1
|
Kinchen JM, Mohney RP, Pappan KL. Long-Chain Acylcholines Link Butyrylcholinesterase to Regulation of Non-neuronal Cholinergic Signaling. J Proteome Res 2021; 21:599-611. [PMID: 34758617 DOI: 10.1021/acs.jproteome.1c00538] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acylcholines are comprised of an acyl chain esterified to a choline moiety; acetylcholine is the best-characterized member of this class, functioning as a neurotransmitter in the central and peripheral nervous systems as well as an inhibitor of cytokine production by macrophages and other innate immune cells. Acylcholines are metabolized by a class of cholinesterases, including acetylcholinesterase (a specific regulator of acetylcholine levels) and butyrylcholinesterase (BChE, an enigmatic enzyme whose function has not been resolved by genetic knockout models). BChE provides reserve capacity to hydrolyze acetylcholine, but its importance is arguable given acetylcholinesterase is the most catalytically efficient enzyme characterized to date. While known to be substrates of BChE in vitro, endogenous production of long-chain acylcholines is a recent discovery enabled by untargeted metabolomics. Compared to acetylcholine, long-chain acylcholines show greater stability in circulation with homeostatic levels-dictated by synthesis and clearance-suggested to impact cholinergic receptor sensitivity of acetylcholine with varying levels of antagonism. Acylcholines then provide a link between BChE and non-neuronal acetylcholine signaling, filling a gap in understanding around how imbalances between acylcholines and BChE could modulate inflammatory disease, such as the "cytokine storm" identified in severe COVID-19. Areas for further research, development, and clinical testing are outlined.
Collapse
Affiliation(s)
- Jason M Kinchen
- Owlstone Medical Inc., 600 Park Office Drive, Suite 140, Research Triangle Park, North Carolina 27709, United States
| | - Robert P Mohney
- Owlstone Medical Inc., 600 Park Office Drive, Suite 140, Research Triangle Park, North Carolina 27709, United States
| | - Kirk L Pappan
- Owlstone Medical Inc., 600 Park Office Drive, Suite 140, Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|
2
|
Pego AMF, Leyton V, Miziara ID, Bortolin RH, Freitas RCC, Hirata M, Tomaz PRX, Santos JR, Santos PCJL, Yonamine M. SNPs from BCHE and DRD3 genes associated to cocaine abuse amongst violent individuals from Sao Paulo, Brazil. Forensic Sci Int 2020; 317:110511. [PMID: 32998065 DOI: 10.1016/j.forsciint.2020.110511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/05/2020] [Accepted: 09/13/2020] [Indexed: 11/29/2022]
Abstract
Violence and drug abuse are highly destructive phenomena found world-wide, especially in Brazil. They seem to rise proportionally to one another and possibly related. Additionally, genetics may also play a role in drug abuse. This study has focused on identifying the use of cocaine within postmortem cases arriving at the Institute of Legal Medicine of Sao Paulo as well as the presence of certain single nucleotide polymorphisms (SNPs) to better understand one's susceptibility to abuse the drug. Both hair and blood samples have been extracted through a simple methanol overnight incubation or a rapid dilute-and-shoot method, respectively. The samples were then analyzed using an UPLC-ESI-MS/MS and genotyped through RT-PCR. Statistical analyses were performed via SPSS software. From 105 postmortem cases, 53% and 51% of the cases shown to be positive for cocaine in hair and blood, respectively. Genetic wise, a significant difference has been observed for SNP rs4263329 from the BCHE gene with higher frequencies of the genotypes A/G and G/G seen in cocaine users (OR=8.91; 95%CI=1.58-50.21; p=0.01). Likewise, also SNP rs6280 from the DRD3 gene presented a significant association, with both genotypes T/C and C/C being more frequent in users (OR=4.96; 95% CI=1.07-23.02; p=0.04). To conclude, a rather high proportion of cocaine has been found, which may suggest a connotation between the use of the drug and risky/violent behaviors. Additionally, significant associations were also found within two SNPs related to cocaine use, however, due to several inherent limitations, these must be confirmed.
Collapse
Affiliation(s)
- A M F Pego
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil; Dutch Screening Group, Maastricht, Netherlands.
| | - V Leyton
- Department of Legal Medicine, Ethics and Occupational Health, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - I D Miziara
- Department of Legal Medicine, Ethics and Occupational Health, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil; Institute of Legal Medicine of São Paulo, Sao Paulo, Brazil
| | - R H Bortolin
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - R C C Freitas
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - M Hirata
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - P R X Tomaz
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - J R Santos
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - P C J L Santos
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of Sao Paulo Medical School, Sao Paulo, Brazil; Department of Pharmacology, Paulista Medical School, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - M Yonamine
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
3
|
Munir S, Habib R, Awan S, Bibi N, Tanveer A, Batool S, Nurulain SM. Biochemical Analysis and Association of Butyrylcholinesterase SNPs rs3495 and rs1803274 with Substance Abuse Disorder. J Mol Neurosci 2019; 67:445-455. [PMID: 30707402 DOI: 10.1007/s12031-018-1251-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 12/26/2018] [Indexed: 12/12/2022]
Abstract
Addiction is a complex mental and behavioral disorder that changes the neurochemistry and physiology of the brain. Genetics also plays a significant role in the pathophysiology of addiction. Butyrylcholinesterase (BChE), a cholinergic enzyme, has been implicated in the metabolism of various drugs, including cocaine, and an association between single-nucleotide polymorphisms (SNPs) of the butyrylcholinesterase gene (BCHE) and neuronal disorders has been reported. We report here the first investigation to be conducted on the status of BChE activity and the potential association of two BCHE gene SNPs, rs3495 (c.*189G > A) and rs1803274 (c.1699G>A, p.Ala567Thr, K-variant), with addiction vulnerability in heroin, hashish and polydrug users. Seventy-five individuals with an addiction to heroin, hashish and/or polydrug use were recruited to this study. BChE levels in the plasma were determined by Ellman's principle. SNPs were genotyped by standard procedures, followed by Sanger sequencing. Plasma BChE levels were found to be significantly higher (p ≤ 0.05) in addicts (mean ± standard error of the mean 0.031 ± 0.004 μmol/L/min; 95% confidence interval [CI] 0.024-0.038) than in non-addicts (controls) (0.014 ± 0.001 μmol/L/min; 95% CI 0.012-0.017). Statistical significant differences were also observed between the addicted cohorts. A statistically significant association for both SNPs (rs3495 and rs1803274) was not observed in addicted subjects tested in the dominant, recessive and allele genetic models, but trends of variations of the rs3495 risk G allele were noted. The authors conclude that BChE plays significant roles in addiction pathophysiology as increased BChE activity in blood samples obtained from the cohorts with addiction was evident. Further studies in this direction may provide novel approaches for the treatment of addiction, but studies with a larger sample size and different ethnic groups are warranted for broader conclusions to be drawn.
Collapse
Affiliation(s)
- Sadaf Munir
- Department of Biosciences, Functional Proteomics and Genomics Lab, COMSATS University Islamabad, Islamabad, Pakistan
| | - Rabia Habib
- Department of Biosciences, Functional Proteomics and Genomics Lab, COMSATS University Islamabad, Islamabad, Pakistan.
| | - Sliha Awan
- Department of Biosciences, Functional Proteomics and Genomics Lab, COMSATS University Islamabad, Islamabad, Pakistan
| | - Nazia Bibi
- Department of Biosciences, Functional Proteomics and Genomics Lab, COMSATS University Islamabad, Islamabad, Pakistan
| | - Arooj Tanveer
- Department of Biosciences, Functional Proteomics and Genomics Lab, COMSATS University Islamabad, Islamabad, Pakistan
| | - Sajida Batool
- Department of Biosciences, Functional Proteomics and Genomics Lab, COMSATS University Islamabad, Islamabad, Pakistan
| | - Syed M Nurulain
- Department of Biosciences, Functional Proteomics and Genomics Lab, COMSATS University Islamabad, Islamabad, Pakistan.
| |
Collapse
|
4
|
Devault DA, Maguet H, Merle S, Péné-Annette A, Lévi Y. Wastewater-based epidemiology in low Human Development Index states: bias in consumption monitoring of illicit drugs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:27819-27838. [PMID: 30109683 DOI: 10.1007/s11356-018-2864-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
Wastewater-based epidemiology is a promising approach worldwide, and its application is currently being developed in non-advanced economies. This technology, based on known toxicokinetic data initially used to detect illicit drugs in well-managed and maintained local sewer networks, has been extended to assess other products such as pesticides, alcohol, flame retardants, nicotine, and other substances. This technology is also used in countries with non-advanced economies. The present review aims to support future wastewater-based epidemiology in such countries by providing toxicokinetic data for locally used narcotic drugs that are expected or known to be emerging in developed countries, outlining the excretion differences due to human polymorphism, and summarising the practical obstacles due to the coverage, maintenance efficiency, or type of local sewage network.Case study feedback from Martinique is presented as an example; the Martinique field study complies with the Organisation for Economic Co-operation and Development standards for health issues, but not with regard to population and urban dynamics.
Collapse
Affiliation(s)
- Damien A Devault
- Faculté de Pharmacie, Univ. Paris Sud, Univ. Paris Saclay, UMR 8079, CNRS, AgroParisTech, France, 5 rue J. B. Clement, 92290, Chatenay-Malabry, France.
| | - Hadrien Maguet
- Centre Hospitalier Universitaire de Martinique, CS 90632 - 97261, Fort-de-France Cedex, France
| | - Sylvie Merle
- Observatoire de la Santé de la Martinique, Immeuble Objectif 3000, Acajou sud, 97232, Le Lamentin, Martinique
| | - Anne Péné-Annette
- Laboratoire EA 929 AIHP-GEODE-BIOSPHERES Campus Universitaire de Schœlcher, 97275, Schœlcher, France
| | - Yves Lévi
- Faculté de Pharmacie, Univ. Paris Sud, Univ. Paris Saclay, UMR 8079, CNRS, AgroParisTech, France, 5 rue J. B. Clement, 92290, Chatenay-Malabry, France
| |
Collapse
|
5
|
Meyers JL, Zhang J, Wang JC, Su J, Kuo SI, Kapoor M, Wetherill L, Bertelsen S, Lai D, Salvatore JE, Kamarajan C, Chorlian D, Agrawal A, Almasy L, Bauer L, Bucholz KK, Chan G, Hesselbrock V, Koganti L, Kramer J, Kuperman S, Manz N, Pandey A, Seay M, Scott D, Taylor RE, Dick DM, Edenberg HJ, Goate A, Foroud T, Porjesz B. An endophenotype approach to the genetics of alcohol dependence: a genome wide association study of fast beta EEG in families of African ancestry. Mol Psychiatry 2017; 22:1767-1775. [PMID: 28070124 PMCID: PMC5503794 DOI: 10.1038/mp.2016.239] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/24/2016] [Accepted: 10/27/2016] [Indexed: 01/16/2023]
Abstract
Fast beta (20-28 Hz) electroencephalogram (EEG) oscillatory activity may be a useful endophenotype for studying the genetics of disorders characterized by neural hyperexcitability, including substance use disorders (SUDs). However, the genetic underpinnings of fast beta EEG have not previously been studied in a population of African-American ancestry (AA). In a sample of 2382 AA individuals from 482 families drawn from the Collaborative Study on the Genetics of Alcoholism (COGA), we performed a genome-wide association study (GWAS) on resting-state fast beta EEG power. To further characterize our genetic findings, we examined the functional and clinical/behavioral significance of GWAS variants. Ten correlated single-nucleotide polymorphisms (SNPs) (r2>0.9) located in an intergenic region on chromosome 3q26 were associated with fast beta EEG power at P<5 × 10-8. The most significantly associated SNP, rs11720469 (β: -0.124; P<4.5 × 10-9), is also an expression quantitative trait locus for BCHE (butyrylcholinesterase), expressed in thalamus tissue. Four of the genome-wide SNPs were also associated with Diagnostic and Statistical Manual of Mental Disorders Alcohol Dependence in COGA AA families, and two (rs13093097, rs7428372) were replicated in an independent AA sample (Gelernter et al.). Analyses in the AA adolescent/young adult (offspring from COGA families) subsample indicated association of rs11720469 with heavy episodic drinking (frequency of consuming 5+ drinks within 24 h). Converging findings presented in this study provide support for the role of genetic variants within 3q26 in neural and behavioral disinhibition. These novel genetic findings highlight the importance of including AA populations in genetics research on SUDs and the utility of the endophenotype approach in enhancing our understanding of mechanisms underlying addiction susceptibility.
Collapse
Affiliation(s)
- J L Meyers
- Department of Psychiatry, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - J Zhang
- Department of Psychiatry, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - J C Wang
- Department of Neuroscience, Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J Su
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA
| | - S I Kuo
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA
| | - M Kapoor
- Department of Neuroscience, Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - L Wetherill
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - S Bertelsen
- Department of Neuroscience, Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - D Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - J E Salvatore
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA
- Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - C Kamarajan
- Department of Psychiatry, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - D Chorlian
- Department of Psychiatry, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - A Agrawal
- Department of Psychiatry, Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - L Almasy
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - L Bauer
- Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT, USA
| | - K K Bucholz
- Department of Psychiatry, Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - G Chan
- Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT, USA
| | - V Hesselbrock
- Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT, USA
| | - L Koganti
- Department of Neuroscience, Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J Kramer
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - S Kuperman
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - N Manz
- Department of Physics, The College of Wooster, Wooster, OH, USA
| | - A Pandey
- Department of Psychiatry, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - M Seay
- Department of Psychiatry, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - D Scott
- Collaborative Alcohol Research Center, Howard University College of Medicine, Washington, DC, USA
| | - R E Taylor
- Collaborative Alcohol Research Center, Howard University College of Medicine, Washington, DC, USA
| | - D M Dick
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA
- Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - H J Edenberg
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A Goate
- Department of Neuroscience, Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - T Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - B Porjesz
- Department of Psychiatry, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| |
Collapse
|