmus Medical Center Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Philippe Joly
- Laboratory LIBM EA7424, University of Lyon 1, “Vascular Biology and Red Blood Cell” team, Lyon, France
- Laboratory of Excellence GR-Ex, Paris, France
- Laboratory of Biochemistry and Molecular Biology, UF Biochemistry of Red Blood Cell Diseases, Est Center of Biology and Pathology, Hospices Civils de Lyon, Lyon, France
| | - Elie Nader
- Laboratory LIBM EA7424, University of Lyon 1, “Vascular Biology and Red Blood Cell” team, Lyon, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Romain Fort
- Laboratory LIBM EA7424, University of Lyon 1, “Vascular Biology and Red Blood Cell” team, Lyon, France
- Laboratory of Excellence GR-Ex, Paris, France
- Department of Internal Medicine, Hospices Civils de Lyon, Lyon, France
| | - Philippe Connes
- Laboratory LIBM EA7424, University of Lyon 1, “Vascular Biology and Red Blood Cell” team, Lyon, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Richard van Wijk
- Central Diagnostic Laboratory-Research, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Vivien A. Sheehan
- Department of Pediatrics Emory University School of Medicine, Children’s Healthcare of Atlanta, Atlanta, GA
| | - Eduard J. van Beers
- Van Creveldkliniek, Divison of Internal Medicine and Dermatology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
6
|
Connes P. Blood rheology and vascular function in sickle cell trait and sickle cell disease: From pathophysiological mechanisms to clinical usefulness. Clin Hemorheol Microcirc 2024; 86:9-27. [PMID: 38073384 DOI: 10.3233/ch-238122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Sickle cell disease (SCD) is an autosomal recessive disorder. Although the molecular mechanisms at the origin of SCD have been well characterized, its clinical expression is highly variable. SCD is characterized by blood rheological abnormalities, increased inflammation and oxidative stress, and vascular dysfunction. Individuals with only one copy of the mutated β-globin gene have sickle cell trait (SCT) and are usually asymptomatic. The first part of this review focuses on the biological responses of SCT carriers during exercise and on the effects of combined SCT and diabetes on vascular function, several biomarkers and clinical complications. The second part of the review focuses on SCD and shows that the magnitude of red blood cell (RBC) rheological alterations is highly variable from one patient to another, and this variability reflects the clinical and hematological variability: patients with the less deformable RBCs have high hemolytic rate and severe anemia, and are prone to develop leg ulcers, priapism, cerebral vasculopathy, glomerulopathy or pulmonary hypertension. In contrast, SCD patients characterized by the presence of more deformable RBCs (but still rigid) are less anemic and may exhibit increased blood viscosity, which increases the risk for vaso-occlusive events. Several genetic and cellular factors may modulate RBC deformability in SCD: co-existence of α-thalassemia, fetal hemoglobin level, oxidative stress, the presence of residual mitochondria into mature RBCs, the activity of various non-selective cationic ion channels, etc. The last part of this review presents the effects of hydroxyurea and exercise training on RBC rheology and other biomarkers in SCD.
Collapse
Affiliation(s)
- Philippe Connes
- Laboratory LIBM EA7424, University of Lyon 1, "Vascular Biology and Red Blood Cell" Team, Lyon, France
- Laboratory of Excellence Labex GR-Ex, Paris, France
| |
Collapse
|
7
|
Christakopoulos C. Multimodal Retinal Imaging of Intravascular Lipid in Severe/Extreme Hypertriglyceridemia. Case Rep Ophthalmol Med 2023; 2023:6698239. [PMID: 37800092 PMCID: PMC10550437 DOI: 10.1155/2023/6698239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/13/2023] [Indexed: 10/07/2023] Open
Abstract
Retinal intravascular lipid aggregates were detected in the left eye in a patient with uncontrolled diabetes and very high blood triglycerides. The patient suffered visual loss in the left eye due to retinal ischemia. Optical coherence tomography, fluorescein angiography, infrared fundus photography, and autofluorescence studies of the retina demonstrated unique findings. Slowed choroidal and retinal flow was detected on fluorescein angiography, and a prominent middle layer membrane sign was present on OCT. Intravascular lipid reflectivity was manifest on retinal infrared and autofluorescence imaging. Eventually, insulin and statin therapy proved effective in reversing the vascular lesions, although retinal atrophy finally ensued. This report of a very rare clinical condition provides unique findings on multimodal retinal imaging and confirms the need for prompt insulin and statin therapy in severe/extreme hypertriglyceridemia and dysregulated diabetes. One similar case was reported in the past when multimodal imaging studies of the retina were not available. The lesions described herein should be differentiated from the more frequently encountered lipemia retinalis as they may confer worse prognosis.
Collapse
|
8
|
Shear-Stress-Gradient and Oxygen-Gradient Ektacytometry in Sickle Cell Patients at Steady State and during Vaso-Occlusive Crises. Cells 2022; 11:cells11030585. [PMID: 35159394 PMCID: PMC8834105 DOI: 10.3390/cells11030585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/24/2022] [Accepted: 02/07/2022] [Indexed: 12/02/2022] Open
Abstract
Oxygen gradient ektacytometry (oxygenscan) measures the changes in red blood cell (RBC) deformability in normoxia and during deoxygenation. We investigated the changes in RBC deformability, measured by both oxygenscan and classical shear-stress-gradient ektacytometry, in 10 patients with sickle cell disease (SCD) during vaso-occlusive crisis (VOC) versus steady state. Oxygenscan and shear-stress-gradient ektacytometry parameters were also measured in 38 SCD patients at steady state on two different occasions. Shear-stress-gradient ektacytometry parameters, maximal RBC deformability at normoxia and the minimum RBC deformability during deoxygenation were lower during VOC compared to steady state. The oxygen partial pressure at which RBCs started to sickle (PoS) was not significantly affected by VOC, but the results were very heterogeneous: the PoS increased in 5 in 10 patients and decreased in 4 in 10 patients. Both oxygenscan and shear-stress-gradient ektacytometry parameters remained unchanged in patients at steady state between two sets of measurements, performed at 17 ± 8 months intervals. In conclusion, the present study showed that both oxygen gradient ektacytometry and shear-stress-gradient ektacytometry are sensitive to disease activity in SCD, and that both techniques give comparable results; however, the oxygen-dependent propensity of RBCs to sickle was highly variable during VOC.
Collapse
|
9
|
Huang DN, Zhong HJ, Cai YL, Xie WR, He XX. Serum Lactate Dehydrogenase Is a Sensitive Predictor of Systemic Complications of Acute Pancreatitis. Gastroenterol Res Pract 2022; 2022:1131235. [PMID: 36329782 PMCID: PMC9626216 DOI: 10.1155/2022/1131235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/06/2022] [Indexed: 12/08/2022] Open
Abstract
BACKGROUND Acute pancreatitis (AP) is a common and potentially life-threatening inflammatory disease that can cause various complications, including systemic inflammatory response syndrome (SIRS), pleural effusion, ascitic fluid, myocardial infarction, and acute kidney injury (AKI). However, there is still a lack of rapid and effective indicators to assess the disease. The aim of this study was to investigate the associations of high serum lactate dehydrogenase (LDH) levels with AP severity and systemic complications. METHODS AP patients treated from July 2014 to December 2020 were retrospectively enrolled. They were divided into elevated (n = 93) and normal (n = 143) LDH groups. Their demographic data, clinical data, hospital duration, and hospital expenses were analyzed. Linear and binary logistic regression analyses were used to determine whether elevated LDH is a risk factor for AP severity and complications after adjusting for confounders. RESULTS There were significant differences in AP severity scores (Ranson, MODS, BISAP, APACHE II, and CTSI), hospital duration, hospital expenses, and the incidences of complications (SIRS, pleural effusion, ascitic fluid, myocardial infarction, and AKI) between the elevated and normal LDH groups. After adjusting for confounders, elevated LDH was associated with AP severity scores and hospital duration and expenses (based on linear regression analyses) and was a risk factor for the occurrence of AP complications and interventions, that is, diuretic and vasoactive agent use (based on binary logistic regression analyses). CONCLUSIONS Elevated LDH is associated with high AP severity scores and high incidences of complications (SIRS, pleural effusion, ascitic fluid, myocardial infarction, and AKI).
Collapse
Affiliation(s)
- Dong-Ni Huang
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, Guangzhou, China
| | - Hao-Jie Zhong
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, Guangzhou, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Ying-Li Cai
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, Guangzhou, China
| | - Wen-Rui Xie
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, Guangzhou, China
| | - Xing-Xiang He
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, Guangzhou, China
| |
Collapse
|
10
|
Stauffer E, Poutrel S, Cannas G, Gauthier A, Fort R, Bertrand Y, Renoux C, Joly P, Boisson C, Hot A, Peter-Derex L, Pialoux V, PetitJean T, Connes P. Nocturnal Hypoxemia Rather Than Obstructive Sleep Apnea Is Associated With Decreased Red Blood Cell Deformability and Enhanced Hemolysis in Patients With Sickle Cell Disease. Front Physiol 2021; 12:743399. [PMID: 34630163 PMCID: PMC8498610 DOI: 10.3389/fphys.2021.743399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 08/30/2021] [Indexed: 11/30/2022] Open
Abstract
Background: Although obstructive sleep apnea (OSA) could act as a modulator of clinical severity in sickle cell disease (SCD), few studies focused on the associations between the two diseases. Research Question: The aims of this study were: (1) to explore the associations between OSA, nocturnal oxyhemoglobin saturation (SpO2) and the history of several acute/chronic complications, (2) to investigate the impact of OSA and nocturnal SpO2 on several biomarkers (hematological, blood rheological, and coagulation) in patients with SCD. Study Design and Methods: Forty-three homozygous SCD patients underwent a complete polysomnography recording followed by blood sampling. Results: The proportion of patients suffering from nocturnal hypoxemia did not differ between those with and those without OSA. No association between OSA and clinical severity was found. Nocturnal hypoxemia was associated with a higher proportion of patients with hemolytic complications (glomerulopathy, leg ulcer, priapism, or pulmonary hypertension). In addition, nocturnal hypoxemia was accompanied by a decrease in RBC deformability, enhanced hemolysis and more severe anemia. Interpretation: Nocturnal hypoxemia in SCD patients could be responsible for changes in RBC deformability resulting in enhanced hemolysis leading to the development of complications such as leg ulcers, priapism, pulmonary hypertension or glomerulopathy. Clinical Trial Registration:www.ClinicalTrials.gov, identifier: NCT03753854.
Collapse
Affiliation(s)
- Emeric Stauffer
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team ≪ Vascular Biology and Red Blood Cell ≫, University Claude Bernard Lyon 1, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France.,Centre de Médecine du Sommeil et des Maladies Respiratoires, Hospices Civils de Lyon, Hôpital Croix Rousse, Lyon, France.,Service d'Explorations Fonctionnelles Respiratoires-Médecine du sport et de l'activité physique, Hospices Civils de Lyon, Lyon, France
| | - Solène Poutrel
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France.,Service de Médecine Interne, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Giovanna Cannas
- Service de Médecine Interne, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Alexandra Gauthier
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team ≪ Vascular Biology and Red Blood Cell ≫, University Claude Bernard Lyon 1, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France.,Institut d'Hématologique et d'Oncologique Pédiatrique, Hospices Civils de Lyon, Lyon, France
| | - Romain Fort
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team ≪ Vascular Biology and Red Blood Cell ≫, University Claude Bernard Lyon 1, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France.,Service de Médecine Interne, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France.,Service de Réanimation Médicale, Hôpital Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Yves Bertrand
- Service de Réanimation Médicale, Hôpital Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Céline Renoux
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team ≪ Vascular Biology and Red Blood Cell ≫, University Claude Bernard Lyon 1, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France.,Laboratoire de Biochimie et de Biologie Moléculaire, UF de Biochimie des Pathologies Erythrocytaires, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Philippe Joly
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team ≪ Vascular Biology and Red Blood Cell ≫, University Claude Bernard Lyon 1, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France.,Laboratoire de Biochimie et de Biologie Moléculaire, UF de Biochimie des Pathologies Erythrocytaires, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Camille Boisson
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team ≪ Vascular Biology and Red Blood Cell ≫, University Claude Bernard Lyon 1, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Arnaud Hot
- Service de Médecine Interne, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Laure Peter-Derex
- Centre de Médecine du Sommeil et des Maladies Respiratoires, Hospices Civils de Lyon, Hôpital Croix Rousse, Lyon, France.,Centre de recherche en Neurosciences de Lyon, CNRS UMR 5292, INSERM U 1028, Universite Claude Bernard Lyon 1, Lyon, France
| | - Vincent Pialoux
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team ≪ Vascular Biology and Red Blood Cell ≫, University Claude Bernard Lyon 1, Lyon, France
| | - Thierry PetitJean
- Centre de Médecine du Sommeil et des Maladies Respiratoires, Hospices Civils de Lyon, Hôpital Croix Rousse, Lyon, France.,Centre de recherche en Neurosciences de Lyon, CNRS UMR 5292, INSERM U 1028, Universite Claude Bernard Lyon 1, Lyon, France
| | - Philippe Connes
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team ≪ Vascular Biology and Red Blood Cell ≫, University Claude Bernard Lyon 1, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| |
Collapse
|
11
|
Johnson TN, Ke AB. Physiologically Based Pharmacokinetic Modeling and Allometric Scaling in Pediatric Drug Development: Where Do We Draw the Line? J Clin Pharmacol 2021; 61 Suppl 1:S83-S93. [PMID: 34185901 DOI: 10.1002/jcph.1834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/12/2021] [Indexed: 11/11/2022]
Abstract
Developing medicines for children is now established in legislation in both the United States and Europe; new drugs require pediatric study or investigation plans as part of their development. Particularly in early age groups, many developmental processes are not reflected by simple scalars such as body weight or body surface area, and even projecting doses based on simple allometric scaling can lead to significant overdoses in certain age groups. Modeling and simulation methodology, including physiologically based modeling, has evolved as part of the drug development toolkit and is being increasingly applied to various aspects of pediatric drug development. Pediatric physiologically based pharmacokinetic (PBPK) models account for the development of organs and the ontogeny of specific enzymes and transporters that determine the age-related pharmacokinetic profiles. However, when should this approach be used, and when will simpler methods such as allometric scaling suffice in answering specific problems? The aim of this review article is to illustrate the application of allometric scaling and PBPK in pediatric drug development and explore the optimal application of the latter approach with reference to case examples. In reality, allometric scaling included as part of population pharmacokinetic and PBPK approaches are all part of a model-informed drug development toolkit helping with decision making during the process of drug discovery and development; to that end, they should be viewed as complementary.
Collapse
Affiliation(s)
| | - Alice B Ke
- Certara USA, Inc., Princeton, New Jersey, USA
| |
Collapse
|
12
|
Gouraud E, Connes P, Gauthier-Vasserot A, Faes C, Merazga S, Poutrel S, Renoux C, Boisson C, Joly P, Bertrand Y, Hot A, Cannas G, Hautier C. Impact of a submaximal mono-articular exercise on the skeletal muscle function of patients with sickle cell disease. Eur J Appl Physiol 2021; 121:2459-2470. [PMID: 34023973 DOI: 10.1007/s00421-021-04716-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Sickle cell disease (SCD) patients exhibit a limited exercise tolerance commonly attributed to anaemia, as well as hemorheological and cardio-respiratory abnormalities, but the functional status of skeletal muscle at exercise is unknown. Moreover, the effect of SCD genotype on exercise tolerance and skeletal muscle function has been poorly investigated. The aim of this study was to investigate skeletal muscle function and fatigue during a submaximal exercise in SCD patients. METHODS Nineteen healthy individuals (AA), 28 patients with sickle cell anaemia (SS) and 18 with sickle cell-haemoglobin C disease (SC) performed repeated knee extensions exercise (FAT). Maximal isometric torque (Tmax) was measured before and after the FAT to quantify muscle fatigability. Electromyographic activity and oxygenation by near-infrared spectroscopy of the Vastus Lateralis were recorded. RESULTS FAT caused a reduction in Tmax in SS (- 17.0 ± 12.1%, p < 0.001) and SC (- 21.5 ± 14.5%, p < 0.05) but not in AA (+ 0.58 ± 29.9%). Root-mean-squared value of EMG signal (RMS) decreased only in SS after FAT, while the median power frequency (MPF) was unchanged in all groups. Oxygenation kinetics were determined in SS and AA and were not different. CONCLUSION These results show skeletal muscle dysfunction during exercise in SCD patients, and suggest different fatigue aetiology between SS and SC. The changes in EMG signal and oxygenation kinetics during exercise suggest that the greater skeletal muscle fatigue occurring in SCD patients would be rather due to intramuscular alterations modifications than decreased tissue oxygenation. Moreover, SS patients exhibit greater muscle fatigability than SC.
Collapse
Affiliation(s)
- Etienne Gouraud
- Inter-University Laboratory of Human Movement Sciences (LIBM) EA7424, Team "Vascular Biology and Red Blood Cell", University Claude Bernard Lyon 1, Villeurbanne, France.,Laboratory of Excellence "GR-Ex", Paris, France
| | - Philippe Connes
- Inter-University Laboratory of Human Movement Sciences (LIBM) EA7424, Team "Vascular Biology and Red Blood Cell", University Claude Bernard Lyon 1, Villeurbanne, France.,Laboratory of Excellence "GR-Ex", Paris, France.,Institute of Universities of France, Paris, France
| | - Alexandra Gauthier-Vasserot
- Inter-University Laboratory of Human Movement Sciences (LIBM) EA7424, Team "Vascular Biology and Red Blood Cell", University Claude Bernard Lyon 1, Villeurbanne, France.,Laboratory of Excellence "GR-Ex", Paris, France.,Hematology and Oncology Pediatric Unit, University Hospital of Lyon, Lyon, France.,Reference Centre in Sickle Cell Disease, Thalassemia and Rare Red Blood Cell and Erythropoiesis Diseases, Hospices Civils de Lyon, Lyon, France
| | - Camille Faes
- Inter-University Laboratory of Human Movement Sciences (LIBM) EA7424, Team "Vascular Biology and Red Blood Cell", University Claude Bernard Lyon 1, Villeurbanne, France.,Laboratory of Excellence "GR-Ex", Paris, France
| | - Salima Merazga
- Reference Centre in Sickle Cell Disease, Thalassemia and Rare Red Blood Cell and Erythropoiesis Diseases, Hospices Civils de Lyon, Lyon, France
| | - Solène Poutrel
- Reference Centre in Sickle Cell Disease, Thalassemia and Rare Red Blood Cell and Erythropoiesis Diseases, Hospices Civils de Lyon, Lyon, France.,Internal Medicine Department, Edouard-Herriot Hospital, Lyon, France
| | - Céline Renoux
- Inter-University Laboratory of Human Movement Sciences (LIBM) EA7424, Team "Vascular Biology and Red Blood Cell", University Claude Bernard Lyon 1, Villeurbanne, France.,Laboratory of Excellence "GR-Ex", Paris, France.,Laboratory of Biochemistry of Erythrocyte Pathologies, Biology Centre East, Bron, France
| | - Camille Boisson
- Inter-University Laboratory of Human Movement Sciences (LIBM) EA7424, Team "Vascular Biology and Red Blood Cell", University Claude Bernard Lyon 1, Villeurbanne, France.,Laboratory of Excellence "GR-Ex", Paris, France
| | - Philippe Joly
- Inter-University Laboratory of Human Movement Sciences (LIBM) EA7424, Team "Vascular Biology and Red Blood Cell", University Claude Bernard Lyon 1, Villeurbanne, France.,Laboratory of Excellence "GR-Ex", Paris, France.,Laboratory of Biochemistry of Erythrocyte Pathologies, Biology Centre East, Bron, France
| | - Yves Bertrand
- Hematology and Oncology Pediatric Unit, University Hospital of Lyon, Lyon, France.,Reference Centre in Sickle Cell Disease, Thalassemia and Rare Red Blood Cell and Erythropoiesis Diseases, Hospices Civils de Lyon, Lyon, France
| | - Arnaud Hot
- Reference Centre in Sickle Cell Disease, Thalassemia and Rare Red Blood Cell and Erythropoiesis Diseases, Hospices Civils de Lyon, Lyon, France.,Internal Medicine Department, Edouard-Herriot Hospital, Lyon, France
| | - Giovanna Cannas
- Inter-University Laboratory of Human Movement Sciences (LIBM) EA7424, Team "Vascular Biology and Red Blood Cell", University Claude Bernard Lyon 1, Villeurbanne, France.,Laboratory of Excellence "GR-Ex", Paris, France.,Reference Centre in Sickle Cell Disease, Thalassemia and Rare Red Blood Cell and Erythropoiesis Diseases, Hospices Civils de Lyon, Lyon, France.,Internal Medicine Department, Edouard-Herriot Hospital, Lyon, France
| | - Christophe Hautier
- Inter-University Laboratory of Human Movement Sciences (LIBM) EA7424, Team "Vascular Biology and Red Blood Cell", University Claude Bernard Lyon 1, Villeurbanne, France. .,Laboratory of Excellence "GR-Ex", Paris, France.
| |
Collapse
|
13
|
Lu M, Kanne CK, Reddington RC, Lezzar DL, Sheehan VA, Shevkoplyas SS. Concurrent Assessment of Deformability and Adhesiveness of Sickle Red Blood Cells by Measuring Perfusion of an Adhesive Artificial Microvascular Network. Front Physiol 2021; 12:633080. [PMID: 33995119 PMCID: PMC8113687 DOI: 10.3389/fphys.2021.633080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Biomarker development is a key clinical research need in sickle cell disease (SCD). Hemorheological parameters are excellent candidates as abnormal red blood cell (RBC) rheology plays a critical role in SCD pathophysiology. Here we describe a microfluidic device capable of evaluating RBC deformability and adhesiveness concurrently, by measuring their effect on perfusion of an artificial microvascular network (AMVN) that combines microchannels small enough to require RBC deformation, and laminin (LN) coating on channel walls to model intravascular adhesion. Each AMVN device consists of three identical capillary networks, which can be coated with LN (adhesive) or left uncoated (non-adhesive) independently. The perfusion rate for sickle RBCs in the LN-coated networks (0.18 ± 0.02 nL/s) was significantly slower than in non-adhesive networks (0.20 ± 0.02 nL/s), and both were significantly slower than the perfusion rate for normal RBCs in the LN-coated networks (0.22 ± 0.01 nL/s). Importantly, there was no overlap between the ranges of perfusion rates obtained for sickle and normal RBC samples in the LN-coated networks. Interestingly, treatment with poloxamer 188 decreased the perfusion rate for sickle RBCs in LN-coated networks in a dose-dependent manner, contrary to previous studies with conventional assays, but in agreement with the latest clinical trial which showed no clinical benefit. Overall, these findings suggest the potential utility of the adhesive AMVN device for evaluating the effect of novel curative and palliative therapies on the hemorheological status of SCD patients during clinical trials and in post-market clinical practice.
Collapse
Affiliation(s)
- Madeleine Lu
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Celeste K Kanne
- Division of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Riley C Reddington
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Dalia L Lezzar
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Vivien A Sheehan
- Division of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Sergey S Shevkoplyas
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| |
Collapse
|
14
|
Boisson C, Rab MAE, Nader E, Renoux C, Kanne C, Bos J, van Oirschot BA, Joly P, Fort R, Gauthier A, Stauffer E, Poutrel S, Kebaili K, Cannas G, Garnier N, Renard C, Hequet O, Hot A, Bertrand Y, van Wijk R, Sheehan VA, van Beers EJ, Connes P. Effects of Genotypes and Treatment on Oxygenscan Parameters in Sickle Cell Disease. Cells 2021; 10:cells10040811. [PMID: 33916502 PMCID: PMC8067408 DOI: 10.3390/cells10040811] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 02/08/2023] Open
Abstract
(1) Background: The aim of the present study was to compare oxygen gradient ektacytometry parameters between sickle cell patients of different genotypes (SS, SC, and S/β+) or under different treatments (hydroxyurea or chronic red blood cell exchange). (2) Methods: Oxygen gradient ektacytometry was performed in 167 adults and children at steady state. In addition, five SS patients had oxygenscan measurements at steady state and during an acute complication requiring hospitalization. (3) Results: Red blood cell (RBC) deformability upon deoxygenation (EImin) and in normoxia (EImax) was increased, and the susceptibility of RBC to sickle upon deoxygenation was decreased in SC patients when compared to untreated SS patients older than 5 years old. SS patients under chronic red blood cell exchange had higher EImin and EImax and lower susceptibility of RBC to sickle upon deoxygenation compared to untreated SS patients, SS patients younger than 5 years old, and hydroxyurea-treated SS and SC patients. The susceptibility of RBC to sickle upon deoxygenation was increased in the five SS patients during acute complication compared to steady state, although the difference between steady state and acute complication was variable from one patient to another. (4) Conclusions: The present study demonstrates that oxygen gradient ektacytometry parameters are affected by sickle cell disease (SCD) genotype and treatment.
Collapse
Affiliation(s)
- Camille Boisson
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (C.B.); (E.N.); (C.R.); (P.J.); (R.F.); (A.G.); (E.S.); (S.P.); (K.K.)
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, 75006 Paris, France
- Laboratoire de Biochimie et de Biologie Moléculaire, UF de Biochimie des Pathologies Érythrocytaires, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 69500 Bron, France
| | - Minke A. E. Rab
- Central Diagnostic Laboratory—Research, University Medical Center Utrecht, Utrecht University, 85500, 3508 GA Utrecht, The Netherlands; (M.A.E.R.); (J.B.); (B.A.v.O.); (R.v.W.)
- Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, 85500, 3508 GA Utrecht, The Netherlands;
| | - Elie Nader
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (C.B.); (E.N.); (C.R.); (P.J.); (R.F.); (A.G.); (E.S.); (S.P.); (K.K.)
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, 75006 Paris, France
| | - Céline Renoux
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (C.B.); (E.N.); (C.R.); (P.J.); (R.F.); (A.G.); (E.S.); (S.P.); (K.K.)
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, 75006 Paris, France
- Laboratoire de Biochimie et de Biologie Moléculaire, UF de Biochimie des Pathologies Érythrocytaires, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 69500 Bron, France
| | - Celeste Kanne
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (C.K.); (V.A.S.)
| | - Jennifer Bos
- Central Diagnostic Laboratory—Research, University Medical Center Utrecht, Utrecht University, 85500, 3508 GA Utrecht, The Netherlands; (M.A.E.R.); (J.B.); (B.A.v.O.); (R.v.W.)
| | - Brigitte A. van Oirschot
- Central Diagnostic Laboratory—Research, University Medical Center Utrecht, Utrecht University, 85500, 3508 GA Utrecht, The Netherlands; (M.A.E.R.); (J.B.); (B.A.v.O.); (R.v.W.)
| | - Philippe Joly
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (C.B.); (E.N.); (C.R.); (P.J.); (R.F.); (A.G.); (E.S.); (S.P.); (K.K.)
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, 75006 Paris, France
- Laboratoire de Biochimie et de Biologie Moléculaire, UF de Biochimie des Pathologies Érythrocytaires, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 69500 Bron, France
| | - Romain Fort
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (C.B.); (E.N.); (C.R.); (P.J.); (R.F.); (A.G.); (E.S.); (S.P.); (K.K.)
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, 75006 Paris, France
- Département de Médecine Interne, Hôpital Edouard Herriot, Hospices Civils de Lyon, 69008 Lyon, France; (G.C.); (A.H.)
| | - Alexandra Gauthier
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (C.B.); (E.N.); (C.R.); (P.J.); (R.F.); (A.G.); (E.S.); (S.P.); (K.K.)
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, 75006 Paris, France
- Institut d’Hématologie et d’Oncologie Pédiatrique, Hospices Civils de Lyon, 69008 Lyon, France; (N.G.); (C.R.); (Y.B.)
| | - Emeric Stauffer
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (C.B.); (E.N.); (C.R.); (P.J.); (R.F.); (A.G.); (E.S.); (S.P.); (K.K.)
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, 75006 Paris, France
- Centre de Médecine du Sommeil et des Maladies Respiratoires, Hôpital Croix Rousse, Hospices Civils de Lyon, 69004 Lyon, France
| | - Solene Poutrel
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (C.B.); (E.N.); (C.R.); (P.J.); (R.F.); (A.G.); (E.S.); (S.P.); (K.K.)
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, 75006 Paris, France
- Département de Médecine Interne, Hôpital Edouard Herriot, Hospices Civils de Lyon, 69008 Lyon, France; (G.C.); (A.H.)
| | - Kamila Kebaili
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (C.B.); (E.N.); (C.R.); (P.J.); (R.F.); (A.G.); (E.S.); (S.P.); (K.K.)
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, 75006 Paris, France
- Institut d’Hématologie et d’Oncologie Pédiatrique, Hospices Civils de Lyon, 69008 Lyon, France; (N.G.); (C.R.); (Y.B.)
| | - Giovanna Cannas
- Département de Médecine Interne, Hôpital Edouard Herriot, Hospices Civils de Lyon, 69008 Lyon, France; (G.C.); (A.H.)
| | - Nathalie Garnier
- Institut d’Hématologie et d’Oncologie Pédiatrique, Hospices Civils de Lyon, 69008 Lyon, France; (N.G.); (C.R.); (Y.B.)
| | - Cécile Renard
- Institut d’Hématologie et d’Oncologie Pédiatrique, Hospices Civils de Lyon, 69008 Lyon, France; (N.G.); (C.R.); (Y.B.)
| | - Olivier Hequet
- Apheresis Unit, Etablissement Français du Sang Rhône Alpes, Centre Hospitalier Lyon Sud Pierre Bénite, 69310 Pierre Bénite, France;
| | - Arnaud Hot
- Département de Médecine Interne, Hôpital Edouard Herriot, Hospices Civils de Lyon, 69008 Lyon, France; (G.C.); (A.H.)
| | - Yves Bertrand
- Institut d’Hématologie et d’Oncologie Pédiatrique, Hospices Civils de Lyon, 69008 Lyon, France; (N.G.); (C.R.); (Y.B.)
| | - Richard van Wijk
- Central Diagnostic Laboratory—Research, University Medical Center Utrecht, Utrecht University, 85500, 3508 GA Utrecht, The Netherlands; (M.A.E.R.); (J.B.); (B.A.v.O.); (R.v.W.)
| | - Vivien A. Sheehan
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (C.K.); (V.A.S.)
| | - Eduard J. van Beers
- Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, 85500, 3508 GA Utrecht, The Netherlands;
| | - Philippe Connes
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (C.B.); (E.N.); (C.R.); (P.J.); (R.F.); (A.G.); (E.S.); (S.P.); (K.K.)
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, 75006 Paris, France
- Correspondence:
| |
Collapse
|
15
|
Nader E, Conran N, Romana M, Connes P. Vasculopathy in Sickle Cell Disease: From Red Blood Cell Sickling to Vascular Dysfunction. Compr Physiol 2021; 11:1785-1803. [PMID: 33792905 DOI: 10.1002/cphy.c200024] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sickle cell disease (SCD) is a hereditary disorder that leads to the production of an abnormal hemoglobin, hemoglobin S (HbS). HbS polymerizes in deoxygenated conditions, which can prompt red blood cell (RBC) sickling and leaves the RBCs more rigid, fragile, and prone to hemolysis. SCD patients suffer from a plethora of complications, ranging from acute complications, such as characteristic, frequent, and debilitating vaso-occlusive episodes to chronic organ damage. While RBC sickling is the primary event at the origin of vaso-occlusive processes, other factors that can further increase RBC transit times in the microcirculation may also be required to precipitate vaso-occlusive processes. The adhesion of RBC and leukocytes to activated endothelium and the formation of heterocellular aggregates, as well as increased blood viscosity, are among the mechanisms involved in slowing the progress of RBCs in deoxygenated vascular areas, favoring RBC sickling and promoting vascular occlusion. Chronic inflammatory processes and oxidative stress, which are perpetuated by hemolytic events and ischemia-reperfusion injury, result in this pan cellular activation and some acute events, such as stroke and acute chest syndrome, as well as chronic end-organ damage. Furthermore, impaired vasodilation and vasomotor hyperresponsiveness in SCD also contribute to vaso-occlusive processes. Treating SCD as a vascular disease in addition to its hematological perspective, the present article looks at the interplay between abnormal RBC physiology/integrity, vascular dysfunction and clinical severity in SCD, and discusses existing therapies and novel drugs in development that may ameliorate vascular complications in the disease. © 2021 American Physiological Society. Compr Physiol 11:1785-1803, 2021.
Collapse
Affiliation(s)
- Elie Nader
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team Vascular Biology and Red Blood Cell, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Nicola Conran
- Hematology Center, University of Campinas - UNICAMP, Cidade Universitária, Campinas-SP, Brazil
| | - Marc Romana
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France.,Université des Antilles, UMR_S1134, BIGR, Pointe-à-Pitre, France.,Université de Paris, UMR_S1134, BIGR, INSERM, Paris, France
| | - Philippe Connes
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team Vascular Biology and Red Blood Cell, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| |
Collapse
|
16
|
Nwagu MU, Omokhua GI. Treatment of recalcitrant chronic leg ulcer in a known sickle cell anaemia patient using honey and fresh hbaa red cell concentrate in a Nigerian secondary healthcare facility. Ann Afr Med 2020; 19:278-281. [PMID: 33243953 PMCID: PMC8015949 DOI: 10.4103/aam.aam_53_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sickle hemoglobin (HbS) formed by the point mutation in the genetic code of beta-globin chain leading to valine substituting glutamic acid at position 6 of the beta-chain. The resultant sickle cell disease (SCD) characterized by occlusion of microvasculature by red blood cells is associated with multiple organ pathologies. One of such complications is chronic leg ulcers. We report a case of chronic leg ulcer, in a known sickle cell anemia patient, which did not respond to the wound dressing methods at the hospital's disposal. The ulcer was successfully treated using standard operative procedure (S.O.P) in wound care, applying local honey, and use of blood transfusion. EA was a 20-year-old university undergraduate who was admitted to April 2019 in Central Hospital Benin City with chronic leg ulcer of 1 year duration. She was also anemic with hemoglobin concentration of 3.0 g/dl (packed cell volume 15%). The wound was dressed with local honey, and anemia corrected with blood transfusion using concentrated red cells lacking the HbS trait. There was a progressive improvement in the healing of the ulcer with total closure after 4 months of treatment. Maintenance and follow-up measures were instituted to prevent reoccurrence. This report showed that honey has remarkable properties in promoting wound healing. Its usage in combination with transfusion of HbA red blood cells to manage chronic leg ulcers in SCD patients is advocated. However, this calls for further studies and research.
Collapse
|
17
|
Kucukal E, Man Y, Hill A, Liu S, Bode A, An R, Kadambi J, Little JA, Gurkan UA. Whole blood viscosity and red blood cell adhesion: Potential biomarkers for targeted and curative therapies in sickle cell disease. Am J Hematol 2020; 95:1246-1256. [PMID: 32656816 PMCID: PMC7689825 DOI: 10.1002/ajh.25933] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022]
Abstract
Sickle cell disease (SCD) is a recessive genetic blood disorder exhibiting abnormal blood rheology. Polymerization of sickle hemoglobin, due to a point mutation in the β‐globin gene of hemoglobin, results in aberrantly adhesive and stiff red blood cells (RBCs). Hemolysis, abnormal RBC adhesion, and abnormal blood rheology together impair endothelial health in people with SCD, which leads to cumulative systemic complications. Here, we describe a microfluidic assay combined with a micro particle image velocimetry technique for the integrated in vitro assessment of whole blood viscosity (WBV) and RBC adhesion. We examined WBV and RBC adhesion to laminin (LN) in microscale flow in whole blood samples from 53 individuals with no hemoglobinopathies (HbAA, N = 10), hemoglobin SC disease (HbSC, N = 14), or homozygous SCD (HbSS, N = 29) with mean WBV of 4.50 cP, 4.08 cP, and 3.73 cP, respectively. We found that WBV correlated with RBC count and hematocrit in subjects with HbSC or HbSS. There was a significant inverse association between WBV and RBC adhesion under both normoxic and physiologically hypoxic (SpO2 of 83%) tests, in which lower WBV associated with higher RBC adhesion to LN in subjects with HbSS. Low WBV has been found by others to associate with endothelial activation. Altered WBV and abnormal RBC adhesion may synergistically contribute to the endothelial damage and cumulative pathophysiology of SCD. These findings suggest that WBV and RBC adhesion may serve as clinically relevant biomarkers and endpoints in assessing emerging targeted and curative therapies in SCD.
Collapse
Affiliation(s)
- Erdem Kucukal
- Department of Mechanical and Aerospace Engineering Case Western Reserve University Cleveland Ohio
| | - Yuncheng Man
- Department of Mechanical and Aerospace Engineering Case Western Reserve University Cleveland Ohio
| | - Ailis Hill
- Division of Hematology and Oncology, School of Medicine Case Western Reserve University Cleveland Ohio
| | - Shichen Liu
- Department of Mechanical and Aerospace Engineering Case Western Reserve University Cleveland Ohio
| | - Allison Bode
- Division of Hematology and Oncology, School of Medicine Case Western Reserve University Cleveland Ohio
| | - Ran An
- Department of Mechanical and Aerospace Engineering Case Western Reserve University Cleveland Ohio
| | - Jaikrishnan Kadambi
- Department of Mechanical and Aerospace Engineering Case Western Reserve University Cleveland Ohio
| | - Jane A. Little
- Division of Hematology and Blood Research Center, Department of Medicine University of North Carolina Chapel Hill North Carolina
| | - Umut A. Gurkan
- Department of Mechanical and Aerospace Engineering Case Western Reserve University Cleveland Ohio
- Department of Biomedical Engineering Case Western Reserve University Cleveland Ohio
| |
Collapse
|
18
|
Abstract
INTRODUCTION In sickle cell disease (SCD), hemoglobin S (HbS) red blood cells (RBCs) are characteristically deformed and inflexible. Often breaking down in the circulation, they exhibit increased adhesive properties with the endothelium and activated neutrophils and platelets, increasing the risk of occlusion of the microcirculation. SCD is categorized into two sub-phenotypes: hyperhemolytic, associated with priapism, leg ulcers, pulmonary hypertension, and stroke, and high hemoglobin/viscosity, which may promote vaso-occlusion-associated pain, acute chest syndrome, and osteonecrosis. AREAS COVERED The sub-phenotypes are not completely distinct. Hemolysis may trigger vaso-occlusion, contributing to vascular complications. Targeting P-selectin, a key mediator of cross-talk between hyperhemolysis and vaso-occlusion, may be beneficial for vascular and vaso-occlusion-associated complications. English-language articles from PubMed on the topic of SCD and vaso-occlusive crises (VOCs) were reviewed from 1 January 2000 to 1 January 2019 using the search terms 'sickle cell disease,' 'vaso-occlusive crises,' and 'selectin.' EXPERT OPINION Besides targeting P-selectin, other strategies to counter VOCs and RBC sickling are being pursued. These include platelet inhibition to counter aggregation, intercellular adhesion, and thrombosis during VOCs; gene therapy to correct the homozygous missense mutation in the β-globin gene, causing polymerization of HbS; L-glutamine, possibly reducing oxidative stress in sickled RBCs; and fetal hemoglobin inducers.
Collapse
Affiliation(s)
- Solomon F Ofori-Acquah
- Department of Medicine, University of Pittsburgh , Pittsburgh, USA.,School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana , Accra, Ghana.,West African Genetic Medicine Centre (WAGMC), College of Health Sciences, University of Ghana , Accra, Ghana
| |
Collapse
|
19
|
Nader E, Romana M, Connes P. The Red Blood Cell-Inflammation Vicious Circle in Sickle Cell Disease. Front Immunol 2020; 11:454. [PMID: 32231672 PMCID: PMC7082402 DOI: 10.3389/fimmu.2020.00454] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/27/2020] [Indexed: 12/31/2022] Open
Abstract
Sickle cell disease (SCD) is a genetic disease caused by a single mutation in the β-globin gene, leading to the production of an abnormal hemoglobin called hemoglobin S (HbS), which polymerizes under deoxygenation, and induces the sickling of red blood cells (RBCs). Sickled RBCs are very fragile and rigid, and patients consequently become anemic and develop frequent and recurrent vaso-occlusive crises. However, it is now evident that SCD is not only a RBC rheological disease. Accumulating evidence shows that SCD is also characterized by the presence of chronic inflammation and oxidative stress, participating in the development of chronic vasculopathy and several chronic complications. The accumulation of hemoglobin and heme in the plasma, as a consequence of enhanced intravascular hemolysis, decreases nitric oxide bioavailability and enhances the production of reactive oxygen species (ROS). Heme and hemoglobin also represent erythrocytic danger-associated molecular pattern molecules (eDAMPs), which may activate endothelial inflammation through TLR-4 signaling and promote the development of complications, such as acute chest syndrome. It is also suspected that heme may activate the innate immune complement system and stimulate neutrophils to release neutrophil extracellular traps. A large amount of microparticles (MPs) from various cellular origins (platelets, RBCs, white blood cells, endothelial cells) is also released into the plasma of SCD patients and participate in the inflammation and oxidative stress in SCD. In turn, this pro-inflammatory and oxidative stress environment further alters the RBC properties. Increased pro-inflammatory cytokine concentrations promote the activation of RBC NADPH oxidase and, thus, raise the production of intra-erythrocyte ROS. Such enhanced oxidative stress causes deleterious damage to the RBC membrane and further alters the deformability of the cells, modifying their aggregation properties. These RBC rheological alterations have been shown to be associated to specific SCD complications, such as leg ulcers, priapism, and glomerulopathy. Moreover, RBCs positive for the Duffy antigen receptor for chemokines may be very sensitive to various inflammatory molecules that promote RBC dehydration and increase RBC adhesiveness to the vascular wall. In summary, SCD is characterized by a vicious circle between abnormal RBC rheology and inflammation, which modulates the clinical severity of patients.
Collapse
Affiliation(s)
- Elie Nader
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team Vascular Biology and Red Blood Cell, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Marc Romana
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France.,Université des Antilles, UMR_S1134, BIGR, Pointe-à-Pitre, France.,Université de Paris, UMR_S1134, BIGR, INSERM, Paris, France
| | - Philippe Connes
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team Vascular Biology and Red Blood Cell, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| |
Collapse
|
20
|
Lu M, Rab MA, Shevkoplyas SS, Sheehan VA. Blood rheology biomarkers in sickle cell disease. Exp Biol Med (Maywood) 2020; 245:155-165. [PMID: 31948290 DOI: 10.1177/1535370219900494] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Sickle cell disease (SCD) is the most common inherited blood disorder, affecting approximately 100,000 patients in the U.S. and millions more worldwide. Patients with SCD experience a wide range of clinical complications, including frequent pain crises, stroke, and early mortality, all originating from a single-point mutation in the β-globin subunit. The RBC changes resulting from the sickle mutation lead to a host of rheological abnormalities that diminish microvascular blood flow, and produce severe anemia due to RBC hemolysis, and ischemia from vaso-occlusion initiated by sticky, rigid sickle RBCs. While the pathophysiology and mechanisms of SCD have been investigated for many years, therapies to treat the disease are limited. In addition to RBC transfusion, there are only two US Food and Drug Administration (FDA)-approved drugs to ameliorate SCD complications: hydroxyurea (HU) and L-glutamine (Endari™). The only curative therapy currently available is allogeneic hematopoietic stem cell transplantation (HSCT), which is generally reserved for individuals with a matched related donor, comprising only 10–15% of the total SCD population. Potentially curative advanced gene therapy approaches for SCD are under investigation in ongoing clinical trials. The ultimate goal of any curative treatment should be to repair the hemorheological abnormalities caused by SCD, and thus normalize blood flow and prevent clinical complications. Our mini-review highlights a set of key hemorheological biomarkers (and the current and emerging technologies used to measure them) that may be used to guide the development of novel curative and palliative therapies for SCD, and functionally assess outcomes. Impact statement Severe impairment of blood rheology is the hallmark of SCD pathophysiology, and one of the key factors predisposing SCD patients to pain crises, organ damage, and early mortality. As novel therapies emerge to treat or cure SCD, it is crucial that these treatments are functionally evaluated for their effect on blood rheology. This review describes a comprehensive panel of rheological biomarkers, their clinical uses, and the technologies used to obtain them. The described technologies can produce highly sensitive measurements of the ability of current treatments to improve blood rheology of SCD patients. The goal of curative therapies should be to achieve blood rheology biomarkers measurements in the range of sickle cell trait individuals (HbAS). The use of the panel of rheological biomarkers proposed in this review could significantly accelerate the development, optimization, and clinical translation of novel therapies for SCD.
Collapse
Affiliation(s)
- Madeleine Lu
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Minke Ae Rab
- Laboratory of Clinical Chemistry & Hematology, University Medical Center Utrecht, Utrecht University, Utrecht 3584, The Netherlands
| | - Sergey S Shevkoplyas
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Vivien A Sheehan
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
21
|
Nader E, Skinner S, Romana M, Fort R, Lemonne N, Guillot N, Gauthier A, Antoine-Jonville S, Renoux C, Hardy-Dessources MD, Stauffer E, Joly P, Bertrand Y, Connes P. Blood Rheology: Key Parameters, Impact on Blood Flow, Role in Sickle Cell Disease and Effects of Exercise. Front Physiol 2019; 10:1329. [PMID: 31749708 PMCID: PMC6842957 DOI: 10.3389/fphys.2019.01329] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 10/04/2019] [Indexed: 01/07/2023] Open
Abstract
Blood viscosity is an important determinant of local flow characteristics, which exhibits shear thinning behavior: it decreases exponentially with increasing shear rates. Both hematocrit and plasma viscosity influence blood viscosity. The shear thinning property of blood is mainly attributed to red blood cell (RBC) rheological properties. RBC aggregation occurs at low shear rates, and increases blood viscosity and depends on both cellular (RBC aggregability) and plasma factors. Blood flow in the microcirculation is highly dependent on the ability of RBC to deform, but RBC deformability also affects blood flow in the macrocirculation since a loss of deformability causes a rise in blood viscosity. Indeed, any changes in one or several of these parameters may affect blood viscosity differently. Poiseuille's Law predicts that any increase in blood viscosity should cause a rise in vascular resistance. However, blood viscosity, through its effects on wall shear stress, is a key modulator of nitric oxide (NO) production by the endothelial NO-synthase. Indeed, any increase in blood viscosity should promote vasodilation. This is the case in healthy individuals when vascular function is intact and able to adapt to blood rheological strains. However, in sickle cell disease (SCD) vascular function is impaired. In this context, any increase in blood viscosity can promote vaso-occlusive like events. We previously showed that sickle cell patients with high blood viscosity usually have more frequent vaso-occlusive crises than those with low blood viscosity. However, while the deformability of RBC decreases during acute vaso-occlusive events in SCD, patients with the highest RBC deformability at steady-state have a higher risk of developing frequent painful vaso-occlusive crises. This paradox seems to be due to the fact that in SCD RBC with the highest deformability are also the most adherent, which would trigger vaso-occlusion. While acute, intense exercise may increase blood viscosity in healthy individuals, recent works conducted in sickle cell patients have shown that light cycling exercise did not cause dramatic changes in blood rheology. Moreover, regular physical exercise has been shown to decrease blood viscosity in sickle cell mice, which could be beneficial for adequate blood flow and tissue perfusion.
Collapse
Affiliation(s)
- Elie Nader
- Laboratory LIBM EA7424, Team "Vascular Biology and Red Blood Cell", University of Lyon 1, Lyon, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Sarah Skinner
- Laboratory LIBM EA7424, Team "Vascular Biology and Red Blood Cell", University of Lyon 1, Lyon, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Marc Romana
- Laboratory of Excellence GR-Ex, Paris, France.,Biologie Intégrée du Globule Rouge, Université de Paris, UMR_S1134, BIGR, INSERM, F-75015, Paris, France.,Biologie Intégrée du Globule Rouge, The Université des Antilles, UMR_S1134, BIGR, F- 97157, Pointe-a-Pitre, France
| | - Romain Fort
- Laboratory LIBM EA7424, Team "Vascular Biology and Red Blood Cell", University of Lyon 1, Lyon, France.,Laboratory of Excellence GR-Ex, Paris, France.,Département de Médecine, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Nathalie Lemonne
- Unité Transversale de la Drépanocytose, Hôpital de Pointe-a-Pitre, Hôpital Ricou, Pointe-a-Pitre, France
| | - Nicolas Guillot
- Laboratoire Carmen INSERM 1060, INSA Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne, France
| | - Alexandra Gauthier
- Laboratory LIBM EA7424, Team "Vascular Biology and Red Blood Cell", University of Lyon 1, Lyon, France.,Laboratory of Excellence GR-Ex, Paris, France.,d'Hématologie et d'Oncologie Pédiatrique, Hospices Civils de Lyon, Lyon, France
| | | | - Céline Renoux
- Laboratory LIBM EA7424, Team "Vascular Biology and Red Blood Cell", University of Lyon 1, Lyon, France.,Laboratory of Excellence GR-Ex, Paris, France.,Laboratoire de Biochimie et de Biologie Moleìculaire, UF de Biochimie des Pathologies Eìrythrocytaires, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Marie-Dominique Hardy-Dessources
- Laboratory of Excellence GR-Ex, Paris, France.,Biologie Intégrée du Globule Rouge, Université de Paris, UMR_S1134, BIGR, INSERM, F-75015, Paris, France.,Biologie Intégrée du Globule Rouge, The Université des Antilles, UMR_S1134, BIGR, F- 97157, Pointe-a-Pitre, France
| | - Emeric Stauffer
- Laboratory LIBM EA7424, Team "Vascular Biology and Red Blood Cell", University of Lyon 1, Lyon, France.,Laboratory of Excellence GR-Ex, Paris, France.,Centre de Médecine du Sommeil et des Maladies Respiratoires, Hospices Civils de Lyon, Hôpital de la Croix Rousse, Lyon, France
| | - Philippe Joly
- Laboratory LIBM EA7424, Team "Vascular Biology and Red Blood Cell", University of Lyon 1, Lyon, France.,Laboratory of Excellence GR-Ex, Paris, France.,Laboratoire de Biochimie et de Biologie Moleìculaire, UF de Biochimie des Pathologies Eìrythrocytaires, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Yves Bertrand
- d'Hématologie et d'Oncologie Pédiatrique, Hospices Civils de Lyon, Lyon, France
| | - Philippe Connes
- Laboratory LIBM EA7424, Team "Vascular Biology and Red Blood Cell", University of Lyon 1, Lyon, France.,Laboratory of Excellence GR-Ex, Paris, France
| |
Collapse
|
22
|
de Carvalho-Siqueira GQ, Ananina G, de Souza BB, Borges MG, Ito MT, da Silva-Costa SM, de Farias Domingos I, Falcão DA, Lopes-Cendes I, Bezerra MAC, da Silva Araújo A, Lucena-Araújo AR, de Souza Gonçalves M, Saad STO, Costa FF, de Melo MB. Whole-exome sequencing indicates FLG2 variant associated with leg ulcers in Brazilian sickle cell anemia patients. Exp Biol Med (Maywood) 2019; 244:932-939. [PMID: 31079484 DOI: 10.1177/1535370219849592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although sickle cell anemia results from homozygosity for a single mutation at position 7 of the β-globin chain, the clinical aspects of this condition are very heterogeneous. Complications include leg ulcers, which have a negative impact on patients’ quality of life and are related to the severity of the disease. Nevertheless, the complex pathogenesis of this complication has yet to be elucidated. To identify novel genes associated with leg ulcers in sickle cell anemia, we performed whole-exome sequencing of extreme phenotypes in a sample of Brazilian sickle cell anemia patients and validated our findings in another sample. Our discovery cohort consisted of 40 unrelated sickle cell anemia patients selected based on extreme phenotypes: 20 patients without leg ulcers, aged from 40 to 61 years, and 20 with chronic leg ulcers. DNA was extracted from peripheral blood leukocytes and used for whole-exome sequencing. After the bioinformatics analysis, eight variants were selected for validation by Sanger sequencing and TaqMan® genotyping in 293 sickle cell anemia patients (153 without leg ulcers) from two different locations in Brazil. After the validation, Fisher’s exact test revealed a statistically significant difference in a stop codon variant (rs12568784 G/T) in the FLG2 gene between the GT and GG genotypes ( P = 0.035). We highlight the importance of rs12568784 in leg ulcer development as this variant of the FLG2 gene results in impairment of the skin barrier, predisposing the individual to inflammation and infection. Additionally, we suggest that the remaining seven variants and the genes in which they occur could be strong candidates for leg ulcers in sickle cell anemia. Impact statement To our knowledge, the present study is the first to use whole-exome sequencing based on extreme phenotypes to identify new candidate genes associated with leg ulcers in sickle cell anemia patients. There are few studies about this complication; the pathogenesis remains complex and has yet to be fully elucidated. We identified interesting associations in genes never related with this complication to our knowledge, especially the variant in the FLG2 gene. The knowledge of variants related with leg ulcer in sickle cell anemia may lead to a better comprehension of the disease’s etiology, allowing prevention and early treatment options in risk genotypes while improving quality of life for these patients.
Collapse
Affiliation(s)
| | - Galina Ananina
- 1 Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Campinas, SP 13083-875, Brazil
| | - Bruno Batista de Souza
- 1 Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Campinas, SP 13083-875, Brazil
| | - Murilo Guimarães Borges
- 2 Department of Medical Genetics and Genome Medicine, Faculty of Medical Sciences, University of Campinas, Campinas, SP 13083-887, Brazil
| | - Mirta Tomie Ito
- 1 Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Campinas, SP 13083-875, Brazil
| | - Sueli Matilde da Silva-Costa
- 1 Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Campinas, SP 13083-875, Brazil
| | - Igor de Farias Domingos
- 3 Genetics Postgraduate Program, Federal University of Pernambuco, Recife, PE 50670-901, Brazil
| | - Diego Arruda Falcão
- 3 Genetics Postgraduate Program, Federal University of Pernambuco, Recife, PE 50670-901, Brazil
| | - Iscia Lopes-Cendes
- 2 Department of Medical Genetics and Genome Medicine, Faculty of Medical Sciences, University of Campinas, Campinas, SP 13083-887, Brazil
| | | | | | | | | | | | | | - Mônica Barbosa de Melo
- 1 Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Campinas, SP 13083-875, Brazil
| |
Collapse
|
23
|
Varlet-Marie E, Vachoud L, Marion B, Roques C, Fidani T, Mercier J, Brun JF. Shear-dependency of the predicted ideal hematocrit. Clin Hemorheol Microcirc 2019; 71:379-385. [PMID: 31006675 DOI: 10.3233/ch-199001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The ideal hematocrit is the hematocrit (Hct) value resulting in the highest value of Hct/viscosity (h/η) ratio and can thus be predicted from viscometric measurements with the use of equations such as Quemada's one which yield the determination of the bell-shaped curve of h/η as a function of Hct. In a series of recent papers we applied this approach to various populations, using viscometry at high shear rate (1000 s-1). However the shape of this curve has been reported to be dependent on the shear rate, resulting in a right-shift in this top value when Hct increase. We present here in 11 young recreative athletes the evolution of the predicted top of the h/η curve and optimal theoretical Hct and the discrepancy between theoretical and optimal values over the range of shear rates 1 to 6000 s-1. Results show that the predicted optimal value of both h/η and Hct increases when shear rate increases and that the discrepancy between predicted laquooptimalraquo and actual values decreases and becomes almost asymptotic at very high shear (500 s-1). It is minimal at 2720 s-1. The correlation between predicted laquooptimalraquo and actual values of both parameters describes the same evolution. Therefore, it is better for assessing h/η and its agreement with theoretical values, and for determining the theoretical ideal hematocrit, to measure blood viscosity at shear rates equal or superior to 500 s-1.
Collapse
Affiliation(s)
- Emmanuelle Varlet-Marie
- Institut des Biomolécules Max Mousseron (IBMM) UMR CNRS 5247, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, France.,Laboratoire de Biophysique & Bio-Analyses, Faculté de Pharmacie, Université de Montpellier, France
| | - Laurent Vachoud
- UMR QualiSud, Faculté de Pharmacie, Université de Montpellier, France
| | - Bénédicte Marion
- Institut des Biomolécules Max Mousseron (IBMM) UMR CNRS 5247, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, France
| | - Céline Roques
- Institut des Biomolécules Max Mousseron (IBMM) UMR CNRS 5247, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, France
| | - Thibault Fidani
- U1046 INSERM, UMR 9214 CNRS « Physiopathologie & Médecine Expérimentale du Cœur et des Muscles - PHYMEDEXP », Unité d'Explorations Métaboliques (CERAMM), Université de Montpellier, Département de Physiologie Clinique, Hôpital Lapeyronie CHRU Montpellier, France
| | - Jacques Mercier
- U1046 INSERM, UMR 9214 CNRS « Physiopathologie & Médecine Expérimentale du Cœur et des Muscles - PHYMEDEXP », Unité d'Explorations Métaboliques (CERAMM), Université de Montpellier, Département de Physiologie Clinique, Hôpital Lapeyronie CHRU Montpellier, France
| | - Jean-Frédéric Brun
- U1046 INSERM, UMR 9214 CNRS « Physiopathologie & Médecine Expérimentale du Cœur et des Muscles - PHYMEDEXP », Unité d'Explorations Métaboliques (CERAMM), Université de Montpellier, Département de Physiologie Clinique, Hôpital Lapeyronie CHRU Montpellier, France
| |
Collapse
|
24
|
Brun JF, Varlet-Marie E, Richou M, Raynaud de Mauverger E. Seeking the optimal hematocrit: May hemorheological modelling provide a solution? Clin Hemorheol Microcirc 2018; 69:493-501. [DOI: 10.3233/ch-189201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Jean-Frédéric Brun
- U1046 INSERM, UMR 9214 CNRS «Physiopathologie and Médecine Expérimentale du Cœur et des Muscles - PHYMEDEXP», Unité d’Explorations Métaboliques (CERAMM), Université de Montpellier, Département de Physiologie Clinique, Hôpital Lapeyronie CHRU Montpellier, France
| | - Emmanuelle Varlet-Marie
- Institut des Biomolécules Max Mousseron (IBMM) UMR CNRS 5247, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, France
- Laboratoire de Biophysique and Bio-Analyses, Faculté de Pharmacie, Université de Montpellier, France
| | - Marlène Richou
- U1046 INSERM, UMR 9214 CNRS «Physiopathologie and Médecine Expérimentale du Cœur et des Muscles - PHYMEDEXP», Unité d’Explorations Métaboliques (CERAMM), Université de Montpellier, Département de Physiologie Clinique, Hôpital Lapeyronie CHRU Montpellier, France
| | - Eric Raynaud de Mauverger
- U1046 INSERM, UMR 9214 CNRS «Physiopathologie and Médecine Expérimentale du Cœur et des Muscles - PHYMEDEXP», Unité d’Explorations Métaboliques (CERAMM), Université de Montpellier, Département de Physiologie Clinique, Hôpital Lapeyronie CHRU Montpellier, France
| |
Collapse
|
25
|
Connes P, Renoux C, Romana M, Abkarian M, Joly P, Martin C, Hardy-Dessources MD, Ballas SK. Blood rheological abnormalities in sickle cell anemia. Clin Hemorheol Microcirc 2018; 68:165-172. [PMID: 29614630 DOI: 10.3233/ch-189005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review focuses on the contribution of abnormal blood rheology in the pathophysiology of sickle cell anemia (SCA). SCA is characterized by a reduction of red blood cell (RBC) deformability but this reduction is very heterogeneous among patients. Recent works have shown that patients with the lowest RBC deformability (measured by ektacytometry) have enhanced hemolysis and would be more prone to develop several complications such as priapism, leg ulcers and glomerulopathy. In contrast, patients with the highest deformability, and not under hydroxyurea therapy, seem to develop more frequently vaso-occlusive like events. Although less studied, RBC aggregation properties are very different between SCA and healthy individuals and it was demonstrated that increased RBC aggregates strength could be involved in some complications. Finally, several studies have established that the vascular system of SCA patients could not fully compensate any increase in blood viscosity because of the loss of vascular reactivity, which may result in vaso-occlusive crises.
Collapse
Affiliation(s)
- Philippe Connes
- Laboratoire LIBM EA7424, Team"Vascular Biology and Red Blood Cell", Université Claude Bernard Lyon 1, University of Lyon, 69100 Villeurbanne, France.,Laboratory of Excellence GR-Ex « The red cell: from genesis to death », PRES Sorbonne Paris Cité, 75015, Paris, France.,Institut Universitaire de France, Paris, France
| | - Céline Renoux
- Laboratoire LIBM EA7424, Team"Vascular Biology and Red Blood Cell", Université Claude Bernard Lyon 1, University of Lyon, 69100 Villeurbanne, France.,Laboratory of Excellence GR-Ex « The red cell: from genesis to death », PRES Sorbonne Paris Cité, 75015, Paris, France.,Laboratoire de biochimie des pathologies érythrocytaires, Centre de Biologie Est, Hospices Civils de Lyon, France
| | - Marc Romana
- Laboratory of Excellence GR-Ex « The red cell: from genesis to death », PRES Sorbonne Paris Cité, 75015, Paris, France.,Inserm UMR 1134, Hôpital Ricou, CHU de Pointe-à-Pitre, 97157 Pointe-à-Pitre, Guadeloupe
| | - Manouk Abkarian
- CNRS UMR 5048, Université de Montpellier, Centre de Biochimie Structurale, 34090 Montpellier, France
| | - Philippe Joly
- Laboratoire LIBM EA7424, Team"Vascular Biology and Red Blood Cell", Université Claude Bernard Lyon 1, University of Lyon, 69100 Villeurbanne, France.,Laboratory of Excellence GR-Ex « The red cell: from genesis to death », PRES Sorbonne Paris Cité, 75015, Paris, France.,Laboratoire de biochimie des pathologies érythrocytaires, Centre de Biologie Est, Hospices Civils de Lyon, France
| | - Cyril Martin
- Laboratoire LIBM EA7424, Team"Vascular Biology and Red Blood Cell", Université Claude Bernard Lyon 1, University of Lyon, 69100 Villeurbanne, France.,Laboratory of Excellence GR-Ex « The red cell: from genesis to death », PRES Sorbonne Paris Cité, 75015, Paris, France
| | - Marie-Dominique Hardy-Dessources
- Laboratory of Excellence GR-Ex « The red cell: from genesis to death », PRES Sorbonne Paris Cité, 75015, Paris, France.,Inserm UMR 1134, Hôpital Ricou, CHU de Pointe-à-Pitre, 97157 Pointe-à-Pitre, Guadeloupe
| | - Samir K Ballas
- Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
26
|
Lemonne N, Möckesch B, Charlot K, Garnier Y, Waltz X, Lamarre Y, Antoine-Jonville S, Etienne-Julan M, Hardy-Dessources MD, Romana M, Connes P. Effects of hydroxyurea on blood rheology in sickle cell anemia: A two-years follow-up study. Clin Hemorheol Microcirc 2018; 67:141-148. [PMID: 28759962 DOI: 10.3233/ch-170280] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The aim of the present study was to test the effects of hydroxyurea (HU) therapy on clinical, hematological and hemorheological parameters in adult patients with sickle cell anemia (SCA). Hematological and hemorheological parameters were measured in 28 SCA patients before HU therapy (i.e., baseline) and at 6, 12 and 24 months of treatment. RBC deformability was determined by ektacytometry at 30 Pa. RBC aggregation properties were investigated by light-backscatter method. Blood viscosity was measured at 225 s-1 by a cone-plate viscometer. The rates of vaso-occlusive crises and acute chest syndrome were lower at 1 and 2 years of HU therapy compared to baseline. The proportion of patients with leg ulcers tended to decrease after 2 years of treatment. Hemoglobin oxygen saturation improved with HU therapy. HU therapy induced a decrease of platelet and white blood cell counts and a rise in fetal hemoglobin level and mean cell volume. While hemoglobin concentrations increased under HU, blood viscosity remained unchanged all along the study. RBC deformability increased over baseline values at 6 months of HU therapy and continued to rise until the end of the follow-up period. In conclusion, the improvement in RBC deformability probably compensates the increase of hemoglobin on blood viscosity and participates to the improvement of the clinical status of patients.
Collapse
Affiliation(s)
- Nathalie Lemonne
- Unité Transversale de la Drépanocytose, Hôpital Ricou, CHU de Pointe-á-Pitre, Guadeloupe, France
| | - Berenike Möckesch
- Laboratoire ACTES, EA3596, Université des Antilles, Pointe-á-Pitre, Guadeloupe, France
| | - Keyne Charlot
- Inserm UMR 1134, Hôpital Ricou, CHU de Pointe-á-Pitre, Guadeloupe, France.,Laboratoire d'Excellence GR-Ex « The red cell: from genesis to death », PRES Sorbonne Paris Cité, Paris, France.,Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
| | - Yohann Garnier
- Inserm UMR 1134, Hôpital Ricou, CHU de Pointe-á-Pitre, Guadeloupe, France.,Laboratoire d'Excellence GR-Ex « The red cell: from genesis to death », PRES Sorbonne Paris Cité, Paris, France
| | - Xavier Waltz
- Inserm UMR 1134, Hôpital Ricou, CHU de Pointe-á-Pitre, Guadeloupe, France.,Laboratoire d'Excellence GR-Ex « The red cell: from genesis to death », PRES Sorbonne Paris Cité, Paris, France
| | - Yann Lamarre
- Inserm UMR 1134, Hôpital Ricou, CHU de Pointe-á-Pitre, Guadeloupe, France.,Laboratoire d'Excellence GR-Ex « The red cell: from genesis to death », PRES Sorbonne Paris Cité, Paris, France
| | | | - Maryse Etienne-Julan
- Unité Transversale de la Drépanocytose, Hôpital Ricou, CHU de Pointe-á-Pitre, Guadeloupe, France
| | - Marie-Dominique Hardy-Dessources
- Inserm UMR 1134, Hôpital Ricou, CHU de Pointe-á-Pitre, Guadeloupe, France.,Laboratoire d'Excellence GR-Ex « The red cell: from genesis to death », PRES Sorbonne Paris Cité, Paris, France
| | - Marc Romana
- Inserm UMR 1134, Hôpital Ricou, CHU de Pointe-á-Pitre, Guadeloupe, France.,Laboratoire d'Excellence GR-Ex « The red cell: from genesis to death », PRES Sorbonne Paris Cité, Paris, France
| | - Philippe Connes
- Inserm UMR 1134, Hôpital Ricou, CHU de Pointe-á-Pitre, Guadeloupe, France.,Laboratoire d'Excellence GR-Ex « The red cell: from genesis to death », PRES Sorbonne Paris Cité, Paris, France.,Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM), EA7424, Equipe Biologie Vasculaire et du Globule Rouge, Université Claude Bernard Lyon 1, COMUE Lyon, Villeurbanne, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
27
|
Bowers ASA, Duncan WW, Pepple DJ. Erythrocyte Aggregation and Blood Viscosity is Similar in Homozygous Sickle Cell Disease Patients with and without Leg Ulcers. Int J Angiol 2018; 27:35-38. [PMID: 29483764 DOI: 10.1055/s-0037-1608901] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background There is no consensus regarding the role of red blood cell (RBC) aggregation in the pathogenesis of leg ulcers (LUs) in sickle cell disease (SCD). Objectives We sought to evaluate whether the cross-sectional determination of RBC aggregation and hematological indices were associated with the presence of LU in homozygous SCD. Methods Twenty-seven patients with LU and 23 with no history of ulceration were recruited into the study. A laser-assisted rotational red cell analyzer (LoRRca) was used in the determination of the aggregation index (AI), aggregation half-time ( t1/2 ), and the RBC aggregate strength (AMP). Hematological indices were determined using a CELL-DYN Ruby analyzer. Whole blood viscosity (WBV) and plasma viscosity (PV) were measured using a Vilastic bioprofiler. The data were presented as means ± standard deviation or median, interquartile range. Two-sample t -test was used to test for associations between the AIs, WBV, and PV in patients with and without LU. Statistical significance was taken as p < 0.05. All analyses were conducted using Stata/SE v . 12.1 (StataCorp, College Station, TX). Results The AI was comparable in the group with and without ulcers (68.6, 16.7 versus 67.7, 16.9; p = 0.74); t1/2 (1.7, 1.3 versus 1.8, 1.3; p = 0.71); AMP (18.8, 14.5 versus 19.1, 13.3; p = 0.84), WBV (3.8, 1.2 versus 3.8, 0.7; p = 0.77); and the PV (1.3, 0.08 versus 1.4, 0.1; p = 0.31) and were also not statistically different between the groups of participants. Conclusion RBC aggregation and aggregate strength are not associated with leg ulceration in SCD.
Collapse
Affiliation(s)
- Andre S A Bowers
- Physiology Section, Department of Basic Medical Sciences, University of the West Indies, Mona, Jamaica, West Indies
| | - Walworth W Duncan
- Sickle Cell Unit, Tropical Medicine Research Institute, University of the West Indies, Jamaica, West Indies
| | - D J Pepple
- Physiology Section, Department of Basic Medical Sciences, University of the West Indies, Mona, Jamaica, West Indies
| |
Collapse
|
28
|
Degree of anemia, indirect markers of hemolysis, and vascular complications of sickle cell disease in Africa. Blood 2017; 130:2215-2223. [PMID: 28931524 DOI: 10.1182/blood-2016-12-755777] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 09/02/2017] [Indexed: 11/20/2022] Open
Abstract
The hyperhemolysis paradigm that describes overlapping "hyperhemolytic-endothelial dysfunction" and "high hemoglobin-hyperviscous" subphenotypes of sickle cell disease (SCD) patients is based on North American studies. We performed a transversal study nested in the CADRE cohort to analyze the association between steady-state hemolysis and vascular complications of SCD among sub-Saharan African patients. In Mali, Cameroon, and Ivory Coast, 2407 SCD patients (1751 SS or sickle β-zero-thalassemia [Sβ0], 495 SC, and 161 sickle β+-thalassemia [Sβ+]), aged 3 years old and over, were included at steady state. Relative hemolytic intensity was estimated from a composite index derived from principal component analysis, which included bilirubin levels or clinical icterus, and lactate dehydrogenase levels. We assessed vascular complications (elevated tricuspid regurgitant jet velocity [TRV], microalbuminuria, leg ulcers, priapism, stroke, and osteonecrosis) by clinical examination, laboratory tests, and echocardiography. After adjustment for age, sex, country, and SCD phenotype, a low hemoglobin level was significantly associated with TRV and microalbuminuria in the whole population and with leg ulcers in SS-Sβ0 adults. A high hemolysis index was associated with microalbuminuria in the whole population and with elevated TRV, microalbuminuria, and leg ulcers in SS-Sβ0 adults, but these associations were no longer significant after adjustment for hemoglobin level. In conclusion, severe anemia at steady state in SCD patients living in West and Central Africa is associated with elevated TRV, microalbuminuria, and leg ulcers, but these vascular complications are not independently associated with indirect markers of increased hemolysis. Other mechanisms leading to anemia, including malnutrition and infectious diseases, may also play a role in the development of SCD vasculopathy.
Collapse
|
29
|
Bowers AS, Duncan WW, Pepple DJ. Red blood cell deformability is reduced in homozygous sickle cell disease patients with leg ulcers. Clin Hemorheol Microcirc 2017; 64:199-204. [PMID: 27258199 DOI: 10.3233/ch-162063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Previous reports differ as to whether a decreased elongation index (EI), a proxy for red blood cell (RBC) deformability, is associated with leg ulcers (LU) in people with homozygous sickle cell disease (SCD). We sought to determine whether erythrocyte deformability (ED) and haematological indices were associated with the presence of LU in patients with SCD. The study design was cross-sectional. Twenty-seven patients with LU and 23 with no history of ulceration were recruited into the study. A laser assisted rotational red cell analyzer was used in the determination of the EI. Haematological indices were determined using a CELL-DYN Ruby haematology analyzer. Data were normally distributed and presented as means±SD. Two-sample t-test was used to test for associations between haemorheological variables in SCD patients with and without LU. Statistical significance was taken as p < 0.05. The EI was significantly lower in the group with ulcers (0.30±0.07 vs. 0.35±0.07, p = 0.02). Haematological indices were comparable in patients with and without LU. Erythrocyte deformability, but not haematological indices, was associated with LU in patients with SCD.
Collapse
Affiliation(s)
- Andre S Bowers
- Sickle Cell Unit, Tropical Medicine Research Institute, University of the West Indies, Mona, Kingston 7, Jamaica, W.I
| | - Walworth W Duncan
- Sickle Cell Unit, Tropical Medicine Research Institute, University of the West Indies, Mona, Kingston 7, Jamaica, W.I
| | - Dagogo J Pepple
- Physiology Section, Department of Basic Medical Sciences, University of the West Indies, Mona, Kingston 7, Jamaica, W.I
| |
Collapse
|
30
|
Mozar A, Charlot K, Sandor B, Rabaï M, Lemonne N, Billaud M, Hardy-Dessources MD, Beltan E, Pandey RC, Connes P, Ballas SK. Pfaffia paniculata extract improves red blood cell deformability in sickle cell patients. Clin Hemorheol Microcirc 2017; 62:327-33. [PMID: 26444603 DOI: 10.3233/ch-151972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The aim of the present study was to test the effects of Pfaffia paniculata (PP) extract on the red blood cell (RBC) rheological properties of patients with sickle cell disease (SCD) and healthy (AA) individuals. Blood from 7 SCD and 4 AA individuals were collected in EDTA tubes. Washed RBCs were incubated with various concentration of PP extract: 0.0, 0.2 or 0.5 mg/ml of PP solution for 5 hrs at 37°C. RBC deformability was measured by ektacytometry at 9 shear stresses ranging from 0.3 to 30 Pa, and RBC aggregation properties were determined by laser-backscattered techniques. Because RBCs from SCD patients are fragile, a stability test was also performed to test for the fragility of RBC exposed to a constant shear stress (70 Pa) for 10 min. While RBC deformability was not improved by the use of PP extract in AA, we noted an improvement of this parameter in patients with SCD between the 0.0 and 0.5 mg/ml conditions. In contrast to AA RBCs, the fragility of SCD RBCs was not affected by PP extract. In conclusion, this study demonstrates the beneficial effects, in-vitro, of PP extract on the RBC deformability of SCD patients, notably at high shear stress (a shear stress condition usually found in capillaries).
Collapse
Affiliation(s)
- Anais Mozar
- Inserm U 1134, Université des Antilles et de la Guyane, Pointe-à-Pitre, Guadeloupe.,Laboratory of Excellence GR-Ex, Paris, France
| | - Keyne Charlot
- Inserm U 1134, Université des Antilles et de la Guyane, Pointe-à-Pitre, Guadeloupe.,Laboratory of Excellence GR-Ex, Paris, France.,Laboratoire ACTES-EA3596, Université des Antilles et de la Guyane, Pointe-à-Pitre, Guadeloupe
| | - Barbara Sandor
- Department of Medicine, University of Pecs Medical School, Pecs, Hungary
| | - Miklos Rabaï
- Department of Medicine, University of Pecs Medical School, Pecs, Hungary
| | - Nathalie Lemonne
- Unité Transversale de la Drépanocytose, CHU de Pointe-à-Pitre, Pointe-à-Pitre, Guadeloupe
| | - Marie Billaud
- Unité Transversale de la Drépanocytose, CHU de Pointe-à-Pitre, Pointe-à-Pitre, Guadeloupe
| | - Marie-Dominique Hardy-Dessources
- Inserm U 1134, Université des Antilles et de la Guyane, Pointe-à-Pitre, Guadeloupe.,Laboratory of Excellence GR-Ex, Paris, France
| | - Eric Beltan
- Service d'Immunologie-Hématologie, CHU de Pointe à Pitre, Pointe-à-Pitre, Guadeloupe
| | - Ramesh C Pandey
- Research Laboratories, GDP Ayurvedic University (GDPAU), New Brunswick, NJ, USA
| | - Philippe Connes
- Inserm U 1134, Université des Antilles et de la Guyane, Pointe-à-Pitre, Guadeloupe.,Laboratory of Excellence GR-Ex, Paris, France.,Institut Universitaire de France, Paris, France.,Laboratoire CRIS EA647, Equipe "Biologie Vasculaire et Globule Rouge", Université de Lyon (UCBL1), France
| | - Samir K Ballas
- Cardeza Foundation, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
31
|
Varlet-Marie E, Brun JF, Raynaud de Mauverger E, Fédou C. Exercise-induced changes in hematocrit and hematocrit/viscosity ratio in male rugby players. Clin Hemorheol Microcirc 2017; 64:817-826. [DOI: 10.3233/ch-168042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Emmanuelle Varlet-Marie
- Institut des Biomolécules Max Mousseron (IBMM) UMR CNRS 5247, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, France
- Laboratoire de Biophysique & Bio-Analyses, Faculté de Pharmacie, Université de Montpellier, France
| | - Jean-Frédéric Brun
- UMR CNRS 9214-Inserm U1046 ⪡ Physiopathologie & Médecine Expérimentale du Cœur et des Muscles - PHYMEDEXP ⪢, Unité d’Explorations Métaboliques (CERAMM), Université de Montpellier, Département de Physiologie Clinique, Hôpital Lapeyronie CHU Montpellier, France
| | - Eric Raynaud de Mauverger
- UMR CNRS 9214-Inserm U1046 ⪡ Physiopathologie & Médecine Expérimentale du Cœur et des Muscles - PHYMEDEXP ⪢, Unité d’Explorations Métaboliques (CERAMM), Université de Montpellier, Département de Physiologie Clinique, Hôpital Lapeyronie CHU Montpellier, France
| | - Christine Fédou
- UMR CNRS 9214-Inserm U1046 ⪡ Physiopathologie & Médecine Expérimentale du Cœur et des Muscles - PHYMEDEXP ⪢, Unité d’Explorations Métaboliques (CERAMM), Université de Montpellier, Département de Physiologie Clinique, Hôpital Lapeyronie CHU Montpellier, France
| |
Collapse
|
32
|
Lemonne N, Billaud M, Waltz X, Romana M, Hierso R, Etienne-Julan M, Connes P. Rheology of red blood cells in patients with HbC disease. Clin Hemorheol Microcirc 2017; 61:571-7. [PMID: 25335812 DOI: 10.3233/ch-141906] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Patients with hemoglobin C disease (CC) usually do not develop severe complications in comparison with individuals with sickle cell anemia (SS) or with sickle cell hemoglobin C disease (SC). The present study compared the hematological, biochemical, hemorheological and clinical characteristics of CC patients to those of SS, SC and healthy individuals (AA). Blood viscosity was measured at 225 s(-1) with a cone plate viscometer. The hematocrit-to-blood viscosity ratio (HVR), i.e. an index of red blood cell (RBC) oxygen transport effectiveness, was calculated. RBC deformability was determined at 30 Pa by ektacytometry, and RBC aggregation properties by syllectometry. CC and SC had higher blood viscosity and lower HVR than AA. Nevertheless, HVR was higher in CC compared to SS and tended to be higher than in SC. The CC group exhibited very rigid hyperchromic RBC compared to the three other groups. RBC aggregation abnormalities were observed in CC: low RBC aggregation index and high RBC aggregates strength. Despite these hemorheological abnormalities, CC never had hospitalized painful vaso-occlusive crisis or acute chest syndrome. In contrast, all of them had splenomegaly. Of note, 2 out of 7 CC developed retinopathy or otologic disorders. Whether the blood hyperviscosity and decreased RBC deformability are responsible for these complications is unknown. The higher oxygen transport effectiveness (i.e., HVR) of CC compared to SS is probably at the origin of the very low risk of medical complication in this population.
Collapse
Affiliation(s)
- Nathalie Lemonne
- Unité Transversale de la Drépanocytose, CHU de Pointe-à-Pitre, 97159 Pointe-à-Pitre, Guadeloupe
| | - Marie Billaud
- Unité Transversale de la Drépanocytose, CHU de Pointe-à-Pitre, 97159 Pointe-à-Pitre, Guadeloupe
| | - Xavier Waltz
- Inserm U 1134, Université des Antilles et de la Guyane, 97159 Pointe-à-Pitre, Guadeloupe.,Laboratory of Excellence GR-Ex, Paris, France.,Laboratoire ACTES-EA3596, Université des Antilles et de la Guyane, 97157 Pointe-à-Pitre, Guadeloupe
| | - Marc Romana
- Inserm U 1134, Université des Antilles et de la Guyane, 97159 Pointe-à-Pitre, Guadeloupe.,Laboratory of Excellence GR-Ex, Paris, France
| | - Régine Hierso
- Inserm U 1134, Université des Antilles et de la Guyane, 97159 Pointe-à-Pitre, Guadeloupe.,Laboratory of Excellence GR-Ex, Paris, France
| | - Maryse Etienne-Julan
- Unité Transversale de la Drépanocytose, CHU de Pointe-à-Pitre, 97159 Pointe-à-Pitre, Guadeloupe.,Inserm U 1134, Université des Antilles et de la Guyane, 97159 Pointe-à-Pitre, Guadeloupe
| | - Philippe Connes
- Inserm U 1134, Université des Antilles et de la Guyane, 97159 Pointe-à-Pitre, Guadeloupe.,Laboratory of Excellence GR-Ex, Paris, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
33
|
Brun JF, Varlet-Marie E, Fédou C, Raynaud de Mauverger E. « Optimal » vs actual hematocrit in obesity and overweight. Clin Hemorheol Microcirc 2016; 64:593-601. [PMID: 27767966 DOI: 10.3233/ch-168013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Equations of blood viscosity provide a prediction of the 'optimal' hematocrit' (hct) as the hct resulting in the highest value of the bell-shaped curve of hematocrit/viscosity ratio h/η. We investigated if overweight and obesity have an influence on these parameters. We compared 32 normal weight subjects, 40 overweight (BMI 25-30) and 38 obese subjects. There was no difference in the theoretical curve of h/η. The actual h/η is the same in the 3 groups but is always higher than the theoretical h/η in all groups. The actual h/η is lower in overweight than controls (p = 0.011). Modeling yields the same value of theoretical optimal hct across BMI classes. The 3 groups have the same values of actual hct, but actual is significantly lower than optimal in all cases (p < 0.001). Hematocrit is lower than predicted due to a discrepancy between predicted and actual h/η which is due to the inter-subject variability of RBC rigidity ... The discrepancy between optimal and actual h/η is negatively correlated to RBC rigidity indexes even if the model uses a fixed value of these indexes. Thus keeping in mind that the optimal hct should not be the same in the various parts of the vascular bed, its theoretical prediction with Quemada's equation appears to predict a value higher than actual hematocrit but well correlated to it, and the agreement between optimal and actual hct is dependent on RBC flexibility. This leads to think that the body sets hematocrit below its ideal value in sedentary subjects in order to cope with the need of increasing blood viscosity factors in case of exercise without impairing O2 supply to tissues.
Collapse
Affiliation(s)
- Jean-Frédéric Brun
- UMR CNRS 9214-Inserm U1046 « Physiopathologie & Médecine Expérimentale du Coeur et des Muscles - PHYMEDEXP », Unité d'Explorations Métaboliques (CERAMM), Université de Montpellier, Département de Physiologie Clinique,Hôpital Lapeyronie CHU Montpellier, France
| | - Emmanuelle Varlet-Marie
- Institut des Biomolécules Max Mousseron (IBMM) UMR CNRS 5247, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, France.,Laboratoire de Biophysique & Bio-Analyses, Faculté de Pharmacie, Université de Montpellier, France
| | - Christine Fédou
- UMR CNRS 9214-Inserm U1046 « Physiopathologie & Médecine Expérimentale du Coeur et des Muscles - PHYMEDEXP », Unité d'Explorations Métaboliques (CERAMM), Université de Montpellier, Département de Physiologie Clinique,Hôpital Lapeyronie CHU Montpellier, France
| | - Eric Raynaud de Mauverger
- UMR CNRS 9214-Inserm U1046 « Physiopathologie & Médecine Expérimentale du Coeur et des Muscles - PHYMEDEXP », Unité d'Explorations Métaboliques (CERAMM), Université de Montpellier, Département de Physiologie Clinique,Hôpital Lapeyronie CHU Montpellier, France
| |
Collapse
|
34
|
Renoux C, Romana M, Joly P, Ferdinand S, Faes C, Lemonne N, Skinner S, Garnier N, Etienne-Julan M, Bertrand Y, Petras M, Cannas G, Divialle-Doumdo L, Nader E, Cuzzubbo D, Lamarre Y, Gauthier A, Waltz X, Kebaili K, Martin C, Hot A, Hardy-Dessources MD, Pialoux V, Connes P. Effect of Age on Blood Rheology in Sickle Cell Anaemia and Sickle Cell Haemoglobin C Disease: A Cross-Sectional Study. PLoS One 2016; 11:e0158182. [PMID: 27355589 PMCID: PMC4927160 DOI: 10.1371/journal.pone.0158182] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/10/2016] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES Blood rheology plays a key role in the pathophysiology of sickle cell anaemia (SS) and sickle cell haemoglobin C disease (SC), but its evolution over the lifespan is unknown. MATERIALS AND METHODS Blood viscosity, red blood cell (RBC) deformability and aggregation, foetal haemoglobin (HbF) and haematocrit were measured in 114 healthy individuals (AA), 267 SS (161 children + 106 adults) and 138 SC (74 children + 64 adults) patients. RESULTS Our results showed that 1) RBC deformability is at its maximal value during the early years of life in SS and SC populations, mainly because HbF level is also at its peak, 2) during childhood and adulthood, hydroxycarbamide treatment, HbF level and gender modulated RBC deformability in SS patients, independently of age, 3) blood viscosity is higher in older SS and SC patients compared to younger ones and 4) haematocrit decreases as SS patients age. CONCLUSION The hemorheological changes detected in older patients could play a role in the progressive development of several chronic disorders in sickle cell disease, whose prevalence increases with age. Retarding these age-related haemorheological impairments, by using suitable drugs, may minimize the risks of vaso-occlusive events and chronic disorders.
Collapse
Affiliation(s)
- Céline Renoux
- Unité de Pathologie Moléculaire du Globule Rouge, Laboratoire de Biochimie et de Biologie Moléculaire, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
- Laboratoire Interuniversitaire de Biologie de la Motricité, Equipe “Vascular Biology and Red Blood Cell”, Université Claude Bernard Lyon 1, Lyon, France
- Laboratoire d’Excellence du Globule Rouge (LABEX GR-Ex), PRES Sorbonne, Paris, France
| | - Marc Romana
- UMR Inserm U1134, Université des Antilles et de la Guyane, Hôpital de Pointe-à-Pitre, Hôpital Ricou, 97159 Pointe-à-Pitre Cedex, Guadeloupe, France
- Laboratoire d’Excellence du Globule Rouge (LABEX GR-Ex), PRES Sorbonne, Paris, France
| | - Philippe Joly
- Unité de Pathologie Moléculaire du Globule Rouge, Laboratoire de Biochimie et de Biologie Moléculaire, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
- Laboratoire Interuniversitaire de Biologie de la Motricité, Equipe “Vascular Biology and Red Blood Cell”, Université Claude Bernard Lyon 1, Lyon, France
- Laboratoire d’Excellence du Globule Rouge (LABEX GR-Ex), PRES Sorbonne, Paris, France
| | - Séverine Ferdinand
- UMR Inserm U1134, Université des Antilles et de la Guyane, Hôpital de Pointe-à-Pitre, Hôpital Ricou, 97159 Pointe-à-Pitre Cedex, Guadeloupe, France
- Laboratoire d’Excellence du Globule Rouge (LABEX GR-Ex), PRES Sorbonne, Paris, France
| | - Camille Faes
- Laboratoire Interuniversitaire de Biologie de la Motricité, Equipe “Vascular Biology and Red Blood Cell”, Université Claude Bernard Lyon 1, Lyon, France
- Laboratoire d’Excellence du Globule Rouge (LABEX GR-Ex), PRES Sorbonne, Paris, France
| | - Nathalie Lemonne
- Unité Transversale de la Drépanocytose, Hôpital de Pointe-à-Pitre, Hôpital Ricou, 97159 Pointe-à-Pitre Cedex, Guadeloupe, France
| | - Sarah Skinner
- Laboratoire Interuniversitaire de Biologie de la Motricité, Equipe “Vascular Biology and Red Blood Cell”, Université Claude Bernard Lyon 1, Lyon, France
- Laboratoire d’Excellence du Globule Rouge (LABEX GR-Ex), PRES Sorbonne, Paris, France
| | - Nathalie Garnier
- Institut d’Hématologie et d’Oncologie Pédiatrique, Hospices Civils de Lyon, Lyon, France
| | - Maryse Etienne-Julan
- Unité Transversale de la Drépanocytose, Hôpital de Pointe-à-Pitre, Hôpital Ricou, 97159 Pointe-à-Pitre Cedex, Guadeloupe, France
| | - Yves Bertrand
- Institut d’Hématologie et d’Oncologie Pédiatrique, Hospices Civils de Lyon, Lyon, France
| | - Marie Petras
- Unité Transversale de la Drépanocytose, Hôpital de Pointe-à-Pitre, Hôpital Ricou, 97159 Pointe-à-Pitre Cedex, Guadeloupe, France
| | - Giovanna Cannas
- Service de Médecine Interne, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Lydia Divialle-Doumdo
- Unité Transversale de la Drépanocytose, Hôpital de Pointe-à-Pitre, Hôpital Ricou, 97159 Pointe-à-Pitre Cedex, Guadeloupe, France
| | - Elie Nader
- Laboratoire Interuniversitaire de Biologie de la Motricité, Equipe “Vascular Biology and Red Blood Cell”, Université Claude Bernard Lyon 1, Lyon, France
- Laboratoire d’Excellence du Globule Rouge (LABEX GR-Ex), PRES Sorbonne, Paris, France
| | - Daniela Cuzzubbo
- Institut d’Hématologie et d’Oncologie Pédiatrique, Hospices Civils de Lyon, Lyon, France
| | - Yann Lamarre
- UMR Inserm U1134, Université des Antilles et de la Guyane, Hôpital de Pointe-à-Pitre, Hôpital Ricou, 97159 Pointe-à-Pitre Cedex, Guadeloupe, France
- Laboratoire d’Excellence du Globule Rouge (LABEX GR-Ex), PRES Sorbonne, Paris, France
| | - Alexandra Gauthier
- Institut d’Hématologie et d’Oncologie Pédiatrique, Hospices Civils de Lyon, Lyon, France
| | - Xavier Waltz
- UMR Inserm U1134, Université des Antilles et de la Guyane, Hôpital de Pointe-à-Pitre, Hôpital Ricou, 97159 Pointe-à-Pitre Cedex, Guadeloupe, France
- Laboratoire d’Excellence du Globule Rouge (LABEX GR-Ex), PRES Sorbonne, Paris, France
| | - Kamila Kebaili
- Institut d’Hématologie et d’Oncologie Pédiatrique, Hospices Civils de Lyon, Lyon, France
| | - Cyril Martin
- Laboratoire Interuniversitaire de Biologie de la Motricité, Equipe “Vascular Biology and Red Blood Cell”, Université Claude Bernard Lyon 1, Lyon, France
- Laboratoire d’Excellence du Globule Rouge (LABEX GR-Ex), PRES Sorbonne, Paris, France
| | - Arnaud Hot
- Service de Médecine Interne, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Marie-Dominique Hardy-Dessources
- UMR Inserm U1134, Université des Antilles et de la Guyane, Hôpital de Pointe-à-Pitre, Hôpital Ricou, 97159 Pointe-à-Pitre Cedex, Guadeloupe, France
- Laboratoire d’Excellence du Globule Rouge (LABEX GR-Ex), PRES Sorbonne, Paris, France
| | - Vincent Pialoux
- Laboratoire Interuniversitaire de Biologie de la Motricité, Equipe “Vascular Biology and Red Blood Cell”, Université Claude Bernard Lyon 1, Lyon, France
- Service de Médecine Interne, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
- Laboratoire d’Excellence du Globule Rouge (LABEX GR-Ex), PRES Sorbonne, Paris, France
| | - Philippe Connes
- Laboratoire Interuniversitaire de Biologie de la Motricité, Equipe “Vascular Biology and Red Blood Cell”, Université Claude Bernard Lyon 1, Lyon, France
- UMR Inserm U1134, Université des Antilles et de la Guyane, Hôpital de Pointe-à-Pitre, Hôpital Ricou, 97159 Pointe-à-Pitre Cedex, Guadeloupe, France
- Laboratoire d’Excellence du Globule Rouge (LABEX GR-Ex), PRES Sorbonne, Paris, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
35
|
Cita KC, Brureau L, Lemonne N, Billaud M, Connes P, Ferdinand S, Tressières B, Tarer V, Etienne-Julan M, Blanchet P, Elion J, Romana M. Men with Sickle Cell Anemia and Priapism Exhibit Increased Hemolytic Rate, Decreased Red Blood Cell Deformability and Increased Red Blood Cell Aggregate Strength. PLoS One 2016; 11:e0154866. [PMID: 27145183 PMCID: PMC4856257 DOI: 10.1371/journal.pone.0154866] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/20/2016] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES To investigate the association between priapism in men with sickle cell anemia (SCA) and hemorheological and hemolytical parameters. MATERIALS AND METHODS Fifty-eight men with SCA (median age: 38 years) were included; 28 who had experienced priapism at least once during their life (priapism group) and 30 who never experienced this complication (control group). Twenty-two patients were treated with hydroxycarbamide, 11 in each group. All patients were at steady state at the time of inclusion. Hematological and biochemical parameters were obtained through routine procedures. The Laser-assisted Optical Rotational Cell Analyzer was used to measure red blood cell (RBC) deformability at 30 Pa (ektacytometry) and RBC aggregation properties (laser backscatter versus time). Blood viscosity was measured at a shear rate of 225 s-1 using a cone/plate viscometer. A principal component analysis was performed on 4 hemolytic markers (i.e., lactate dehydrogenase (LDH), aspartate aminotransferase (ASAT), total bilirubin (BIL) levels and reticulocyte (RET) percentage) to calculate a hemolytic index. RESULTS Compared to the control group, patients with priapism exhibited higher ASAT (p = 0.01), LDH (p = 0.03), RET (p = 0.03) levels and hemolytic indices (p = 0.02). Higher RBC aggregates strength (p = 0.01) and lower RBC deformability (p = 0.005) were observed in patients with priapism compared to controls. After removing the hydroxycarbamide-treated patients, RBC deformability (p = 0.01) and RBC aggregate strength (p = 0.03) were still different between the two groups, and patients with priapism exhibited significantly higher hemolytic indices (p = 0.01) than controls. CONCLUSION Our results confirm that priapism in SCA is associated with higher hemolytic rates and show for the first time that this complication is also associated with higher RBC aggregate strength and lower RBC deformability.
Collapse
Affiliation(s)
- Kizzy-Clara Cita
- Inserm UMR 1134, Université des Antilles, Pointe à Pitre, Guadeloupe
- Laboratoire d’Excellence du Globule Rouge (LABEX GR-Ex), COMUE Sorbonne Paris Cité, Paris, France
| | - Laurent Brureau
- CHU de Pointe-à-Pitre, Service d’Urologie, Pointe-à-Pitre, Guadeloupe
- Inserm, U1085—IRSET, Pointe-à-Pitre, Guadeloupe, France
| | - Nathalie Lemonne
- CHU de Pointe-à-Pitre, Unité Transversale de la Drépanocytose, Centre de référence maladies rares de la drépanocytose aux Antilles-Guyane, Pointe-à-Pitre, Guadeloupe
| | - Marie Billaud
- CHU de Pointe-à-Pitre, Unité Transversale de la Drépanocytose, Centre de référence maladies rares de la drépanocytose aux Antilles-Guyane, Pointe-à-Pitre, Guadeloupe
| | - Philippe Connes
- Inserm UMR 1134, Université des Antilles, Pointe à Pitre, Guadeloupe
- Laboratoire d’Excellence du Globule Rouge (LABEX GR-Ex), COMUE Sorbonne Paris Cité, Paris, France
- Institut Universitaire de France, Paris, France
- Université Claude Bernard Lyon 1, COMUE Lyon, Laboratoire LIBM EA 7424, Team “Vascular Biology and red blood cell”, Lyon, France
| | - Séverine Ferdinand
- Inserm UMR 1134, Université des Antilles, Pointe à Pitre, Guadeloupe
- Laboratoire d’Excellence du Globule Rouge (LABEX GR-Ex), COMUE Sorbonne Paris Cité, Paris, France
| | - Benoit Tressières
- Inserm, CHU de Pointe-à-Pitre, Centre d’Investigation Clinique Antilles Guyane CIC 14–24, Guadeloupe, France
| | - Vanessa Tarer
- CHU de Pointe-à-Pitre, Unité Transversale de la Drépanocytose, Centre de référence maladies rares de la drépanocytose aux Antilles-Guyane, Pointe-à-Pitre, Guadeloupe
| | - Maryse Etienne-Julan
- CHU de Pointe-à-Pitre, Unité Transversale de la Drépanocytose, Centre de référence maladies rares de la drépanocytose aux Antilles-Guyane, Pointe-à-Pitre, Guadeloupe
| | - Pascal Blanchet
- CHU de Pointe-à-Pitre, Service d’Urologie, Pointe-à-Pitre, Guadeloupe
- Inserm, U1085—IRSET, Pointe-à-Pitre, Guadeloupe, France
| | - Jacques Elion
- Laboratoire d’Excellence du Globule Rouge (LABEX GR-Ex), COMUE Sorbonne Paris Cité, Paris, France
- Inserm U 1134, Paris, France
| | - Marc Romana
- Inserm UMR 1134, Université des Antilles, Pointe à Pitre, Guadeloupe
- Laboratoire d’Excellence du Globule Rouge (LABEX GR-Ex), COMUE Sorbonne Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
36
|
Stankovic Stojanovic K, Lionnet F. Lactate dehydrogenase in sickle cell disease. Clin Chim Acta 2016; 458:99-102. [PMID: 27138446 DOI: 10.1016/j.cca.2016.04.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 02/02/2023]
Abstract
Lactate dehydrogenase (LDH) activity is elevated in many pathological states. Interest in LDH activity in sickle cell disease (SCD) has developed out of an increased comprehension of the pathophysiological process and the clinical course of the disease. Elevated LDH activity in SCD comes from various mechanisms, especially intravascular hemolysis, as well as ischemia-reperfusion damage and tissular necrosis. Intravascular hemolysis is associated with vasoconstriction, platelet activation, endothelial damage, and vascular complications. LDH has been used as a diagnostic and prognostic factor of acute and chronic complications. In this review we have evaluated the literature where LDH activity was examined during steady-state or acute conditions in SCD.
Collapse
Affiliation(s)
- Katia Stankovic Stojanovic
- Centre de référence adulte de la drépanocytose, service de médecine interne, hôpital Tenon, Assistance publique-hôpitaux de Paris, Université Pierre et Marie Curie, Paris, France.
| | - François Lionnet
- Centre de référence adulte de la drépanocytose, service de médecine interne, hôpital Tenon, Assistance publique-hôpitaux de Paris, Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
37
|
Cheng AL, Takao CM, Wenby RB, Meiselman HJ, Wood JC, Detterich JA. Elevated Low-Shear Blood Viscosity is Associated with Decreased Pulmonary Blood Flow in Children with Univentricular Heart Defects. Pediatr Cardiol 2016; 37:789-801. [PMID: 26888364 PMCID: PMC5769474 DOI: 10.1007/s00246-016-1352-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/04/2016] [Indexed: 12/28/2022]
Abstract
After the Fontan procedure, patients with univentricular hearts can experience long-term complications due to chronic low-shear non-pulsatile pulmonary blood flow. We sought to evaluate hemorheology and its relationship to hemodynamics in children with univentricular hearts. We hypothesized that low-shear blood viscosity and red blood cell (RBC) aggregation would be associated with increased pulmonary vascular resistance (PVR) and decreased pulmonary blood flow (PBF). We performed a cross-sectional analysis of 62 children undergoing cardiac catheterization-20 with isolated atrial septal defect (ASD), 22 status post Glenn procedure (Glenn), and 20 status post Fontan procedure (Fontan). Shear-dependent blood viscosity, RBC aggregation and deformability, complete blood count, coagulation panel, metabolic panel, fibrinogen, and erythrocyte sedimentation rate were measured. PVR and PBF were calculated using the Fick equation. Group differences were analyzed by ANOVA and correlations by linear regression. Blood viscosity at all shear rates was higher in Glenn and Fontan, partially due to normocytic anemia in ASD. RBC aggregation and deformability were similar between all groups. Low-shear viscosity negatively correlated with PBF in Glenn and Fontan only (R (2) = 0.27, p < 0.001); it also negatively correlated with pulmonary artery pressure in Glenn (R (2) = 0.15, p = 0.01), and positively correlated with PVR in Fontan (R (2) = 0.28, p = 0.02). Our data demonstrate that elevated low-shear blood viscosity is associated with negative hemodynamic perturbations in a passive univentricular pulmonary circulation, but not in a pulsatile biventricular pulmonary circulation.
Collapse
Affiliation(s)
- Andrew L. Cheng
- Division of Pediatric Cardiology, Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, 4650 Sunset Blvd., Mailstop #34, Los Angeles, CA 90036, USA
| | - Cheryl M. Takao
- Division of Pediatric Cardiology, Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, 4650 Sunset Blvd., Mailstop #34, Los Angeles, CA 90036, USA
| | - Rosalinda B. Wenby
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Herbert J. Meiselman
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - John C. Wood
- Division of Pediatric Cardiology, Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, 4650 Sunset Blvd., Mailstop #34, Los Angeles, CA 90036, USA
| | - Jon A. Detterich
- Division of Pediatric Cardiology, Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, 4650 Sunset Blvd., Mailstop #34, Los Angeles, CA 90036, USA,Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
38
|
Pollack S. RX of sickle cell leg ulcers. Int Wound J 2016; 13:1091. [PMID: 27021925 DOI: 10.1111/iwj.12587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 02/11/2016] [Indexed: 11/28/2022] Open
Affiliation(s)
- Simeon Pollack
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
39
|
Renoux C, Parrow N, Faes C, Joly P, Hardeman M, Tisdale J, Levine M, Garnier N, Bertrand Y, Kebaili K, Cuzzubbo D, Cannas G, Martin C, Connes P. Importance of methodological standardization for the ektacytometric measures of red blood cell deformability in sickle cell anemia. Clin Hemorheol Microcirc 2016; 62:173-9. [DOI: 10.3233/ch-151979] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Céline Renoux
- Laboratoire CRIS EA647, Team “Vascular Biology and Red Blood Cell”, Université Lyon 1, Université de Lyon, Lyon, France
- Laboratoire de Biochimie et de Biologie Moléculatire, Hôpital Edouard Herriot, Lyon, France
- Laboratoired’Excellence GR-Ex « The red cell: from genesis to death », Paris, France
| | - Nermi Parrow
- National Institutes of Health, Washington, DC, USA
| | - Camille Faes
- Laboratoire CRIS EA647, Team “Vascular Biology and Red Blood Cell”, Université Lyon 1, Université de Lyon, Lyon, France
- Laboratoired’Excellence GR-Ex « The red cell: from genesis to death », Paris, France
| | - Philippe Joly
- Laboratoire CRIS EA647, Team “Vascular Biology and Red Blood Cell”, Université Lyon 1, Université de Lyon, Lyon, France
- Laboratoire de Biochimie et de Biologie Moléculatire, Hôpital Edouard Herriot, Lyon, France
- Laboratoired’Excellence GR-Ex « The red cell: from genesis to death », Paris, France
| | - Max Hardeman
- Academic Medical Center, Amsterdam, The Netherlands
| | - John Tisdale
- National Institutes of Health, Washington, DC, USA
| | - Mark Levine
- National Institutes of Health, Washington, DC, USA
| | | | - Yves Bertrand
- Institut d’Hématologie et d’Oncologie Pédiatrique, Lyon, France
| | - Kamila Kebaili
- Institut d’Hématologie et d’Oncologie Pédiatrique, Lyon, France
| | | | - Giovanna Cannas
- Service de Médecine Interne, Hôpital Edouard Herriot, Lyon, France
| | - Cyril Martin
- Laboratoire CRIS EA647, Team “Vascular Biology and Red Blood Cell”, Université Lyon 1, Université de Lyon, Lyon, France
- Laboratoired’Excellence GR-Ex « The red cell: from genesis to death », Paris, France
| | - Philippe Connes
- Laboratoire CRIS EA647, Team “Vascular Biology and Red Blood Cell”, Université Lyon 1, Université de Lyon, Lyon, France
- Laboratoired’Excellence GR-Ex « The red cell: from genesis to death », Paris, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
40
|
Minniti CP, Kato GJ. Critical Reviews: How we treat sickle cell patients with leg ulcers. Am J Hematol 2016; 91:22-30. [PMID: 26257201 DOI: 10.1002/ajh.24134] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 07/23/2015] [Indexed: 12/22/2022]
Abstract
The past five decades have seen an improvement in the mortality and morbidity of sickle cell disease (SCD) because of prophylaxis against infectious complications, improved and expanded red cell transfusions, implementation of hydroxyurea therapy, and advances in supportive care. Now that the majority of patients in the western hemisphere reaches adulthood, end organ diseases are frequent, which include vasculopathic complications such as chronic leg ulcers. The management of patients with leg ulcers requires the hematologist to lead a team of health care professionals, and investigates the presence of associated, but potentially still occult signs of vasculopathy, such as pulmonary hypertension, renal disease, priapism and retinopathy. These complications may be asynchronous, and long term careful screening is indicated, in order to ensure early diagnosis and intervention. It is crucial to address both the immediate consequences of pain, infection and disability, and long term effects on quality of life, employment and stigma associated with chronic ulceration. Recent insights into their pathophysiology may have practical implications. We propose a holistic approach to the management of patients' physical and emotional problems and mechanisms of ulcers formation and delayed healing. An overview of topical and systemic therapies for chronic ulcers is given, with the understanding that wound care therapy is best left to the wound specialists, medical and surgical, with whom the hematologist must keep an open line of communication. In the absence of evidence-based guidelines, our opinion is based on both a critical review of the literature and our personal clinical and research experience.
Collapse
Affiliation(s)
- Caterina P. Minniti
- Division of Hematology-Oncology, Department of Medicine; Montefiore Medical Center; Bronx New York
| | - Gregory J. Kato
- Division of Hematology-Oncology, Department of Medicine and the Heart, Lung; Blood and Vascular Medicine Institute, University of Pittsburgh; Pittsburgh Pennsylvania
| |
Collapse
|
41
|
Martin C, Pialoux V, Faes C, Charrin E, Skinner S, Connes P. Does physical activity increase or decrease the risk of sickle cell disease complications? Br J Sports Med 2015; 52:214-218. [PMID: 26701924 DOI: 10.1136/bjsports-2015-095317] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2015] [Indexed: 12/11/2022]
Abstract
Sickle cell disease (SCD) is the most common inherited disease in the world. Red blood cell sickling, blood cell-endothelium adhesion, blood rheology abnormalities, intravascular haemolysis, and increased oxidative stress and inflammation contribute to the pathophysiology of SCD. Because acute intense exercise may alter these pathophysiological mechanisms, physical activity is usually contra-indicated in patients with SCD. However, recent studies in sickle-cell trait carriers and in a SCD mice model show that regular physical activity could decrease oxidative stress and inflammation, limit blood rheology alterations and increase nitric oxide metabolism. Therefore, supervised habitual physical activity may benefit patients with SCD. This article reviews the literature on the effects of acute and chronic exercise on the biological responses and clinical outcomes of patients with SCD.
Collapse
Affiliation(s)
- Cyril Martin
- Center of Research and Innovation on Sports (CRIS EA647), Team 'Vascular Biology and Red Blood Cell', University of Lyon 1, University of Lyon, Lyon, France.,Laboratory of Excellence in Red Blood Cell (LABEX GR-Ex), PRES Sorbonne, Paris, France
| | - Vincent Pialoux
- Center of Research and Innovation on Sports (CRIS EA647), Team 'Vascular Biology and Red Blood Cell', University of Lyon 1, University of Lyon, Lyon, France.,Laboratory of Excellence in Red Blood Cell (LABEX GR-Ex), PRES Sorbonne, Paris, France.,Institut Universitaire de France, Paris, France
| | - Camille Faes
- Center of Research and Innovation on Sports (CRIS EA647), Team 'Vascular Biology and Red Blood Cell', University of Lyon 1, University of Lyon, Lyon, France.,Laboratory of Excellence in Red Blood Cell (LABEX GR-Ex), PRES Sorbonne, Paris, France
| | - Emmanuelle Charrin
- Center of Research and Innovation on Sports (CRIS EA647), Team 'Vascular Biology and Red Blood Cell', University of Lyon 1, University of Lyon, Lyon, France.,Laboratory of Excellence in Red Blood Cell (LABEX GR-Ex), PRES Sorbonne, Paris, France
| | - Sarah Skinner
- Center of Research and Innovation on Sports (CRIS EA647), Team 'Vascular Biology and Red Blood Cell', University of Lyon 1, University of Lyon, Lyon, France.,Laboratory of Excellence in Red Blood Cell (LABEX GR-Ex), PRES Sorbonne, Paris, France
| | - Philippe Connes
- Center of Research and Innovation on Sports (CRIS EA647), Team 'Vascular Biology and Red Blood Cell', University of Lyon 1, University of Lyon, Lyon, France.,Laboratory of Excellence in Red Blood Cell (LABEX GR-Ex), PRES Sorbonne, Paris, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
42
|
Nguyen VT, Nassar D, Batteux F, Raymond K, Tharaux PL, Aractingi S. Delayed Healing of Sickle Cell Ulcers Is due to Impaired Angiogenesis and CXCL12 Secretion in Skin Wounds. J Invest Dermatol 2015; 136:497-506. [PMID: 26967481 DOI: 10.1016/j.jid.2015.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/14/2015] [Accepted: 10/12/2015] [Indexed: 01/31/2023]
Abstract
Leg ulcers are a major complication of sickle cell disease that occur in 2.5-40% of patients. Leg ulcers are responsible for frequent complications because they are often long-lasting and are highly resistant to therapy. Although their occurrence is associated with hyperhemolysis, the mechanisms underlying sickle cell ulcers remain poorly understood. In this study, we show that skin wound healing is severely altered in old SAD sickle cell mice but is normal in young animals, consistent with reports in humans. Alterations of wound healing were associated with impaired blood and lymphatic angiogenesis in the wound beds and poor endothelial progenitor cell mobilization from the bone marrow. CXCL12 secretion by keratinocytes and inflammatory cells was low in the wounds of SAD mice. Local therapy with endothelial progenitor cells or recombinant CXCL12 injections restored wound angiogenesis and rescued the healing defect together with mobilization of circulating endothelial progenitor cells. To our knowledge, this is a previously unreported study of the cellular and molecular mechanisms of sickle cell ulcers in a murine model that provides promising therapeutic perspectives for clinical trials.
Collapse
Affiliation(s)
- Van Tuan Nguyen
- Progenitors and Endothelial Cells During and After Pregnancy Laboratory, INSERM UMR_S 938, Centre de Recherche, St. Antoine, Paris, France; UPMC-Université Paris 6, Paris, France
| | - Dany Nassar
- Progenitors and Endothelial Cells During and After Pregnancy Laboratory, INSERM UMR_S 938, Centre de Recherche, St. Antoine, Paris, France; UPMC-Université Paris 6, Paris, France; Department of Dermatology, American University of Beirut Medical Centre, Beirut, Lebanon; Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Fréderic Batteux
- Faculty of Medicine, Université Paris Descartes-Paris 5, Paris, France
| | - Karine Raymond
- Progenitors and Endothelial Cells During and After Pregnancy Laboratory, INSERM UMR_S 938, Centre de Recherche, St. Antoine, Paris, France
| | | | - Sélim Aractingi
- Progenitors and Endothelial Cells During and After Pregnancy Laboratory, INSERM UMR_S 938, Centre de Recherche, St. Antoine, Paris, France; Faculty of Medicine, Université Paris Descartes-Paris 5, Paris, France; Department of Dermatology, Hôpital Cochin-Tarnier, Paris, France.
| |
Collapse
|
43
|
Connes P, Alexy T, Detterich J, Romana M, Hardy-Dessources MD, Ballas SK. The role of blood rheology in sickle cell disease. Blood Rev 2015; 30:111-8. [PMID: 26341565 DOI: 10.1016/j.blre.2015.08.005] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 07/17/2015] [Accepted: 08/20/2015] [Indexed: 01/29/2023]
Abstract
Studies performed in the last decades have highlighted the need to better understand the contribution of the endothelium, vascular function, oxidative stress, inflammation, coagulation, hemolysis and vascular adhesion mechanisms to the pathophysiology of acute vaso-occlusive like events and chronic organ damages in sickle cell disease (SCD). Although SCD is a hemorheological disease, a few works focused on the contribution of blood viscosity, plasma viscosity, red blood cell deformability and aggregation in the pathophysiology of SCD. After a brief description of basic hemorheology, the present review focuses on the role of the hemorheological abnormalities in the causation of several SCD complications, mainly in sickle cell anemia and hemoglobin (Hb) SC disease. Several genetic and cellular modulators of blood rheology in SCD are discussed, as well as unresolved questions and perspectives.
Collapse
Affiliation(s)
- Philippe Connes
- Inserm UMR 1134, Hôpital Ricou, CHU de Pointe-à-Pitre, 97157 Pointe-à-Pitre, Guadeloupe; Laboratory of Excellence GR-Ex «The red cell: from genesis to death», PRES Sorbonne Paris Cité, 75015 Paris, France; Institut Universitaire de France, Paris, France; Laboratoire CRIS EA647, Section "Vascular Biology and Red Blood Cell", Université Claude Bernard Lyon 1, 69100 Villeurbanne, France.
| | - Tamas Alexy
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA; Section of Cardiology, Atlanta VA Medical Center, Decatur, GA, USA
| | - Jon Detterich
- Children's Hospital Los Angeles, Division of Cardiology, USA
| | - Marc Romana
- Inserm UMR 1134, Hôpital Ricou, CHU de Pointe-à-Pitre, 97157 Pointe-à-Pitre, Guadeloupe; Laboratory of Excellence GR-Ex «The red cell: from genesis to death», PRES Sorbonne Paris Cité, 75015 Paris, France
| | - Marie-Dominique Hardy-Dessources
- Inserm UMR 1134, Hôpital Ricou, CHU de Pointe-à-Pitre, 97157 Pointe-à-Pitre, Guadeloupe; Laboratory of Excellence GR-Ex «The red cell: from genesis to death», PRES Sorbonne Paris Cité, 75015 Paris, France
| | - Samir K Ballas
- Department of Medicine, Cardeza Foundation for Hematologic Research, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
44
|
Ferdinand S, Connes P, Brudey L, Cita KC, Tressières B, Lemonne N, Hardy-Dessources MD, Lamarre Y, Waltz X, Etienne-Julan M, Romana M. Impact of eNOS polymorphisms on red blood cell aggregation in sickle cell disease. Blood Cells Mol Dis 2015; 55:151-3. [DOI: 10.1016/j.bcmd.2015.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 05/25/2015] [Indexed: 11/27/2022]
|
45
|
Morphine for the treatment of pain in sickle cell disease. ScientificWorldJournal 2015; 2015:540154. [PMID: 25654130 PMCID: PMC4306369 DOI: 10.1155/2015/540154] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/18/2014] [Indexed: 01/11/2023] Open
Abstract
Pain is a hallmark of sickle cell disease (SCD) and its treatment remains challenging. Opioids are the major family of analgesics that are commonly used for treating severe pain. However, these are not always effective and are associated with the liabilities of their own. The pharmacology and multiorgan side effects of opioids are rapidly emerging areas of investigation, but there remains a scarcity of clinical studies. Due to opioid-induced endothelial-, mast cell-, renal mesangial-, and epithelial-cell-specific effects and proinflammatory as well as growth influencing signaling, it is likely that when used for analgesia, opioids may have organ specific pathological effects. Experimental and clinical studies, even though extremely few, suggest that opioids may exacerbate existent organ damage and also stimulate pathologies of their own. Because of the recurrent and/or chronic use of large doses of opioids in SCD, it is critical to evaluate the role and contribution of opioids in many complications of SCD. The aim of this review is to initiate inquiry to develop strategies that may prevent the inadvertent effect of opioids on organ function in SCD, should it occur, without compromising analgesia.
Collapse
|
46
|
Vent-Schmidt J, Waltz X, Romana M, Hardy-Dessources MD, Lemonne N, Billaud M, Etienne-Julan M, Connes P. Blood thixotropy in patients with sickle cell anaemia: role of haematocrit and red blood cell rheological properties. PLoS One 2014; 9:e114412. [PMID: 25502228 PMCID: PMC4263608 DOI: 10.1371/journal.pone.0114412] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 11/10/2014] [Indexed: 01/22/2023] Open
Abstract
We compared the blood thixotropic/shear-thinning properties and the red blood cells' (RBC) rheological properties between a group of patients with sickle cell anaemia (SS) and healthy individuals (AA). Blood thixotropy was determined by measuring blood viscosity with a capillary viscometer using a "loop" protocol: the shear rate started at 1 s-1 and increased progressively to 922 s-1 and then re-decreased to the initial shear rate. Measurements were performed at native haematocrit for the two groups and at 25% and 40% haematocrit for the AA and SS individuals, respectively. RBC deformability was determined by ektacytometry and RBC aggregation properties by laser backscatter versus time. AA at native haematocrit had higher blood thixotropic index than SS at native haematocrit and AA at 25% haematocrit. At 40% haematocrit, SS had higher blood thixotropic index than AA. While RBC deformability and aggregation were lower in SS than in AA, the strength of RBC aggregates was higher in the former population. Our results showed that 1) anaemia is the main modulator of blood thixtropy and 2) the low RBC deformability and high RBC aggregates strength cause higher blood thixotropy in SS patients than in AA individuals at 40% haematocrit, which could impact blood flow in certain vascular compartments.
Collapse
Affiliation(s)
- Jens Vent-Schmidt
- Inserm UMR 1134, Hôpital Ricou, CHU de Pointe-à-Pitre, 97157, Pointe-à-Pitre, Guadeloupe, France
| | - Xavier Waltz
- Inserm UMR 1134, Hôpital Ricou, CHU de Pointe-à-Pitre, 97157, Pointe-à-Pitre, Guadeloupe, France
- Laboratory of Excellence GR-Ex « The red cell: from genesis to death », PRES Sorbonne Paris Cité, 75015, Paris, France
- Laboratory ACTES (EA 3596), Department of Physiology, French West Indies and Guiana University, Pointe-à-Pitre, Guadeloupe, France
| | - Marc Romana
- Inserm UMR 1134, Hôpital Ricou, CHU de Pointe-à-Pitre, 97157, Pointe-à-Pitre, Guadeloupe, France
- Laboratory of Excellence GR-Ex « The red cell: from genesis to death », PRES Sorbonne Paris Cité, 75015, Paris, France
| | - Marie-Dominique Hardy-Dessources
- Inserm UMR 1134, Hôpital Ricou, CHU de Pointe-à-Pitre, 97157, Pointe-à-Pitre, Guadeloupe, France
- Laboratory of Excellence GR-Ex « The red cell: from genesis to death », PRES Sorbonne Paris Cité, 75015, Paris, France
| | - Nathalie Lemonne
- Unité Transversale de la Drépanocytose, CHU de Pointe-à-Pitre, 97157, Pointe-à-Pitre, Guadeloupe, France
| | - Marie Billaud
- Unité Transversale de la Drépanocytose, CHU de Pointe-à-Pitre, 97157, Pointe-à-Pitre, Guadeloupe, France
| | - Maryse Etienne-Julan
- Inserm UMR 1134, Hôpital Ricou, CHU de Pointe-à-Pitre, 97157, Pointe-à-Pitre, Guadeloupe, France
- Laboratory of Excellence GR-Ex « The red cell: from genesis to death », PRES Sorbonne Paris Cité, 75015, Paris, France
- Unité Transversale de la Drépanocytose, CHU de Pointe-à-Pitre, 97157, Pointe-à-Pitre, Guadeloupe, France
| | - Philippe Connes
- Inserm UMR 1134, Hôpital Ricou, CHU de Pointe-à-Pitre, 97157, Pointe-à-Pitre, Guadeloupe, France
- Laboratory of Excellence GR-Ex « The red cell: from genesis to death », PRES Sorbonne Paris Cité, 75015, Paris, France
- Institut Universitaire de France, Paris, France
- Laboratoire CRIS EA647, Université Claude Bernard Lyon 1, 69100, Villeurbanne, France
| |
Collapse
|
47
|
Hierso R, Waltz X, Mora P, Romana M, Lemonne N, Connes P, Hardy-Dessources MD. Effects of oxidative stress on red blood cell rheology in sickle cell patients. Br J Haematol 2014; 166:601-6. [PMID: 24754710 DOI: 10.1111/bjh.12912] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 03/20/2014] [Indexed: 01/06/2023]
Abstract
Sickle cell anaemia (SS) and sickle cell-haemoglobin C disease (SC) patients exhibit severe red blood cell (RBC) rheological alterations involved in the development of several complications. The contribution of oxidative stress in these haemorheological abnormalities is still unknown. We compared RBC reactive oxygen species (ROS) and glutathione (GSH) content, and the haemorheological profile of SS (n = 11), SC (n = 11) and healthy subjects (n = 12) at baseline and after in-vitro treatment with t-butyl hydroperoxide (TBHP). We showed: (i) higher RBC ROS content in SS and SC patients, with the highest level observed in SS patients; (ii) lower RBC GSH content in sickle syndrome patients, especially in SS patients; (iii) TBHP increased RBC ROS production and decreased RBC GSH content in all groups; (iv) TBHP decreased RBC aggregation and increased the strength of RBC aggregates in all groups but the increase in RBC aggregates strength was greater in sickle cell patients; (v) TBHP decreased RBC deformability in the three groups but with a higher magnitude in sickle cell patients. These data suggest that RBCs from sickle cell patients have an exaggerated response to oxidative stress, which is accompanied by a profound abnormal haemorheological profile, with greater alterations in SS than in SC patients.
Collapse
Affiliation(s)
- Régine Hierso
- Inserm U 1134, Pointe-à-Pitre, Guadeloupe, France; Université des Antilles et de la Guyane, Pointe-à-Pitre, Guadeloupe, France; Laboratory of Excellence GR-Ex, Paris, France
| | | | | | | | | | | | | |
Collapse
|
48
|
Connes P, Lamarre Y, Waltz X, Ballas SK, Lemonne N, Etienne-Julan M, Hue O, Hardy-Dessources MD, Romana M. Haemolysis and abnormal haemorheology in sickle cell anaemia. Br J Haematol 2014; 165:564-72. [PMID: 24611951 DOI: 10.1111/bjh.12786] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/05/2014] [Indexed: 12/19/2022]
Abstract
Although pulmonary hypertension, leg ulcers, priapism, stroke and glomerulopathy in sickle cell anaemia (SCA) result from the adverse effects of chronic haemolysis on vascular function (haemolytic phenotype), osteonecrosis, acute chest syndrome and painful vaso-occlusive crises are caused by abnormal vascular cell adhesion and increased blood viscosity (viscosity-vaso-occlusion phenotype). However, this model with two sub-phenotypes does not take into account the haemorheological dimension. We tested the relationships between the biological parameters reflecting the haemolytic rate (haemolytic component) and red blood cell (RBC) rheological characteristics in 97 adults with SCA. No significant difference in the proportion of patients with low or high haemolytic component in the low and high blood viscosity groups was observed. The RBC elongation index (i.e. deformability) was negatively correlated with the haemolytic component. The RBC aggregates strength (i.e. RBC aggregates robustness) was negatively correlated with RBC elongation index. Sickle RBCs with high density had lower elongation index and higher aggregates strength. In conclusion, (i) the 'haemolytic' phenotype is characterized by decreased RBC deformability and increased RBC aggregates strength and (ii) the viscosity-vaso-occlusive phenotype is characterized by increased RBC deformability but not always by increased blood viscosity. α-thalassaemia modulates the haemorheological properties but other factors seem to be involved.
Collapse
Affiliation(s)
- Philippe Connes
- UMR Inserm 1134, Université des Antilles et de la Guyane, Pointe-à-Pitre, Guadeloupe, France; Institut Universitaire de France, Paris, France; Laboratory of Excellence GR-Ex (The red cell: from genesis to death), PRES Sorbonne Paris Cité, Paris, France; Laboratoire ACTES (EA 3596), Département de Physiologie, Université des Antilles et de la Guyane, Pointe-à-Pitre, Guadeloupe, France
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Waltz X, Connes P. Pathophysiology and physical activity in patients with sickle cell anemia. ACTA ACUST UNITED AC 2014. [DOI: 10.1051/sm/2013105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|