1
|
Wu Z, Zhang S, Qin F, Cong P. A new epigean species of Trichopeltis Pocock, 1894 from southwest China (Diplopoda, Polydesmida, Cryptodesmidae). Zookeys 2024; 1216:17-26. [PMID: 39463805 PMCID: PMC11512097 DOI: 10.3897/zookeys.1216.128080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/09/2024] [Indexed: 10/29/2024] Open
Abstract
A new species of Cryptodesmidae, Trichopeltisjiyue sp. nov., is described from the Ailaoshan National Nature Reserve in Yunnan Province, southwest China. The new species is distinguished from its congeners by the gonopodal coxae with two conspicuous wing-like processes, the relatively long, stout setae on the gonopodal coxae, gonopodal telopodites glabrous and four-branched, and the acropodite curved caudolaterad. The new species is the second record of an epigean species of genus Trichopeltis Pocock, 1894 in China. An updated key is provided to all 14 presently known species.
Collapse
Affiliation(s)
- Zhenfei Wu
- Yunnan Key Laboratory for Palaeobiology & MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Institute of Palaeontology, Yunnan University, Kunming 650500, ChinaYunnan UniversityKunmingChina
| | - Sihang Zhang
- Yunnan Key Laboratory for Palaeobiology & MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Institute of Palaeontology, Yunnan University, Kunming 650500, ChinaYunnan UniversityKunmingChina
| | - Fuxue Qin
- Earthquake Prevention and Disaster Reduction Bureau of Zhaoyang, Zhaotong 657099, ChinaEarthquake Prevention and Disaster Reduction Bureau of ZhaoyangZhaotongChina
| | - Peiyun Cong
- Yunnan Key Laboratory for Palaeobiology & MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Institute of Palaeontology, Yunnan University, Kunming 650500, ChinaYunnan UniversityKunmingChina
| |
Collapse
|
2
|
Mishina T, Chiu MC, Hashiguchi Y, Oishi S, Sasaki A, Okada R, Uchiyama H, Sasaki T, Sakura M, Takeshima H, Sato T. Massive horizontal gene transfer and the evolution of nematomorph-driven behavioral manipulation of mantids. Curr Biol 2023; 33:4988-4994.e5. [PMID: 37863060 DOI: 10.1016/j.cub.2023.09.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/21/2023] [Accepted: 09/21/2023] [Indexed: 10/22/2023]
Abstract
To complete their life cycle, a wide range of parasites must manipulate the behavior of their hosts.1 This manipulation is a well-known example of the "extended phenotype,2" where genes in one organism have phenotypic effects on another organism. Recent studies have explored the parasite genes responsible for such manipulation of host behavior, including the potential molecular mechanisms.3,4 However, little is known about how parasites have acquired the genes involved in manipulating phylogenetically distinct hosts.4 In a fascinating example of the extended phenotype, nematomorph parasites have evolved the ability to induce their terrestrial insect hosts to enter bodies of water, where the parasite then reproduces. Here, we comprehensively analyzed nematomorphs and their mantid hosts, focusing on the transcriptomic changes associated with host manipulations and sequence similarity between host and parasite genes to test molecular mimicry. The nematomorph's transcriptome changed during host manipulation, whereas no distinct changes were found in mantids. We then discovered numerous possible host-derived genes in nematomorphs, and these genes were frequently up-regulated during host manipulation. Our findings suggest a possible general role of horizontal gene transfer (HGT) in the molecular mechanisms of host manipulation, as well as in the genome evolution of manipulative parasites. The evidence of HGT between multicellular eukaryotes remains scarce but is increasing and, therefore, elucidating its mechanisms will advance our understanding of the enduring influence of HGT on the evolution of the web of life.
Collapse
Affiliation(s)
- Tappei Mishina
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe 6500047, Japan.
| | - Ming-Chung Chiu
- Department of Biology, Graduate School of Sciences, Kobe University, Kobe 6578501, Japan; Department of Entomology, National Taiwan University, Taipei 50007, Taiwan
| | - Yasuyuki Hashiguchi
- Department of Biology, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 5690801, Japan.
| | - Sayumi Oishi
- Department of Biology, Graduate School of Sciences, Kobe University, Kobe 6578501, Japan
| | - Atsunari Sasaki
- Department of Biology, Graduate School of Sciences, Kobe University, Kobe 6578501, Japan
| | - Ryuichi Okada
- Department of Biology, Graduate School of Sciences, Kobe University, Kobe 6578501, Japan
| | - Hironobu Uchiyama
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo 1568502, Japan
| | - Takeshi Sasaki
- Graduate School of Bioresource Development, Tokyo University of Agriculture, Atsugi 2430034, Japan
| | - Midori Sakura
- Department of Biology, Graduate School of Sciences, Kobe University, Kobe 6578501, Japan
| | - Hirohiko Takeshima
- Research Center of Marine Bioresources, Department of Marine Bioscience, Fukui Prefectural University, 49-8-2, Katsumi, Obama, Fukui Prefecture 9170116, Japan
| | - Takuya Sato
- Department of Biology, Graduate School of Sciences, Kobe University, Kobe 6578501, Japan; Center for Ecological Research, Kyoto University, Otsu 5202113, Japan.
| |
Collapse
|
3
|
Godeiro NN, Ding Y, Cipola NG, Jantarit S, Bellini BC, Zhang F. Phylogenomics and systematics of Entomobryoidea (Collembola): marker design, phylogeny and classification. Cladistics 2023; 39:101-115. [PMID: 36583450 DOI: 10.1111/cla.12521] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/12/2022] [Accepted: 12/07/2022] [Indexed: 12/31/2022] Open
Abstract
Entomobryoidea has been the focus of phylogenetic studies in recent years owing to a divergence between morphological and genetic data. Recent phylogenies have converged on the sister relationship of Orchesellidae with the remaining Entomobryoidea, and on the non-monophyly of the traditional Paronellidae and Entomobryidae, but still lack resolution. Known molecular phylogenies of the superfamily differ greatly between mitogenomic and multilocus markers. For this reason, we designed universal single-copy orthologue (USCO) and ultraconserved element (UCE) marker sets specific for Entomobryoidea, based on 11 genome assemblies. Upon the newly designed 3406 USCOs and 4030 UCEs, we analysed 34 species covering all Entomobryoidea families and major subfamilies. New data for 26 species were mined from whole-genome sequencing. Phylogenetic inference confirmed the Orchesellidae as an independent family and the Entomobryinae remained the most puzzling taxon gathering scaled and unscaled lineages of both traditional Entomobryidae and Paronellidae. To accommodate Paronellides, Zhuqinia and related genera, Paronellidinae subfam. nov. is proposed within Entomobryidae. The sampled representatives of Paronellinae were recovered as the sister group of (Seirinae+Lepidocyrtinae), suggesting that reduction on the dorsal macrochaetotaxy and trunk sensillar pattern may have occurred independently within the Lepidocyrtinae and Paronellinae or represent their symplesiomorphy posteriorly modified in the Seirinae. The current systematics of the superfamily are revised here, with Entomobryidae now comprising six subfamilies, including all taxa with smooth dens. Our data also point out that all the main events of cladogenesis of the families and subfamilies of Entomobryoidea occurred during the Jurassic. Our genome-scale phylogenomics provides a complete, reliable example for systematics of Entomobryoidea, as well as other invertebrates in the big data era.
Collapse
Affiliation(s)
- Nerivania Nunes Godeiro
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China.,Natural History Research Center, Shanghai Natural History Museum, Shanghai Science and Technology Museum, Shanghai, 200041, China
| | - Yinhuan Ding
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China.,Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jiangsu, China
| | - Nikolas Gioia Cipola
- Laboratório de Sistemática e Ecologia de Invertebrados do Solo, Instituto Nacional de Pesquisas da Amazônia-INPA, CPEN, Manaus, Brazil
| | - Sopark Jantarit
- Excellence Center for Biodiversity of Peninsular Thailand, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Bruno Cavalcante Bellini
- Department of Botany and Zoology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Feng Zhang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| |
Collapse
|
4
|
Benavides LR, Edgecombe GD, Giribet G. Re-evaluating and dating myriapod diversification with phylotranscriptomics under a regime of dense taxon sampling. Mol Phylogenet Evol 2023; 178:107621. [PMID: 36116731 DOI: 10.1016/j.ympev.2022.107621] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022]
Abstract
Recent transcriptomic studies of myriapod phylogeny have been based on relatively small datasets with <40 myriapod terminals and variably supported or contradicted the traditional morphological groupings of Progoneata and Dignatha. Here we amassed a large dataset of 104 myriapod terminals, including multiple species for each of the four myriapod classes. Across the tree, most nodes are stable and well supported. Most analyses across a range of gene occupancy levels provide moderate to strong support for a deep split of Myriapoda into Symphyla + Pauropoda (=Edafopoda) and an uncontradicted grouping of Chilopoda + Diplopoda (=Pectinopoda nov.), as in other recent transcriptome-based analyses; no analysis recovers Progoneata or Dignatha as clades. As in all recent multi-locus and phylogenomic studies, chilopod interrelationships resolve with Craterostigmus excluded from Amalpighiata rather than uniting with other centipedes with maternal brood care in Phylactometria. Diplopod ordinal interrelationships are largely congruent with morphology-based classifications. Chilognathan clades that are not invariably advocated by morphologists include Glomerida + Glomeridesmida, such that the volvation-related characters of pill millipedes may be convergent, and Stemmiulida + Polydesmida more closely allied to Juliformia than to Callipodida + Chordeumatida. The latter relationship implies homoplasy in spinnerets and contradicts Nematophora. A time-tree with nodes calibrated by 25 myriapod and six outgroup fossil terminals recovers Cambrian-Ordovician divergences for the deepest splits in Myriapoda, Edafopoda and Pectinopoda, predating the terrestrial fossil record of myriapods as in other published chronograms, whereas age estimates within Chilopoda and Diplopoda overlap with or do not appreciably predate the calibration fossils. The grouping of Chilopoda and Diplopoda is recovered in all our analyses and is formalized as Pectinopoda nov., named for the shared presence of mandibular comb lamellae. New taxonomic proposals for Chilopoda based on uncontradicted clades are Tykhepoda nov. for the three blind families of Scolopendromorpha that share a "sieve-type" gizzard, and Taktikospina nov. for Scolopendromorpha to the exclusion of Mimopidae.
Collapse
Affiliation(s)
- Ligia R Benavides
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.
| | | | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
5
|
Van Dam AR, Covas Orizondo JO, Lam AW, McKenna DD, Van Dam MH. Metagenomic clustering reveals microbial contamination as an essential consideration in ultraconserved element design for phylogenomics with insect museum specimens. Ecol Evol 2022; 12:e8625. [PMID: 35342556 PMCID: PMC8932080 DOI: 10.1002/ece3.8625] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/03/2022] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
Phylogenomics via ultraconserved elements (UCEs) has led to improved phylogenetic reconstructions across the tree of life. However, inadvertently incorporating non-targeted DNA into the UCE marker design will lead to misinformation being incorporated into subsequent analyses. To date, the effectiveness of basic metagenomic filtering strategies has not been assessed in arthropods. Designing markers from museum specimens requires careful consideration of methods due to the high levels of microbial contamination typically found in such specimens. We investigate if contaminant sequences are carried forward into a UCE marker set we developed from insect museum specimens using a standard bioinformatics pipeline. We find that the methods currently employed by most researchers do not exclude contamination from the final set of targets. Lastly, we highlight several paths forward for reducing contamination in UCE marker design.
Collapse
Affiliation(s)
- Alex R. Van Dam
- Department of BiologyUniversity of Puerto Rico MayagüezMayagüezPuerto Rico
| | | | - Athena W. Lam
- Department of EntomologyCalifornia Academy of SciencesSan FranciscoCaliforniaUSA
| | - Duane D. McKenna
- Department of Biological SciencesUniversity of MemphisMemphisTennesseeUSA
- Center for Biodiversity ResearchUniversity of MemphisMemphisTennesseeUSA
| | - Matthew H. Van Dam
- Department of EntomologyCalifornia Academy of SciencesSan FranciscoCaliforniaUSA
| |
Collapse
|
6
|
Wang J, Bai Y, Zhao H, Mu R, Dong Y. Reinvestigating the phylogeny of Myriapoda with more extensive taxon sampling and novel genetic perspective. PeerJ 2022; 9:e12691. [PMID: 35036164 PMCID: PMC8710254 DOI: 10.7717/peerj.12691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/05/2021] [Indexed: 11/20/2022] Open
Abstract
Background There have been extensive debates on the interrelationships among the four major classes of Myriapoda-Chilopoda, Symphyla, Diplopoda, and Pauropoda. The core controversy is the position of Pauropoda; that is, whether it should be grouped with Symphyla or Diplopoda as a sister group. Two recent phylogenomic studies separately investigated transcriptomic data from 14 and 29 Myriapoda species covering all four groups along with outgroups, and proposed two different topologies of phylogenetic relationships. Methods Building on these studies, we extended the taxon sampling by investigating 39 myriapods and integrating the previously available data with three new transcriptomic datasets generated in this study. Our analyses present the phylogenetic relationships among the four major classes of Myriapoda with a more abundant taxon sampling and provide a new perspective to investigate the above-mentioned question, where visual genes' identification were conducted. We compared the appearance pattern of genes, grouping them according to their classes and the visual pathways involved. Positive selection was detected for all identified visual genes between every pair of 39 myriapods, and 14 genes showed positive selection among 27 pairs. Results From the results of phylogenomic analyses, we propose that Symphyla is a sister group of Pauropoda. This stance has also received strong support from tree inference and topology tests.
Collapse
Affiliation(s)
- Jiajia Wang
- College of Biology and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| | - Yu Bai
- College of Biology and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| | - Haifeng Zhao
- Key Laboratory of Space Utilization, Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing, China
| | - Ruinan Mu
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Dong
- College of Biology and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| |
Collapse
|
7
|
Phylogenetic analyses suggest centipede venom arsenals were repeatedly stocked by horizontal gene transfer. Nat Commun 2021; 12:818. [PMID: 33547293 PMCID: PMC7864903 DOI: 10.1038/s41467-021-21093-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Venoms have evolved over a hundred times in animals. Venom toxins are thought to evolve mostly by recruitment of endogenous proteins with physiological functions. Here we report phylogenetic analyses of venom proteome-annotated venom gland transcriptome data, assisted by genomic analyses, to show that centipede venoms have recruited at least five gene families from bacterial and fungal donors, involving at least eight horizontal gene transfer events. These results establish centipedes as currently the only known animals with venoms used in predation and defence that contain multiple gene families derived from horizontal gene transfer. The results also provide the first evidence for the implication of horizontal gene transfer in the evolutionary origin of venom in an animal lineage. Three of the bacterial gene families encode virulence factors, suggesting that horizontal gene transfer can provide a fast track channel for the evolution of novelty by the exaptation of bacterial weapons into animal venoms.
Collapse
|
8
|
Macias AM, Marek PE, Morrissey EM, Brewer MS, Short DP, Stauder CM, Wickert KL, Berger MC, Metheny AM, Stajich JE, Boyce G, Rio RVM, Panaccione DG, Wong V, Jones TH, Kasson MT. Diversity and function of fungi associated with the fungivorous millipede, Brachycybe lecontii. FUNGAL ECOL 2019; 41:187-197. [PMID: 31871487 PMCID: PMC6927558 DOI: 10.1016/j.funeco.2019.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fungivorous millipedes (subterclass Colobognatha) likely represent some of the earliest known mycophagous terrestrial arthropods, yet their fungal partners remain elusive. Here we describe relationships between fungi and the fungivorous millipede, Brachycybe lecontii. Their fungal community is surprisingly diverse, including 176 genera, 39 orders, four phyla, and several undescribed species. Of particular interest are twelve genera conserved across wood substrates and millipede clades that comprise the core fungal community of B. lecontii. Wood decay fungi, long speculated to serve as the primary food source for Brachycybe species, were absent from this core assemblage and proved lethal to millipedes in pathogenicity assays while entomopathogenic Hypocreales were more common in the core but had little effect on millipede health. This study represents the first survey of fungal communities associated with any colobognath millipede, and these results offer a glimpse into the complexity of millipede fungal communities.
Collapse
Affiliation(s)
- Angie M. Macias
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Paul E. Marek
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Ember M. Morrissey
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Michael S. Brewer
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | | | - Cameron M. Stauder
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Kristen L. Wickert
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Matthew C. Berger
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Amy M. Metheny
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Greg Boyce
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Rita V. M. Rio
- Department of Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - Daniel G. Panaccione
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Victoria Wong
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Tappey H. Jones
- Department of Chemistry, Virginia Military Institute, Lexington, VA, 24450, USA
| | - Matt T. Kasson
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26506, USA
| |
Collapse
|
9
|
|
10
|
Stoev P, Moritz L, Wesener T. Dwarfs under dinosaur legs: a new millipede of the order Callipodida (Diplopoda) from Cretaceous amber of Burma. Zookeys 2019; 841:79-96. [PMID: 31148918 PMCID: PMC6529722 DOI: 10.3897/zookeys.841.34991] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 04/23/2019] [Indexed: 11/12/2022] Open
Abstract
The entire Mesozoic Era is rather poor in millipede (class Diplopoda) fossils, with less than a dozen species being taxonomically described. Here, we describe the first fossil millipede of the order Callipodida, Burmanopetaluminexpectatum gen. nov. et sp. nov., found in early Cenomanian amber of Burma, 98.79±0.62 Mya. The species possesses a number of morphological traits that exclude it from all extant suborders, and Burmanopetalidea suborder nov. and Burmanopetalidae fam. nov. are here erected to accommodate it. The new suborder can be recognized by the following unique characters: pleurotergal setae absent; telson with a specific spatulate shape twice the size of the penultimate body ring; hypoproct devoid of setae; and eyes composed of five well-separated ommatidia. While the callipodidan habitus seems to have remained generally unchanged for at least 99 million years, pleurotergal and hypoproctal setation, as well as the complexity of eyes in ground-dwelling forms may have evolved recently in the order. As B.inexpectatum gen. nov. et sp. nov. is the first true callipodidan in the fossil record, the minimum age of Callipodida is thus at least 99 Mya.
Collapse
Affiliation(s)
- Pavel Stoev
- National Museum of Natural History, Sofia, Tsar Osvoboditel Blvd. 1, Sofia 1000, BulgariaNational Museum of Natural HistorySofiaBulgaria
- Pensoft Publishers, Sofia, BulgariaPensoft PublishersSofiaBulgaria
| | - Leif Moritz
- Zoological Research Museum Alexander Koenig (ZFMK), Leibniz Institute for Animal Biodiversity, Adenauerallee 160, D-53113, Bonn, GermanyZoological Research Museum Alexander Koenig, Leibniz Institute for Animal BiodiversityBonnGermany
| | - Thomas Wesener
- Zoological Research Museum Alexander Koenig (ZFMK), Leibniz Institute for Animal Biodiversity, Adenauerallee 160, D-53113, Bonn, GermanyZoological Research Museum Alexander Koenig, Leibniz Institute for Animal BiodiversityBonnGermany
| |
Collapse
|
11
|
Van Dam MH, Trautwein M, Spicer GS, Esposito L. Advancing mite phylogenomics: Designing ultraconserved elements for Acari phylogeny. Mol Ecol Resour 2019; 19:465-475. [PMID: 30411860 DOI: 10.1111/1755-0998.12962] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/26/2018] [Accepted: 10/30/2018] [Indexed: 11/30/2022]
Abstract
Mites (Acari) are one of the most diverse groups of life on Earth; yet, their evolutionary relationships are poorly understood. Also, the resolution of broader arachnid phylogeny has been hindered by an underrepresentation of mite diversity in phylogenomic analyses. To further our understanding of Acari evolution, we design targeted ultraconserved genomic elements (UCEs) probes, intended for resolving the complex relationships between mite lineages and closely related arachnids. We then test our Acari UCE baits in-silico by constructing a phylogeny using 13 existing Acari genomes, as well as 6 additional taxa from a variety of genomic sources. Our Acari-specific probe kit improves the recovery of loci within mites over an existing general arachnid UCE probe set. Our initial phylogeny recovers the major mite lineages, yet finds mites to be non-monophyletic overall, with Opiliones (harvestmen) and Ricinuleidae (hooded tickspiders) rendering Parasitiformes paraphyletic.
Collapse
Affiliation(s)
- Matthew H Van Dam
- Entomology Department, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, California
| | - Michelle Trautwein
- Entomology Department, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, California
| | - Greg S Spicer
- Department of Biology, San Francisco State University, San Francisco, California
| | - Lauren Esposito
- Entomology Department, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, California
| |
Collapse
|
12
|
Ilić B, Unković N, Knežević A, Savković Ž, Ljaljević Grbić M, Vukojević J, Jovanović Z, Makarov S, Lučić L. Multifaceted activity of millipede secretions: Antioxidant, antineurodegenerative, and anti-Fusarium effects of the defensive secretions of Pachyiulus hungaricus (Karsch, 1881) and Megaphyllum unilineatum (C. L. Koch, 1838) (Diplopoda: Julida). PLoS One 2019; 14:e0209999. [PMID: 30605481 PMCID: PMC6317802 DOI: 10.1371/journal.pone.0209999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/15/2018] [Indexed: 12/22/2022] Open
Abstract
Members of the millipede order Julida rely on dominantly quinonic defensive secretions with several minor, non-quinonic components. The free radical-scavenging activities of ethanol, methanol, hexane, and dichloromethane extracts of defensive secretions emitted by Pachyiulus hungaricus (Karsch, 1881) and Megaphyllum unilineatum (C. L. Koch, 1838) were investigated using the ABTS, DPPH, and total reducing power (TRP) tests. The obtained extracts were also tested for inhibition of acetylcholinesterase and tyrosinase activity. Finally, the antifungal potential of both julid extracts was evaluated against seven Fusarium species. Secretions of both species showed activity against free radicals, acetylcholinesterase, tyrosinase, and all of the selected fungal species. The secretions of P. hungaricus exhibited a more potent antioxidative effect than did those of M. unilineatum, while there were no significant differences of antiacetylcholinesterase activity between the tested extracts. Only the hexane extract of M. unilineatum showed an effect on tyrosinase activity stronger than that of P. hungaricus. Fusarium sporotrichioides, F. graminearum, and F. verticillioides were the fungi most resistant to secretions of both julids. The Fusarium species most susceptible to the secretion of P. hungaricus was F. avenaceum, while the concentrations of M. unilienatum extracts needed to inhibit and completely suppress fungal growth were lowest in the case of their action on F. lateritium. Our data support previous findings that julid defensive secretions possess an antimicrobial potential and reveal their antioxidative and antineurodegenrative properties. Bearing in mind the chemical complexity of the tested defensive secretions, we presume that they can also exhibit other biological activities.
Collapse
Affiliation(s)
- Bojan Ilić
- Department of Animal Development, University of Belgrade—Faculty of Biology, Belgrade, Serbia
- * E-mail:
| | - Nikola Unković
- Department of Algology, Mycology, and Lichenology, University of Belgrade—Faculty of Biology, Belgrade, Serbia
| | - Aleksandar Knežević
- Department of Algology, Mycology, and Lichenology, University of Belgrade—Faculty of Biology, Belgrade, Serbia
| | - Željko Savković
- Department of Algology, Mycology, and Lichenology, University of Belgrade—Faculty of Biology, Belgrade, Serbia
| | - Milica Ljaljević Grbić
- Department of Algology, Mycology, and Lichenology, University of Belgrade—Faculty of Biology, Belgrade, Serbia
| | - Jelena Vukojević
- Department of Algology, Mycology, and Lichenology, University of Belgrade—Faculty of Biology, Belgrade, Serbia
| | - Zvezdana Jovanović
- Department of Animal Development, University of Belgrade—Faculty of Biology, Belgrade, Serbia
| | - Slobodan Makarov
- Department of Animal Development, University of Belgrade—Faculty of Biology, Belgrade, Serbia
| | - Luka Lučić
- Department of Animal Development, University of Belgrade—Faculty of Biology, Belgrade, Serbia
| |
Collapse
|
13
|
So many genes, so little time: A practical approach to divergence-time estimation in the genomic era. PLoS One 2018; 13:e0197433. [PMID: 29772020 PMCID: PMC5957400 DOI: 10.1371/journal.pone.0197433] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 05/02/2018] [Indexed: 11/24/2022] Open
Abstract
Phylogenomic datasets have been successfully used to address questions involving evolutionary relationships, patterns of genome structure, signatures of selection, and gene and genome duplications. However, despite the recent explosion in genomic and transcriptomic data, the utility of these data sources for efficient divergence-time inference remains unexamined. Phylogenomic datasets pose two distinct problems for divergence-time estimation: (i) the volume of data makes inference of the entire dataset intractable, and (ii) the extent of underlying topological and rate heterogeneity across genes makes model mis-specification a real concern. “Gene shopping”, wherein a phylogenomic dataset is winnowed to a set of genes with desirable properties, represents an alternative approach that holds promise in alleviating these issues. We implemented an approach for phylogenomic datasets (available in SortaDate) that filters genes by three criteria: (i) clock-likeness, (ii) reasonable tree length (i.e., discernible information content), and (iii) least topological conflict with a focal species tree (presumed to have already been inferred). Such a winnowing procedure ensures that errors associated with model (both clock and topology) mis-specification are minimized, therefore reducing error in divergence-time estimation. We demonstrated the efficacy of this approach through simulation and applied it to published animal (Aves, Diplopoda, and Hymenoptera) and plant (carnivorous Caryophyllales, broad Caryophyllales, and Vitales) phylogenomic datasets. By quantifying rate heterogeneity across both genes and lineages we found that every empirical dataset examined included genes with clock-like, or nearly clock-like, behavior. Moreover, many datasets had genes that were clock-like, exhibited reasonable evolutionary rates, and were mostly compatible with the species tree. We identified overlap in age estimates when analyzing these filtered genes under strict clock and uncorrelated lognormal (UCLN) models. However, this overlap was often due to imprecise estimates from the UCLN model. We find that “gene shopping” can be an efficient approach to divergence-time inference for phylogenomic datasets that may otherwise be characterized by extensive gene tree heterogeneity.
Collapse
|
14
|
Rodriguez J, Jones TH, Sierwald P, Marek PE, Shear WA, Brewer MS, Kocot KM, Bond JE. Step-wise evolution of complex chemical defenses in millipedes: a phylogenomic approach. Sci Rep 2018; 8:3209. [PMID: 29453332 PMCID: PMC5816663 DOI: 10.1038/s41598-018-19996-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/11/2018] [Indexed: 11/19/2022] Open
Abstract
With fossil representatives from the Silurian capable of respiring atmospheric oxygen, millipedes are among the oldest terrestrial animals, and likely the first to acquire diverse and complex chemical defenses against predators. Exploring the origin of complex adaptive traits is critical for understanding the evolution of Earth's biological complexity, and chemical defense evolution serves as an ideal study system. The classic explanation for the evolution of complexity is by gradual increase from simple to complex, passing through intermediate "stepping stone" states. Here we present the first phylogenetic-based study of the evolution of complex chemical defenses in millipedes by generating the largest genomic-based phylogenetic dataset ever assembled for the group. Our phylogenomic results demonstrate that chemical complexity shows a clear pattern of escalation through time. New pathways are added in a stepwise pattern, leading to greater chemical complexity, independently in a number of derived lineages. This complexity gradually increased through time, leading to the advent of three distantly related chemically complex evolutionary lineages, each uniquely characteristic of each of the respective millipede groups.
Collapse
Affiliation(s)
- Juanita Rodriguez
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
- CSIRO, Australian National Insect Collection, Canberra, ACT, 2601, Australia
| | - Tappey H Jones
- Department of Chemistry, Virginia Military Institute, Lexington, VA, 24450, USA
| | - Petra Sierwald
- Zoology Department, The Field Museum, Chicago, IL, 60605, USA
| | - Paul E Marek
- Department of Entomology, Virginia Tech, Blacksburg, VA, 24061, USA
| | - William A Shear
- Biology Department, Hampden-Sydney College, Farmville, VA, 23943, USA
| | - Michael S Brewer
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Kevin M Kocot
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Jason E Bond
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
15
|
Fernández R, Edgecombe GD, Giribet G. Phylogenomics illuminates the backbone of the Myriapoda Tree of Life and reconciles morphological and molecular phylogenies. Sci Rep 2018; 8:83. [PMID: 29311682 PMCID: PMC5758774 DOI: 10.1038/s41598-017-18562-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/14/2017] [Indexed: 11/30/2022] Open
Abstract
The interrelationships of the four classes of Myriapoda have been an unresolved question in arthropod phylogenetics and an example of conflict between morphology and molecules. Morphology and development provide compelling support for Diplopoda (millipedes) and Pauropoda being closest relatives, and moderate support for Symphyla being more closely related to the diplopod-pauropod group than any of them are to Chilopoda (centipedes). In contrast, several molecular datasets have contradicted the Diplopoda-Pauropoda grouping (named Dignatha), often recovering a Symphyla-Pauropoda group (named Edafopoda). Here we present the first transcriptomic data including a pauropod and both families of symphylans, allowing myriapod interrelationships to be inferred from phylogenomic data from representatives of all main lineages. Phylogenomic analyses consistently recovered Dignatha with strong support. Taxon removal experiments identified outgroup choice as a critical factor affecting myriapod interrelationships. Diversification of millipedes in the Ordovician and centipedes in the Silurian closely approximates fossil evidence whereas the deeper nodes of the myriapod tree date to various depths in the Cambrian-Early Ordovician, roughly coinciding with recent estimates of terrestrialisation in other arthropod lineages, including hexapods and arachnids.
Collapse
Affiliation(s)
- Rosa Fernández
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., 02138, Cambridge, MA, USA.
- Bioinformatics & Genomics, Centre for Genomic Regulation, Carrer del Dr. Aiguader 88, 08003, Barcelona, Spain.
| | - Gregory D Edgecombe
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Gonzalo Giribet
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., 02138, Cambridge, MA, USA
| |
Collapse
|
16
|
Van Dam MH, Lam AW, Sagata K, Gewa B, Laufa R, Balke M, Faircloth BC, Riedel A. Ultraconserved elements (UCEs) resolve the phylogeny of Australasian smurf-weevils. PLoS One 2017; 12:e0188044. [PMID: 29166661 PMCID: PMC5699822 DOI: 10.1371/journal.pone.0188044] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/31/2017] [Indexed: 11/19/2022] Open
Abstract
Weevils (Curculionoidea) comprise one of the most diverse groups of organisms on earth. There is hardly a vascular plant or plant part without its own species of weevil feeding on it and weevil species diversity is greater than the number of fishes, birds, reptiles, amphibians and mammals combined. Here, we employ ultraconserved elements (UCEs) designed for beetles and a novel partitioning strategy of loci to help resolve phylogenetic relationships within the radiation of Australasian smurf-weevils (Eupholini). Despite being emblematic of the New Guinea fauna, no previous phylogenetic studies have been conducted on the Eupholini. In addition to a comprehensive collection of fresh specimens, we supplement our taxon sampling with museum specimens, and this study is the first target enrichment phylogenomic dataset incorporating beetle specimens from museum collections. We use both concatenated and species tree analyses to examine the relationships and taxonomy of this group. For species tree analyses we present a novel partitioning strategy to better model the molecular evolutionary process in UCEs. We found that the current taxonomy is problematic, largely grouping species on the basis of similar color patterns. Finally, our results show that most loci required multiple partitions for nucleotide rate substitution, suggesting that single partitions may not be the optimal partitioning strategy to accommodate rate heterogeneity for UCE loci.
Collapse
Affiliation(s)
- Matthew H. Van Dam
- SNSB-Zoological State Collection, Münchhausenstraße 21, München, Germany
| | - Athena W. Lam
- SNSB-Zoological State Collection, Münchhausenstraße 21, München, Germany
| | - Katayo Sagata
- School of Natural & Physical Sciences, The University of Papua New Guinea, UNIVERSITY 134, National Capital District, Papua New Guinea
| | - Bradley Gewa
- The New Guinea Binatang Research Center, Madang, Papua New Guinea
| | - Raymond Laufa
- The New Guinea Binatang Research Center, Madang, Papua New Guinea
| | - Michael Balke
- SNSB-Zoological State Collection, Münchhausenstraße 21, München, Germany
- GeoBioCenter, Ludwig-Maximilians-Universität, München, Germany
| | - Brant C. Faircloth
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, LA, United States of America
| | | |
Collapse
|
17
|
Marek PE, Krejca JK, Shear WA. A new species of Illacme Cook & Loomis, 1928 from Sequoia National Park, California, with a world catalog of the Siphonorhinidae (Diplopoda, Siphonophorida). Zookeys 2016; 626:1-43. [PMID: 27833431 PMCID: PMC5096369 DOI: 10.3897/zookeys.626.9681] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/19/2016] [Indexed: 11/27/2022] Open
Abstract
Members of the family Siphonorhinidae Cook, 1895 are thread-like eyeless millipedes that possess an astounding number of legs, including one individual with 750. Due to their cryptic lifestyle, rarity in natural history collections, and sporadic study over the last century, the family has an unclear phylogenetic placement, and intrafamilial relationships remain unknown. Here we report the discovery of a second species of Illacme, a millipede genus notable for possessing the greatest number of legs of any known animal on the planet. Illacme tobinisp. n. is described from a single male collected in a cave in Sequoia National Park, California, USA. After 90 years since the description of Illacme, the species represents a second of the genus in California. Siphonorhinidae now includes Illacme Cook & Loomis, 1928 (two species, USA), Kleruchus Attems, 1938 (one species, Vietnam), Nematozonium Verhoeff, 1939 (one species, South Africa) and Siphonorhinus Pocock, 1894 (eight species, India, Indonesia, Madagascar, Vietnam).
Collapse
Affiliation(s)
- Paul E. Marek
- Virginia Polytechnic Institute and State University, Department of Entomology, Price Hall, Blacksburg, Virginia, USA
| | - Jean K. Krejca
- Zara Environmental LLC, 1707 W FM 1626, Manchaca, Texas, USA
| | - William A. Shear
- Hampden-Sydney College, Department of Biology, Gilmer Hall, Hampden-Sydney, Virginia, USA
| |
Collapse
|
18
|
Fernández R, Edgecombe GD, Giribet G. Exploring Phylogenetic Relationships within Myriapoda and the Effects of Matrix Composition and Occupancy on Phylogenomic Reconstruction. Syst Biol 2016; 65:871-89. [PMID: 27162151 PMCID: PMC4997009 DOI: 10.1093/sysbio/syw041] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 04/28/2016] [Indexed: 11/14/2022] Open
Abstract
Myriapods, including the diverse and familiar centipedes and millipedes, are one of the dominant terrestrial arthropod groups. Although molecular evidence has shown that Myriapoda is monophyletic, its internal phylogeny remains contentious and understudied, especially when compared to those of Chelicerata and Hexapoda. Until now, efforts have focused on taxon sampling (e.g., by including a handful of genes from many species) or on maximizing matrix size (e.g., by including hundreds or thousands of genes in just a few species), but a phylogeny maximizing sampling at both levels remains elusive. In this study, we analyzed 40 Illumina transcriptomes representing 3 of the 4 myriapod classes (Diplopoda, Chilopoda, and Symphyla); 25 transcriptomes were newly sequenced to maximize representation at the ordinal level in Diplopoda and at the family level in Chilopoda. Ten supermatrices were constructed to explore the effect of several potential phylogenetic biases (e.g., rate of evolution, heterotachy) at 3 levels of gene occupancy per taxon (50%, 75%, and 90%). Analyses based on maximum likelihood and Bayesian mixture models retrieved monophyly of each myriapod class, and resulted in 2 alternative phylogenetic positions for Symphyla, as sister group to Diplopoda + Chilopoda, or closer to Diplopoda, the latter hypothesis having been traditionally supported by morphology. Within centipedes, all orders were well supported, but 2 deep nodes remained in conflict in the different analyses despite dense taxon sampling at the family level. Relationships among centipede orders in all analyses conducted with the most complete matrix (90% occupancy) are at odds not only with the sparser but more gene-rich supermatrices (75% and 50% supermatrices) and with the matrices optimizing phylogenetic informativeness or most conserved genes, but also with previous hypotheses based on morphology, development, or other molecular data sets. Our results indicate that a high percentage of ribosomal proteins in the most complete matrices, in conjunction with distance from the root, can act in concert to compromise the estimated relationships within the ingroup. We discuss the implications of these findings in the context of the ever more prevalent quest for completeness in phylogenomic studies.
Collapse
Affiliation(s)
- Rosa Fernández
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Gregory D Edgecombe
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Gonzalo Giribet
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
19
|
Lozano-Fernandez J, Carton R, Tanner AR, Puttick MN, Blaxter M, Vinther J, Olesen J, Giribet G, Edgecombe GD, Pisani D. A molecular palaeobiological exploration of arthropod terrestrialization. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150133. [PMID: 27325830 PMCID: PMC4920334 DOI: 10.1098/rstb.2015.0133] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2016] [Indexed: 12/28/2022] Open
Abstract
Understanding animal terrestrialization, the process through which animals colonized the land, is crucial to clarify extant biodiversity and biological adaptation. Arthropoda (insects, spiders, centipedes and their allies) represent the largest majority of terrestrial biodiversity. Here we implemented a molecular palaeobiological approach, merging molecular and fossil evidence, to elucidate the deepest history of the terrestrial arthropods. We focused on the three independent, Palaeozoic arthropod terrestrialization events (those of Myriapoda, Hexapoda and Arachnida) and showed that a marine route to the colonization of land is the most likely scenario. Molecular clock analyses confirmed an origin for the three terrestrial lineages bracketed between the Cambrian and the Silurian. While molecular divergence times for Arachnida are consistent with the fossil record, Myriapoda are inferred to have colonized land earlier, substantially predating trace or body fossil evidence. An estimated origin of myriapods by the Early Cambrian precedes the appearance of embryophytes and perhaps even terrestrial fungi, raising the possibility that terrestrialization had independent origins in crown-group myriapod lineages, consistent with morphological arguments for convergence in tracheal systems.This article is part of the themed issue 'Dating species divergences using rocks and clocks'.
Collapse
Affiliation(s)
- Jesus Lozano-Fernandez
- School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Robert Carton
- Department of Biology, The National University of Ireland Maynooth, Maynooth, Kildare, Ireland
| | - Alastair R Tanner
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Mark N Puttick
- School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Mark Blaxter
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3TF, UK
| | - Jakob Vinther
- School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Jørgen Olesen
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Gregory D Edgecombe
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Davide Pisani
- School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
20
|
Reboleira ASPS, Enghoff H. Mud and silk in the dark: A new type of millipede moulting chamber and first observations on the maturation moult in the order Callipodida. ARTHROPOD STRUCTURE & DEVELOPMENT 2016; 45:301-306. [PMID: 27108528 DOI: 10.1016/j.asd.2016.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/04/2016] [Accepted: 04/08/2016] [Indexed: 06/05/2023]
Abstract
The postembryonic development of millipedes includes a series of stadia separated by moults, a process known as anamorphosis. The moulting process and especially the moulting into maturity, i.e., with fully developed copulatory organs, remains unknown for most millipede species. We have kept specimens of Lusitanipus alternans (Verhoeff, 1893) in the laboratory for one year and studied its moulting process, including the first study of the maturation moult in the order Callipodida. Unlike the typical silk cocoon reported for other callipodidans, this species builds a new type of solid moulting chamber, using the available substrate reinforced by a silken web. We present the detailed ultrastructure of the moulting chamber and silk. It takes five days to build the moulting chamber and between 29 (female) and 35 (male) days to shed the exuviae. The male maturation moult is preceded by an evagination of a gonopodal sac between the 6th and 7th body rings, in which the gonopods are developed. Females evaginated completely their vulval sacs, retracting them after shedding the exuviae. Vulval sac size seems to increase with the progressive reduction of the second pair of legs.
Collapse
Affiliation(s)
- Ana Sofia P S Reboleira
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 København Ø, Denmark.
| | - Henrik Enghoff
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 København Ø, Denmark
| |
Collapse
|
21
|
Zhang J, Gordon ERL, Forthman M, Hwang WS, Walden K, Swanson DR, Johnson KP, Meier R, Weirauch C. Evolution of the assassin's arms: insights from a phylogeny of combined transcriptomic and ribosomal DNA data (Heteroptera: Reduvioidea). Sci Rep 2016; 6:22177. [PMID: 26916580 PMCID: PMC4768186 DOI: 10.1038/srep22177] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 02/09/2016] [Indexed: 01/24/2023] Open
Abstract
Assassin bugs (Reduvioidea) are one of the most diverse (>7,000 spp.) lineages of predatory animals and have evolved an astounding diversity of raptorial leg modifications for handling prey. The evolution of these modifications is not well understood due to the lack of a robust phylogeny, especially at deeper nodes. We here utilize refined data from transcriptomes (370 loci) to stabilize the backbone phylogeny of Reduvioidea, revealing the position of major clades (e.g., the Chagas disease vectors Triatominae). Analyses combining transcriptomic and Sanger-sequencing datasets result in the first well-resolved phylogeny of Reduvioidea. Despite amounts of missing data, the transcriptomic loci resolve deeper nodes while the targeted ribosomal genes anchor taxa at shallower nodes, both with high support. This phylogeny reveals patterns of raptorial leg evolution across major leg types. Hairy attachment structures (fossula spongiosa), present in the ancestor of Reduvioidea, were lost multiple times within the clade. In contrast to prior hypotheses, this loss is not directly correlated with the evolution of alternative raptorial leg types. Our results suggest that prey type, predatory behavior, salivary toxicity, and morphological adaptations pose intricate and interrelated factors influencing the evolution of this diverse group of predators.
Collapse
Affiliation(s)
- Junxia Zhang
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| | - Eric R. L. Gordon
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| | - Michael Forthman
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| | - Wei Song Hwang
- Lee Kong Chian Natural History Museum, Department of Biological Sciences, National University of Singapore, 117377, Singapore
| | - Kim Walden
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL 61820, USA
| | - Daniel R. Swanson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL 61820, USA
| | - Kevin P. Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL 61820, USA
| | - Rudolf Meier
- Lee Kong Chian Natural History Museum, Department of Biological Sciences, National University of Singapore, 117377, Singapore
| | - Christiane Weirauch
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
22
|
Re-evaluating the phylogeny of allopolyploid Gossypium L. Mol Phylogenet Evol 2015; 92:45-52. [DOI: 10.1016/j.ympev.2015.05.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/19/2015] [Accepted: 05/29/2015] [Indexed: 01/06/2023]
|
23
|
Akkari N, Enghoff H, Metscher BD. A New Dimension in Documenting New Species: High-Detail Imaging for Myriapod Taxonomy and First 3D Cybertype of a New Millipede Species (Diplopoda, Julida, Julidae). PLoS One 2015; 10:e0135243. [PMID: 26309113 PMCID: PMC4550252 DOI: 10.1371/journal.pone.0135243] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/20/2015] [Indexed: 12/14/2022] Open
Abstract
We review the state-of-the-art approaches currently applied in myriapod taxonomy, and we describe, for the first time, a new species of millipede (Ommatoiulus avatar n. sp., family Julidae) using high-resolution X-ray microtomography (microCT) as a substantive adjunct to traditional morphological examination. We present 3D models of the holotype and paratype specimens and discuss the potential of this non-destructive technique in documenting new species of millipedes and other organisms. The microCT data have been uploaded to an open repository (Dryad) to serve as the first actual millipede cybertypes to be published.
Collapse
Affiliation(s)
- Nesrine Akkari
- 3rd Zoological department, Natural History Museum Vienna, Burgring 7, 1010, Vienna, Austria
| | - Henrik Enghoff
- Natural History Museum of Denmark, Universitetsparken 15, DK-2100, København Ø–Denmark
| | - Brian D. Metscher
- Department of Theoretical Biology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| |
Collapse
|
24
|
Shear WA. The chemical defenses of millipedes (diplopoda): Biochemistry, physiology and ecology. BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2015.04.033] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Kenny NJ, Shen X, Chan TTH, Wong NWY, Chan TF, Chu KH, Lam HM, Hui JHL. Genome of the Rusty Millipede, Trigoniulus corallinus, Illuminates Diplopod, Myriapod, and Arthropod Evolution. Genome Biol Evol 2015; 7:1280-95. [PMID: 25900922 PMCID: PMC4453065 DOI: 10.1093/gbe/evv070] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2015] [Indexed: 12/21/2022] Open
Abstract
The increasing availability of genomic information from the Arthropoda continues to revolutionize our understanding of the biology of this most diverse animal phylum. However, our sampling of arthropod diversity remains uneven, and key clade such as the Myriapoda are severely underrepresented. Here we present the genome of the cosmopolitanly distributed Rusty Millipede Trigoniulus corallinus, which represents the first diplopod genome to be published, and the second example from the Myriapoda as a whole. This genomic resource contains the majority of core eukaryotic genes (94.3%), and key transcription factor classes that were thought to be lost in the Ecdysozoa. Mitochondrial genome and gene family (transcription factor, Dscam, circadian clock-driving protein, odorant receptor cassette, bioactive compound, and cuticular protein) analyses were also carried out to shed light on their states in the Diplopoda and Myriapoda. The ready availability of T. corallinus recommends it as a new model for evolutionary developmental biology, and the data set described here will be of widespread utility in investigating myriapod and arthropod genomics and evolution.
Collapse
Affiliation(s)
- Nathan J Kenny
- Simon F.S. Li Marine Science Laboratory of School of Life Sciences and Center of Soybean Research of State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xin Shen
- Center of Soybean Research of State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Thomas T H Chan
- Simon F.S. Li Marine Science Laboratory of School of Life Sciences and Center of Soybean Research of State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Nicola W Y Wong
- Simon F.S. Li Marine Science Laboratory of School of Life Sciences and Center of Soybean Research of State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ting Fung Chan
- Center of Soybean Research of State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ka Hou Chu
- Simon F.S. Li Marine Science Laboratory of School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hon-Ming Lam
- Center of Soybean Research of State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jerome H L Hui
- Simon F.S. Li Marine Science Laboratory of School of Life Sciences and Center of Soybean Research of State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
26
|
Zhang S, Shi Y, Cheng N, Du H, Fan W, Wang C. De novo characterization of fall dormant and nondormant alfalfa (Medicago sativa L.) leaf transcriptome and identification of candidate genes related to fall dormancy. PLoS One 2015; 10:e0122170. [PMID: 25799491 PMCID: PMC4370819 DOI: 10.1371/journal.pone.0122170] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 02/08/2015] [Indexed: 12/03/2022] Open
Abstract
Alfalfa (Medicago sativa L.) is one of the most widely cultivated perennial forage legumes worldwide. Fall dormancy is an adaptive character related to the biomass production and winter survival in alfalfa. The physiological, biochemical and molecular mechanisms causing fall dormancy and the related genes have not been well studied. In this study, we sequenced two standard varieties of alfalfa (dormant and non-dormant) at two time points and generated approximately 160 million high quality paired-end sequence reads using sequencing by synthesis (SBS) technology. The de novo transcriptome assembly generated a set of 192,875 transcripts with an average length of 856 bp representing about 165.1 Mb of the alfalfa leaf transcriptome. After assembly, 111,062 (57.6%) transcripts were annotated against the NCBI non-redundant database. A total of 30,165 (15.6%) transcripts were mapped to 323 Kyoto Encyclopedia of Genes and Genomes pathways. We also identified 41,973 simple sequence repeats, which can be used to generate markers for alfalfa, and 1,541 transcription factors were identified across 1,350 transcripts. Gene expression between dormant and non-dormant alfalfa at different time points were performed, and we identified several differentially expressed genes potentially related to fall dormancy. The Gene Ontology and pathways information were also identified. We sequenced and assembled the leaf transcriptome of alfalfa related to fall dormancy, and also identified some genes of interest involved in the fall dormancy mechanism. Thus, our research focused on studying fall dormancy in alfalfa through transcriptome sequencing. The sequencing and gene expression data generated in this study may be used further to elucidate the complete mechanisms governing fall dormancy in alfalfa.
Collapse
Affiliation(s)
- Senhao Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Yinghua Shi
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Ningning Cheng
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Hongqi Du
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Wenna Fan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Chengzhang Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China
- * E-mail:
| |
Collapse
|
27
|
Yang Y, Smith SA. Orthology inference in nonmodel organisms using transcriptomes and low-coverage genomes: improving accuracy and matrix occupancy for phylogenomics. Mol Biol Evol 2014; 31:3081-92. [PMID: 25158799 PMCID: PMC4209138 DOI: 10.1093/molbev/msu245] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Orthology inference is central to phylogenomic analyses. Phylogenomic data sets commonly include transcriptomes and low-coverage genomes that are incomplete and contain errors and isoforms. These properties can severely violate the underlying assumptions of orthology inference with existing heuristics. We present a procedure that uses phylogenies for both homology and orthology assignment. The procedure first uses similarity scores to infer putative homologs that are then aligned, constructed into phylogenies, and pruned of spurious branches caused by deep paralogs, misassembly, frameshifts, or recombination. These final homologs are then used to identify orthologs. We explore four alternative tree-based orthology inference approaches, of which two are new. These accommodate gene and genome duplications as well as gene tree discordance. We demonstrate these methods in three published data sets including the grape family, Hymenoptera, and millipedes with divergence times ranging from approximately 100 to over 400 Ma. The procedure significantly increased the completeness and accuracy of the inferred homologs and orthologs. We also found that data sets that are more recently diverged and/or include more high-coverage genomes had more complete sets of orthologs. To explicitly evaluate sources of conflicting phylogenetic signals, we applied serial jackknife analyses of gene regions keeping each locus intact. The methods described here can scale to over 100 taxa. They have been implemented in python with independent scripts for each step, making it easy to modify or incorporate them into existing pipelines. All scripts are available from https://bitbucket.org/yangya/phylogenomic_dataset_construction.
Collapse
Affiliation(s)
- Ya Yang
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor
| | - Stephen A Smith
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor
| |
Collapse
|
28
|
Borner J, Rehm P, Schill RO, Ebersberger I, Burmester T. A transcriptome approach to ecdysozoan phylogeny. Mol Phylogenet Evol 2014; 80:79-87. [PMID: 25124096 DOI: 10.1016/j.ympev.2014.08.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/15/2014] [Accepted: 08/01/2014] [Indexed: 11/20/2022]
Abstract
The monophyly of Ecdysozoa, which comprise molting phyla, has received strong support from several lines of evidence. However, the internal relationships of Ecdysozoa are still contended. We generated expressed sequence tags from a priapulid (penis worm), a kinorhynch (mud dragon), a tardigrade (water bear) and five chelicerate taxa by 454 transcriptome sequencing. A multigene alignment was assembled from 63 taxa, which comprised after matrix optimization 24,249 amino acid positions with high data density (2.6% gaps, 19.1% missing data). Phylogenetic analyses employing various models support the monophyly of Ecdysozoa. A clade combining Priapulida and Kinorhyncha (i.e. Scalidophora) was recovered as the earliest branch among Ecdysozoa. We conclude that Cycloneuralia, a taxon erected to combine Priapulida, Kinorhyncha and Nematoda (and others), are paraphyletic. Rather Arthropoda (including Onychophora) are allied with Nematoda and Tardigrada. Within Arthropoda, we found strong support for most clades, including monophyletic Mandibulata and Pancrustacea. The phylogeny within the Euchelicerata remained largely unresolved. There is conflicting evidence on the position of tardigrades: While Bayesian and maximum likelihood analyses of only slowly evolving genes recovered Tardigrada as a sister group to Arthropoda, analyses of the full data set, and of subsets containing genes evolving at fast and intermediate rates identified a clade of Tardigrada and Nematoda. Notably, the latter topology is also supported by the analyses of indel patterns.
Collapse
Affiliation(s)
- Janus Borner
- Institute of Zoology and Zoological Museum, University of Hamburg, D-20146 Hamburg, Germany
| | - Peter Rehm
- Institute of Zoology and Zoological Museum, University of Hamburg, D-20146 Hamburg, Germany
| | - Ralph O Schill
- Zoology, Biological Institute, University of Stuttgart, Germany
| | - Ingo Ebersberger
- Department for Applied Bioinformatics, University of Frankfurt, Institute for Cell Biology and Neuroscience, Germany
| | - Thorsten Burmester
- Institute of Zoology and Zoological Museum, University of Hamburg, D-20146 Hamburg, Germany.
| |
Collapse
|
29
|
Sharma PP, Kaluziak ST, Pérez-Porro AR, González VL, Hormiga G, Wheeler WC, Giribet G. Phylogenomic Interrogation of Arachnida Reveals Systemic Conflicts in Phylogenetic Signal. Mol Biol Evol 2014; 31:2963-84. [DOI: 10.1093/molbev/msu235] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
30
|
Bond JE, Garrison NL, Hamilton CA, Godwin RL, Hedin M, Agnarsson I. Phylogenomics resolves a spider backbone phylogeny and rejects a prevailing paradigm for orb web evolution. Curr Biol 2014; 24:1765-71. [PMID: 25042592 DOI: 10.1016/j.cub.2014.06.034] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/12/2014] [Accepted: 06/12/2014] [Indexed: 12/19/2022]
Abstract
Spiders represent an ancient predatory lineage known for their extraordinary biomaterials, including venoms and silks. These adaptations make spiders key arthropod predators in most terrestrial ecosystems. Despite ecological, biomedical, and biomaterial importance, relationships among major spider lineages remain unresolved or poorly supported. Current working hypotheses for a spider "backbone" phylogeny are largely based on morphological evidence, as most molecular markers currently employed are generally inadequate for resolving deeper-level relationships. We present here a phylogenomic analysis of spiders including taxa representing all major spider lineages. Our robust phylogenetic hypothesis recovers some fundamental and uncontroversial spider clades, but rejects the prevailing paradigm of a monophyletic Orbiculariae, the most diverse lineage, containing orb-weaving spiders. Based on our results, the orb web either evolved much earlier than previously hypothesized and is ancestral for a majority of spiders or else it has multiple independent origins, as hypothesized by precladistic authors. Cribellate deinopoid orb weavers that use mechanically adhesive silk are more closely related to a diverse clade of mostly webless spiders than to the araneoid orb-weaving spiders that use adhesive droplet silks. The fundamental shift in our understanding of spider phylogeny proposed here has broad implications for interpreting the evolution of spiders, their remarkable biomaterials, and a key extended phenotype--the spider web.
Collapse
Affiliation(s)
- Jason E Bond
- Department of Biological Sciences and Auburn University Museum of Natural History, Auburn University, Auburn, AL 36849, USA.
| | - Nicole L Garrison
- Department of Biological Sciences and Auburn University Museum of Natural History, Auburn University, Auburn, AL 36849, USA
| | - Chris A Hamilton
- Department of Biological Sciences and Auburn University Museum of Natural History, Auburn University, Auburn, AL 36849, USA
| | - Rebecca L Godwin
- Department of Biological Sciences and Auburn University Museum of Natural History, Auburn University, Auburn, AL 36849, USA
| | - Marshal Hedin
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Ingi Agnarsson
- Department of Biology, University of Vermont, 120A Marsh Life Science Building, 109 Carrigan Drive, Burlington, VT 05405, USA
| |
Collapse
|
31
|
Rehm P, Meusemann K, Borner J, Misof B, Burmester T. Phylogenetic position of Myriapoda revealed by 454 transcriptome sequencing. Mol Phylogenet Evol 2014; 77:25-33. [PMID: 24732681 DOI: 10.1016/j.ympev.2014.04.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/31/2014] [Accepted: 04/03/2014] [Indexed: 02/02/2023]
Abstract
Myriapods had been considered closely allied to hexapods (insects and relatives). However, analyses of molecular sequence data have consistently placed Myriapoda either as a sister group of Pancrustacea, comprising crustaceans and hexapods, and thereby supporting the monophyly of Mandibulata, or retrieved Myriapoda as a sister group of Chelicerata (spiders, ticks, mites and allies). In addition, the relationships among the four myriapod groups (Pauropoda, Symphyla, Diplopoda, Chilopoda) are unclear. To resolve the phylogeny of myriapods and their relationship to other main arthropod groups, we collected transcriptome data from the symphylan Symphylella vulgaris, the centipedes Lithobius forficatus and Scolopendra dehaani, and the millipedes Polyxenus lagurus, Glomeris pustulata and Polydesmus angustus by 454 sequencing. We concatenated a multiple sequence alignment that contained 1550 orthologous single copy genes (1,109,847 amino acid positions) from 55 euarthropod and 14 outgroup taxa. The final selected alignment included 181 genes and 37,425 amino acid positions from 55 taxa, with eight myriapods and 33 other euarthropods. Bayesian analyses robustly recovered monophyletic Mandibulata, Pancrustacea and Myriapoda. Most analyses support a sister group relationship of Symphyla in respect to a clade comprising Chilopoda and Diplopoda. Inclusion of additional sequence data from nine myriapod species resulted in an alignment with poor data density, but broader taxon average. With this dataset we inferred Diplopoda+Pauropoda as closest relatives (i.e., Dignatha) and recovered monophyletic Helminthomorpha. Molecular clock calculations suggest an early Cambrian emergence of Myriapoda ∼513 million years ago and a late Cambrian divergence of myriapod classes. This implies a marine origin of the myriapods and independent terrestrialization events during myriapod evolution.
Collapse
Affiliation(s)
- Peter Rehm
- Zoologisches Institut & Museum, Biozentrum Grindel, Martin-Luther-King Platz 3, D-20146 Hamburg, Germany
| | - Karen Meusemann
- Zoologisches Forschungsmuseum Alexander Koenig, Zentrum für Molekulare Biodiversitätsforschung (zmb), Adenauerallee 160, D-53113 Bonn, Germany; CSIRO Ecosystem Sciences, Australian National Insect Collection, Clunies Ross Street, Acton, ACT 2601, Australia
| | - Janus Borner
- Zoologisches Institut & Museum, Biozentrum Grindel, Martin-Luther-King Platz 3, D-20146 Hamburg, Germany
| | - Bernhard Misof
- Zoologisches Forschungsmuseum Alexander Koenig, Zentrum für Molekulare Biodiversitätsforschung (zmb), Adenauerallee 160, D-53113 Bonn, Germany
| | - Thorsten Burmester
- Zoologisches Institut & Museum, Biozentrum Grindel, Martin-Luther-King Platz 3, D-20146 Hamburg, Germany.
| |
Collapse
|