1
|
Huang G, Yao D, Yan X, Zheng M, Yan P, Chen X, Wang D. Emerging role of toll-like receptors signaling and its regulators in preterm birth: a narrative review. Arch Gynecol Obstet 2023; 308:319-339. [PMID: 35916961 DOI: 10.1007/s00404-022-06701-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/03/2022] [Indexed: 11/02/2022]
Abstract
INTRODUCTION Despite intensive research, preterm birth (PTB) rates have not decreased significantly in recent years due to a lack of understanding of the underlying causes and insufficient treatment options for PTB. We are committed to finding promising biomarkers for the treatment of PTB. METHODS An extensive search of the literature was conducted with MEDLINE/PubMed, and in total, 151 studies were included and summarized in the present review. RESULTS Substantial evidence supports that the infection and/or inflammatory cascade associated with infection is an early event in PTB. Toll-like receptor (TLR) is a prominent pattern recognition receptor (PRR) found on both immune and non-immune cells, including fetal membrane cells. The activation of TLR downstream molecules, followed by TLR binding to its ligand, is critical for infection and inflammation, leading to the involvement of the TLR signaling pathway in PTB. TLR ligands are derived from microbial components and molecules released by damaged and dead cells. Particularly, TLR4 is an essential TLR because of its ability to recognize lipopolysaccharide (LPS). In this comprehensive overview, we discuss the role of TLR signaling in PTB, focus on numerous host-derived genetic and epigenetic regulators of the TLR signaling pathway, and cover ongoing research and prospective therapeutic options for treating PTB by inhibiting TLR signaling. CONCLUSION This is a critical topic because TLR-related molecules and mechanisms may enable obstetricians to better understand the physiological changes in PTB and develop new treatment and prevention strategies.
Collapse
Affiliation(s)
- Ge Huang
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dan Yao
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoli Yan
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Mingyu Zheng
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ping Yan
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoxia Chen
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dan Wang
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
2
|
Rode L, Wulff CB, Ekelund CK, Hoseth E, Petersen OB, Tabor A, El-Achi V, Hyett JA, McLennan AC. First-trimester prediction of preterm prelabour rupture of membranes incorporating cervical length measurement. Eur J Obstet Gynecol Reprod Biol 2023; 284:76-81. [PMID: 36940605 DOI: 10.1016/j.ejogrb.2023.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
OBJECTIVES To examine early pregnancy risk factors for preterm prelabour rupture of membranes (PPROM) and develop a predictive model. STUDY DESIGN Retrospective analysis of a cohort of mixed-risk singleton pregnancies screened in the first and second trimesters in three Danish tertiary fetal medicine centres, including a cervical length measurement at 11-14 weeks, at 19-21 weeks and at 23-24 weeks of gestation. Univariable and multivariable logistic regression analyses were employed to identify predictive maternal characteristics, biochemical and sonographic factors. Receiver operating characteristic (ROC) curve analysis was used to determine predictors for the most accurate model. RESULTS Of 3477 screened women, 77 (2.2%) had PPROM. Maternal factors predictive of PPROM in univariable analysis were nulliparity (OR 2.0 (95% CI 1.2-3.3)), PAPP-A < 0.5 MoM (OR 2.6 (1.1-6.2)), previous preterm birth (OR 4.2 (1.9-8.9)), previous cervical conization (OR 3.6 (2.0-6.4)) and cervical length ≤ 25 mm on transvaginal imaging (first-trimester OR 15.9 (4.3-59.3)). These factors all remained statistically significant in a multivariable adjusted model with an AUC of 0.72 in the most discriminatory first-trimester model. The detection rate using this model would be approximately 30% at a false-positive rate of 10%. Potential predictors such as bleeding in early pregnancy and pre-existing diabetes mellitus affected very few cases and could not be formally assessed. CONCLUSIONS Several maternal characteristics, placental biochemical and sonographic features are predictive of PPROM with moderate discrimination. Larger numbers are required to validate this algorithm and additional biomarkers, not currently used for first-trimester screening, may improve model performance.
Collapse
Affiliation(s)
- Line Rode
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Center of Fetal Medicine and Pregnancy, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Camilla B Wulff
- Center of Fetal Medicine and Pregnancy, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Charlotte K Ekelund
- Center of Fetal Medicine and Pregnancy, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Eva Hoseth
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark
| | - Olav B Petersen
- Center of Fetal Medicine and Pregnancy, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ann Tabor
- Center of Fetal Medicine and Pregnancy, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Vanessa El-Achi
- Department of Maternal and Fetal Medicine, Westmead Hospital, Sydney, New South Wales, Australia
| | - Jon A Hyett
- The Ingham Institute for Applied Medical Research, 1 Campbell Street, Liverpool, New South Wales 2170, Australia; Department of Obstetrics and Gynaecology, School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
| | - Andrew C McLennan
- Discipline of Obstetrics, Gynaecology and Neonatology, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia; Sydney Ultrasound for Women, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Ren J, Jin H, Zhu Y. The Role of Placental Non-Coding RNAs in Adverse Pregnancy Outcomes. Int J Mol Sci 2023; 24:ijms24055030. [PMID: 36902459 PMCID: PMC10003511 DOI: 10.3390/ijms24055030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are transcribed from the genome and do not encode proteins. In recent years, ncRNAs have attracted increasing attention as critical participants in gene regulation and disease pathogenesis. Different categories of ncRNAs, which mainly include microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are involved in the progression of pregnancy, while abnormal expression of placental ncRNAs impacts the onset and development of adverse pregnancy outcomes (APOs). Therefore, we reviewed the current status of research on placental ncRNAs and APOs to further understand the regulatory mechanisms of placental ncRNAs, which provides a new perspective for treating and preventing related diseases.
Collapse
Affiliation(s)
- Jiawen Ren
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China
| | - Heyue Jin
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China
| | - Yumin Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China
- Correspondence:
| |
Collapse
|
4
|
Zhou G, Fichorova RN, Holzman C, Chen B, Chang C, Kasten EP, Hoffmann HM. Placental circadian lincRNAs and spontaneous preterm birth. Front Genet 2023; 13:1051396. [PMID: 36712876 PMCID: PMC9874002 DOI: 10.3389/fgene.2022.1051396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have a much higher cell- and/or tissue-specificity compared to mRNAs in most cases, making them excellent candidates for therapeutic applications to reduce off-target effects. Placental long non-coding RNAs have been investigated in the pathogenesis of preeclampsia (often causing preterm birth (PTB)), but less is known about their role in preterm birth. Preterm birth occurs in 11% of pregnancies and is the most common cause of death among infants in the world. We recently identified that genes that drive circadian rhythms in cells, termed molecular clock genes, are deregulated in maternal blood of women with spontaneous PTB (sPTB) and in the placenta of women with preeclampsia. Next, we focused on circadian genes-correlated long intergenic non-coding RNAs (lincRNAs, making up most of the long non-coding RNAs), designated as circadian lincRNAs, associated with sPTB. We compared the co-altered circadian transcripts-correlated lincRNAs expressed in placentas of sPTB and term births using two published independent RNAseq datasets (GSE73712 and GSE174415). Nine core clock genes were up- or downregulated in sPTB versus term birth, where the RORA transcript was the only gene downregulated in sPTB across both independent datasets. We found that five circadian lincRNAs (LINC00893, LINC00265, LINC01089, LINC00482, and LINC00649) were decreased in sPTB vs term births across both datasets (p ≤ .0222, FDR≤.1973) and were negatively correlated with the dataset-specific clock genes-based risk scores (correlation coefficient r = -.65 ∼ -.43, p ≤ .0365, FDR≤.0601). Gene set variation analysis revealed that 65 pathways were significantly enriched by these same five differentially expressed lincRNAs, of which over 85% of the pathways could be linked to immune/inflammation/oxidative stress and cell cycle/apoptosis/autophagy/cellular senescence. These findings may improve our understanding of the pathogenesis of spontaneous preterm birth and provide novel insights into the development of potentially more effective and specific therapeutic targets against sPTB.
Collapse
Affiliation(s)
- Guoli Zhou
- Clinical and Translational Sciences Institute, Michigan State University, East Lansing, MI, United States,*Correspondence: Guoli Zhou, ; Hanne M. Hoffmann,
| | - Raina N. Fichorova
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Claudia Holzman
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States
| | - Bin Chen
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI, United States
| | - Chi Chang
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States
| | - Eric P. Kasten
- Clinical and Translational Sciences Institute, Michigan State University, East Lansing, MI, United States,Department of Radiology, Michigan State University, East Lansing, MI, United States
| | - Hanne M. Hoffmann
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, United States,*Correspondence: Guoli Zhou, ; Hanne M. Hoffmann,
| |
Collapse
|
5
|
Zheng Y, Pan J, Xia C, Chen H, Zhou H, Ju W, Wegiel J, Myatt L, Roberts JM, Guo X, Zhong N. Characterization of placental and decidual cell development in early pregnancy loss by single-cell RNA sequencing. Cell Biosci 2022; 12:168. [PMID: 36209198 PMCID: PMC9548121 DOI: 10.1186/s13578-022-00904-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/24/2022] [Indexed: 11/06/2022] Open
Abstract
Background Early pregnancy loss (EPL) presents as sporadic or recurrent miscarriage during the first trimester. In addition to chromosomal defects, EPL may result from impairment of the placental-decidual interface at early gestational age due to gene-environmental interactions. Methods To better understand the pathogenesis associated with this impairment, cell development in chorionic villi and decidua of different forms of EPL (sporadic or recurrent) was investigated with single-cell RNA sequencing and compared to that of normal first-trimester tissue. Results Unique gene expression signatures were obtained for the different forms of EPL and for normal tissue and the composition of placental and decidual cell clusters in each form was established. In particular, the involvement of macrophages in the EPL phenotypes was identified revealing an immunoactive state. Conclusion Differential gene expression and unique marker genes among cell clusters from chorionic villi and decidua of miscarried and normal pregnancies, may lead to identification of biomarker for EPL. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00904-5.
Collapse
Affiliation(s)
- Yuhua Zheng
- Maternity and Child Healthcare Hospital, Foshan Women and Children, 11 W. Renmin Lu, Foshan, 528000 China
| | - Jing Pan
- Maternity and Child Healthcare Hospital, Foshan Women and Children, 11 W. Renmin Lu, Foshan, 528000 China
| | - Chenglai Xia
- Maternity and Child Healthcare Hospital, Foshan Women and Children, 11 W. Renmin Lu, Foshan, 528000 China
| | - Haiying Chen
- Maternity and Child Healthcare Hospital, Foshan Women and Children, 11 W. Renmin Lu, Foshan, 528000 China
| | - Huadong Zhou
- Maternity and Child Healthcare Hospital, Foshan Women and Children, 11 W. Renmin Lu, Foshan, 528000 China
| | - Weina Ju
- grid.420001.70000 0000 9813 9625New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314 USA
| | - Jerzy Wegiel
- grid.420001.70000 0000 9813 9625New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314 USA
| | - Leslie Myatt
- grid.5288.70000 0000 9758 5690Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239 USA
| | - James M. Roberts
- grid.5288.70000 0000 9758 5690Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239 USA ,grid.460217.60000 0004 0387 4432Department of Obstetrics, Gynecology and Reproductive Sciences, Epidemiology and Clinical and Translational Research University of Pittsburgh, Magee-Womens Research Institute, 204 Craft Avenue, Pittsburgh, PA 15213 USA
| | - Xiaoling Guo
- Maternity and Child Healthcare Hospital, Foshan Women and Children, 11 W. Renmin Lu, Foshan, 528000 China
| | - Nanbert Zhong
- grid.420001.70000 0000 9813 9625New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314 USA
| |
Collapse
|
6
|
Lin MW, Tsai MH, Shih CY, Tai YY, Lee CN, Lin SY. Comparison of DNA Methylation Changes Between the Gestation Period and the After-Delivery State: A Pilot Study of 10 Women. Front Nutr 2022; 9:829915. [PMID: 35600817 PMCID: PMC9116383 DOI: 10.3389/fnut.2022.829915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/01/2022] [Indexed: 11/22/2022] Open
Abstract
Background Gestational adaptation occurs soon after fertilization and continues throughout pregnancy, whereas women return to a pre-pregnancy state after delivery and lactation. However, little is known about the role of DNA methylation in fine-tuning maternal physiology. Understanding the changes in DNA methylation during pregnancy is the first step in clarifying the association of diet, nutrition, and thromboembolism with the changes in DNA methylation. In this study, we investigated whether and how the DNA methylation pattern changes in the three trimesters and after delivery in ten uncomplicated pregnancies. Results DNA methylation was measured using a Human MethylationEPIC BeadChip. There were 14,018 cytosine-guanine dinucleotide (CpG) sites with statistically significant changes in DNA methylation over the four time periods (p <
0.001). Overall, DNA methylation after delivery was higher than that of the three trimesters (p < 0.001), with the protein ubiquitination pathway being the top canonical pathway involved. We classified the CpG sites into nine groups according to the changes in the three trimesters and found that 38.37% of CpG sites had DNA methylation changes during pregnancy, especially between the first and second trimesters. Conclusion DNA methylation pattern changes between trimesters, indicating possible involvement in maternal adaptation to pregnancy. Meanwhile, DNA methylation patterns during pregnancy and in the postpartum period were different, implying that puerperium repair may also function through DNA methylation mechanisms.
Collapse
Affiliation(s)
- Ming-Wei Lin
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Mong-Hsun Tsai
- Bioinformatics and Biostatistics Core Lab, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Ching-Yu Shih
- Bioinformatics and Biostatistics Core Lab, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Yun Tai
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Nan Lee
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Shin-Yu Lin
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
- *Correspondence: Shin-Yu Lin
| |
Collapse
|
7
|
Li W, Feng SS, Wu H, Deng J, Zhou WY, Jia MX, Shi Y, Ma L, Zeng XX, Zuberi Z, Fu D, Liu X, Chen Z. Comprehensive Analysis of CDK1-Associated ceRNA Network Revealing the Key Pathways LINC00460/LINC00525-Hsa-Mir-338-FAM111/ZWINT as Prognostic Biomarkers in Lung Adenocarcinoma Combined with Experiments. Cells 2022; 11:cells11071220. [PMID: 35406786 PMCID: PMC8997540 DOI: 10.3390/cells11071220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/20/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the leading cause of cancer deaths worldwide, and effective biomarkers are still lacking for early detection and prognosis prediction. Here, based on gene expression profiles of LUAD patients from The Cancer Genome Atlas (TCGA), 806 long non-coding RNAs (lncRNAs), 122 microRNAs (miRNAs) and 1269 mRNAs associated with CDK1 were identified. The regulatory axis of LINC00460/LINC00525-hsa-mir-338-FAM111B/ZWINT was determined according to the correlation between gene expression and patient prognosis. The abnormal up-regulation of FAM111B/ZWINT in LUAD was related to hypomethylation. Furthermore, immune infiltration analysis suggested FAM111B/ZWINT could affect the development and prognosis of cancer by regulating the LUAD immune microenvironment. EMT feature analysis suggested that FAM111B/ZWINT promoted tumor spread through the EMT process. Functional analysis showed FAM111B/ZWINT was involved in cell cycle events such as DNA replication and chromosome separation. We analyzed the HERB and GSCALite databases to identify potential target medicines that may play a role in the treatment of LUAD. Finally, the expression of LINC00460/LINC00525-hsa-mir-338-FAM111B/ZWINT axis was verified in LUAD cells by RT-qPCR, and these results were consistent with bioinformatics analysis. Overall, we constructed a CDK1-related ceRNA network and revealed the LINC00460/LINC00525-hsa-mir-338-FAM111/ZWINT pathways as potential diagnostic biomarkers or therapeutic targets of LUAD.
Collapse
Affiliation(s)
- Wen Li
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (W.L.); (S.-S.F.); (J.D.); (L.M.); (X.-X.Z.)
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (H.W.); (M.-X.J.); (Y.S.)
| | - Shan-Shan Feng
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (W.L.); (S.-S.F.); (J.D.); (L.M.); (X.-X.Z.)
| | - Hao Wu
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (H.W.); (M.-X.J.); (Y.S.)
| | - Jing Deng
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (W.L.); (S.-S.F.); (J.D.); (L.M.); (X.-X.Z.)
| | - Wang-Yan Zhou
- Department of Medical Record, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang 421001, China;
| | - Ming-Xi Jia
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (H.W.); (M.-X.J.); (Y.S.)
| | - Yi Shi
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (H.W.); (M.-X.J.); (Y.S.)
| | - Liang Ma
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (W.L.); (S.-S.F.); (J.D.); (L.M.); (X.-X.Z.)
| | - Xiao-Xi Zeng
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (W.L.); (S.-S.F.); (J.D.); (L.M.); (X.-X.Z.)
| | - Zavuga Zuberi
- Department of Science and Laboratory Technology, Dar es Salaam Institute of Technology, Dar es Salaam P.O. Box 2958, Tanzania;
| | - Da Fu
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China;
| | - Xiang Liu
- Department of Thoracic Surgery, Hengyang Medical School, The Second Affiliated Hospital, University of South China, Hengyang 421001, China
- Correspondence: (X.L.); (Z.C.); Tel.: +86-0734-889-9990 (X.L.); +86-158-6971-6968 (Z.C.)
| | - Zhu Chen
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (W.L.); (S.-S.F.); (J.D.); (L.M.); (X.-X.Z.)
- Correspondence: (X.L.); (Z.C.); Tel.: +86-0734-889-9990 (X.L.); +86-158-6971-6968 (Z.C.)
| |
Collapse
|
8
|
Li C, Cao M, Zhou X. Role of epigenetics in parturition and preterm birth. Biol Rev Camb Philos Soc 2021; 97:851-873. [PMID: 34939297 DOI: 10.1111/brv.12825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022]
Abstract
Preterm birth occurs worldwide and is associated with high morbidity, mortality, and economic cost. Although several risk factors associated with parturition and preterm birth have been identified, mechanisms underlying this syndrome remain unclear, thereby limiting the implementation of interventions for prevention and management. Known triggers of preterm birth include conditions related to inflammatory and immunological pathways, as well as genetics and maternal history. Importantly, epigenetics, which is the study of heritable phenotypic changes that occur without alterations in the DNA sequence, may play a role in linking social and environmental risk factors for preterm birth. Epigenetic approaches to the study of preterm birth, including analyses of the effects of microRNAs, long non-coding RNAs, DNA methylation, and histone modification, have contributed to an improved understanding of the molecular bases of both term and preterm birth. Additionally, epigenetic modifications have been linked to factors already associated with preterm birth, including obesity and smoking. The prevention and management of preterm birth remains a challenge worldwide. Although epigenetic analysis provides valuable insights into the causes and risk factors associated with this syndrome, further studies are necessary to determine whether epigenetic approaches can be used routinely for the diagnosis, prevention, and management of preterm birth.
Collapse
Affiliation(s)
- Chunjin Li
- College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, China
| | - Maosheng Cao
- College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, China
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, China
| |
Collapse
|
9
|
Chen H, Cheng S, Xiong W, Tan X. The lncRNA-miRNA-mRNA ceRNA network in mural granulosa cells of patients with polycystic ovary syndrome: an analysis of Gene Expression Omnibus data. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1156. [PMID: 34430597 PMCID: PMC8350636 DOI: 10.21037/atm-21-2696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/22/2021] [Indexed: 12/17/2022]
Abstract
Background Polycystic ovary syndrome (PCOS) is one of the most common endocrine abnormalities in women of reproductive age. In this study, we set out to construct a molecular long non-coding RNA (lncRNA)-microRNA (miRNA)-messenger RNA (mRNA) network according to the competitive endogenous RNA (ceRNA) theory and obtain insights into the related biological characteristics and pathways. Methods We downloaded two gene expression profile datasets of mural granulosa cells (MGCs) of women with PCOS and healthy women without PCOS (GSE84376 and GSE106724) from Gene Expression Omnibus (GEO) DataSets. Using GEO2R, we identified the mRNAs and non-coding RNAs with differential expression. The DIANA-microT-CDS algorithm was applied to predict the genes targeted by the differentially expressed miRNAs. The lncRNA-miRNA interactions were predicted using DIANA-LncBase v2. Then, we constructed the lncRNA-miRNA-mRNA network. The Database for Annotation, Visualization and Integrated Discovery (DAVID) was employed to identify the functions and enriched pathways of the genes. Subsequently, STRING was used to construct the protein-protein interaction (PPI) network. cytoHubba in Cytoscape was used to rank the hub genes, and finally, PPI modules were screened with Cytoscape MCODE. Results There were 462 mRNAs, 2,464 lncRNAs, and 55 miRNAs which showed differential expression between the MGCs of patients with PCOS and those of healthy controls. Based on the PPI analysis, differentially expressed genes (DEGs) were significantly enriched in retinol metabolism, drug metabolism—cytochrome P450, malaria, the Hippo signaling pathway, and glycine, serine, and threonine metabolism. The ceRNA network contained 71 lncRNA nodes, 14 miRNA nodes, and 69 mRNA nodes, as well as 167 edges. We identified some novel genes and non-coding RNAs that might be involved in PCOS, including CD163, MRC1, VSIG4, CCL2, CCR2, SPP1, hsa-miR-3135b, hsa-miR-4649-3p, hsa-miR-1231, hsa-miR-3609, and hsa-miR-4433b-3p. Conclusions This study identified a novel lncRNA-miRNA-mRNA network based on the ceRNA mechanism in PCOS. Some novel genes and non-coding RNAs that may be involved in the occurrence and development of PCOS were excavated, including CD163, MRC1, VSIG4, CCL2, CCR2, SPP1, hsa-miR-3135b, hsa-miR-4649-3p, hsa-miR-1231, hsa-miR-3609, and hsa-miR-4433b-3p. However, our findings need to be validated by in vivo and in vitro experiments.
Collapse
Affiliation(s)
- Hengxi Chen
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Shuting Cheng
- NHC Key Laboratory of Chronobiology (Sichuan University), West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Wei Xiong
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xin Tan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
10
|
Wang J, Luo X, Pan J, Dong X, Tian X, Tu Z, Ju W, Zhang M, Zhong M, De Chen C, Flory M, Wang Y, Ted Brown W, Zhong N. (Epi)genetic variants of the sarcomere-desmosome are associated with premature utero-contraction in spontaneous preterm labor. ENVIRONMENT INTERNATIONAL 2021; 148:106382. [PMID: 33472089 DOI: 10.1016/j.envint.2021.106382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Spontaneous preterm birth is a syndrome with clinical and genetic heterogeneity. Few studies have focused on the genetic and epigenetic defects and pathogenic mechanisms associated with premature uterine contraction in spontaneous preterm birth. The objective of this study was to investigate the (epi)genetic variations associated with premature uterine contraction of spontaneous preterm birth. A systems biology approach with an integrated multiomic study was employed. Biobanked pregnancy tissues selected from a pregnancy cohort were subjected to genomic, transcriptomic, methylomic, and proteomic studies, with a focus on genetic loci/genes related to uterine muscle contraction, specifically, genes associated with sarcomeres and desmosomes. Thirteen single nucleotide variations and pathogenic variants were identified in the sarcomere gene, TTN, which encodes the protein Titin, from 146 women with spontaneous preterm labor. Differential expression profiles of five long non-coding RNAs were identified from loci that overlap with four sarcomeric genes. Longitudinally, the long non-coding RNA of gene TPM3 that encodes the protein tropomysin 3 was found to significantly regulate the mRNA of TPM3 in the placenta, compared to maternal blood. The majority of genome methylation profiles related to premature uterine contraction were also identified in the CpG promoters of sarcomeric genes/loci. Differential expression profiles of mRNAs associated with premature uterine contraction showed 22 genes associated with sarcomeres and three with desmosomes. The results demonstrated that premature uterine contraction was associated mainly with pathogenic variants of the TTN gene and with transcriptomic variations of sarcomeric premature uterine contraction genes. This association is likely regulated by epigenetic factors, including methylation and long non-coding RNAs.
Collapse
Affiliation(s)
- Jie Wang
- Hainan Provincial Hospital for Maternal and Children's Health, Haikou, Hainan, China; Preterm Birth International Collaborative, USA
| | - Xiucui Luo
- Center of Translational Research, Lianyungang Municipal Hospital for Maternal and Children's Health, Lianyungang, Jiangsu Province, China
| | - Jing Pan
- Center of Translational Research, Lianyungang Municipal Hospital for Maternal and Children's Health, Lianyungang, Jiangsu Province, China
| | - Xiaoyan Dong
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA; Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Xiujuan Tian
- Sanya Maternity and Child Care Hospital, Sanya, Hainan, China
| | - Zhihua Tu
- Hainan Provincial Hospital for Maternal and Children's Health, Haikou, Hainan, China
| | - Weina Ju
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Meijiao Zhang
- Center of Translational Research, Lianyungang Municipal Hospital for Maternal and Children's Health, Lianyungang, Jiangsu Province, China
| | - Mei Zhong
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Charles De Chen
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Michael Flory
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Yong Wang
- Department of Obstetrics and Gynecology, Washington University, St. Louis, MO, USA; Preterm Birth International Collaborative, USA
| | - W Ted Brown
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Nanbert Zhong
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA; Preterm Birth International Collaborative, USA.
| |
Collapse
|
11
|
Wang P, Pan J, Tian X, Dong X, Ju W, Wang Y, Zhong N. Transcriptomics-determined chemokine-cytokine pathway presents a common pathogenic mechanism in pregnancy loss and spontaneous preterm birth. Am J Reprod Immunol 2021; 86:e13398. [PMID: 33565696 DOI: 10.1111/aji.13398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/26/2021] [Indexed: 12/17/2022] Open
Abstract
PROBLEM Various etiological factors, such as infection and inflammation, may induce the adverse outcomes of pregnancy of miscarriage, stillbirth, or preterm birth. The pathogenic mechanisms associated with these adverse pregnancies are yet unclear. We hypothesized that a common pathogenic mechanism may underlie variant adverse outcomes of pregnancy, which are induced by genetic-environmental factors. The specific objective of the current study is to uncover the common molecular mechanism(s) by identifying the specific transcripts that are present in variant subtypes of pregnancy loss and preterm birth. METHOD OF STUDY Transcriptomic profiling was performed with RNA expression microarray or RNA sequencing of placentas derived from pregnancy loss (which includes spontaneous miscarriage, recurrent miscarriage, and stillbirth) and spontaneous preterm birth, followed by bioinformatic analysis of multi-omic integration to identify pathogenic molecules and pathways involved in pathological pregnancies. RESULTS The enrichment of common differentially expressed genes between full-term birth and preterm birth and pregnancy loss of miscarriage and stillbirth revealed different pathophysiological pathway(s), including cytokine signaling dysregulated in spontaneous preterm birth, defense response, graft-versus-host disease, antigen processing and presentation, and T help cell differentiation in spontaneous miscarriage. Thirty-three genes shared between spontaneous preterm birth and spontaneous miscarriage were engaged in pathways of interferon gamma-mediated signaling and of antigen processing and presentation. For spontaneous miscarriage, immune response was enriched in the fetal tissue of chorionic villi and in the maternal facet of the placental sac. The transcript of nerve growth factor receptor was identified as the common molecule that is differentially expressed in all adverse pregnancies: spontaneous preterm birth, stillbirth, spontaneous miscarriage, and recurrent miscarriage. Superoxide dismutase 2 was up-regulated in all adverse outcomes of pregnancy except for recurrent miscarriage. Cytokine-cytokine receptor interaction was the common pathway in spontaneous preterm birth and spontaneous miscarriage. Defense response was enriched in the fetal tissue of miscarriage and in the maternal tissue in spontaneous miscarriage. CONCLUSIONS Our results indicated that the chemokine-cytokine pathway may play important roles in and function as a common pathogenic mechanism associated with, the different adverse outcomes of pregnancy, which demonstrated that differentially expressed transcripts could result from a common pathogenic mechanism associated with pregnancy loss and spontaneous preterm birth, although individual pregnancy outcomes may differ from each other phenotypically.
Collapse
Affiliation(s)
- Peirong Wang
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.,Center for Medical Device Evaluation, National Medical Product Administration, 50 Qixiang Road, Haidian District, Beijing, 100081, China
| | - Jing Pan
- Sanya Maternity and Child Care Hospital, Hainan, China
| | - Xiujuan Tian
- Sanya Maternity and Child Care Hospital, Hainan, China
| | - Xiaoyan Dong
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.,Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Weina Ju
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Yong Wang
- Department of Obstetrics and Gynecology, School of Medicine, Washington University, St. Louis, MO, USA
| | - Nanbert Zhong
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
12
|
Abstract
The characteristics of fetal membrane cells and their phenotypic adaptations to support pregnancy or promote parturition are defined by global patterns of gene expression controlled by chromatin structure. Heritable epigenetic chromatin modifications that include DNA methylation and covalent histone modifications establish chromatin regions permissive or exclusive of regulatory interactions defining the cell-specific scope and potential of gene activity. Non-coding RNAs acting at the transcriptional and post-transcriptional levels complement the system by robustly stabilizing gene expression patterns and contributing to ordered phenotype transitions. Here we review currently available information about epigenetic gene regulation in the amnion and the chorion laeve. In addition, we provide an overview of epigenetic phenomena in the decidua, which is the maternal tissue fused to the chorion membrane forming the anatomical and functional unit called choriodecidua. The relationship of gene expression with DNA (CpG) methylation, histone acetylation and methylation, micro RNAs, long non-coding RNAs and chromatin accessibility is discussed in the context of normal pregnancy, parturition and pregnancy complications. Data generated using clinical samples and cell culture models strongly suggests that epigenetic events are associated with the phenotypic transitions of fetal membrane cells during the establishment, maintenance and termination of pregnancy potentially driving and consolidating the changes as pregnancy progresses. Disease conditions and environmental factors may produce epigenetic footprints that indicate exposures and mediate adverse pregnancy outcomes. Although knowledge is expanding rapidly, fetal membrane epigenetics is still in an early stage of development necessitating further research to realize its remarkable basic and translational potential.
Collapse
Affiliation(s)
- Tamas Zakar
- Department of Maternity & Gynaecology, John Hunter Hospital, New Lambton Heights, NSW, Australia
- School of Medicine and Public Health, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jonathan W. Paul
- School of Medicine and Public Health, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
13
|
Collier ARY, Ledyard R, Montoya-Williams D, Qiu M, Dereix AE, Farrokhi MR, Hacker MR, Burris HH. Racial and ethnic representation in epigenomic studies of preterm birth: a systematic review. Epigenomics 2020; 13:1735-1746. [PMID: 33264049 DOI: 10.2217/epi-2020-0007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aim: We conducted a systematic review evaluating race/ethnicity representation in DNA methylomic studies of preterm birth. Data sources: PubMed, EMBASE, CINHAL, Scopus and relevant citations from 1 January 2000 to 30 June 2019. Study appraisal & synthesis methods: Two authors independently identified abstracts comparing DNA methylomic differences between term and preterm births that included race/ethnicity data. Results: 16 studies were included. Black and non-Hispanic Black deliveries were well represented (28%). However, large studies originating from more than 95% White populations were excluded due to unreported race/ethnicity data. Most studies were cross-sectional, allowing for reverse causation. Most studies were also racially/ethnically homogeneous, preventing direct comparison of DNA methylomic differences across race/ethnicities. Conclusion: In DNA methylomic studies, Black women and infants were well represented. However, the literature has limitations and precludes drawing definitive conclusions.
Collapse
Affiliation(s)
- Ai-Ris Y Collier
- Department of Obstetrics & Gynecology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.,Department of Obstetrics, Gynecology, & Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Rachel Ledyard
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Diana Montoya-Williams
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Maylene Qiu
- Biomedical Library, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexandra E Dereix
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153, USA
| | - Minou Raschid Farrokhi
- Department of Obstetrics & Gynecology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.,Colby College, Waterville, ME 04901, USA
| | - Michele R Hacker
- Department of Obstetrics & Gynecology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.,Department of Obstetrics, Gynecology, & Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA.,Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Heather H Burris
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Polettini J, da Silva MG. Telomere-Related Disorders in Fetal Membranes Associated With Birth and Adverse Pregnancy Outcomes. Front Physiol 2020; 11:561771. [PMID: 33123024 PMCID: PMC7573552 DOI: 10.3389/fphys.2020.561771] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/14/2020] [Indexed: 12/22/2022] Open
Abstract
Telomere disorders have been associated with aging-related diseases, including diabetes, vascular, and neurodegenerative diseases. The main consequence of altered telomere is the induction of the state of irreversible cell cycle arrest. Though several mechanisms responsible for the activation of senescence have been identified, it is still unclear how a cell is indeed induced to become irreversibly arrested. Most tissues in the body will experience senescence throughout its lifespan, but intrinsic and extrinsic stressors, such as chemicals, pollution, oxidative stress (OS), and inflammation accelerate the process. Pregnancy is a state of OS, as the higher metabolic demand of the growing fetus results in increased reactive oxygen species production. As a temporary organ in the mother, senescence in fetal membranes and placenta is expected and linked to term parturition (>37 weeks of gestation). However, a persistent, overwhelming, or premature OS affects placental antioxidant capacity, with consequent accumulation of OS causing damage to lipids, proteins, and DNA in the placental tissues. Therefore, senescence and its main inducer, telomere length (TL) reduction, have been associated with pregnancy complications, including stillbirth, preeclampsia, intrauterine growth restriction, and prematurity. Fetal membranes have a notable role in preterm births, which continue to be a major health issue associated with increased risk of neo and perinatal adverse outcomes and/or predisposition to disease in later life; however, the ability to mediate a delay in parturition during such cases is limited, because the pathophysiology of preterm births and physiological mechanisms of term births are not yet fully elucidated. Here, we review the current knowledge regarding the regulation of telomere-related senescence mechanisms in fetal membranes, highlighting the role of inflammation, methylation, and telomerase activity. Moreover, we present the evidences of TL reduction and senescence in gestational tissues by the time of term parturition. In conclusion, we verified that telomere regulation in fetal membranes requires a more complete understanding, in order to support the development of successful effective interventions of the molecular mechanisms that triggers parturition, including telomere signals, which may vary throughout placental tissues.
Collapse
Affiliation(s)
- Jossimara Polettini
- Universidade Federal da Fronteira Sul (UFFS), Programa de Pós Graduação em Ciências Biomédicas, Faculdade de Medicina, Campus Passo Fundo, Brazil
| | - Marcia Guimarães da Silva
- Universidade Estadual Paulista (UNESP), Faculdade de Medicina, Departamento de Patologia, Botucatu, Brazil
| |
Collapse
|
15
|
EBF1-Correlated Long Non-coding RNA Transcript Levels in 3rd Trimester Maternal Blood and Risk of Spontaneous Preterm Birth. Reprod Sci 2020; 28:541-549. [PMID: 32959224 DOI: 10.1007/s43032-020-00320-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022]
Abstract
Biomarkers associated with spontaneous preterm birth (sPTB) before labor onset could aid in prediction, triage, and stratification for testing interventions. In this study we examined maternal blood EBF1-correlated long non-coding RNAs (lncRNAs) in relation to sPTB. We retrieved all lncRNA transcripts from a public gene expression dataset (GSE59491) derived from maternal blood in trimesters 2 and 3 from a Canadian cohort with a matched set of sPTB (n = 51) and term births (n = 106). LncRNA transcripts differentially expressed (limma moderated t-tests) in sPTB vs. term were tested for correlations (Pearson) with EBF1 mRNA levels in the same blood samples. Using logistic regression, EBF1-correlated lncRNAs were divided into tertiles and assessed in relation to odds of sPTB. Two lncRNA transcripts in the 3rd trimester maternal blood were differentially expressed between sPTB and term births (all p < 0.001 and FDR < 0.250) and positively and negatively correlated with EBF1 mRNA levels. They were as follows: (1) LINC00094 r = 0.196 (95% CI: 0.039 to 0.344), p = 0.015, and BH adjusted p = 0.022 and (2) LINC00870 r = - 0.303 (95% CI: - 0.441 to - 0.152), p < 0.001, and BH adjusted p < 0.001. As compared with term births, sPTBs were more likely to be in the highest tertile of LINC00870 (odds ratio (OR) = 4.08 (95% CI 1.60, 10.40), p = 0.003) and the lowest tertile of LINC00094 (OR = 5.16 (95% CI 1.96, 13.61), p < 0.001). Two sPTB-associated EBF1-correlated lncRNAs (LINC00870 and LINC00094) had multiple potential enhancers containing EBF1 binding site(s). Our current findings, along with previous reports linking EBF1 and sPTB, motivate additional research on the EBF1 gene-related gene expression and regulation in relation to sPTB within other cohorts and within laboratory-based models.
Collapse
|
16
|
Li W, Zhao X, Li S, Chen X, Cui H, Chang Y, Zhang R. Upregulation of TNF-α and IL-6 induces preterm premature rupture of membranes by activation of ADAMTS-9 in embryonic membrane cells. Life Sci 2020; 260:118237. [PMID: 32781068 DOI: 10.1016/j.lfs.2020.118237] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/08/2020] [Accepted: 08/05/2020] [Indexed: 01/19/2023]
Abstract
AIM To investigate the role of thrombospondin motifs 9 (ADAMTS9) in preterm premature rupture of membranes (pPROM). MATERIALS AND METHODS ADAMTS9 levels were measured in amnion cells from 24 patients of different groups (preterm vs. full-term birth, with vs. without PROM). ADAMTS9 was suppressed in human amnioblasts to investigate its effects on embryonic membrane cells and inflammation-induced cell damage. Pregnant mouse models were used to assess whether inflammation regulates ADAMTS9 by upregulating TNF-α and IL-6, contributing to the preterm birth occurrence. KEY FINDINGS We found that ADAMTS9 protein and gene expression levels significantly differed among various groups (pPROM > full-term PROM > preterm non-PROM > full-term non-PROM). After ADAMTS9 suppression in human amnioblast WISH cells, TNF-α- and IL-6-induced apoptosis was decreased. In addition, TNF-α, IL-6, and ADAMTS9 protein and gene expression levels were increased in the embryos of mice treated with LPS compared with controls. In agreement, the rate of preterm birth was higher in the LPS group compared with controls. SIGNIFICANCE Taken together, these in vitro and in vivo findings suggest that TNF-α and IL-6 secreted by macrophages during inflammation regulate ADAMTS9 and induce pPROM.
Collapse
Affiliation(s)
- Wen Li
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, China; Maternity Hospital of Nankai University, China
| | - Xiaomin Zhao
- Tianjin Central Hospital of Gynecology Obstetrics, China
| | - Shanshan Li
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, China; Tianjin Central Hospital of Gynecology Obstetrics, China
| | - Xu Chen
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, China; Tianjin Central Hospital of Gynecology Obstetrics, China
| | - Hongyan Cui
- Tianjin Central Hospital of Gynecology Obstetrics, China
| | - Ying Chang
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, China; Tianjin Central Hospital of Gynecology Obstetrics, China.
| | - Rongxin Zhang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, China; Guangdong Pharmaceutical University, China.
| |
Collapse
|
17
|
Mohammadi S, Arefnezhad R, Danaii S, Yousefi M. New insights into the core Hippo signaling and biological macromolecules interactions in the biology of solid tumors. Biofactors 2020; 46:514-530. [PMID: 32445262 DOI: 10.1002/biof.1634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/26/2022]
Abstract
As an evolutionarily conserved pathway, Hippo signaling pathway impacts different pathology and physiology processes such as wound healing, tissue repair/size and regeneration. When some components of Hippo signaling dysregulated, it affects cancer cells proliferation. Moreover, the relation Hippo pathway with other signaling including Wnt, TGFβ, Notch, and EGFR signaling leaves effect on the proliferation of cancer cells. Utilizing a number of therapeutic approaches, such as siRNAs and long noncoding RNA (lncRNA) to prevent cancer cells through the targeting of Hippo pathways, can provide new insights into cancer target therapy. The purpose of present review, first of all, is to demonstrate the importance of Hippo signaling and its relation with other signaling pathways in cancer. It also tries to demonstrate targeting Hippo signaling progress in cancer therapy.
Collapse
Affiliation(s)
- Solmaz Mohammadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Shahla Danaii
- Gynecology Department, Eastern Azerbaijan ACECR ART Center, Eastern Azerbaijan Branch of ACECR, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Depatment of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Lee J, Lee JE, Choi JW, Han MH, Seong SY, Park KH, Park JW. Proteomic Analysis of Amniotic Fluid Proteins for Predicting the Outcome of Emergency Cerclage in Women with Cervical Insufficiency. Reprod Sci 2020; 27:1318-1329. [PMID: 32046453 DOI: 10.1007/s43032-019-00110-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/20/2019] [Indexed: 12/12/2022]
Abstract
We aimed to identify novel biomarkers in amniotic fluid (AF) that predict the outcome of emergency cerclage in women with cervical insufficiency. This retrospective cohort study included 40 singleton pregnant women who received emergency cerclage for cervical insufficiency (17-25 weeks) and underwent amniocentesis. Label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to identify AF proteins in pooled samples (n = 16) using a nested case-control approach. The six candidate biomarkers of interest were validated by enzyme-linked immunosorbent assays (ELISA) in the final cohort (n = 40). The differentially expressed proteins (DEPs) were analyzed by pathway analysis software. The primary outcome measure was failure of emergency cerclage [defined as spontaneous preterm delivery (SPTD) at < 34 weeks of gestation after cerclage placement]. Sixty-eight proteins were differentially expressed (P < 0.001) in AF from SPTD cases and near-term controls, of which 44 (64.7%) were upregulated and 24 (35.3%) were downregulated. Validation by ELISA confirmed that AF from women with cerclage failure contained significantly higher levels of myeloperoxidase, lactoferrin, glucose-6-phosphate isomerase, lipocalin-2, and lymphocyte cytosolic protein 1, the first four of which were independent of cervical dilatation at presentation. The five pathways with the most differentially regulated proteins were actin cytoskeleton signaling, acute phase response signaling, ILK signaling, glycolysis, and gluconeogenesis. Proteomic analyses of AF in this study identified DEPs and specific protein pathways related to poor prognosis after emergency cerclage for cervical insufficiency. Four novel independent biomarkers in AF for cerclage failure have been identified using proteomics.
Collapse
Affiliation(s)
- JoonHo Lee
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea
| | - Ji Eun Lee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Ji-Woong Choi
- Wide River Institute of Immunology, Seoul National University, Hongcheon, South Korea
| | - Mi-Hee Han
- Wide River Institute of Immunology, Seoul National University, Hongcheon, South Korea
| | - Seung-Yong Seong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyo Hoon Park
- Departments of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea.
| | - Jeong Woo Park
- Departments of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea.
| |
Collapse
|
19
|
Telomere Length and Telomerase Activity in Foetal Membranes from Term and Spontaneous Preterm Births. Reprod Sci 2020; 27:411-417. [PMID: 32046424 DOI: 10.1007/s43032-019-00054-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/06/2019] [Indexed: 01/01/2023]
Abstract
The reduction of telomere length, the protective cap structures of chromosomes, is one of the biomarkers of senescence (a mechanism of ageing), and ageing of foetal gestational tissues is associated with both term and preterm parturition. A mechanism regulating telomere length is the activity of telomerase, an enzyme that adds telomere fragments during DNA replication and cell division; however, its role in regulating telomere length is not well studied in gestational tissues. The objective of this study is to correlate telomere length and telomerase activity in foetal membranes from term and spontaneous preterm births. Foetal membrane samples were collected from pregnant women experiencing term labour (TL), term not in labour (TNL), preterm premature rupture of membranes (pPROM) and spontaneous preterm labour (PTL) with intact membranes (n = 20/group). Telomere length and telomerase activity were analyzed by relative quantification (T/S), real-time PCR and PCR-based fluorometric detection, respectively. Data were analyzed by ANOVA or the Kruskal-Wallis test. Demographic variables were not statistically different among the groups. Foetal membranes from the TL group showed telomere length reduction compared with those from the others (p < 0.0002). Telomerase activity did not change in foetal membranes irrespective of pregnancy outcome. Telomere shortening in foetal membranes is suggestive of senescence associated with triggering of labour at term; however, this is likely independent of telomerase activity, while prematurity may be associated with senescence, but due to other mechanisms than telomere length reduction in foetal membranes.
Collapse
|
20
|
Down-regulated long non-coding RNA RNAZFHX4-AS1 suppresses invasion and migration of breast cancer cells via FAT4-dependent Hippo signaling pathway. Cancer Gene Ther 2018; 26:374-387. [DOI: 10.1038/s41417-018-0066-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/24/2018] [Accepted: 11/02/2018] [Indexed: 12/18/2022]
|
21
|
Burris HH, Just AC, Haviland MJ, Neo DT, Baccarelli AA, Dereix AE, Brennan KJ, Rodosthenous RS, Ralston SJ, Hecht JL, Hacker MR. Long noncoding RNA expression in the cervix mid-pregnancy is associated with the length of gestation at delivery. Epigenetics 2018; 13:742-750. [PMID: 30045669 DOI: 10.1080/15592294.2018.1503490] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Infants born preterm are at increased risk of multiple morbidities and mortality. Why some women deliver preterm remains poorly understood. Prior studies have shown that cervical microRNA expression and DNA methylation are associated with the length of gestation. However, no study has examined the role of long noncoding RNAs (lncRNAs) in the cervix during pregnancy. To determine whether expression of lncRNAs is associated with length of gestation at delivery, we analyzed RNA from cervical swabs obtained from 78 women during pregnancy (mean 15.5, SD 5.0, weeks of gestation) who were participating in the Spontaneous Prematurity and Epigenetics of the Cervix (SPEC) Study in Boston, MA, USA. We used a PCR-based platform and found that 9 lncRNAs were expressed in at least 50% of the participants. Of these, a doubling of the expression of TUG1, TINCR, and FALEC was associated with shorter lengths of gestation at delivery [2.8 (95% CI: 0.31, 5.2); 3.3 (0.22, 6.3); and 4.5 (7.3, 1.6) days shorter respectively]. Of the lncRNAs analyzed, none was statistically associated with preterm birth, but expression of FALEC was 2.6-fold higher in women who delivered preterm vs. term (P = 0.051). These findings demonstrate that lncRNAs can be measured in cervical samples obtained during pregnancy and are associated with subsequent length of gestation at delivery. Further, this study supports future work to replicate these findings in other cohorts and perform mechanistic studies to determine the role of lncRNAs in the cervix during pregnancy.
Collapse
Affiliation(s)
- Heather H Burris
- a Department of Neonatology, Beth Israel Deaconess Medical Center, Department of Pediatrics , Harvard Medical School , Boston , MA , USA.,b Department of Obstetrics, Gynecology and Reproductive Biology, Beth Israel Deaconess Medical Center , Harvard Medical School , Boston , MA , USA.,c Department of Environmental Health , Harvard TH Chan School of Public Health , Boston , MA , USA.,d Department of Pediatrics , Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine , Philadelphia , PA , USA
| | - Allan C Just
- e Department of Environmental Medicine & Public Health , Icahn School of Medicine at Mount Sinai , NY , NY , USA
| | - Miriam J Haviland
- b Department of Obstetrics, Gynecology and Reproductive Biology, Beth Israel Deaconess Medical Center , Harvard Medical School , Boston , MA , USA
| | - Dayna T Neo
- b Department of Obstetrics, Gynecology and Reproductive Biology, Beth Israel Deaconess Medical Center , Harvard Medical School , Boston , MA , USA
| | - Andrea A Baccarelli
- f Department of Environmental Health Sciences , Columbia University Mailman School of Public Health , NY , NY , USA
| | - Alexandra E Dereix
- f Department of Environmental Health Sciences , Columbia University Mailman School of Public Health , NY , NY , USA
| | - Kasey J Brennan
- f Department of Environmental Health Sciences , Columbia University Mailman School of Public Health , NY , NY , USA
| | - Rodosthenis S Rodosthenous
- g Cardiology Division, Department of Medicine , Massachusetts General Hospital, Harvard Medical School , Boston , MA , USA
| | - Steven J Ralston
- h Department of Obstetrics and Gynecology , Pennsylvania Hospital, University of Pennsylvania Perelman School of Medicine , Philadelphia , PA , USA
| | - Jonathan L Hecht
- i Department of Pathology, Beth Israel Deaconess Medical Center , Harvard Medical School , Boston , MA , USA
| | - Michele R Hacker
- b Department of Obstetrics, Gynecology and Reproductive Biology, Beth Israel Deaconess Medical Center , Harvard Medical School , Boston , MA , USA.,j Department of Epidemiology , Harvard TH Chan School of Public Health , Boston , MA , USA
| |
Collapse
|
22
|
Hong X, Sherwood B, Ladd-Acosta C, Peng S, Ji H, Hao K, Burd I, Bartell TR, Wang G, Tsai HJ, Liu X, Ji Y, Wahl A, Caruso D, Lee-Parritz A, Zuckerman B, Wang X. Genome-wide DNA methylation associations with spontaneous preterm birth in US blacks: findings in maternal and cord blood samples. Epigenetics 2018; 13:163-172. [PMID: 28165855 DOI: 10.1080/15592294.2017.1287654] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Preterm birth (PTB) affects one in six Black babies in the United States. Epigenetics is believed to play a role in PTB; however, only a limited number of epigenetic studies of PTB have been reported, most of which have focused on cord blood DNA methylation (DNAm) and/or were conducted in white populations. Here we conducted, by far, the largest epigenome-wide DNAm analysis in 300 Black women who delivered early spontaneous preterm (sPTB, n = 150) or full-term babies (n = 150) and replicated the findings in an independent set of Black mother-newborn pairs from the Boston Birth Cohort. DNAm in maternal blood and/or cord blood was measured using the Illumina HumanMethylation450 BeadChip. We identified 45 DNAm loci in maternal blood associated with early sPTB, with a false discovery rate (FDR) <5%. Replication analyses confirmed sPTB associations for cg03915055 and cg06804705, located in the promoter regions of the CYTIP and LINC00114 genes, respectively. Both loci had comparable associations with early sPTB and early medically-indicated PTB, but attenuated associations with late sPTB. These associations could not be explained by cell composition, gestational complications, and/or nearby maternal genetic variants. Analyses in the newborns of the 110 Black women showed that cord blood methylation levels at both loci had no associations with PTB. The findings from this study underscore the role of maternal DNAm in PTB risk, and provide a set of maternal loci that may serve as biomarkers for PTB. Longitudinal studies are needed to clarify temporal relationships between maternal DNAm and PTB risk.
Collapse
Affiliation(s)
- Xiumei Hong
- a Department of Population , Family and Reproductive Health , Center on the Early Life Origins of Disease , Johns Hopkins University Bloomberg School of Public Health , Baltimore , MD , USA
| | - Ben Sherwood
- b Department of Biostatistics , Johns Hopkins University Bloomberg School of Public Health, Baltimore , MD , USA
| | - Christine Ladd-Acosta
- c Department of Epidemiology, The Wendy Klag Center for Autism and Developmental Disabilities , Johns Hopkins Bloomberg School of Public Health , Baltimore , MD 21205
| | - Shouneng Peng
- d Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai , New York , NY , 10029 , USA
| | - Hongkai Ji
- b Department of Biostatistics , Johns Hopkins University Bloomberg School of Public Health, Baltimore , MD , USA
| | - Ke Hao
- d Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai , New York , NY , 10029 , USA
| | - Irina Burd
- e Integrated Research Center for Fetal Medicine, Division of Maternal Fetal Medicine, Department of Gynecology and Obstetrics , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Tami R Bartell
- f Mary Ann & J. Milburn Smith Child Health Research Program , Stanley Manne Children's Research Institute , Ann & Robert H. Lurie Children's Hospital of Chicago , Chicago , IL , 60611 , USA
| | - Guoying Wang
- a Department of Population , Family and Reproductive Health , Center on the Early Life Origins of Disease , Johns Hopkins University Bloomberg School of Public Health , Baltimore , MD , USA
| | - Hui-Ju Tsai
- g Division of Biostatistics and Bioinformatics , Institute of Population Health Sciences , National Health Research Institutes , Zhunan , Taiwan 350.,h Department of Pediatrics, Feinberg School of Medicine , Northwestern University , Chicago , IL , 60611 , USA
| | - Xin Liu
- h Department of Pediatrics, Feinberg School of Medicine , Northwestern University , Chicago , IL , 60611 , USA.,i Key Laboratory of Genomic and Precision Medicine , Beijing Institute of Genomics , Chinese Academy of Sciences , Beijing , 100101 , China
| | - Yuelong Ji
- a Department of Population , Family and Reproductive Health , Center on the Early Life Origins of Disease , Johns Hopkins University Bloomberg School of Public Health , Baltimore , MD , USA
| | - Anastacia Wahl
- j Department of Pediatrics , Boston University School of Medicine and Boston Medical Center , Boston , MA, USA
| | - Deanna Caruso
- a Department of Population , Family and Reproductive Health , Center on the Early Life Origins of Disease , Johns Hopkins University Bloomberg School of Public Health , Baltimore , MD , USA
| | - Aviva Lee-Parritz
- k Department of Obstetrics and Gynecology , Boston University School of Medicine , Boston , MA, USA
| | - Barry Zuckerman
- j Department of Pediatrics , Boston University School of Medicine and Boston Medical Center , Boston , MA, USA
| | - Xiaobin Wang
- a Department of Population , Family and Reproductive Health , Center on the Early Life Origins of Disease , Johns Hopkins University Bloomberg School of Public Health , Baltimore , MD , USA.,l Division of General Pediatrics & Adolescent Medicine, Department of Pediatrics , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
23
|
Fu LL, Xu Y, Li DD, Dai XW, Xu X, Zhang JS, Ming H, Zhang XY, Zhang GQ, Ma YL, Zheng LW. Expression profiles of mRNA and long noncoding RNA in the ovaries of letrozole-induced polycystic ovary syndrome rat model through deep sequencing. Gene 2018; 657:19-29. [PMID: 29505837 DOI: 10.1016/j.gene.2018.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 02/07/2018] [Accepted: 03/01/2018] [Indexed: 02/09/2023]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in reproductive-aged women. However, the exact pathophysiology of PCOS remains largely unclear. We performed deep sequencing to investigate the mRNA and long noncoding RNA (lncRNA) expression profiles in the ovarian tissues of letrozole-induced PCOS rat model and control rats. A total of 2147 mRNAs and 158 lncRNAs were differentially expressed between the PCOS models and control. Gene ontology analysis indicated that differentially expressed mRNAs were associated with biological adhesion, reproduction, and metabolic process. Pathway analysis results indicated that these aberrantly expressed mRNAs were related to several specific signaling pathways, including insulin resistance, steroid hormone biosynthesis, PPAR signaling pathway, cell adhesion molecules, autoimmune thyroid disease, and AMPK signaling pathway. The relative expression levels of mRNAs and lncRNAs were validated through qRT-PCR. LncRNA-miRNA-mRNA network was constructed to explore ceRNAs involved in the PCOS model and were also verified by qRTPCR experiment. These findings may provide insight into the pathogenesis of PCOS and clues to find key diagnostic and therapeutic roles of lncRNA in PCOS.
Collapse
Affiliation(s)
- Lu-Lu Fu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Ying Xu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Dan-Dan Li
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Xiao-Wei Dai
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Xin Xu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Jing-Shun Zhang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Hao Ming
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Xue-Ying Zhang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Guo-Qing Zhang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Ya-Lan Ma
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Lian-Wen Zheng
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China.
| |
Collapse
|
24
|
Liu YD, Li Y, Feng SX, Ye DS, Chen X, Zhou XY, Chen SL. Long Noncoding RNAs: Potential Regulators Involved in the Pathogenesis of Polycystic Ovary Syndrome. Endocrinology 2017; 158:3890-3899. [PMID: 28938484 DOI: 10.1210/en.2017-00605] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 08/28/2017] [Indexed: 12/20/2022]
Abstract
Polycystic ovary syndrome (PCOS) is the most common cause of anovulatory infertility in women of reproductive age, and its etiology remains poorly understood. Altered activities of long noncoding RNAs (lncRNAs) have been associated with human diseases and development. However, the roles of lncRNAs are unknown in reproductive medicine. We investigated the potential role of lncRNAs in the pathogenesis of PCOS, using human granulosa cells (GCs) and the KGN cell line. We used microarrays to compare lncRNA expression profiles in GCs from seven patients with PCOS and seven matched women. GC samples were collected during 2014 to 2016 from infertile women in Guangzhou, China. Quantitative real-time polymerase chain reaction was used to measure levels of the lncRNA HCG26 in GCs from 53 patients with PCOS and 50 controls. HCG26 was knocked down with locked nucleic acid GapmeRs in KGN cells to examine its role in cell proliferation, aromatase and follicle-stimulating hormone receptor gene expression, and estradiol production. A total of 862 lncRNA transcripts and 998 messenger RNA transcripts were differentially expressed (greater than or equal to twofold change; P < 0.05) in PCOS GCs compared with those of controls. HCG26 levels were upregulated in patients with PCOS and were associated with antral follicle count. HCG26 knockdown in KGN cells inhibited cell proliferation and cell-cycle progression and increased aromatase gene expression and estradiol production. Our study reports the lncRNA profiles in GCs from patients who have PCOS and those from healthy women and suggests that dysregulated lncRNAs may play vital roles in GC proliferation and steroidogenesis, providing insights into the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Yu-Dong Liu
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Ying Li
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Shu-Xian Feng
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - De-Sheng Ye
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Xin Chen
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Xing-Yu Zhou
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Shi-Ling Chen
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| |
Collapse
|
25
|
Zhao X, Dong X, Luo X, Pan J, Ju W, Zhang M, Wang P, Zhong M, Yu Y, Brown WT, Zhong N. Ubiquitin-Proteasome-Collagen (CUP) Pathway in Preterm Premature Rupture of Fetal Membranes. Front Pharmacol 2017. [PMID: 28626423 PMCID: PMC5455099 DOI: 10.3389/fphar.2017.00310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Spontaneous preterm birth (sPTB) occurs before 37 gestational weeks, with preterm premature rupture of the membranes (PPROM) and spontaneous preterm labor (sPTL) as the predominant adverse outcomes. Previously, we identified altered expression of long non-coding RNAs (lncRNAs) and message RNAs (mRNAs) related to the ubiquitin proteasome system (UPS) in human placentas following pregnancy loss and PTB. We therefore hypothesized that similar mechanisms might underlie PPROM. In the current study, nine pairs of ubiquitin-proteasome-collagen (CUP) pathway–related mRNAs and associated lncRNAs were found to be differentially expressed in PPROM and sPTL. Pathway analysis showed that the functions of their protein products were inter-connected by ring finger protein. Twenty variants including five mutations were identified in CUP-related genes in sPTL samples. Copy number variations were found in COL19A1, COL28A1, COL5A1, and UBAP2 of sPTL samples. The results reinforced our previous findings and indicated the association of the CUP pathway with the development of sPTL and PPROM. This association was due not only to the genetic variation, but also to the epigenetic regulatory function of lncRNAs. Furthermore, the findings suggested that the loss of collagen content in PPROM could result from degradation and/or suppressed expression of collagens.
Collapse
Affiliation(s)
- Xinliang Zhao
- Lianyungang Maternal and Children's HospitalLianyungang, China.,Peking University Center of Medical Genetics, Peking University Health Science CenterBeijing, China.,China Alliance of Translational Medicine for Maternal and Children's HealthBeijing, China
| | - Xiaoyan Dong
- Shanghai Children's Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| | - Xiucui Luo
- Lianyungang Maternal and Children's HospitalLianyungang, China.,China Alliance of Translational Medicine for Maternal and Children's HealthBeijing, China
| | - Jing Pan
- Lianyungang Maternal and Children's HospitalLianyungang, China.,China Alliance of Translational Medicine for Maternal and Children's HealthBeijing, China
| | - Weina Ju
- New York State Institute for Basic Research in Developmental DisabilitiesStaten Island, NY, United States.,China-US Center of Translational Medicine for Maternal and Children's Health, Southern Medical UniversityGuangzhou, China
| | - Meijiao Zhang
- Lianyungang Maternal and Children's HospitalLianyungang, China
| | - Peirong Wang
- Lianyungang Maternal and Children's HospitalLianyungang, China.,Peking University Center of Medical Genetics, Peking University Health Science CenterBeijing, China.,China Alliance of Translational Medicine for Maternal and Children's HealthBeijing, China
| | - Mei Zhong
- China-US Center of Translational Medicine for Maternal and Children's Health, Southern Medical UniversityGuangzhou, China.,Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical UniversityGuangzhou, China
| | - Yanhong Yu
- China-US Center of Translational Medicine for Maternal and Children's Health, Southern Medical UniversityGuangzhou, China.,Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical UniversityGuangzhou, China
| | - W Ted Brown
- New York State Institute for Basic Research in Developmental DisabilitiesStaten Island, NY, United States.,China-US Center of Translational Medicine for Maternal and Children's Health, Southern Medical UniversityGuangzhou, China
| | - Nanbert Zhong
- Lianyungang Maternal and Children's HospitalLianyungang, China.,Peking University Center of Medical Genetics, Peking University Health Science CenterBeijing, China.,China Alliance of Translational Medicine for Maternal and Children's HealthBeijing, China.,Shanghai Children's Hospital, Shanghai Jiaotong University School of MedicineShanghai, China.,New York State Institute for Basic Research in Developmental DisabilitiesStaten Island, NY, United States.,China-US Center of Translational Medicine for Maternal and Children's Health, Southern Medical UniversityGuangzhou, China.,Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical UniversityGuangzhou, China
| |
Collapse
|
26
|
The preterm cervix reveals a transcriptomic signature in the presence of premature prelabor rupture of membranes. Am J Obstet Gynecol 2017; 216:602.e1-602.e21. [PMID: 28209491 DOI: 10.1016/j.ajog.2017.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/31/2017] [Accepted: 02/06/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Premature prelabor rupture of fetal membranes accounts for 30% of all premature births and is associated with detrimental long-term infant outcomes. Premature cervical remodeling, facilitated by matrix metalloproteinases, may trigger rupture at the zone of the fetal membranes overlying the cervix. The similarities and differences underlying cervical remodeling in premature prelabor rupture of fetal membranes and spontaneous preterm labor with intact membranes are unexplored. OBJECTIVES We aimed to perform the first transcriptomic assessment of the preterm human cervix to identify differences between premature prelabor rupture of fetal membranes and preterm labor with intact membranes and to compare the enzymatic activities of matrix metalloproteinases-2 and -9 between premature prelabor rupture of fetal membranes and preterm labor with intact membranes. STUDY DESIGN Cervical biopsies were collected following preterm labor with intact membranes (n = 6) and premature prelabor rupture of fetal membranes (n = 5). Biopsies were also collected from reference groups at term labor (n = 12) or term not labor (n = 5). The Illumina HT-12 version 4.0 BeadChips microarray was utilized, and a novel network graph approach determined the specificity of changes between premature prelabor rupture of fetal membranes and preterm labor with intact membranes. Quantitative reverse transcription-polymerase chain reaction and Western blotting confirmed the microarray findings. Immunofluorescence was used for localization studies and gelatin zymography to assess matrix metalloproteinase activity. RESULTS PML-RARA-regulated adapter molecule 1, FYVE-RhoGEF and PH domain-containing protein 3 and carcinoembryonic antigen-ralated cell adhesion molecule 3 were significantly higher, whereas N-myc downstream regulated gene 2 was lower in the premature prelabor rupture of fetal membranes cervix when compared with the cervix in preterm labor with intact membranes, term labor, and term not labor. PRAM1 and CEACAM3 were localized to immune cells at the cervical stroma and NDRG2 and FGD3 were localized to cervical myofibroblasts. The activity of matrix metalloproteinase-9 was higher (1.22 ± 4.403-fold, P < .05) in the cervix in premature prelabor rupture of fetal membranes compared with preterm labor with intact membranes. CONCLUSION We identified 4 novel proteins with a potential role in the regulation of cervical remodeling leading to premature prelabor rupture of fetal membranes. Our findings contribute to the studies dissecting the mechanisms underlying premature prelabor rupture of fetal membranes and inspire further investigations toward the development of premature prelabor rupture of fetal membranes therapeutics.
Collapse
|
27
|
Banik A, Kandilya D, Ramya S, Stünkel W, Chong YS, Dheen ST. Maternal Factors that Induce Epigenetic Changes Contribute to Neurological Disorders in Offspring. Genes (Basel) 2017; 8:E150. [PMID: 28538662 PMCID: PMC5485514 DOI: 10.3390/genes8060150] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/06/2017] [Accepted: 05/19/2017] [Indexed: 12/12/2022] Open
Abstract
It is well established that the regulation of epigenetic factors, including chromatic reorganization, histone modifications, DNA methylation, and miRNA regulation, is critical for the normal development and functioning of the human brain. There are a number of maternal factors influencing epigenetic pathways such as lifestyle, including diet, alcohol consumption, and smoking, as well as age and infections (viral or bacterial). Genetic and metabolic alterations such as obesity, gestational diabetes mellitus (GDM), and thyroidism alter epigenetic mechanisms, thereby contributing to neurodevelopmental disorders (NDs) such as embryonic neural tube defects (NTDs), autism, Down's syndrome, Rett syndrome, and later onset of neuropsychological deficits. This review comprehensively describes the recent findings in the epigenetic landscape contributing to altered molecular profiles resulting in NDs. Furthermore, we will discuss potential avenues for future research to identify diagnostic markers and therapeutic epi-drugs to reverse these abnormalities in the brain as epigenetic marks are plastic and reversible in nature.
Collapse
Affiliation(s)
- Avijit Banik
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore.
| | - Deepika Kandilya
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore.
| | - Seshadri Ramya
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore.
| | - Walter Stünkel
- Singapore Institute of Clinical Sciences, A*STAR, Singapore 117609, Singapore.
| | - Yap Seng Chong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore.
| | - S Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore.
| |
Collapse
|
28
|
China Human Placenta Project: A global effort to promote placenta medicine. Placenta 2016; 44:112-3. [DOI: 10.1016/j.placenta.2016.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/07/2016] [Indexed: 11/18/2022]
|
29
|
Sand M, Bechara FG, Sand D, Gambichler T, Hahn SA, Bromba M, Stockfleth E, Hessam S. Expression profiles of long noncoding RNAs in cutaneous squamous cell carcinoma. Epigenomics 2016; 8:501-18. [PMID: 27067026 DOI: 10.2217/epi-2015-0012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Despite there being over 35,000 different long noncoding RNA (lncRNA) sequences described little is known regarding their molecular-pathological role in cutaneous squamous cell carcinoma (cSCC). MATERIALS & METHODS In this pilot study, lncRNA and mRNA expression profiles were determined in cSCC and control (n = 6) by an Arraystar human lncRNA Microarray. Kyoto Encyclopedia of Genes and Genomes pathway enrichment and gene ontology analysis of mRNAs was performed. RESULTS Analysis of differential expression revealed 1516 upregulated lncRNAs and 2586 downregulated lncRNAs in cSCC compared with controls. Data analysis identified known oncogenic lncRNAs, such as the HOX transcript antisense RNA HOTAIR, among the differentially expressed lncRNA sequences. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that focal adhesion, extracellular matrix and the oncogenic phosphatidylinositol 3'-kinase-Akt signaling pathway had the highest enrichment scores. CONCLUSION This study provides the first evidence for differential expression of lncRNA in cSCC and serves as a template for further, larger functional in-depth analyses regarding cSCC molecular lncRNAs.
Collapse
Affiliation(s)
- Michael Sand
- Dermatologic Surgery Unit, Department of Dermatology, Venereology & Allergology, Ruhr-University Bochum, 44791 Bochum, Germany.,Department of Plastic Surgery, St Josef Hospital, Catholic Clinics of the Ruhr Peninsula, 45257 Essen, Germany
| | - Falk G Bechara
- Dermatologic Surgery Unit, Department of Dermatology, Venereology & Allergology, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Daniel Sand
- University of Michigan Kellogg Eye Center, Ann Arbor, MI 48105, USA
| | - Thilo Gambichler
- Dermatologic Surgery Unit, Department of Dermatology, Venereology & Allergology, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Stephan A Hahn
- Department of Internal Medicine, Knappschaftskrankenhaus University of Bochum, Zentrum für Klinische Forschung, Labor für Molekulare Gastroenterologische Onkologie, 44780 Bochum, Germany
| | - Michael Bromba
- Department of Plastic Surgery, St Josef Hospital, Catholic Clinics of the Ruhr Peninsula, 45257 Essen, Germany
| | - Eggert Stockfleth
- Dermatologic Surgery Unit, Department of Dermatology, Venereology & Allergology, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Schapoor Hessam
- Dermatologic Surgery Unit, Department of Dermatology, Venereology & Allergology, Ruhr-University Bochum, 44791 Bochum, Germany
| |
Collapse
|
30
|
Long-noncoding RNAs in basal cell carcinoma. Tumour Biol 2016; 37:10595-608. [PMID: 26861560 DOI: 10.1007/s13277-016-4927-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 01/28/2016] [Indexed: 12/22/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are fundamental regulators of pre- and post-transcriptional gene regulation. Over 35,000 different lncRNAs have been described with some of them being involved in cancer formation. The present study was initiated to describe differentially expressed lncRNAs in basal cell carcinoma (BCC). Patients with BCC (n = 6) were included in this study. Punch biopsies were harvested from the tumor center and nonlesional epidermal skin (NLES, control, n = 6). Microarray-based lncRNA and mRNA expression profiles were identified through screening for 30,586 lncRNAs and 26,109 protein-coding transcripts (mRNAs). The microarray data were validated by RT-PCR in a second set of BCC versus control samples. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of mRNAs were performed to assess biologically relevant pathways. A total of 1851 lncRNAs were identified as being significantly up-regulated, whereas 2165 lncRNAs were identified as being significantly down-regulated compared to nonlesional skin (p < 0.05). Oncogenic and/or epidermis-specific lncRNAs, such as CASC15 or ANRIL, were among the differentially expressed sequences. GO analysis showed that the highest enriched GO targeted by up-regulated transcripts was "extracellular matrix." KEGG pathway analysis showed the highest enrichment scores in "Focal adhesion." BCC showed a significantly altered lncRNA and mRNA expression profile. Dysregulation of previously described lncRNAs may play a role in the molecular pathogenesis of BCC and should be subject of further analysis.
Collapse
|
31
|
Taylor DH, Chu ETJ, Spektor R, Soloway PD. Long non-coding RNA regulation of reproduction and development. Mol Reprod Dev 2015; 82:932-56. [PMID: 26517592 PMCID: PMC4762656 DOI: 10.1002/mrd.22581] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/03/2015] [Indexed: 12/13/2022]
Abstract
Noncoding RNAs (ncRNAs) have long been known to play vital roles in eukaryotic gene regulation. Studies conducted over a decade ago revealed that maturation of spliced, polyadenylated coding mRNA occurs by reactions involving small nuclear RNAs and small nucleolar RNAs; mRNA translation depends on activities mediated by transfer RNAs and ribosomal RNAs, subject to negative regulation by micro RNAs; transcriptional competence of sex chromosomes and some imprinted genes is regulated in cis by ncRNAs that vary by species; and both small-interfering RNAs and piwi-interacting RNAs bound to Argonaute-family proteins regulate post-translational modifications on chromatin and local gene expression states. More recently, gene-regulating noncoding RNAs have been identified, such as long intergenic and long noncoding RNAs (collectively referred to as lncRNAs)--a class totaling more than 100,000 transcripts in humans, which include some of the previously mentioned RNAs that regulate dosage compensation and imprinted gene expression. Here, we provide an overview of lncRNA activities, and then review the role of lncRNAs in processes vital to reproduction, such as germ cell specification, sex determination and gonadogenesis, sex hormone responses, meiosis, gametogenesis, placentation, non-genetic inheritance, and pathologies affecting reproductive tissues. Results from many species are presented to illustrate the evolutionarily conserved processes lncRNAs are involved in.
Collapse
Affiliation(s)
- David H. Taylor
- Field of Genetics, Genomics and Development, Cornell University, Ithaca, New York
| | - Erin Tsi-Jia Chu
- Field of Comparative Biomedical Sciences, Cornell University, Ithaca, New York
| | - Roman Spektor
- Field of Genetics, Genomics and Development, Cornell University, Ithaca, New York
| | - Paul D. Soloway
- Field of Genetics, Genomics and Development, Cornell University, Ithaca, New York
- Field of Comparative Biomedical Sciences, Cornell University, Ithaca, New York
- Division of Nutritional Sciences, Cornell University, Ithaca, New York
| |
Collapse
|
32
|
Wang Y, Zhao X, Ju W, Flory M, Zhong J, Jiang S, Wang P, Dong X, Tao X, Chen Q, Shen C, Zhong M, Yu Y, Brown WT, Zhong N. Genome-wide differential expression of synaptic long noncoding RNAs in autism spectrum disorder. Transl Psychiatry 2015; 5:e660. [PMID: 26485544 PMCID: PMC4930123 DOI: 10.1038/tp.2015.144] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 07/06/2015] [Accepted: 07/27/2015] [Indexed: 12/19/2022] Open
Abstract
A genome-wide differential expression of long noncoding RNAs (lncRNAs) was identified in blood specimens of autism spectrum disorder (ASD). A total of 3929 lncRNAs were found to be differentially expressed in ASD peripheral leukocytes, including 2407 that were upregulated and 1522 that were downregulated. Simultaneously, 2591 messenger RNAs (mRNAs), including 1789 upregulated and 821 downregulated, were also identified in ASD leukocytes. Functional pathway analysis of these lncRNAs revealed neurological pathways of the synaptic vesicle cycling, long-term depression and long-term potentiation to be primarily involved. Thirteen synaptic lncRNAs, including nine upregulated and four downregulated, and 19 synaptic mRNAs, including 12 upregulated and seven downregulated, were identified as being differentially expressed in ASD. Our identification of differential expression of synaptic lncRNAs and mRNAs suggested that synaptic vesicle transportation and cycling are important for the delivery of synaptosomal protein(s) between presynaptic and postsynaptic membranes in ASD. Finding of 19 lncRNAs, which are the antisense, bi-directional and intergenic, of HOX genes may lead us to investigate the role of HOX genes involved in the development of ASD. Discovery of the lncRNAs of SHANK2-AS and BDNF-AS, the natural antisense of genes SHANK2 and BDNF, respectively, indicates that in addition to gene mutations, deregulation of lncRNAs on ASD-causing gene loci presents a new approach for exploring possible epigenetic mechanisms underlying ASD. Our study also opened a new avenue for exploring the use of lncRNA(s) as biomarker(s) for the early detection of ASD.
Collapse
Affiliation(s)
- Y Wang
- Department of Child Health Care, Shanghai
Children's Hospital, Shanghai Jiaotong University,
Shanghai, China
- Chinese Alliance of Translational
Medicine for Maternal and Children's Health, Beijing,
China
| | - X Zhao
- Chinese Alliance of Translational
Medicine for Maternal and Children's Health, Beijing,
China
- Peking University Center of Medical
Genetics, Beijing, China
| | - W Ju
- Department of Human Genetics, New York
State Institute for Basic Research in Developmental Disabilities,
Staten Island, NY, USA
| | - M Flory
- Department of Human Genetics, New York
State Institute for Basic Research in Developmental Disabilities,
Staten Island, NY, USA
| | - J Zhong
- Student volunteer, Hunter College High
School, New York, NY, USA
| | - S Jiang
- Department of Obstetrics and Gynecology,
Nanfang Hospital, Southern Medical University, Guangzhou,
China
| | - P Wang
- Chinese Alliance of Translational
Medicine for Maternal and Children's Health, Beijing,
China
- Peking University Center of Medical
Genetics, Beijing, China
| | - X Dong
- Department of Child Health Care, Shanghai
Children's Hospital, Shanghai Jiaotong University,
Shanghai, China
- Chinese Alliance of Translational
Medicine for Maternal and Children's Health, Beijing,
China
| | - X Tao
- Chinese Alliance of Translational
Medicine for Maternal and Children's Health, Beijing,
China
- Peking University Center of Medical
Genetics, Beijing, China
| | - Q Chen
- Department of Obstetrics and Gynecology,
Nanfang Hospital, Southern Medical University, Guangzhou,
China
| | - C Shen
- Chinese Alliance of Translational
Medicine for Maternal and Children's Health, Beijing,
China
- Peking University Center of Medical
Genetics, Beijing, China
| | - M Zhong
- Department of Obstetrics and Gynecology,
Nanfang Hospital, Southern Medical University, Guangzhou,
China
| | - Y Yu
- Department of Obstetrics and Gynecology,
Nanfang Hospital, Southern Medical University, Guangzhou,
China
| | - W T Brown
- Department of Human Genetics, New York
State Institute for Basic Research in Developmental Disabilities,
Staten Island, NY, USA
| | - N Zhong
- Department of Child Health Care, Shanghai
Children's Hospital, Shanghai Jiaotong University,
Shanghai, China
- Chinese Alliance of Translational
Medicine for Maternal and Children's Health, Beijing,
China
- Peking University Center of Medical
Genetics, Beijing, China
- Department of Human Genetics, New York
State Institute for Basic Research in Developmental Disabilities,
Staten Island, NY, USA
- Department of Obstetrics and Gynecology,
Nanfang Hospital, Southern Medical University, Guangzhou,
China
- March of Dimes Global Network for
Maternal and Infant Health, White Plains, NY,
USA
| |
Collapse
|
33
|
Cox B, Leavey K, Nosi U, Wong F, Kingdom J. Placental transcriptome in development and pathology: expression, function, and methods of analysis. Am J Obstet Gynecol 2015; 213:S138-51. [PMID: 26428493 DOI: 10.1016/j.ajog.2015.07.046] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 12/18/2022]
Abstract
The placenta is the essential organ of mammalian pregnancy and errors in its development and function are associated with a wide range of human pathologies of pregnancy. Genome sequencing has led to methods for investigation of the transcriptome (all expressed RNA species) using microarrays and next-generation sequencing, and implementation of these techniques has identified many novel species of RNA including: micro-RNA, long noncoding RNA, and circular RNA. These species can physically interact with both each other and regulatory proteins to modify gene expression and messenger RNA to protein translation. Transcriptome analysis is actively used to investigate placental development and dysfunction in pathologies ranging from preeclampsia and fetal growth restriction to preterm labor. Genome-wide gene expression analysis is also being applied to identify prognostic and diagnostic biomarkers of these disorders. In this comprehensive review we summarize transcriptome biology, methods of isolation and analysis, application to placental development and pathology, and use in diagnostic analysis in maternal blood. Key information for analysis methods is organized into quick reference tables where current analysis techniques and tools are cited and compared. We have created this review as a practical guide and starting reference for those interested in beginning an investigation into the transcriptome of the placenta.
Collapse
|
34
|
Pan J, Mor G, Ju W, Zhong J, Luo X, Aldo PB, Zhong M, Yu Y, Jenkins EC, Brown WT, Zhong N. Viral Infection-Induced Differential Expression of LncRNAs Associated with Collagen in Mouse Placentas and Amniotic Sacs. Am J Reprod Immunol 2015; 74:237-57. [PMID: 26073538 DOI: 10.1111/aji.12406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/13/2015] [Indexed: 12/29/2022] Open
Abstract
PROBLEM We have previously determined that long non-coding RNAs (lncRNAs) are differentially expressed in preterm premature rupture of membranes (PPROM) and hypothesized that the collagenolysis ubiquitin-proteasome system may be activated by infection and inflammation. However, direct evidence of the involvement of lncRNAs in transcriptional and posttranscriptional regulation of the infection-triggered alteration of collagen is lacking. METHOD OF STUDY A previously developed mouse model with MHV68 viral infection was assessed to determine whether viral infection may induce differential expression of lncRNAs in mouse placentas and amniotic sacs. RESULTS Differential expression of lncRNAs that are associated with collagen was found in HMV68 viral-infected, compared to non-infected, mouse placentas and amniotic sacs. Differential expression of messenger RNAs (mRNAs) of collagen was also documented. CONCLUSIONS Our data demonstrate, for the first time, that viral infection may induce the differential expression of lncRNAs that are associated with collagen. Based on this finding, we propose that lncRNA may have involved in regulating of infection-induced collagen transcription.
Collapse
Affiliation(s)
- Jing Pan
- Center of Translational Medicine for Maternal and Children's Health, Lianyungang Maternal and Children's Hospital, Lianyungang, Jiangsu, China
| | - Gil Mor
- Department of Obstetrics Gynecology and Reproductive Sciences, Reproductive Immunology Unit, School of Medicine, Yale University, New Haven, CT, USA
| | - Weina Ju
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Julia Zhong
- Hunter College High School, New York, NY, USA
| | - Xiucui Luo
- Center of Translational Medicine for Maternal and Children's Health, Lianyungang Maternal and Children's Hospital, Lianyungang, Jiangsu, China
| | - Paulomi Bole Aldo
- Department of Obstetrics Gynecology and Reproductive Sciences, Reproductive Immunology Unit, School of Medicine, Yale University, New Haven, CT, USA
| | - Mei Zhong
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanhong Yu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Edmund C Jenkins
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - William T Brown
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Nanbert Zhong
- Center of Translational Medicine for Maternal and Children's Health, Lianyungang Maternal and Children's Hospital, Lianyungang, Jiangsu, China.,Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
35
|
Luo X, Pan J, Wang L, Wang P, Zhang M, Liu M, Dong Z, Meng Q, Tao X, Zhao X, Zhong J, Ju W, Gu Y, Jenkins EC, Brown WT, Shi Q, Zhong N. Epigenetic regulation of lncRNA connects ubiquitin-proteasome system with infection-inflammation in preterm births and preterm premature rupture of membranes. BMC Pregnancy Childbirth 2015; 15:35. [PMID: 25884766 PMCID: PMC4335366 DOI: 10.1186/s12884-015-0460-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 01/29/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Preterm premature rupture of membranes (PPROM) is responsible for one third of all preterm births (PTBs). We have recently demonstrated that long noncoding RNAs (lncRNAs) are differentially expressed in human placentas derived from PPROM, PTB, premature rupture of the membranes (PROM), and full-term birth (FTB), and determined the major biological pathways involved in PPROM. METHODS Here, we further investigated the relationship of lncRNAs, which are differentially expressed in spontaneous PTB (sPTB) and PPROM placentas and are found to overlap a coding locus, with the differential expression of transcribed mRNAs at the same locus. Ten lncRNAs (five up-regulated and five down-regulated) and the lncRNA-associated 10 mRNAs (six up- and four down-regulated), which were identified by microarray in comparing PPROM vs. sPTB, were then validated by real-time quantitative PCR. RESULTS A total of 62 (38 up- and 24 down-regulated) and 1,923 (790 up- and 1,133 down-regulated) lncRNAs were identified from placentas of premature labor (sPTB + PPROM), as compared to those from full-term labor (FTB + PROM) and from premature rupture of membranes (PPROM + PROM), as compared to those from non-rupture of membranes (sPTB + FTB), respectively. We found that a correlation existed between differentially expressed lncRNAs and their associated mRNAs, which could be grouped into four categories based on the gene strand (sense or antisense) of lncRNA and its paired transcript. These findings suggest that lncRNA regulates mRNA transcription through differential mechanisms. Differential expression of the transcripts PPP2R5C, STAM, TACC2, EML4, PAM, PDE4B, STAM, PPP2R5C, PDE4B, and EGFR indicated a co-expression among these mRNAs, which are involved in the ubiquitine-proteasome system (UPS), in addition to signaling transduction and beta adrenergic signaling, suggesting that imbalanced regulation of UPS may present an additional mechanism underlying the premature rupture of membrane in PPROM. CONCLUSION Differentially expressed lncRNAs that were identified from the human placentas of sPTB and PPROM may regulate their associated mRNAs through differential mechanisms and connect the ubiquitin-proteasome system with infection-inflammation pathways. Although the detailed mechanisms by which lncRNAs regulate their associated mRNAs in sPTB and PPROM are yet to be clarified, our findings open a new approach to explore the pathogenesis of sPTB and PPROM.
Collapse
Affiliation(s)
- Xiucui Luo
- Center of Translational Medicine for Maternal and Children's Health, Lianyungang Maternal and Children's Hospital, Lianyungang, Jiangsu, China. .,Chinese Alliance of Translational Medicine for Maternal and Children's Health, Beijing, China.
| | - Jing Pan
- Center of Translational Medicine for Maternal and Children's Health, Lianyungang Maternal and Children's Hospital, Lianyungang, Jiangsu, China. .,Chinese Alliance of Translational Medicine for Maternal and Children's Health, Beijing, China.
| | - Leilei Wang
- Center of Translational Medicine for Maternal and Children's Health, Lianyungang Maternal and Children's Hospital, Lianyungang, Jiangsu, China.
| | - Peirong Wang
- Center of Translational Medicine for Maternal and Children's Health, Lianyungang Maternal and Children's Hospital, Lianyungang, Jiangsu, China. .,Peking University Center of Medical Genetics, Beijing, China. .,Chinese Alliance of Translational Medicine for Maternal and Children's Health, Beijing, China.
| | - Meijiao Zhang
- Center of Translational Medicine for Maternal and Children's Health, Lianyungang Maternal and Children's Hospital, Lianyungang, Jiangsu, China.
| | - Meilin Liu
- Center of Translational Medicine for Maternal and Children's Health, Lianyungang Maternal and Children's Hospital, Lianyungang, Jiangsu, China.
| | - Ziqing Dong
- Center of Translational Medicine for Maternal and Children's Health, Lianyungang Maternal and Children's Hospital, Lianyungang, Jiangsu, China.
| | - Qian Meng
- Center of Translational Medicine for Maternal and Children's Health, Lianyungang Maternal and Children's Hospital, Lianyungang, Jiangsu, China.
| | - Xuguang Tao
- Center of Translational Medicine for Maternal and Children's Health, Lianyungang Maternal and Children's Hospital, Lianyungang, Jiangsu, China. .,Peking University Center of Medical Genetics, Beijing, China. .,Chinese Alliance of Translational Medicine for Maternal and Children's Health, Beijing, China.
| | - Xinliang Zhao
- Center of Translational Medicine for Maternal and Children's Health, Lianyungang Maternal and Children's Hospital, Lianyungang, Jiangsu, China. .,Peking University Center of Medical Genetics, Beijing, China. .,Chinese Alliance of Translational Medicine for Maternal and Children's Health, Beijing, China.
| | - Julia Zhong
- Center of Translational Medicine for Maternal and Children's Health, Lianyungang Maternal and Children's Hospital, Lianyungang, Jiangsu, China. .,Hunter College High School, New York, USA.
| | - Weina Ju
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.
| | - Yang Gu
- Center of Translational Medicine for Maternal and Children's Health, Lianyungang Maternal and Children's Hospital, Lianyungang, Jiangsu, China.
| | - Edmund C Jenkins
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.
| | - W Ted Brown
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.
| | - Qingxi Shi
- Center of Translational Medicine for Maternal and Children's Health, Lianyungang Maternal and Children's Hospital, Lianyungang, Jiangsu, China. .,Chinese Alliance of Translational Medicine for Maternal and Children's Health, Beijing, China.
| | - Nanbert Zhong
- Center of Translational Medicine for Maternal and Children's Health, Lianyungang Maternal and Children's Hospital, Lianyungang, Jiangsu, China. .,New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA. .,Peking University Center of Medical Genetics, Beijing, China. .,Children's Hospital of Shanghai Affiliated to Shanghai Jiaotong University, Shanghai, China. .,Chinese Alliance of Translational Medicine for Maternal and Children's Health, Beijing, China. .,March of Dimes Global Network of Maternal and Infant Health, March of Dimes Foundation, White Plains, USA. .,Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, 10314, USA.
| |
Collapse
|
36
|
Capece A, Vasieva O, Meher S, Alfirevic Z, Alfirevic A. Pathway analysis of genetic factors associated with spontaneous preterm birth and pre-labor preterm rupture of membranes. PLoS One 2014; 9:e108578. [PMID: 25264875 PMCID: PMC4181300 DOI: 10.1371/journal.pone.0108578] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 09/01/2014] [Indexed: 12/20/2022] Open
Abstract
Background Pre-term birth (PTB) remains the leading cause of infant mortality and morbidity. Its etiology is multifactorial, with a strong genetic component. Genetic predisposition for the two subtypes, spontaneous PTB with intact membranes (sPTB) and preterm prelabor rapture of membranes (PPROM), and differences between them, have not yet been systematically summarised. Methods and findings Our literature search identified 15 association studies conducted in 3,600 women on 2175 SNPs in 274 genes. We used Ingenuity software to impute gene pathways and networks related to sPTB and PPROM. Detailed insight in the defined functional ontologies clearly separated integrated datasets for sPTB and PPROM. Our analysis of upstream regulators of genes suggests that glucocorticoid receptor (NR3C1), peroxisome proliferator activated receptor γ (PPARG) and interferon regulating factor 3 (IRF3) may be sPTB specific. PPROM-specific genes may be regulated by estrogen receptor2 (ESR2) and signal transducer and activator of transcription (STAT1). The inflammatory transcription factor NFκB is linked to both sPTB and PPROM, however, their inflammatory response is distinctly different. Conclusions Based on our analyses, we propose an autoimmune/hormonal regulation axis for sPTB, whilst pathways implicated in the etiology of PPROM include hematologic/coagulation function disorder, collagen metabolism, matrix degradation and local inflammation. Our hypothesis generating study has identified new candidate genes in the pathogenesis of PPROM and sPTB, which should be validated in large cohorts.
Collapse
Affiliation(s)
- Antonio Capece
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Olga Vasieva
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Shireen Meher
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Zarko Alfirevic
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Ana Alfirevic
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
37
|
Shen C, Zhong N. Long non-coding RNAs: the epigenetic regulators involved in the pathogenesis of reproductive disorder. Am J Reprod Immunol 2014; 73:95-108. [PMID: 25220834 DOI: 10.1111/aji.12315] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/06/2014] [Indexed: 12/22/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are long single-stranded RNAs without translation potential. LncRNAs function in regulating epigenetic and cellular processes through various mechanisms. Nowadays, rapidly growing evidence has shown that abnormally expressed lncRNAs were involved in various inflammation-related states or diseases. Abnormal inflammation responses contribute to reproductive pathology and play vital roles in developing most disorders of the female reproductive system. In this review, we discussed the history of ncRNAs including lncRNAs, methodologies for lncRNA identification, mechanisms of lncRNA expression and regulation and mainly discussed the expression and function of lncRNAs in the female reproductive system with special focus on the inflammation and infection pathway. By analyzing the present available studies of lncRNA transcripts within the reproductive system and the current understanding of the biology of lncRNAs, we have suggested the important diagnostic and therapeutic roles of lncRNAs in the etiology of reproductive disorders.
Collapse
Affiliation(s)
- Chen Shen
- Peking University Center of Medical Genetics, Beijing, China
| | | |
Collapse
|